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Mesoscopic kinetic Monte Carlo simulations and pulsed field gradient nuclear magnetic resonance
�PFG NMR� measurements are compared in order to investigate the transport of ethane in a bed of
NaX crystals. A novel molecular mechanics particle-based reconstruction method is employed for
the digital representation of the bed, enabling for the first time a parallel study of the real system and
of a computer model tailored to reproduce the void fraction, particle shape and average size of the
real system. Simulation of the long-range diffusion of ethane in the bed over the Knudsen, transient,
and molecular diffusion regimes is consistent with the PFG NMR measurements in yielding
tortuosity factors which depend upon the regime of diffusion; more specifically, tortuosity factors
defined in the conventional way are higher in the Knudsen than in the molecular diffusion regime.
Detailed statistical analysis of the computed molecular trajectories reveals that this difference arises
in a nonexponential distribution of the lengths and in a correlation between the directions of path
segments traversed between collisions with the solid in the Knudsen regime. When the Knudsen
tortuosity is corrected to account for these features, a single, regime-independent value is obtained
within the error of the calculations. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2567129�

I. INTRODUCTION

The study of transport phenomena in porous materials
via both experiment and theory has a rich past due to its
immense importance in processes such as the movements of
petroleum and natural gas in porous strata, diffusion of water
in plants or soil, and applications such as chromatography,
catalysis, filtration, and sorption separations. Fick’s first es-
tablishment of a phenomenological description for the diffu-
sion of matter has been developed to a high degree of so-
phistication in the treatment of a wide range of problems,
involving both transient and steady states of transport and
diverse boundary and initial conditions.1 A collection of top-
ics from classical studies of diffusion and flow of fluids
through porous media can be found in Refs. 2–6.

The coexistence of different length scales and complex
connectivities in the space available for molecular motion
inside real porous media introduces a significant structural
dependence in the diffusion mechanism; as a consequence,
theoretical equations derived to describe diffusion in simple
idealized model systems �e.g., parallel pore models� are often
inadequate for describing experimental measurements.
Theory must be elaborated, or even totally revised, in order
to capture the effects of the geometric complexity of real

pore structures on the transport mechanism. A first study of
this kind is the calculation of the effective conductivity of a
suspension of randomly distributed spheres due to Maxwell.4

Computer-aided research on transport in pores has made
an enormous progress over the last years based on geometric
representations of the real medium with models such as
bundles of capillaries, slits, or networks thereof with pre-
scribed size distributions and connectivity, suspensions of
spheres, fibers, or combinations thereof,2,4,7–9 up to more ab-
stract representations such as the dusty-gas model.6 In early
work, diffusion was typically analyzed theoretically in a
model system of simple geometry and then the effective dif-
fusivity in the real medium was expressed in terms of the
theoretical value by means of suitable structure factors.2,10

More recent computational studies have involved direct cal-
culation of the trajectories of diffusers from the Knudsen up
to the molecular diffusion regime by means of kinetic Monte
Carlo simulation, in model pore structures comprising ran-
dom assemblages of spheres, capillaries, or both of them in
coexistence.8,9,11–14

Though easy to apply, the aforementioned approaches to
the porous structure suffer from lack of precise knowledge of
the spatial distribution and connectivity of solid and void
spaces with respect to a particular microporous material; this
knowledge is of crucial importance for studies aiming at the
modeling of diffusion under confinement. Moreover, the
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structural oversimplifications hinder the prospect of a ratio-
nal coupling between simulation results and experimental
measurements for a given system.

More sophisticated representations which do not invoke
idealized model assumptions have appeared in the literature,
which involve three-dimensional stochastic reconstruction of
the pore matrix, based on digitized experimental micro-
graphs constructed from image analysis of scanning, trans-
mission or high-resolution electron microscopy, atomic force
or fluorescence confocal optical microscopy, or x-ray tomog-
raphy outputs.15,16

The objective of the present work is the investigation, at
both a theoretical and an experimental level, of the “long-
range” macropore diffusion of gases through zeolite beds. In
particular, the transport of ethane in a bed of faujasite zeolite
crystals �NaX� is studied by means of pulsed field gradient
nuclear magnetic resonance �PFG NMR� and kinetic Monte
Carlo �KMC� simulation. The digitally reconstructed bed of
NaX employed in the simulation is tailored in order to repro-
duce the porosity, shape, and size of the zeolite crystallites in
the real medium using a novel molecular mechanics simula-
tion method. To our knowledge, this is the first time that the
effect of the detailed morphology of the porous medium is
examined via simulation, allowing a direct comparison with
the PFG NMR measurements. Of particular interest is the
question whether macropore diffusion in the Knudsen and
molecular regimes can be described through the same tortu-
osity factor.

II. DIFFUSIVITY AND MOLECULAR TRAJECTORIES

In a three-dimensional isotropic molecular system the
diffusion arising from the random thermal motion of mol-
ecules can be quantitatively expressed via Fick’s second law
in terms of a time dependent density field, c�r , t�, as follows:

�c�r,t�
�t

= � · D�c� � c�r,t� , �1�

where r denotes position vector, and D�c� is in general a
density-dependent transport diffusivity.

In cases where the concentration dependence of the dif-
fusivity can be neglected, the solution of Eq. �1� with initial
condition a delta function, at the origin takes the form of a
Gaussian function,

P�r,t� =
1

�4�Dt�3/2 exp�− r2/4Dt� . �2�

The same form was obtained by Einstein in his seminal
analysis of self-diffusion.17 The distribution of Eq. �2� ex-
presses the probability that, after a certain time t, a random
walker starting at the origin and executing a succession of
uncorrelated jumps in three-dimensional space will have at-
tained a displacement r. If the distribution of jump lengths
has a finite second moment, for a time t that is long in com-
parison to the mean time between jumps the Gaussian form,
Eq. �2�, applies. Direct integration of Eq. �2� gives Einstein’s
equation, which relates the mean square molecular displace-
ment �MSD, the second moment �r2�t�� of the Gaussian dis-

tribution of position vectors over time t�, with the diffusivity
in a three-dimensional �3D� system, i.e.,

�r2�t�� = 6Dt . �3�

Thus, the validity of relation �2� and hence of Eq. �3� only
requires a random uncorrelated sequence of rectilinear steps,
namely, a topologically homogeneous medium. However, in
studies of diffusion in porous solids or beds of particles, the
spatial distribution of molecules deviates from the Gaussian
form of Eq. �2�; Eq. �3� can apply only when the mean
square displacement of sorbate molecules during the obser-
vation time is large enough for motion to be diffusive, and at
the same time small in relation to the length scale of the
particular homogeneous region inside the porous medium
where transport is described by the diffusion coefficient D.
In catalytic beds of zeolite crystals, this situation is met by
microscopic methods for the evaluation of intracrystalline
diffusion, such as quasielastic neutron scattering measure-
ments and atomistic molecular dynamics simulations;18 these
methods operate on time scales of less than 1 �s and time
scales of less than 10 nm, which are smaller than typical
crystal sizes �1–100 �m� and even than typical distances
between defects in zeolite crystals. Thus, the microscopic
methods yield self—or transport diffusivities which are rep-
resentative of motion in an essentially perfect crystalline
structure. On the other hand, in the long-range diffusion
regime,17 which constitutes the focus of the present study,
molecular displacements well exceed the crystal dimensions.
Therefore, the system cannot be further treated as homoge-
neous over the length and time scales probed and Eqs. �2�
and �3� can only be thought of in connection with an effective
diffusivity for the porous medium.19

To overcome the problem of heterogeneity in pore sys-
tems, the distribution of molecular displacements may still
be considered Gaussian with the MSD in Eq. �3� being re-
lated to the effective diffusivity, Deff. If the sorbed molecules
are envisioned as spending some of their time inside the
zeolite crystals and the rest in the intercrystalline space, the
displacement vectors in the two environments being com-
pletely uncorrelated to each other, then we can write17

Deff =
�r2�t��intra

6t
+

�r2�t��inter

6t
. �4�

With pintra and pinter being the number fractions of molecules
present in the crystals and in the intercrystalline pore phase,
respectively, it follows17

Deff = pintraDintra + pinterDinter. �5�

The quantities pintra and pinter are related to the concentrations
cintra and cinter through

pintra = �1 − ��cintra/c, pinter = �cinter/c ,

where � is the porosity �void space fraction� of the bed and
c is the total concentration in the bed,

c = �cinter + �1 − ��cintra.
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In the present work, the experimentally found conditions
are such that pintra� pinter and Dintra�Dinter �negligible intrac-
rystalline mobility�. In addition, Dintra� pinterDinter, and Eq.
�5� reads

Deff = pinterDinter �6�

It is instructive to note at this point that the unlikely case for
zeolites of Dintra� pinterDinter �high intracrystalline mobility�
also leads to the approximation of Eq. �6�.17 This is explain-
able on the basis of the negligible contribution of intracrys-
talline diffusion to the overall resistance to mass transfer;
once in the solid phase, a molecule quickly explores the en-
tire crystal in which it is confined and transport through the
bed is rate determined by the diffusivity in the interparticle
�gas phase� region.

PFG NMR in the long-range diffusivity regime measures
an effective diffusion coefficient Deff�DLR, whereas kinetic
Monte Carlo simulation in this work computes directly the
interparticle diffusivity Dinter, assuming no entry into the zeo-
lite crystals.

III. METHODOLOGY

A. Digital reconstruction of the NaX bed

A new reconstruction method is presented in this section,
designed for cases where the porous medium under investi-
gation consists of particles of known shape and size distri-
bution. On the computer, such a medium is represented as a
collection of particles obeying these distributions, with pre-
scribed porosity, in detailed mechanical equilibrium. In the
new algorithm, the particles are represented as collections of
soft repulsive spheres with progressively increasing resolu-
tion. The material configuration is arrived at through a series
of energy minimizations �molecular mechanics� at constant
particle number density. In our case, the beds consist of oc-
tahedral crystals �see Fig. 1�. Based on the measured bed
density of 590 kg m−3 and the crystal density of
1530 kg m−3, the bed porosity is �=0.6. Furthermore, the
mean crystal size �edge length of the octahedra� is 30 �m.

In the computer reconstruction, each octahedron is rep-
resented as a rigid collection of soft repulsive spheres. The
purely repulsive potential active between all pairs of spheres
belonging to different octahedra is described by the Lennard-
Jones 6-12 expression up to a distance of 0.94�, by a quintic

spline20,21 for distances between 0.94� and 1.04�, and is
identically equal to zero for distances beyond 1.04�. The
first and second derivatives of the potential are continuous,
ensuring good behavior during the minimizations.20,21

Initially, only a single soft sphere is used to represent
each crystal �generation 0�. The volume of the sphere, calcu-
lated on the basis of the collision diameter �, is taken equal
to that of the entire octahedral crystal. N spheres are placed
in a cubic domain of volume V characterized by three-
dimensional periodic boundary conditions �volume of
porous medium to be reconstructed� at a number density
N /V= �1−�� / ���3 /6�, ensuring that the correct porosity
will be achieved under the conditions of nonoverlap. The
system of spheres is brought to a liquidlike disordered con-
figuration by canonical �NVT� Monte Carlo simulation at a
temperature of T=� /kB=300 K. The energy of the system is
then minimized with respect to the coordinates of the sphere
centers and an amorphous packing of soft spheres in detailed
mechanical equilibrium is thereby created. In a second stage
of the calculation, each sphere is converted to a rigid collec-
tion of eight smaller tangent spheres with their centers lying
at the apices of an octahedron �generation 1, see Fig. 2
�top��: the size � of the spheres in this generation is chosen
so that the volume of the “filled” three-dimensional object
bordered by the sphere surfaces and by the faces of the oc-
tahedron formed by the sphere centers equals the volume of
the original sphere of generation 0 and therefore of the octa-
hedral crystals being simulated. Random orientations are ini-
tially assigned to the octets of spheres of generation 1 that
replace the spheres of generation 0. The energy of the system
is again minimized, imposing the condition of detailed me-
chanical equilibrium at the level of generation 1.

In the subsequent stages of the calculation �generation
G�, the representation of the octahedral particles is refined in
relation to that of generation G−1, again preserving the par-
ticle volume, and the energy is again minimized.21 By repeat-
ing this procedure for a sufficiently high G, an assemblage of
octahedra is obtained, represented as collections of soft re-
pulsive spheres resting upon each other in detailed mechani-
cal equilibrium, and respecting the desired porosity. In fact,

FIG. 1. Optical microscopy picture of octahedral NaX crystals; the inset
depicts the mean edge size used in the simulation.

FIG. 2. Stages of successive representations of the octahedral object starting
from G=1 �top left� and ending at G=15 �penultimate structure at the
bottom�.
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for G varying from 9 up to 15 the faces of the objects are
practically indistinguishable from the planar equilateral tri-
angles, and thus allow replacement by actual octahedra
bounded by planes of the desired size �see Fig. 2 �bottom��,
for the simulation of the catalytic bed.

B. Kinetic Monte Carlo simulation

KMC simulation is used to track molecular and Knudsen
diffusion of pointlike molecules in the model bed of octahe-
dral crystals, obtained through the particle-based reconstruc-
tion procedure so as to match the characteristics of experi-
mental samples. Long trajectories of individual sorbate
molecules in the intercrystalline space are tracked by kinetic
Monte Carlo simulations. The simulation observable is the
mean square displacement as a function of time. Observation
times are long, such that the displacement exceeds the size of
individual crystals by at least an order of magnitude. The
computations, carried out under the conditions of thermody-
namic equilibrium, consider transport only in the intercrys-
talline spaces, assuming that molecules sorbed within the
zeolite crystals are too slow to contribute to the long-range
diffusion �pintraDintra� pinterDinter�.

The KMC method is used in this work for the calculation
of the self-diffusivity of ethane in the bed of NaX crystals,
by computing the mean square displacement of a fixed num-
ber of molecules as they move in the intercrystalline space of
the bed and hence the intercrystalline self-diffusivity Dinter

by means of Eq. �3�. NaX crystals are modeled as nonsorb-
ing impermeable bodies in the present part of this study. The
molecules, with mass m, at absolute temperature T, are as-
sumed to travel with the mean thermal speed, ū
= �8kBT /�m�1/2, given by the Maxwell velocity
distribution.22 A random change in the direction of motion
occurs after any molecule-molecule collision. Such collisions
are treated in a mean field sense, without explicitly consid-
ering colliding pairs; the distance l traveled between succes-
sive collisions is picked from an exponential distribution un-
der the prevailing temperature T and pressure p, that is to say
random trajectories are generated in the void space of the
medium in such a way that in the bulk gas the lengths l
between successive collisions follow the exponential distri-
bution expected from the Poisson stochastic sequence of in-
termolecular collisions,22

�l�f�l� = exp�− l/�l�� , �7�

where f�l�dl is the conditional probability of having a
collision-free trajectory length between l and l+dl, with the
mean value of l being denoted by �l�. In the bulk gas phase,
�l� is the molecular mean free path

� =
kBT

p�gas
2 ��2

, �8�

with �gas being the collision diameter of gas molecules.
Reflections upon collision with the isotropic crystal sur-

face are assumed to be diffuse; that is to say, a new direction
of motion is generated according to the cosine law4 that en-
sures equal flux of the emitted molecules from the surface
through any elementary area surrounding the collision point,

irrespective of direction. The reflected trajectory vector is
sampled from the probability density function g�	 ,
�, with
	 and 
 being the polar and azimuthal angles, respectively,
determining a solid angle sin 	d	d
 out of the surface. The
fraction of particles leaving the surface with trajectories in-
side the range �	 ,	+d	� and �
 ,
+d
�, is given by the
following relation, normalized so that 	� �0,� /2� and 

� �0,2��:

g�	,
�d	d
 = − d cos2 	d�
/2�� . �9�

In this way it is ensured that the probability for a molecule to
leave the surface per unit time per unit area on the surface
increases as the angle of reflection approaches the normal to
the surface.

IV. RESULTS AND DISCUSSION

Figure 3 �top� displayed the result of the reconstruction
procedure for a bed of spherical crystals of NaX in mechani-
cal equilibrium �generation 0�, after the molecular
mechanics-based minimization procedure, to reproduce the
structural characteristics observed in the experimental part of
this work.

Figure 3 �bottom� presented the results of the reconstruc-
tion for the bed of the NaX crystals used for the PFG NMR
measurements �Fig. 1�, as obtained from a sequence of suc-
cessive energy minimizations starting from the coarse struc-
ture depicted at the top of the same figure and ending at
generation 15.

The reconstruction procedure was repeated using the
same size and shape �octahedral� of crystallites at a lower
value of the porosity, �=0.43. The procedure in this case

FIG. 3. Reconstructed bed of zeolite NaX; generation G=0 �top� generation
G=15 �bottom�.
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ended at generation 11, because of the slow convergence rate
of the minimization algorithm as the void fraction of the
system decreases. The characteristics of the reconstructed
beds appear in Table I.

For each value of the porosity reported in Table I, 20
different configurations were generated by repeating the
minimization from a different, independently generated,
starting point configuration. Separate kinetic Monte Carlo
simulation experiments were performed in every recon-
structed structure.

Figures 4 and 5 display the intercrystalline self-
diffusivity of ethane, calculated as an average over a large
number of single-molecule trajectories generated in 20 dif-
ferent realizations of the porous structure as described above,
as a function of mean free path � and Knudsen number Kn
=� /ds at 295 K in a series of reconstructed beds of �
=0.60 and 0.43, respectively. In the original definition of Kn,
ds is the diameter of a tube of infinite length wherein mo-
lecular motion takes place. In studies of transport phenomena
inside porous media ds is estimated as the mean length, �ds�,
of random secants through the void space of the porous ma-
terial of total volume V which comprises a solid phase of
surface area S as follows:

�ds� =
4�V

S
. �10�

Let us define the mean surface-to-surface path length,
�l�, as the mean free path between collisions with the walls in

the Knudsen diffusion regime for a particle traveling inside
the void space without penetrating the solid phase of a po-
rous medium,

�l�Kn�1 =
1

�V
	 d̄s�r�d3r , �11�

where the quantity d̄s�r� represents an average over all pos-
sible directions emanating from a point r, with d3r being an
element of volume about this point. The integral is taken
over the entire void space of the medium so that Eq. �11�
expresses an average of the mean surface-to-surface paths
over all points belonging to �V and over all directions.

Kingman’s work23 on the acoustical design of auditoria,
assuming perfectly reflecting walls and invoking the
Birkhoff ergodic theorem, resulted mathematically in the fol-
lowing equation for the mean free path of sound:

�l� =
4�V

S
+

S

4�V
var�d̄s�r�� . �12�

This equation elicits a position dependent d̄s�r� because of
the nonergodicity of the reflected trajectories as a conse-
quence of the shape of the interior region only, without tak-
ing into account the nature of collisions with the surfaces.

Obviously, if d̄s�r� is independent of the point of emission

�var�d̄s�r��=0�, then �l�= �ds�, thus, Eq. �12� takes the simple
form of Eq. �10�.

Assuming negligible overlap between the solid objects
in the reconstructed beds, a fact ensured by the nature of the
steeply repulsive potential employed during the minimiza-
tion procedure, �ds� was estimated using the forms of Eq.
�10� listed in the footnotes of Table II. The surface-to-surface
path length, �l�, formally defined in Eq. �11�, was estimated
directly as the mean free path �l�Kn�1 from the KMC simu-
lations in the Knudsen regime. Clearly, the agreement be-
tween the mathematical formalism of Eqs. �10� and �12� and
the corresponding physical analog of Eq. �11� compared in

Table II shows that the variance of d̄s�r�, which now incor-
porates the reflection type adopted in our simulations

TABLE I. Characteristics of the reconstructed NaX beds obtained through
the molecular mechanics-based minimization procedure.

Crystal geometry
Simulation box
length ��m�

Particle size
��m� � Final G

Spherical 116.740 28.969 �diameter� 0.60 0
Octahedral 101.969 29.477 �edge� 0.43 11
Octahedral 116.740 29.996 �edge� 0.60 15

FIG. 4. Intercrystalline self-diffusivity of ethane computed via kinetic
Monte Carlo simulation in a reconstructed bed of spherical �G=0� NaX
pseudocrystals �open symbols�; in a reconstructed �G=15� bed of octahedral
NaX crystals �filled symbols�; and calculated via Eq. �13� for the bed of
octahedral crystals �line�, as a function of mean free path � and Knudsen
number Kn, at porosity �=0.60.

FIG. 5. Same as Fig. 4 for a bed of octahedral NaX crystals �G=11� of �
=0.43.
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through Eq. �9�, practically vanishes, clarifying this way the
conditions under which the relation �l�Kn�1= �ds� is obeyed in
disordered porous media.24

On the left-hand side of Figs. 4 and 5 is seen the high-
pressure regime ��l�=� ,Kn�1� where the overall diffusion
process is controlled by frequent intermolecular collisions,
leading to small mean free paths. The calculated interparticle
diffusivity in this regime can be identified with an effective
bulk diffusion coefficient, Db. On the right-hand side of the
same graphs we see the low-pressure regime, where molecu-
lar collisions with the surfaces of crystals in the bed domi-
nate the overall diffusion process and mean free paths are
long ��l��� ,Kn�1�; hence, the calculated long-range dif-
fusivity can be identified in a similar way with an effective
Knudsen diffusivity, DKn. The effective intercrystalline dif-
fusivity, Dinter, over the whole range of pressures �or Knud-
sen numbers�, may be estimated through the Bosanquet
approximation4 as a harmonic mean of the diffusivities Db

and DKn, associated with the two aforementioned limiting
situations, as follows:

Dinter
−1 = DKn

−1 + Db
−1. �13�

Estimates of Dinter based on Eq. �13� in the bed of octahedral
crystals at �=0.60 are shown in Fig. 4 �line�; the Bosanquet
approximation leads to a small underestimation of the effec-
tive diffusivity in the transition region.

As mentioned in the previous section, only an overall
�long-range� diffusivity, DLR, is measured via PFG NMR,
which in general includes contributions from intracrystalline
diffusion, surface diffusion, sorption, and desorption phe-
nomena in addition to Knudsen and molecular diffusion in
the macropores. �Compare Eq. �4� and the discussion that
follows it.� On the other hand, the simulation performed at
the current stage involves a bed of impermeable zeolite crys-
tals. Since the PFG NMR cannot directly measure bulk or
Knudsen diffusivity, in the experiment both magnitudes were
extracted from DLR through the proper fraction pinter in each
case.19,25 The fraction pinter was calculated on the assumption
that Henry’s law applies in the system under study. The latter
assumption has been experimentally verified in previous
work,19,25 ensuring that cintra�cinter, and cintra=KHp for the
entire pressure range used in this work; KH is the Henry
constant. For the experimental temperature range of
193–368 K used here, the calculated values of the ethane

pressure varied from 10−1 to 7.0�102 mbars, with pinter val-
ues being in the range of 2.0�10−5 to 5.0�10−2, respec-
tively.

Although the absolute values of the estimates for bulk,
Db=Dinter�Kn�1�, and Knudsen, DKn=Dinter�Kn�1�, diffu-
sivities extracted from the PFG NMR depend strongly on the
sorption isotherm, a comparison with the corresponding
quantities predicted from simulation can be made on the ba-
sis of the relative deviations from the reference diffusivities
D0b and D0Kn expected to prevail in the purely molecular
diffusion-dominated and purely Knudsen diffusion-
dominated regimes, respectively. Following the definitions

D0b =
1

3
ū� �14�

and

D0Kn =
1

3
ū�l�Kn�1, �15�

the tortuosities �b and �Kn in the two regimes can then be
defined26 as

�b =
D0b

Db
� �16�

and

�Kn =
D0Kn

DKn
� . �17�

In elaborating PFG NMR diffusivity data to extract tor-
tuosities, the above expressions have been treated19,25 with
�=1, whereas in simulation the actual macropore void frac-
tion has been used as �. Nevertheless, when comparison
between experiment and simulation is performed on the basis
of ratios �Kn/�b, the dependence on porosity is factored out.
In Table II it is shown that both predicted and measured
ratios indicate a significantly higher tortuosity factor in the
Knudsen diffusion regime than in the bulk regime. The de-
parture of the ratio from unity tends to be stronger in the
simulated bed of porosity 0.43, suggesting that tortuosities in
the Knudsen regime increase in relation to those in the mo-
lecular regime as the void fraction decreases; this trend is in
agreement with previous simulation studies on even more
compacted structures of randomly packed hard spheres9 with
�=0.38, or overlapping spheres27 with � varying from 0.06
to 0.042, as well as in pixelized porous media.28

TABLE II. Mean intercept lengths in the reconstructed NaX zeolite beds: calculated via Eq. �10�, computed via simulation of intercrystalline diffusion in the
Knudsen regime, and experimental vs simulated tortuosity ratios using Eqs. �15� and �21� for the same reconstructed media.

�
�ds�

��m�
�l�Kn�1

��m�
�Kn/�b

PFG NMR
�Kn/�b

Simulationa 
�l2�Kn�1 /2�l�Kn�1

2

Simulationa �Kn/�b corrected

0.60 �sph� 26.511b 26.350 ¯ 1.55 0.309 0.935 0.97
0.60 �oct� 24.492c 24.320 4.7–10d 2.04 0.298 0.849 1.12
0.43 �oct� 12.104c 12.134 ¯ 2.14 0.270 0.866 1.28

aReported ratios are subject to error bars varying from ±8% to ±13%.
bValue calculated from Eq. �10� read as 2di� /3�1−��; di sphere diameter.
cValue calculated from Eq. �10� read as 2ai��6/9�1−��; ai octahedron edge.
dRange resulting from the uncertainty of the experimental porosity of 0.60±0.15, �Ref. 25�, as it is propagated in the calculation of �ds�.
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It must be noted here that the bed of lower void fraction
�=0.43 was modeled in order to capture the behavior of the
experimentally used bed of �=0.60±0.15 over its whole
range of variation; the reconstruction of a model bed of �
=0.75 leads to unrealistically loose structures of NaX crys-
tals, far from being in contact.

Through a further elaboration of Eq. �3�, by regarding
the vector r traveled by a random walker during time t as the
vector sum of n rectilinear segments, li, traversed between
collisions, one arrives to the following expression:

r2 = 

i=1

n

li
2 + 2


i=1

n−1



j=i+1

n

li · l j . �18�

Since vectors are no more correlated directionally after a
small number of collisions �see Fig. 6�, following the work
of Derjaguin29 on the Knudsen flow of rarefied gases through
a porous medium, the average of Eq. �18� for n�1 gives

�r2� � n�l2� + 2�

i=1

n

li

j=1

�

li+j cos �i,i+j ,

with �i,i+j being the angle between vectors li and li+j. Assum-
ing, in addition, mutual independence of the lengths li, li+j

and the angle cos �i,i+j the above average transforms to

�r2� � n�l2� + 2n�l�2

k=1

�

�cos �k� , �19�

where the sum on the right-hand side runs over all average
cosines between segments li separated by k collisions. This
sum can be computed readily from a simulation trajectory in
a manner entirely analogous to the computation of mean
square displacement using multiple time origins.

Combining Eqs. �3� and �19� and using the fact that the
total trajectory length n�l� divided by the total elapsed time t
equals the mean velocity ū lead us to a comprehensive rela-
tion for the self-diffusivity over the entire diffusion regime,
i.e.,

D =
1

3
ū�l�� �l2�

2�l�2 − � �20�

with

 = − 

k=1

�

�cos �k� .

Intermolecular collisions in the gas phase follow an ex-
ponential distribution in l, as described by Eq. �7�. For such
a distribution, the ratio of moments is �l2� /2�l�2=1. In addi-
tion, no directional correlation between successive trajectory
segments is expected, hence =0; therefore, in the molecular
diffusion-dominated regime Eq. �20� reduces to Eq. �14�.

Specializing now to the Knudsen regime, Eq. �20� be-
comes

D0Kn =
1

3
ū�l�Kn�1� �l2�Kn�1

2�l�Kn�1
2 − � . �21�

As seen in Table II on the basis of computed trajectories,
the ratio �l2�Kn�1 /2�l�Kn�1

2 in the Knudsen diffusion regime
can vary from 0.8 to 1, depending on the interfacial geom-
etry of the objects constituting the bed, and exhibiting no
significant dependence on the porosity. In Fig. 6 the succes-
sive terms constituting  are examined for the bed of tetra-
hedral particles at �=0.60. Significant directional correlation
is observed; �cos �k� is seen to exhibit damped oscillations
around 0, which die out after about eight collisions with the
surface of the octahedra with the diffuse reflection rule ap-
plied �see Eq. �9��. The  values do not appear to exhibit any
systematic dependence on the porosity.

Using the D0Kn given by the corrected Eq. �21� as a
reference diffusivity in place of Eq. �15�, the ratio of Knud-
sen over bulk regime tortuosity reads

��Kn

�b
�

corrected
=

�Kn

�b
� �l2�Kn�1

2�l�Kn�1
2 − � . �22�

In Table II it is seen that the corrected values of this ratio are
in all cases indistinguishable from unity within the statistical
error of the simulation.

Zalc et al.27 observed a decrease of  for randomly
packed spheres as the porosity was changed from 0.42 to
0.07; the correlation between segments of trajectories re-
flected from the surfaces became more pronounced as the
void fraction available for interparticle diffusion in the me-
dium decreased. In their study, the ratio �l2�Kn�1 /2�l�Kn�1

2

remained close to unity, so that the correction to the refer-
ence Knudsen self-diffusivities through Eq. �21� was made
merely through the  values.

In order to study the effect of interfacial geometry on the
distribution of the vectors li as well as on their degree of
orientational correlation under the same reflection rule from
the surface, diffusion simulation studies were carried out in a
bed of spherical particles of the same porosity �=0.60 �Fig.
4, first row of Tables I and II�. As seen in Table II, the factor
�l2�Kn�1 /2�l�Kn�1

2 was found practically equal to unity. On
the contrary,  was found to deviate considerably from 0.
The corrected ratio of tortuosities in the bed of spherical
pseudocrystals was again very close to 1. These findings are
in conformity to the results of Zalc et al.27 Comparison be-
tween the simulation results reported in Table II suggests that

FIG. 6. Average cosine values of vector angles in Eq. �19� as a function of
the number of intervening collisions k for the bed of octahedral crystals at
�=0.60.
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the distribution of molecular paths deviates from being ex-
ponential �Eq. �7�� as particles constituting the bed depart
from the spherical shape.

V. CONCLUSION

A comparison of kinetic Monte Carlo simulations and
PFG NMR measurements of the long-range diffusivity of
ethane in a bed of NaX zeolite crystals was carried out in the
molecular, transient, and Knudsen diffusion regimes. For the
digital representation of the experimental bed of zeolite crys-
tals, a novel reconstruction technique was used at two poros-
ity values of 0.60 and 0.43 to capture the experimental range
of uncertainty in the porosity. Only interparticle diffusion in
the macropores was studied in the simulations, as this, as
opposed to intracrystalline diffusion, dominated the PFG
NMR measurements. In the simulations, diffuse reflection
from the zeolite crystal surfaces was postulated, with the
direction of reflected molecular trajectories following a co-
sine law.

The results of PFG NMR revealed a strong dependence
of the apparent tortuosity factors on the regime of diffusion,
tortuosities in the Knudsen regime being by a factor of
4.7–10 higher than tortuosities in the molecular diffusion-
dominated regime.

The predicted tortuosity ratios in the reconstructed beds
were in qualitative agreement with experiment. Using the
conventional, experimentally accessible definition of tortu-
osities, they yielded tortuosity values that were higher in the
Knudsen regime than in the molecular diffusion-dominated
regime by a factor of about 2. With the usual definition of
tortuosity factors, contrary to common belief, they are not
unique functions of the structure of the medium, but also
depend on the regime of diffusion.

Examining, furthermore, the statistics of molecular tra-
jectories in the Knudsen diffusion regime in a manner sug-
gested by the work of Derjaguin,29 in terms of the two first
moments of the distribution of segment lengths between col-
lisions with the solid and of the directional correlation be-
tween these segments, we were able to define corrected tor-
tuosity factors for the Knudsen regime. Correspondingly,
corrected tortuosity ratios between the Knudsen and molecu-
lar diffusion-dominated regimes could be formulated �Eq.
�22��. These corrected diffusivity ratios were indistinguish-
able from unity. Thus, if tortuosity in the Knudsen regime is

defined in terms of a reference diffusivity that takes into
account the departure of actual molecular trajectories from
their usually postulated statistical characteristics, the same
value is obtained as in the molecular diffusion-dominated
regime and the puzzle of regime-dependent tortuosity factors
is resolved. Such a corrected definition of tortuosity cannot
be easily implemented in experimental work, as it requires
knowledge of the detailed geometric characteristics of mo-
lecular trajectories.
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