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On the computation of long-range interactions in fluids under confinement:
Application to pore systems with various types of spatial periodicity
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The problem of computing accurately the long-range Coulomb interactions in physical systems is
investigated focusing mainly on the atomistic simulation of fluids sorbed in porous solids. Several
articles involving theory and computation of long-range interactions in charged systems are
reviewed, in order to explore the possibility of adapting or developing methodology in the field of
computer simulation of sorbate molecules inside nanostructures modeled through a
three-dimensional �crystal frameworks�, two-dimensional �slit-shaped pores�, or one-dimensional
�cylindrical pores� replication of their unit cell. For this reason we digitally reconstruct selected
paradigms of three-dimensional microporous structures which exhibit different spatial periodicities
such as the zeolite crystals of MFI and FAU type, graphitic slit-shaped pores, and single-wall carbon
nanotubes in order to study the sorption of CO2, N2, and H2 via grand canonical Monte Carlo
simulation; the predicted data are compared with experimental measurements found elsewhere.
Suitable technical adjustments to the use of conventional Ewald technique, whenever it is possible,
prove to be effective in the computation of electrostatic field of all the categories studied in this
work. © 2007 American Institute of Physics. �DOI: 10.1063/1.2799986�

I. INTRODUCTION

The accurate calculation of electrostatic forces is of con-
siderable importance for the computer simulation of polar/
charged systems subject to periodic conditions. Since the
Coulomb potential converges much more slowly than the
dispersive short-ranged interactions, the usually employed
truncation methods to Lennard-Jones potential cannot apply
since long-range-type corrections are diverging. Thus, a suf-
ficient compensation for the missing long-range part of the
electrostatic potential field is unfeasible. On the other hand,
the obvious alternative of increasing vastly the volume of the
simulated system would result in a dramatic increase of the
central process unit computation time especially in the case
of pore systems where in addition to sorbate-sorbate interac-
tions the electrostatic interactions with the sorbent frame-
work atoms must be taken into account.

As a consequence of the above limitations, computation
of electrostatic interactions requires a large number of inter-
acting periodic images of the simulation cell. However, the
latter introduces conditional convergence in the evaluated
energies as a result of the mixing of signs in the terms of the
infinite series involved in the aforementioned potentials. A
rigorous way to overcome this problem has been given by
Ewald.1 His method, developed for the evaluation of optical
and electrostatic lattice potentials, is a well-established tool
for the computation of the electrostatic field in periodic sys-
tems consisting of ions or polar molecules.

The work presented in this paper is organized in two
main parts. In the first, the mathematical background of the

Ewald method is clarified in a rigorous way akin to its origi-
nal form1 in an attempt to reveal the aspects concerning com-
putational studies in nanostructures. Then, a critical literature
survey is carried out, aiming at adapting the method to the
simulation study of the sorption thermodynamics of polar
molecules inside sorbents, bearing charged atoms and being
subject to various spatial periodic forms due to their way of
modeling. The second part reports our sorption thermody-
namics predictions for carbon dioxide, nitrogen, and hydro-
gen in digitally reconstructed model sorbent systems, which
comprise various types of spatial periodicity; the resulted
simulated isotherms from this analysis are compared to ex-
perimentally measured isotherms found elsewhere.

A. Theory

In many studies pertaining to dynamics and equilibrium
of molecules in pore systems as in the present work, it is
convenient to represent electrostatic centers by means of par-
tial charges. Derivation of the following equations in the case
of dipolar molecules is straightforward and can be found
elsewhere.2,3

The classical electrostatic energy for a system of N point
charges �qi� located at positions �ri�, i=1,2 , . . ., N, in a pe-
riodically repeated unit cell of volume V= l1 · l2� l3, charac-
terized by the set of real space lattice vectors �lm�, m
=1,2 ,3, can be written as

U =
1

4��0

1

2�
n

���
i=1

N

�
j=1

N
qiqj

	rij + n	
 , �1�

where �0 is the permittivity of vacuum. The prime on the
sum indicates that the terms where 	rij +n	=0 are omitted
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excluding this way the infinite self-energy of the point
charges. The summation over n is carried out over all integer
translations of the real space lattice vectors n=n1l1+n2l2

+n3l3 for integers nm, m=1,2 ,3; also, rij �ri−r j. Obviously,
periodic replication of a non-neutral system toward the cal-
culation of Coulomb interactions via this procedure would be
quite meaningless since the sum of Eq. �1� under these con-
ditions diverges.

Nevertheless, the presence of the infinite series �n	rij

+n	−1 in the above relation makes the sum of Eq. �1� condi-
tionally convergent;4 namely, derangement of its terms alters
the sum, making any direct attempt to compute Coulomb
potential in a neutral infinite system through this formula
suffer from lack of a unique value. In the theory of ionic
crystals such series of distances between ions known as
Madelung constants appear in the calculation of the lattice
potential energy. Because calculation of these constants in
three dimensions is a vastly complicated procedure,5 compu-
tation of electrostatic potentials using the formula �1� is by
no means a rigorous way for computing long-range interac-
tions in atomistic simulations of periodic systems. An exten-
sive analysis of the conditions of convergence of such series
involved in simulation of periodic systems of ions or dipolar
molecules can be found in the seminal work of de Leeuw et
al.6,7

More precisely, introducing the convergence factor
exp�−s	n	2� the aforementioned series become �n	rij

+n	−1 exp�−s	n	2�; then they may be forced into absolute
convergence by properly converting them to a uniformly
convergent series of continuous functions on s�0. Subse-
quently, by virtue of gamma function,4 	rij +n	−1 is trans-
formed as follows:

�
n

	rij + n	−1 exp�− s	n	2�

=
1

��1/2��0

�

dtt−1/2�
n

exp�− s	n	2 − t	rij + n	2� . �2�

Consequently, the problem reduces to the evaluation of
the integral in Eq. �2�. By splitting this integral into �0,a2�
and �a2 ,��, and transforming exp�−t	rij +n	2� by means of
the imaginary transformation of the Jacobi theta functions,4

evaluation of the integrals leads to the following lattice
sums:6

�
n

�	rij + n	−1 exp�− s	n	2�

= �
n

�	rij + n	−1 exp�− s	n	2�erfc�a	rij + n	�

+
1

�
�
n�0

	n	−2 exp�2�in · rij − �2	n	2/a2��1 + o�s��

−
2�

3
	rij	2 + 2�/s1 + s/a2 + o�s� . �3�

The parameter a2 only influences the speed of convergence
of the above sums; its physical meaning will be shown in the
next paragraph. Also, erfc�x� is the complementary error

function, defined as 1−erf�x�, where erf�x� is the error func-
tion defined as 2/��0

x exp�−t2�dt.
In the case where vectors, rij +n, in the above sums are

referred to distances between ions and their own periodic
images, then the series under consideration becomes
�n�0	n	−1. Therefore, these terms must also be forced into
absolute convergence using exactly the same procedure fol-
lowed above; thus, inserting the resulting expression along
with Eq. �3� into Eq. �1�, an s-depended energy expression is
established which as s→0 it becomes

U4��0 =
1

2�
i=1

N

�
j=1

N

�
n=0

�

�qiqj	rij + n	−1 erfc�a	rij + n	�

+
1

2��
n�0

�	n	−1 erfc�a	n	�

+
1

�
	n	−2 exp�− �2	n	2/a2�� −

2a
�
��

i=1

N

qi
2

+
1

�
�
n�0

qiqj	n	−2 exp�2�in · rij − �2	n	2/a2�

+
2�

3
��

i=1

N

qiri�2

, �4�

where the singularity of Eq. �3� at s=0 due to terms s−1 has
now disappeared as a consequence of the vanishing sum,
�i=1

N qi, contained in these terms because of the charge neu-
trality of the system.

The magnitude of distance in Eqs. �1�–�4� and the fol-
lowing equations are scaled by a characteristic length, e.g.,
	lm	; similarly �0 is scaled by the same length to have dimen-
sions of �C2J−1�, so that electrostatic potential U is expressed
in Joule.

The method toward the derivation of Eq. �4� uses a
mathematical way to arrive at a unique solution to the prob-
lem of the computation of electrostatic energy of periodic
neutral systems. In addition, since for an electroneutral sys-
tem the following tautology holds

−
1

2�
i=1

N

qi�
j=1

N

qj	rij	2 = ��
i=1

N

qiri�2

,

the method does provide a direct explanation of the presence
of terms 2� /3	�i=1

N qiri	2 �cf. Eqs. �3� and �4��, which repre-
sent the total dipole moment of the system. In particular,
statistical mechanics correlates the fluctuations of this quan-
tity with polarization effects over the entire volume of the
system. Thus, the primary simulation cell polarizes through
the spherically repeated periodic images the external sur-
rounding medium of dielectric permittivity ��, which in turn
reacts with the simulation cell contributing to the energy U.8

de Leeuw et al.6 have shown that the energy given by the
expression �4� corresponds to an ionic system emerged in
vacuum ���=1�, namely, U�U���=1�, the relation of U to
the contrary case of a conductor ���→�� being

U��� → �� = U��� = 1� −
2�

3
��

i=1

N

qiri�2

. �5�
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The assumption of a surrounding of infinite dielectric
permittivity employed in the present work by means of com-
bination of Eqs. �4� and �5� involves computation of U���
→��; therefore, an additional physical reason of conditional
convergence of Eq. �4� arising from the nature of boundaries
at infinity is canceled by removing the term of total dipole
moment. Neumann9 has reported an extensive study on di-
pole moment fluctuation formulas for various boundary con-
ditions used in computer simulations of polar systems com-
bining statistical mechanics and electrostatics.

In a less rigorous derivation of Eq. �4�, the point charges
in the central cell may be replaced by an algebraically
equivalent transformation consisting of the N point charges
qi plus N Gaussian charge distributions surrounding and can-
celing completely each point charge qi, plus a periodic, usu-
ally Gaussian, charge distribution of the same sign with qi,
represented by Fourier series. Subsequently, the electrostatic
field due to the aforementioned charge distributions is calcu-
lated through Poisson’s equation2 and the total electrostatic
energy U�U���→�� reads

U4��0 =
1

2�
i=1

N

�
j=1

N

�
n=0

�

�qiqj	rij + n	−1 erfc�a	rij + n	�

+
1

2�
i=1

N

�
j=1

N

�
k�0

qiqj
4�

k2 exp�−
k2

4a2
cos�k · rij�

−
a

�
�
i=1

N

qi
2. �6�

Via the above formulation the real space summation is car-
ried out only in the central simulation cell �n=0�, by suitably
adjusting the relative rates of convergence of the real and
Fourier space sums by means of value a, whose physical
meaning is connected to the second moment sd of the can-
celing Gaussian distribution through the formula a2=1/2sd

2

�see next section�. Under these circumstances the second
sum with n�0 vanishes; thus, the second term of Eq. �4�
simplifies to −a /��i=1

N qi
2. In Eq. �6�, this term represents

the magnitude to be subtracted at the stage of reciprocal
summation, due to the inclusion of the interactions of the
periodic Gaussian distributions of charge qi with the point
charge qi located at the center of this distribution. Instead,
one could exclude these interactions directly, as being done
at the real space summation, omitting the self-correction
term;10 however, this is usually avoided as it might affect the
convergence of the reciprocal part by destroying the period-
icity of the Fourier series.

The summation in the reciprocal space is carried out
over all integer translations of the vector k=2�k1l1

*

+2�k2l2
*+2�k3l3

*, for integers km, m=1,2 ,3, where the re-
ciprocal lattice vectors �lm

* � are related to the real space ones
by li · l j

*=�ij, where �ij =1 for i= j, and 0 otherwise �Kro-
necker delta�.

Although mathematically efficient, the Ewald summa-
tion technique has the inherent disadvantage of being com-
putationally time consuming, since its scaling performance
with respect to the number of ions is of O�N2�. Perram et al.7

showed that an optimal choice of parameters can reduce the

scaling to O�N3/2�; Fincham11 gave an intuitive proof of Per-
ram’s N3/2 scaling. Thus, for large systems and especially in
the presence of short-range interactions, Ewald method be-
comes inefficient. This is merely a defect of the Fourier
space part, and several algorithms in order to handle this
problem in the reciprocal space have been developed.12,13

B. Systems of reduced spatial periodicity

The inhomogeneity introduced by the finite extent in one
or two directions of three-dimensional systems prevailing in
sorbents, which are modeled by means of primary simulation
cells periodically replicated in only two dimensions �e.g.,
fluids sorbed in slit-shaped pores, adsorption processes on
surfaces� or one dimension �e.g., sorption in nanotubes�,
causes spurious coupling between replicas in this direction.

Heyes et al.14 developed an analytical two-dimensional
Ewald-type summation technique for a lamina lattice of sin-
gly charged ions, based on the work of Parry15 and
Berthaut,16 leading to the following expression for the en-
ergy:

U4��0 =
1

2�
i=1

N

�
j=1

N

�
n=0

�

�qiqj

erfc�a	rij + n	�
	rij + n	

+
�

2 �
i=1

N

�
j=1

N

�
k�0

qiqj
cos�k · rij�

k
� �exp�kzij�erfc�azij

+ k/2a� + exp�− kzij�erfc�− azij + k/2a��

− ��
i=1

N

�
j=1

N

qiqj�zij erfc�azij� +
1

a�
exp�− a2zij

2 ��
−

a
�

�
i=1

N

qi
2, �7�

where n=n1l1+n2l2 and k=2�k1l1
*+2�k2l2

*, are the two-
dimensional �2D� real and reciprocal lattice vectors, respec-
tively; km and nm are integers, m=1,2 and zij is the distance
of ions i and j in the z direction. In Eq. �7� the convenient
assumption of a conductor surrounding medium was also
applied, so that the term involving the total dipole moment
vanishes. Smith17 showed that these terms depend on the
summation geometry of the medium under consideration.

Nijboer and de Wette18 �NW� followed a procedure com-
puting the whole potential in Fourier space with the charged
particle distance being separated into an in-plane vector and
an out-of-plane constituent, and applied their method to slab
shaped lattices of ions. Hautman and Klein19 �HK� in their
study on water molecules confined between two dielectric
walls derived a method which also separates the in-plane
from the out-of-plane distance between two particles, ex-
pressing the short- and long-range contributions to the poten-
tial as a Taylor series of the ratio of in-plane and out-of-plane
distances; the same system had been studied previously by
Rhee et al.20 by means of a combination of Ewald summa-
tion for the in-plane interaction with explicit multipole sum-
mations for the higher order contributions.

A rigorous derivation of equations determining the elec-
trostatic interactions in 2D periodic systems has been pro-
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vided by Heyes and van Swol21 using the Berthaut16 method.
Lekner22 derived a formula for the sums over Coulomb
forces exerted on a charged particle for a bulk system and a
system comprising charged particles confined between two
parallel walls. The derived sums are rapidly convergent be-
ing expressed in terms of trigonometric and Bessel functions;
the latter decreases exponentially with z. Later, Grønbech-
Jensen et al.23 using the summation techniques of Lekner22

provided a simple way toward a correct evaluation of the
self-energies of particles in a partially periodic lattice.

Gzrybowski et al.24 applying the Poisson summation
formula4 on the reciprocal space terms arrived at an expres-
sion mathematically equivalent to the 2D analytical Ewald
summation result of Eq. �7�. Kawata et al.25 starting from the
2D analytical summation reduced the computational com-
plexity of the reciprocal part of the potential; the accuracy
and efficiency of their method were tested by using a water
system in three-dimensional �3D� simulation boxes of vari-
ous geometries �cube, quadratic prism, and slab� with 2D
periodicity. They also proposed a formulation26 for acceler-
ating the calculation of Ewald method in a 2D periodic space
by using B-spline interpolations and fast Fourier transforms.
Minary et al.27 treated directly electrostatic interactions on
surfaces, by representing the probability density and the po-
tential in a plane-wave basis.

Comparative studies concerning both the accuracy and
computational efficiency of the preceding methods have also
been carried out. Widmann et al.28 compared the 2D analyti-
cal summation,14, NW, and HK �Ref. 19� and concluded that
the HK method is efficient for sufficiently small out-of-plane
separations; they also showed that NW method depends sig-
nificantly on the spatial distributions of the ions. Smith29

proposed the use of a combination of the 2D analytical sum-
mation and NW method, in a way that the 2D analytical
solution and the NW expression are used at small out-of-
plane and large out-of-plane separations, respectively. Jorje
et al.30 in a Monte Carlo study of water sorbed in nanopores
found that the Heyes and van Swol method31 is computation-
ally more efficient than the 2D analytical solution. Also, the
approximation introduced by Rhee et al.20 tends to be less
accurate at large out-of-plane separations, contrary to the Le-
kner approach22 which needs a prohibitively large number of
terms in the summation in order to overcome the poor diver-
gence for small out-of-plane separations.

Liem et al.31 implementing the Lekner method22 com-
pared the accuracy of the potential and the forces derived
from the 2D analytical formula and the HK method;19 they
showed that the analytical solution is more efficient than, the
HK and not depending on charge distribution. Mazars32 com-
pared Lekner’s method22 with the work of Parry15 on a bi-
layer Wigner crystal of evenly distributed point ions and
found both methods to be in close agreement.

An alternative way to compute the long-range interac-
tions in periodic systems with finite periodicity in one di-
mension is to use the 3D Ewald summation by replicating
the finite direction with the inclusion of a sufficiently large
vacuum space. Shelley and Pattey33 used this approach to
simulate water confined between planar hydrophobic walls.
Spohr,34 simulating water molecules supported by a simple

model surface, showed that the potential function obtained
by this procedure converges to the one obtained by Eq. �3� as
the simulation box size along the finite direction increases.

Holm et al.35,36 applied an electrostatic layer correction
term to increase the efficiency of the calculation for the con-
tributions of the image layers in 3D replicated slab systems.
Bródka37 derived a new theoretical expression for the cutoff
error in the 2D reciprocal space summation due to correction
term of Holm et al.35,36 and subsequently used it to determine
the optimal height of the simulation box including the
vacuum.

An alternative to Ewald technique for one-dimensional
�1D� periodic systems due to Boda et al.38 introduces the
charge line method to compute Coulombic interactions in-
side a cylindrical pore. Their technique may suffer from sin-
gularity problems when the edge of the image line overlaps
with an ion in the central cylinder. Tang et al.39 showed that
the charge line method can be improved by replacing the first
section of the image charge line with an image point.

Porto,40 through the � function using the Poisson sum-
mation formula, developed an analogous to Ewald technique
for 1D periodic systems.

Bródka41 gave also an Ewald-type expression for 1D pe-
riodic systems both for ionic and dipole interactions leading
to the same result obtained by Porto40 for the real space sum.
Then, he separated the reciprocal sum for kz=0 and kz�0;
the first case led to the same result found in Ref. 40 whereas
the latter part took a simpler expression.

II. SIMULATION DETAILS

The simulated sorption experiments of gases in the sor-
bate systems studied in this work were performed by em-
ploying a grand canonical Monte Carlo sampling in order to
calculate phase space averages.3,4,42 In particular, the version
of algorithm due to Adams adopted here involves the quan-
tity B which is related to the excess chemical potential �ex of
the sorbed phase inside the pore volume V at temperature T
through the relation:

B =
1

kBT
�ex + ln �N��VT. �8�

B is related to fugacity f of the bulk phase being in equilib-
rium with the sorbed phase according to equation

Vf = kBT exp�B� , �9�

where kB is the Boltzmann constant. In the remainder of this
work fugacity approximates to pressure assuming that bulk
phase behaves ideally.

The diatomic N2 molecule was modeled as a dumbbell
with a rigid interatomic bond of 0.1098 nm length.43 The
triatomic linear molecule of CO2 was modeled as two con-
secutive dumbbells sharing the central C atom, arranged on a
straight line, with C–O length of 0.1149 nm.44 To describe
the interactions, a simplified representation was used, cast in
terms of Lennard-Jones sites on the atoms and partial
charges on the molecular axis. Partial charges were distrib-
uted around each molecule so as to reproduce experimental
quadrupole moments �see Ref. 45 and references therein�.
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The molecule of H2 was modeled as one Lennard-Jones site
bearing a weak quadrupole moment across a bond length of
0.0741 nm.46 The parameters of H2 presented in Table I re-
sulted from calibration with respect to bulk experimental
data found in the work of Kumar et al.47 �see next section�.
All the strength and size parameters as well as the values of
partial charges of the sorbates used in the present study are
presented in Tables I and II.

For the short-ranged sorbate-sorbate and sorbate-zeolite
atom interactions, the Lennard-Jones potential was used, i.e.,

U�rij� = 4�ij��	ij

rij

12

− �	ij

rij

6� . �10�

For the hydrogen molecule, the approximation due to
Feynman-Hibbs48 was employed for all the involved
dispersion-type interactions in order to account for its quan-
tum nature, i.e.,

UFH�rij� = ULJ�rij� +

2

24mrkBT
� �2ULJ�rij�

�rij
2 +

2

rij

�ULJ�rij�
�rij

� ,

�11�

where mr is the reduced mass of the interacting pair given by
mr

−1=Mi
−1+Mj

−1; M denotes molecular mass and subscripts
specify the pair interaction type, e.g., H2–H2 �i= j� or H2

with any atom in the zeolite framework �i� j�.
Since the sorbate molecules we studied bear more than

one charged centers �m�1�, the following term

Uintra = �
i

N

�
k=1

m

�
l�k

m
qkql erf�a	rkl	�

	rkl	
, �12�

needed to be subtracted from the total potential electrostatic
energy since it represents the intramolecular energy between
point charges located at positions r1 ,r2 , . . . ,rm on the same
molecule, due to interaction of each of them with the peri-
odic Gaussian distributions surrounding every neighbor at
distance 	rkl	. The reason is that these interactions have been
included in the computation of the reciprocal part as we did
for the self-term discussed above.

The value of a in the equations of electrostatic energy, as
mentioned in the preceding section, controls the relative rate
of convergence of the sums appeared in them, reflecting the
interplay between the convergence rate of real and reciprocal
sums. Therefore, high values of a accelerate the real summa-
tion part, making at the same time k-space part require a
higher number of vectors to converge and vice versa; in any
case the reciprocal sum is the expensive computational task.

In order to diminish the computational efforts concern-
ing both the short- and long-range sorbate-sorbent interac-
tions, when sorbent is modeled as a nonflexible framework
of atoms such as the zeolite crystals of this work, we mapped
these interactions prior to actual simulation run, with the
sorbate-sorbate interactions being computed interactively
�see next section�.

The amorphous model graphitic substrates and nano-
tubes are modeled with no charges on their atoms. For the
sorbate-sorbate interactions in the carbon slits the technique
of Shelley and Pattey33 was followed; in model nanotubes,
Eq. �1� proved to be adequate approximation when applied in
a long simulation box �400–500 nm�. For all the systems of
this study the total number of particles varied between 600
and 800 particles to ensure good statistics; especially in the
high pressure regime of the predicted isotherms.

The km values used in the carbon slit model for several
sizes of pore widths l3 are listed in Table III, a value of the
dimension bounding the empty space, in the range of three to
five times the pore width was adequate for sufficient conver-
gence. With this choice of parameters, the value of the recip-
rocal space sum was proved to have negligible effect to the
total electrostatic energy being thus practically determined
by the real space sum. Negligible contributions of the recip-

TABLE I. Lennard-Jones parameters for the sorbate molecules and sorbent
atoms.

� /kB �K� 	 �nm�

C–C 28.129 0.2757
O–O 80.507 0.3033
N–N 36.4 0.3318
Oa–Oa 89.6 0.2806
Cb–Cb 772.0 0.253
Na–Na 80.0 0.320
H2–H2 36.5 0.282
H2–Oa 40.0 0.383
H2–Na 34.0 0.380

aZeolite oxygen.
bCarbon model pores.

TABLE II. Partial charges.

q �e�

CO2 −0.325 6 �O�
+0.651 2 �C�

N2 −0.404 84 �N�
+0.809 68 �center of mass�

H2 +0.482 9 �H�
−0.965 8 �center of mass�

Si +2.000 �silicalite 1, DAY�
+2.050 �NaY, NaX�

Al +1.750
O −1.000 �silicalite, DAY�
OSi −1.025 �NaY, NaX�a

OAl −1.200 �NaY, NaX�b

Na +1.000

aFramework oxygen bonded with two Si atoms.
bFramework oxygen bonded with one Si and one Al atom.

TABLE III. Box lengths and k vectors used for the 3D approximation of the
Ewald summation to pore systems with 2D spatial periodicity.

l1= l2

�nm�
l3

�nm� k1=k2 k3

10 0.65 8 2
10 0.95 8 4
10 1.45 8 5
10 2.15 8 7
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rocal space sum have also been reported by Rycerz and
Jacobs49 in molecular dynamics simulations of Bi2O3 and of
a crystalline and molten NaCl system.

III. RESULTS AND DISCUSSION

A. Digital reconstruction of sorbents

Graphite-based materials belong to a popular category of
amorphous microporous sorbents mostly in the form of car-
bon membranes and lately of nanotubes. The slit-shaped car-
bon pores in this work were modeled as close packed layers
of noncharged carbon atoms, according to the procedure de-
scribed in Ref. 50. The adsorbent was constructed as layers
made up from close packed carbon atoms to represent an
elementary unit of a graphitic material with parameters �ss

and 	ss, and separated by distance z0=21/6	ss. To obtain cy-
lindrical nanopores, the graphite layers were wrapped into an
annulus with the potential parameters of the model being
calibrated with respect to real carbon materials.50

Zeolites constitute nanoporous crystalline aluminosili-
cate frameworks, wherein Si and Al atoms �T atoms� are
bonded via O atoms in such a way that bonds of the type
Al–O–Al are excluded �Löwenstein’s rule51�; depending on
the Si/Al ratio, they may contain extraframework cations, so
that the negative charge of Al atoms can be compensated.52

The procedure we followed for reconstructing a digital
crystal entails the following: �i� finding from Ref. 53 the unit
cell geometric characteristics that correspond to the particu-
lar framework type code, and then from the x-ray-diffraction
�XRD� spectrum in the same reference, or neutron diffraction
data found elsewhere �see below� locating the position vec-
tors of the “primary” framework atoms; �ii� applying the
symmetry operations of the relevant space group the crystal
belongs to, which are given in Ref. 54. The types and posi-
tion vectors of all framework and off-framework atoms of
the unit cell, taking into account their occupancy probability
found from the XRD analysis or neutron diffraction data, are
finally generated to form a computer model of the unit cell.
Because the Al and Si atoms are indistinguishable by the
XRD technique, in several positions the occupation probabil-
ity is less than unity.53

According to the above procedure the MFI-type
silicalite-1 crystal �Si192O384� was modeled in its orthorhom-
bic form �Pnma space group� forming a rigid framework
according to x-ray diffraction crystallographic data55 follow-
ing the symmetry operations of the space group; the lattice
parameters of the unit cell are a=2.007 nm, b=1.992 nm,
and c=1.342 nm.

For the FAU-type crystal of purely siliceous DAY
�Si192O384�, a similar to silicalite procedure was followed
utilizing powder neutron diffraction data56 and the symmetry

operations of the Fd3̄m space group �cubic symmetry�, its
lattice parameter being 2.425 76 nm. For the charged NaY
�Na56Al56Si136O384� and NaX �Na86Al86Si106O384� FAU crys-
tals, we used as input spectra from powder neutron
diffraction57 and x-ray diffraction58 employing the proper op-

erations under Fd3̄m and Fd3̄ space groups, respectively,
their lattice parameters being, respectively, 2.485 36 and
2.5099 nm.

The Si/Al ratio in the framework of charged zeolites not
only determines the anionic charge per unit cell and thereby
the number of cations but also affects the distribution of
cations among the various kinds of sites present in the unit
cell; the notation for the topology of these sites and their
occupancy by monovalent sodium can be found in the mono-
graph of Barrer.52 In the framework of NaY the crystallo-
graphic site II was considered completely occupied and sites
I� and I partially occupied by Na+.57 In NaX the sites II and
I� were considered completely occupied by Na+ and the re-
mainder cations were distributed to site III.59 A convenient
way of modeling the partial charge distribution in the frame-
work is to give T atoms an average partial charge, depending
on the particular Si/Al ratio.60 However, it is an oversimpli-
fication, since it does not take into account the different po-
larizations of oxygens bonded to Si or Al atoms.

In this study we used the model of Jaramillo and
Auerbach61 which explicitly distinguishes the Si and Al at-
oms attributing different partial charges for the oxygen
framework atoms, according to the neighboring bonded T
atoms. For this reason we randomly distributed T atoms in
the framework up to the desired ratio Si/Al in such a way
that Löwenstein’s rule is fulfilled. In addition, the energy of
the crystal was minimized by means of simulated annealing
technique62 before the actual grand canonical Monte Carlo
runs �Fig. 1�. The resulted difference in the positions of cat-
ions from the ones used in Ref. 58 over the range of tem-
peratures used was negligible.

In zeolite crystals, modeled as rigid in this work, elec-
trostatic fields were computed on a three-dimensional grid of

FIG. 2. Computed electrostatic field contour for silicalite 1 at z=0 nm; the
circled region denotes the part of the field due to asymmetric unit.

FIG. 1. Total energy plateau during the simulated annealing minimization
procedure in NaY; the last runs locating the minimum global energy of the
crystal are depicted in the inset.
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0.2 Å spacing over the unit cell. The field of silicalite 1 was
pretabulated over the asymmetric unit, namely, the 1/8 of its
unit cell volume to save computational time �Fig. 2�; then, by
virtue of the symmetry operations carried out in the ortho-
rhombic form of silicalite crystal, computation of the field
was extended at any point in the simulation cell during run
time. This procedure was first followed by June et al. for the
Lennard-Jones potential.63 An example of computed electro-
static energy contours is illustrated in Fig. 2. Sorbate-zeolite
interactions were pretabulated and the values at any certain
point in the unit cell were estimated by means of a fast 3D
Hermite interpolation scheme64 during the actual simulation
run. This strategy reduces significantly the CPU time for the
Ewald sums, therefore, allows efficient phase space sampling
by including a larger number of unit cells in the simulation
box.

Moreover, we used tabulation of the electrostatic poten-
tial in order to make selected areas of the crystal framework
inaccessible to sorbate host molecules by artificially exclud-
ing these areas from the phase space sampled by grand ca-
nonical Monte Carlo algorithm. In particular, this way, we
eliminated the interior of sodalite cages in faujasite crystals
�Fig. 3� in order to exclude this space from the modeled
system since the sizes of CO2, N2, and H2 molecules do not
physically permit entrance to these areas.

The positions of cations in the charged FAU-type zeo-
lites of the present work remained unchanged during the
simulation. Calero et al.65 showed that this assumption is
valid for the modeling of sorption even for much longer
sorbate molecules such as n-alkanes.

B. Sorption isotherms

CO2/carbon materials. For slit-shaped micropores, the
sample used is the typical activated carbon material, AX21.

FIG. 3. Indicative computed electrostatic field contours for dealuminated Y
�DAY� �top� and NaX �bottom� faujasites, at z=2.27 nm denoting the sub-
tracted sodalite interiors.

FIG. 4. Experimental �filled symbols� and predicted sorption isotherms for
carbon slits �open symbols� based on the computed PSD �inset�, for CO2 in
AX-21.

FIG. 5. Experimental �filled symbols� and predicted sorption isotherms for
carbon nanotubes �open symbols� based on the computed PSD �inset� for
CO2 in Norit RB4.

FIG. 6. Low �top� and higher �bottom� pressure sorption isotherms of CO2

in silicalite 1.
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For cylindrical micropores, the sample is a commercially
available activated carbon, Norit RB4.66 Since amorphous
carbon materials consist of no unique pores, a way of
weighting the calculated density of sorbates in individual
models of various sizes must be found in order to capture the
morphology of the real sorbent. For this reason we computed
a pore size distribution �PSD� by numerically analyzing the
simulated data in a series of individual model units of several
pore sizes, with respect to measured data of a real carbon
material under exactly similar conditions.66,67 A successfully
predicted PSD then �insets in Figs. 4 and 5�, in conjunction
with simulated data at any temperature, can generate the
sorption isotherm at this temperature.

The CO2 isotherms inside the carbon slits at 298 K un-
der various pressures and several pore widths were computed
using the method of Shelley and Pattey33 for the long-range
interactions, suitably adapted for the system of this work �see
Table III�.

Figure 4 shows the successful comparison of the pre-
dicted isotherms of CO2 in the carbon slit-shaped pores with
the measured ones in AX21 over a wide range of pressure
values up to saturation loadings.

In Fig. 5 the results of the predicted isotherm in model
carbon nanotubes combined with the PSD extracted from
Norit RB4 are seen to be in good agreement with the experi-
mental data in the same material.

CO2, N2/silicalite 1. The CO2 and N2 sorption isotherms
in silicalite 1 were computed using the technique discussed
in the preceding section in order to calculate the long-range
interactions. Regarding the dispersive interactions with zeo-

lite atoms, T atoms were excluded, following the approach of
Kiselev et al.68 The Lennard-Jones parameters used in simu-
lations are presented in Table I. A comparison between our
computed and measured experimentally isotherms found in
Refs. 69–71 is shown in Fig. 6; the data points are in good
agreement over a wide range of loadings starting from Hen-
ry’s law regime �top� up to saturation �bottom�.

The N2 sorption predictions for pressures greater than
10−4 bar are satisfactorily compared with the experimental
data of Mueller et al.,72 Song et al.,73 and Llewellyn et al.,74

as illustrated in Fig. 7. Below this pressure the model over-
predicts the experimental data. This obviously indicates that
the Lorentz-Berthelot combining rules3 used to calculate the
cross interaction parameters are not adequate to model sorp-
tion thermodynamics at Henry’s law region wherein sorbate-
sorbent interactions are dominant.

Previous extensive simulation studies45 of the two afore-
mentioned systems carried out for various sorbate molecule
models on the three symmetries of the silicalite crystal in-
volved Eq. �1� for high values of vector n �up to 30 000 unit
cells� toward the mapping of the electrostatic interactions
with the zeolite atoms. Their results from this simple sum-
mation scheme show no significant difference in the sorption
of carbon dioxide, whereas in the case of nitrogen, the inclu-
sion of Ewald-type calculations of this work leads to a better
agreement with experimental results and explains noticeable
effects observed experimentally near saturation.75

CO2/DAY, NaX, NaY. The CO2 sorption isotherm in
DAY at 300 K for various pressures up to 40 bars is shown
in Fig. 8. The electrostatic energy was computed using the
same partial charges for the framework atoms, Si and O, and
Lennard-Jones parameters for O, which we used in silicalite

FIG. 7. Sorption isotherms of N2 in silicalite 1 at 77 K.

FIG. 8. Sorption isotherms of CO2 in dealuminated Y faujasite �DAY� at
300 K.

FIG. 9. Sorption isotherms of CO2 in Na56Y at 300 K.

FIG. 10. Sorption isotherms of CO2 in Na86X at 300 and 304.4 K.
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1, since DAY is the siliceous �dealuminated� analog of fau-
jasite. In Fig. 8 also a comparison with the measured iso-
therm due to Maurin et al.76 is presented.

The CO2 sorption isotherms in NaY and NaX computed
at 300 and 304.4 K are shown in Figs. 9 and 10. The disper-
sion energy part was calculated using the same parameters
for the framework atoms of DAY. The Lennard-Jones inter-
action parameters of sodium cations �Table I� were calibrated
with respect to experimental data.76,77

H2/NaX. The short-ranged potential parameters of
H2–H2, as already discussed resulted from calibration with
respect to bulk H2 density data at 77 K found in the work of
Kumar et al.;47 it must be noticed that the hydrogen molecule
in their work was modeled as neutral sphere.

In this work, use of Feynman-Hibbs potential up to the
second order term led to a higher value for � /kB and a
slightly lower value for 	 compared to the parameters re-
ported by Buch78 �34.2 K and 0.296 nm, respectively�. Our
predicted isotherm of bulk H2 versus the experimental points
is shown in Fig. 11. As can be seen from the same graph, the
classical treatment by means of the conventional Lennard-
Jones potential is not adequate to represent the short-ranged
interactions especially as the bulk becomes denser.

In Fig. 12 is shown the computed H2 sorption isotherm
in NaX at 77 K. It must be noticed that in this graph the
cross Lennard-Jones parameters for hydrogen-zeolite oxygen
atoms and hydrogen-sodium cations interactions �see Table I�
needed calibration with respect to the experimental data
shown in the same graph in order to match the measured

points at higher loadings. This deviation reflects the inad-
equacy of the hydrogen state inside the porous material being
described by the bulk phase energetics. More sophisticated
quantum approaches for the hydrogen molecules inside the
sorbent space would certainly offer a more adequate descrip-
tion than the one provided by the magnitude of quantum
effect through Eq. �11�. Such a treatment remains out of the
scope of this work and can be found elsewhere.79,80

IV. CONCLUSIONS

In this work we investigated the problem of computing
accurately the long-range Coulombic interactions in physical
systems, and then focusing on the atomistic simulation of
fluids sorbed in porous solids, we studied the calculation of
the electrostatic field in three-dimensional pore structures
which may exhibit various types of spatial periodicity. In an
attempt to clarify the mathematical background of the Ewald
technique we appealed to transcendental functions through
properly selected convergence factors, adopting the rigorous
methodology of de Leeuw et al.6

We reviewed various articles involving theory and com-
putation of long-range interactions in ionic and polar sys-
tems, aiming at the investigation of the possibility of adapt-
ing or developing methodology in the atomistic computer
simulation of sorbate molecules bearing partial charges, in-
side microstructures modeled through a three-, two-, or one-
dimensional replication of their unit cell.

We reconstructed the carbon materials via computed
pore size distributions extracted from experimental data un-
der the same conditions with simulation, whereas the crystal
structure of zeolites allowed a digital representation in ato-
mistic level by virtue of spectra and symmetry operations
known from crystallographic data. Subsequently, we studied
the sorption thermodynamics of carbon dioxide, nitrogen,
and hydrogen via grand canonical Monte Carlo simulation in
parallel with experimental measurements in the aforemen-
tioned nanopore models in order to investigate the effect of
the modeling parameters on the computer simulation of mol-
ecules under confinement. The conclusion drawn from the
study in the crystals of faujasite and silicalite proved that
application of the conventional Ewald summation method by
precomputing the interactions in the form of a pretabulated
map of the electrostatic potential field is an efficient way to
overcome the time consuming explicit calculations of the
reciprocal space. On the other hand, it allows inclusion of a
higher number of crystals in the primary simulation box so
that a better statistics is attained. The work on the graphitic
microporous media revealed the advantage of employing the
conventional Ewald technique in a system involving slabs of
vacuum along its nonperiodic direction by suitable param-
etrization of the real and reciprocal space parts. For the
model carbon nanotubes we used the simple expression for
Coulombic interactions summing over an elongated primary
simulation box. These choices are strongly supported from
the fact of the high computational efforts required for the
analytical Ewald-type summations.

FIG. 11. Experimental and simulated isotherms using conventional and
quantum mechanically corrected �Ref. 48� Lennard-Jones potential of bulk
hydrogen at 77 K.

FIG. 12. Experimental and predicted sorption isotherms of H2 in Na86X at
77 K using the approach of Feynman-Hibbs �Ref. 48� for the description of
all types of dispersive interactions.
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