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Abstract

Meta-analyses play an important role in synthesizing evidence from diverse studies and datasets that address similar
questions. A major obstacle for meta-analyses arises from biases in reporting. In particular, it is speculated that findings
which do not achieve formal statistical significance are less likely reported than statistically significant findings. Moreover,
the patterns of bias can be complex and may also depend on the timing of the research results and their relationship with
previously published work. In this paper, we present an approach that is specifically designed to analyze large-scale datasets
on published results. Such datasets are currently emerging in diverse research fields, particularly in molecular medicine. We
use our approach to investigate a dataset on Alzheimer’s disease (AD) that covers 1167 results from case-control studies on
102 genetic markers. We observe that initial studies on a genetic marker tend to be substantially more biased than
subsequent replications. The chances for initial, statistically non-significant results to be published are estimated to be
about 44% (95% CI, 32% to 63%) relative to statistically significant results, while statistically non-significant replications have
almost the same chance to be published as statistically significant replications (84%; 95% CI, 66% to 107%). Early replications
tend to be biased against initial findings, an observation previously termed Proteus phenomenon: The chances for non-
significant studies going in the same direction as the initial result are estimated to be lower than the chances for non-
significant studies opposing the initial result (73%; 95% CI, 55% to 96%). Such dynamic patters in bias are difficult to capture
by conventional methods, where typically simple publication bias is assumed to operate. Our approach captures and
corrects for complex dynamic patterns of bias, and thereby helps generating conclusions from published results that are
more robust against the presence of different coexisting types of selective reporting.
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Introduction

In many research fields, meta-analyses play an increasingly

important role for synthesizing evidence from studies that have

been published in the past. Since not all studies and analyses that

have been undertaken are eventually published in the scientific

literature, meta-analyses typically rely on incomplete samples of

study outcomes. These samples might be biased, because the result

of a study or of a specific analysis might influence its chances to

become reported. Studies with results that achieve formal

statistical significance might, for example, have increased chances

to become published [1–5]. Biases also results from the way data

and outcomes are analyzed and represented in scientific

publications [6–9]. The resulting selective reporting bias might

distort the conclusions of a meta-analysis.

Statistical methods have been developed to detect and correct

for selective reporting biases [10]. These methods have limitations

and may even lead to misleading inferences when applied to single

meta-analyses with limited data. In particular, the frequently used

funnel plots and related tests have been criticized [11,12].

Additional complications arise from the possibility that selective

reporting may depend on the position of a study in the sequence of

all published studies. The first published study is often the most

biased one towards an extreme result. Subsequent studies might be

biased against the result of the first one; this pattern has been

observed for molecular medicine publications and has been

referred to as the Proteus phenomenon [13,14]. Such complex

dynamic patterns of bias are difficult to account for by

conventional statistical approaches that typically assume a simple

bias to operate. Aside from statistical approaches, it is very difficult

to verify the existence of unpublished studies or the presence of

excessive selective reporting; for alternative methodologies includ-

ing surveys and experimental approaches see refs. [2,15–17].

Here, we present an approach to quantify selective reporting

from large-scale datasets of published results. Such datasets are

currently emerging in a number of research fields, including
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molecular medicine. Our approach extends previous work by

Hedges and others [18–20] and uses weight functions to describe

the chances of a study result to be published depending on its

characteristics [10,18–20]. Because the traces left due to selective

reporting in the distribution of published results can be subtle, the

statistical power for detecting biases based on weight function

approaches is typically low. Therefore, a detailed modeling

requires extensive datasets with preferably hundreds of studies.

Such datasets can be generated by combining multiple datasets

that are expected to be subject to the same bias. The approach

presented here is specifically designed to quantify selective

reporting from such combined datasets.

We use our approach to investigate data from the AlzGene

database [21]. AlzGene is currently covering a set of over 1,200

case-control studies on nearly 2,300 different genetic markers for

Alzheimer’s disease (AD). A recent evaluation of these data

demonstrated that there is a substantial excess of studies with

statistically significant results, which strongly suggests the presence

of selective reporting bias [22]. The genetic markers covered by

the database might have different associations with the disease. For

markers linked to the apolipoprotein E (APOE) gene, for example,

there is strong evidence for an association. Other markers show

nominally statistically significant associations in meta-analyses but

their credibility is weak; and for most markers, there is likely no

association with Alzheimer’s disease [22].

Despite different association strengths, there is little reason to

believe that fundamental differences exist between markers in how

selective reporting bias is acting. Thus, even though selective

reporting bias cannot be studied properly on a single marker,

because most markers are only covered by a handful of studies

each, the combined data are likely highly informative for

quantitative models of selective reporting. Our approach exploits

this and allows us to investigate whether initial publications are

more biased than subsequent replications, and whether early

replications are biased against initial results.

Methods

1. Weight function approach
We build our approach on the selection model proposed by

Hedges [19,20]: results X1, …, Xn are assumed to come from a

normal distribution Xi , N(D, si
2+s2) with a known within-study

variance si
2, an unknown between-study variance s2, and an

unknown mean effect size D. The relative chance for a result to be

published is assumed to be depend on Zi = Xi/si, because the value

of Zi typically determines the p-value associated with a study result.

It is described by the weight function

v Xi,sið Þ~
w1, if {?vZiƒz1

wj , if zj{1vZiƒzj

wk, if zk{1vZiƒ?

8><
>:

ð1Þ

The weight function v(Xi, si) is stepwise constant, i.e. depending

on Xi/si it takes one of the values of w = (w1, …, wk). The function

changes when Xi/si crosses one of the interval boundaries z = (z1,

…, zk-1). While the parameters w = (w1, …, wk) are estimated from

the data, the interval boundaries z = (z1, …, zk-1) take fixed, pre-

defined values. The discontinuities in the weight function at these

pre-defined boundaries may be justified by the salience of p-values

such as 0.05 in the current practice of interpreting study outcomes

[19,23]. Additionally, if a sufficiently large number of intervals are

used, this weight function is flexible enough to reveal the actual

shape of selection bias.

Density function and log likelihood. Applying the weight

function to the probability density for the unbiased study results

yields a weighted probability density given by

f Xi D,s,wjð Þ~
v Xi,sið ÞN D,s2

i zs2
� �

Ð?
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i zs2
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Because the weight function v(Xi, si) is stepwise constant, the

integral in equation 2 can be rewritten as the sum

Si~
Xk

j~1

wjBij D,sð Þ ð3Þ

where w = (w1, …, wk) denote the parameters of the weight

function (eq. 1), and the terms Bij are given by
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The log likelihood for the data X = (X1, …, Xn) is given by

L D,s,w Xjð Þ~cz
Xn

i~1

log v Xi,sið Þ{ 1

2

Xn
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Xn
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This function and first and second derivatives as given in [19] can

be used to calculate maximum likelihood estimates for D and s2 in

parallel with the parameters of the weight function, w = (w1,

…, wk).

Extension to multiple datasets. The above approach

simultaneously quantifies the parameters underlying the

distribution of the unbiased data, and the parameters of the

weight function w = (w1, …, wk) describing selective reporting

bias. We now assume that there are m datasets X = (X(1), …, X(m))

with X(i) = (X1
(i), … Xn(i)

(i)). These datasets may differ in the

underlying mean D(m) and between-study variance s(m)2. However,

all the datasets are assumed to be subject to the same selective

reporting bias, i.e. the parameters w = (w1, …, wk) are the same for

all datasets. For the analysis of the AlzGene dataset, this means

that we assume while the effect sizes and between-study variance

might be different for different markers, selective reporting affects

all markers in the same way. We therefore can simultaneously

Selective Reporting for Multiple Datasets
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estimate D= (D (1), …, D (m)), s = (s(1), …, s(m)), and w = (w1, …,

wk) by maximizing the log likelihood

~LL D,s,w Xjð Þ~
Xm

i~1

L D(m),s(m),w X (m)
��� �

ð6Þ

Multiple weight functions. Moreover, if each study result

Xi
(k) is associated with a categorical variable Ki

(k), different weight

functions can be used for the different categories. Instead of using

a single weight function as in eq. 5 and 6, weight function v(j) is

used if Ki
(k) falls into category j. Using this approach we can, for

example, use different categories for the initial studies, immediate

follow-ups, and subsequent studies. This allows testing whether

initial studies on a marker are more biased towards significant

outcomes than late studies, or whether immediate replications tend

to be biased against the result of the initial study. The use of

multiple weight functions for quantifying the Proteus phenomenon

is illustrated in Fig. 1.

Algorithm. Although estimating the parameters for these

extensions requires somewhat more effort in handling the data, the

likelihood function and its derivatives remain analogous to the

ones given by Hedges [19,20]. For maximizing the log likelihood

function and determining a numerically approximated

information matrix for calculation of the standard errors of the

estimates, we use the BFGS algorithm as implemented in R. The

approximated values are in line with results from simulation of

datasets and subsequent re-estimation of the parameters. 95%

confidence intervals (CI) are calculated as the estimate +/2 1.96

times the standard error. Details of the implementation are given

in the Supporting Information S1.

Convergence. The unrestricted maximum likelihood

approach used in our algorithm may not always converge. In

our analysis, convergence problems arise for 22 of the 124

markers. To improve convergence, the between-study variance

could be determined by non-iterative methods [24], but these

approaches are difficult to combine with the maximum likelihood

approach for estimating the weight function, and with model

comparison based on the Akaike criterion. Alternatively, the

between-study variance could be restricted to non-negative values.

In our study, we exclude those markers that do not converge. In

order to keep the different models comparable, we exclude the

same markers in all the models. Re-estimation of parameters from

simulated datasets similar to the one analyzed here indicates that

these procedures do not lead to biases in the estimates. More

sophisticated methods to deal with those markers that do not

converge are subject of future research.

2. Data
Alzgene Data. The AlzGene database [21] contains data

about the outcome of case-control studies on the association of

genetic markers with Alzheimer’s disease. The methodology for

generating the AlzGene database is in detail described in ref. [21].

The data freeze used for this manuscript was performed on April

4th 2008 and includes 1,020 individual publications reporting

association findings of 1,606 polymorphisms across 521 genetic

Figure 1. Weight functions for the publication bias models. The models specify the probability of a result to be published depending on the
Z-value associated with the outcome. Weights are assumed to be stepwise constant, and are relative to the outer intervals where the weight function
is set to one. (A) High resolution model. Using a stepwise constant weight function with many intervals allows studying the shape of publication
bias. In our model we use 16 intervals. Model 1 is a simplified version with only three intervals, and a single free weight function parameter. (B)
Model 2 (two categories). The weight function is assumed to differ for initial and subsequent studies. Initial studies with Z-values that fall into the
mid interval are subject to weight w(I), subsequent ones are subject to weight w(S). Model 1 (see Methods), in contrast, uses a single one-parameter
weight function that applies to all studies. (C) Proteus model. The weight functions are assumed to differ for initial studies, early replications, and
subsequent publications. The shape for early replications depends on the result of the initial study (solid black line: initial result with z#0, dashed
grey line: initial result with z.0). This allows investigating whether early replication studies are more likely published if they oppose initial results.
Model 3, described in detail in the Methods section, matches the Proteus model in complexity, but does not take into account that the sign of the
initial study might have an impact on the weight function for early replications.
doi:10.1371/journal.pone.0018362.g001
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loci. A total of 1,357 polymorphisms had non-overlapping

genotype data available from at least one population. Note that

this dataset is larger than that used in Kavvoura et al (2008; data

freeze from January 31st 2007), which included 902 papers on

1,073 polymorphisms across 383 loci. For each study, a set of 263

tables is available that contains the numbers of homozygotes,

heterozygotes and wild-types among AD cases and controls for

each genetic marker analyzed in the study. These tables allow

estimating a corresponding effect (log odds ratio) of a genetic

marker on the probability of developing Alzheimer’s disease. As in

a previous review [22] of the data, we use per-allele odds ratios to

estimate effect sizes. The log odds ratios Xi and the corresponding

standard errors si are estimated using a logistic regression. It

should be noted that the p-values associated with observations in

our model via the value of Zi = Xi/si are not necessarily identical

to the ones given in the actual publications, where often additional

factors such as age, gender or specific diagnosis (such as early-onset

AD) might be included, and different statistical and genetic models

might be used.

Criteria for including AlzGene data in our analysis. In

the analysis presented here, we included results regardless of

whether allele frequencies are in Hardy-Weinberg equilibrium.

We included only markers with results from at least 4 independent

publications, as judged by PubMed identifiers. In total, 124

markers fulfill this criterion. 22 markers are excluded because of

convergence issues described above.

Categories. For modeling the Proteus phenomenon, we assigned

one of three categories to each case-control study: initial findings,

early replications, and late replications. Any studies on a specific

marker that were published in the same year as the first case-

control study on this marker fall into the first category (initial

findings). Studies published within the next two years fall into the

second category (early replications). All subsequently published

studies fall into the third category (late replications). If a marker

appears, for example, in publications from 2000, 2000, 2002,

2004, and 2005, the findings would fall into categories 1, 1, 2, 3

and 3, respectively. In an additional analysis we use PubMed IDs

for an alternative categorization. Compared to using the

publication year, PubMed IDs allow sorting papers at a finer

temporal resolution. However, because particularly for publica-

tions from the 90’s there is no strict relation between PubMed ID

and date of publication, a PubMed ID based ranking is much less

robust that a year-wise ranking. Results from the additional

analysis are shown in the Supporting Information S1.

3. Model Specifications
To estimate selective reporting bias we use fixed-effect models

and random-effects models (see Fig. 2). We use the following 6

models to characterize selective reporting bias. The models are

illustrated in Figure 1.

Unbiased model. The weight function takes a constant

value, v(Xi, si) = 1, for all values of Xi and si.

High-resolution model. We use 16 intervals with

boundaries at z = (22.58, 21.96, 21.64, 21.28, 21.04, 20.67,

20.25, 0, 0.25, 0.67, 1.04, 1.28, 1.64, 1.96, 2.58). The weight

function is set to one for the outer intervals, i.e. v(Xi, si) = 1 for

|Zi| .2.58. This model is used to obtain a picture of the shape of

the weight function (Fig. 1A). The results were used to identify

good choices for the boundaries for the following models with a

reduced number of parameters.

Model 1 (one category). We use a single weight function to

model the data, i.e. do not use different categories for initial

studies, early replications and late replications. The boundaries are

chosen at z = (21.64, 1.64). The weight function for this model,

and for all following models, is set to one for the outer intervals, i.e.

v(Xi, si) = 1 for |Zi| .1.64. The resulting model function has one

parameter, w(S), describing bias for all studies with Z-values that

fall in the mid interval.

Model 2 (two categories). This model is similar to Model 1,

but uses two different weight functions. One weight function

describes bias for the initial study, while the other weight function

describes bias for all subsequent studies (Fig. 1B). The resulting

model has two parameters, w(I) and w(S), and allows detecting

whether initial studies are more biased then subsequent ones.

Model 3 (three categories). In this model, a third category

is added to separately model early and late replication studies. The

additional weight function is described by two additional

parameters and uses boundaries at z = (21.64, 0, 21.64). The

model has four parameters: w(I) for initial studies that fall into the

interval between 21.64 and 1.64, w(E)
1 for early replication studies

with z-values between 21.64 and 0, w(E)
2 for early replication

studies with z-values between 0 and 1.64, and w(S) for all

subsequent studies that fall into the interval between 21.64 and

1.64. This model allows investigating whether early replication

studies differ from later ones, and is designed to match the model

for the Proteus phenomenon described in the next paragraph.

Proteus model. As in Model 3, we use three different weight

functions, describing initial studies, early replications and late

replications. The weight functions and parameters are analogous

to the ones used in Model 3. However, the weight function for

early replications is assumed to further depend on the outcome of

the first study (see Fig. 1C). If the result falls into the interval

between 21.64 and 1.64 and has the opposite sign of the initial

study, the weight function is set to w(E)
1. If it falls into the interval

between 21.64 and 1.64 and has the same sign, weight w(E)
2 is

used. If several studies on a marker are categorized as initial

studies, we use the sign of the most extreme result. The Proteus

model allows us to investigate whether subsequent studies that

contradict the initial one are more likely to be published than

studies that are in agreement with the initial one but do not show a

Figure 2. Results for the high-resolution models and the one
category model (Model 1). Estimates for the high-resolution
random-effects model are shown in solid lines, estimates for the
fixed-effect model in dashed lines. Error bars show standard errors of
the estimate. (A) High resolution model. For both the fixed-effect
and random-effects model, the weights drop rapidly as |Z| decreases. At
about |Z| = 1.64, the weights hit a bottom and remain relatively constant
in the central intervals. This is what one would expect for publication
bias: Non-significant results are subject to a similar bias, irrespective of
the Z-value. (B) Model 1. In the random-effects model, bias in the mid
interval is estimated as w(S) < 0.7. Under the fixed-effect model, we
estimate w(S) < 0.4. The estimates for the bias in the fixed-effect model
tend to be higher than in the random-effects model, because in the
random-effects model, a high between-study variance offers an
additional explanation for an excess of formally significant results.
doi:10.1371/journal.pone.0018362.g002
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strong effect. It has the same number of parameters as Model 3. A

comparison between the two models is used to determine whether

explicitly taking into account the sign of the initial study for

modeling bias in early replications improves the model.

Results

We find for the high-resolution model (Fig. 2A) that the

estimated weights for results with standardized z-values (see

Methods) between 21.64 and 1.64 are relatively constant. The

weights start increasing as |z| increases over a value of 1.64. This

is what one would qualitatively expect for selective reporting bias.

Results that do not reach formal statistical significance are less

likely published, irrespective of where exactly the result falls. The

estimated weights in the 10 intervals covering the region between

21.64 and 1.64 fall roughly around 20.5 which corresponds to

about 60% of non-significant results in any of these intervals being

reported. For a fixed effects model, where the between-study

variances are assumed to be zero (see Methods), the estimated

weights are much lower, i.e. indicate an even stronger bias. This is

because in the random-effects model there are two competing

mechanisms for explaining a high abundance of extreme results:

selective reporting bias and a high between-study variance. In the

fixed-effect model, only the first mechanism is considered, leading

to much stronger estimates of the bias.

The high-resolution model reveals an interesting shape of the

weight function for results with z-values outside the interval

between 21.64 and 1.64. Results with two-sided p-values between

0.05 and 0.01 (1.96,|z|,2.58) seem to be underrepresented

when compared to results with a two-sided p-value smaller than

0.01 (|z| .2.58), and with two-sided p-values between 0.05 and

0.1 (1.64,|z|,1.96). This observation is somewhat surprising for

classical publication bias where the p = 0.05 value is considered to

be a salient threshold for publication, but is in line with previous

observations [22]. It may originate from using standardized rather

than published p-values and is discussed in more detail further

below.

Because the change of the weight function in the high-resolution

model is highest at the boundaries of z = 21.64 and z = 1.64, we

used these boundaries in the subsequent models (Model 1–3 and

Proteus model). Estimates for the simple random-effects one-

parameter model (Model 1) are shown in Fig. 1B. The log weight

function in the mid interval is estimated as 20.33 for the random

effects model. This corresponds to a probability of reporting of

about 72% (95% CI from 58% to 90%) relative to studies that fall

into the outer intervals. This estimate is similar to the

corresponding estimates in the high-resolution model, but note

that we now use different outer intervals (i.e. boundaries at 1.64,

and 21.64). The error in the estimate of the bias is much lower,

because in the one-parameter model each interval contains data

from several intervals of the high-resolution model (Fig. 2).

The results for the models designed to investigate the initial

study bias and the Proteus phenomenon are summarized in

Table 1. The estimates for Model 2 reveal that most of the bias

stems from initial studies. These studies show a bias of log w(I)

= 20.81, suggesting that initial studies with standardized effects in

the 1.64 to 21.64 interval have a chance of only 44% (95% CI

from 32% to 63%) of being reported, relative to initial studies with

results outside that interval. This bias is considerably stronger than

the estimates for subsequent studies (log w(S) = 20.17, respectively,

corresponding to a probability of 84% compared with studies

outside the interval; 95% CI from 66% to 107%). Thus, initial

studies tend to be much more biased than subsequent ones. The

potential origin and consequences of this effect are discussed

further below. All estimates and their standard errors are

summarized in Tab 1.

The results for the Proteus model show that studies that confirm

the direction of the effect of an initial study but do not achieve

formal statistical significance face more bias than studies with non-

significant results that oppose the initial result in terms of the

direction of the effect (chances are 73% relative to non-significant

studies opposing the initial result, with a 95% CI from 55% to

96%; see Legend Table 1 for additional details). This is in line with

observations described earlier [13,14]. Model 3, which has the

same number of parameters but does not make the weight function

for the second study dependent on the sign of the first result, shows

no differences between w(E)
1 and w(E)

2, and yields a smaller change

in the log likelihood score than the Proteus model. Based on the

Akaike Information Criterion (AIC), the Proteus model would be

favored for describing the given AD dataset. The single most

important parameter in these models is the one to distinguish bias

in initial publications from bias in subsequent ones, which

indicates that the initial study bias is a very robust phenomenon.

The maximum likelihood approach outlined in the Methods

section does not only yield estimates for the weight function

parameters describing selection bias, but can also yield estimates

for the association strength (log odds ratios) and between-study

variances of each marker with AD after correcting for the

selection pattern. Results for the unbiased random effects model

(i.e. uncorrected estimates) and the Proteus model (i.e. estimates

Table 1. Estimates of the weight function parameters.

Random-effects model

Unbiased Model 1 Model 2 Model 3 Proteus

log w(I) - - 20.81
(0.17)

20.82 (0.17) 20.81 (0.17)

log w(E)
1 - - - 20.33 (0.17) 20.11 (0.17)

log w(E)
2 - - - 20.24 (0.17) 20.43 (0.17)

log w(S) - 20.33
(0.11)

20.17
(0.12)

20.08 (0.14) 20.08 (0.14)

DL 0 4.4 10.6 11.4 13.9

Parameters 0 1 2 4 4

DAIC 0 26.8 217.2 214.8 219.8

Standard errors of the estimates, calculated from a numerically approximated
information matrix, are given in parentheses. Parameter w(I) described bias in
initial studies, w(E)

1 and w(E)
2 describe bias in early replication studies in Model 3

and the Proteus model (Fig. 1 and Methods), and w(S) describes bias in
subsequent studies. In Model 1, w(S) describes bias in all studies, in Model 2, all
but initial studies. Further details are given in Fig. 1 and Methods. The AIC is
given by 2k-2L, where L is the maximized value of the log likelihood function
and k is the number of parameters. The values given in the table are differences
to the values for the unbiased model. Model 1 shows clear indication for
selection bias. Model 2 shows that bias is larger for initial studies on a marker,
compared to subsequent ones. The Proteus model indicates that non-
significant studies opposing the initial result tend to be more likely published
than non-significant studies confirming it. Note that the two parameters log
w(E)

1 and log w(E)
2 are estimated relative to the outer intervals, and therefore the

errors in the estimates are correlated. The difference between the two
parameters is log w(E)

1 - log w(E)
2 = 0.32. The standard error of the difference can

be calculated from the variances and co-variances between the two estimates
as determined by the information matrix and is given by sqrt{var(log
w(E)

1)+var(log w(E)
2) -2 covar (log w(E)

1, log w(E)
2)} = 0.14. Thus non-significant

studies confirming the initial result are published with a probability of 73%
relative to non-significant studies opposing the initial result, with a confidence
interval ranging from 55% to 96%. Model 3 shows that the direction of the
second study does not matter per se. Selection bias for the early replication
studies falls in between bias for initial and for subsequent results.
doi:10.1371/journal.pone.0018362.t001
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corrected for selective reporting) are given in the Supporting

Information S2. A comparison of the result from these two

models illustrates the effects of correction for selection bias on

association strengths and between-study variances in the Proteus

model. (A summary of the comparison is shown in the Supporting

Information S1.) The differences between the estimates from the

two models are rather subtle. The estimated absolute effect sizes

in the Proteus model tend to be smaller than the estimated effect

sizes from the uncorrected random effects model. However,

standard errors for the estimates tend to be smaller, too, which

means that the standardized effect sizes (z-values) remain similar.

Moreover, the estimates of the between-study variances tend to

be smaller for the Proteus models compared to the uncorrected

random effects model. Without correcting for selection biases,

effect sizes and between-study variances therefore tend to be

overestimated.

Discussion

Our results illustrate the strength that arises from combining

datasets from a large number of primary studies within the same

research field. The approach allows us to obtain a well-resolved

picture of the weight function from a large body of literature

(Fig. 2A). In line with previous results [22], our results from the

high-resolution weight function point to a possible under-

representation of results with standardized p-values between 0.05

and 0.01, and an excess of studies with p-values between 0.1 and

0.05. This particular shape of the weight function would have been

difficult to obtain with other conventional weight functions such as

exponentially declining, or s-shaped weight functions.

The observed over-representation of findings with standardized

p-values between 0.1 and 0.05 might result from the use of

standardized p-values in our analyses rather than the p-values

given in the original publications. Often, when effect sizes and the

corresponding p-values are presented in scientific publications,

additional factors such as age, gender or specific diagnosis are

included in the statistical analysis as covariates or to define

subgroups, and the published results focus on the most promising

subgroups. Because there is some flexibility in the design of the

statistical model and analysis, and the analysis with the lowest p-

values for the effect of interest is more likely to be presented in a

publication, the p-values in the publications may often be lower

than the standardized p-values. Therefore, many studies that

achieve formal statistical significance at a level of 0.05 will have

standardized p-values falling in the interval between 0.05 and

0.01. For the weight function, this may lead to an overrepresen-

tation of studies with p-values from the interval between 0.05 and

0.1, and may imply that when standardized p-values are used, the

largest discontinuity might not be expected at a p-value of 0.05 but

at a higher level.

Most importantly, our results indicate that initial studies face a

much stronger bias than subsequent ones. In line with previous

observations, we find indication for the Proteus phenomenon:

Early replications tend to be biased against the result of the initial

publication. This effect, however, is smaller than the finding that

initial findings are more biased than subsequent ones. Reasons and

additional examples for initially inflated findings and for the

Proteus phenomenon have been discussed earlier [8,13,14]. For

evidence synthesis this is a severe problem, because when biases

follow more complex patterns and differ for initial studies and

subsequent ones, it is particularly difficult to correct for them. In

order to correct for these biases one would have to examine the

behavior of the whole field as data accumulate, and then assume

that this behavior can be extrapolated to new data.

Our approach has potential methodological caveats. First, one

important assumption for the weight function is the presence of

discontinuities. Typically, these discontinuities are justified by the

salience of particular p-values, such as 0.05, in the interpretation of

research findings [19]. However, as illustrated by our high-

resolution model, a sufficiently large number of published findings

allows using a large number of intervals, and thus a stepwise

constant weight function approach can give a better picture of the

shape of the weight function than alternative approaches.

Sensitivity to the normality assumption in the random-effects

model is a potential caveat that has extensively been studied earlier

[20]. While for our analysis, non-normality in the random-effects

might influence the absolute estimates for the weights, it is

implausible that it affects our findings regarding the presence of

the Proteus phenomenon and initial study bias. Using weight

functions that solely depend of the standardized effect sizes (z-

value) is a further limitation, but additional variables can be easily

implemented. In our analysis, this is illustrated by the use of

different categories of results that are assumed to be affected by

different biases. Distinctive categories could also be used when, for

example, including data from genome-wide association studies

where reporting may be by default more comprehensive. We

therefore believe that the potential pitfalls associated with our

methodology do not distort our results.

The approach outlined here can be easily adjusted to analyze

selective reporting for a wide range of datasets. One could, for

instance, analyze patterns of bias for the reporting of association

between diseases and medical interventions or environmental

factors. Unlike for gene-disease associations, the weight functions

in these fields might not necessarily be symmetric, because

protective effects of such factors might face a different bias than

factors that increase risks. The timing of studies in other disciplines

may also be slower, as compared to the rapid generation of results

in genomics, and this may also affect the relative bias in replication

results.

Moreover, the weight functions in our model can also be

adjusted to capture the impact of further study-specific properties

on bias. Biases might, for example, depend on the internal validity

of a study. Reporting of design features that would allow an

accurate assessment of the internal validity has not been optimal in

the past genetic epidemiology literature (see [25]), but hopefully,

with improved reporting in the future [26] such an analysis may be

reliable enough to perform in future studies.

One might argue that, if reasons exist for not publishing all

results that are obtained, a strong bias against non-significant

outcomes specifically for early studies might be reasonable.

Formally this can be assessed based on methods from information

theory that allow quantifying the informativity of an experimental

result [27–29]. Essentially, these methods allow quantifying how

much an experimental observation changes our knowledge

regarding a hypothesis. For some fields of research, including

genetic associations, the prior chances of a randomly selected

genetic variant to be associated with a disease is very low [30,31].

In these fields, initial positive studies are typically more

informative than initial negative studies. An initial finding that

gene X is not associated with a particular disease offers little

information, if no one expected it to be associated. If full

publication comes with costs, there may be some benefit to not

publish such a finding. However, if such a ‘‘negative’’ finding is not

recorded anywhere even in brief, there may be a loss to other

investigators who may continue spending time and effort on the

same uninformative line of research. If selective reporting is seen

as something inevitable, a detailed analysis of its prevalence,

patterns, costs, and benefits is essential to understand its dynamics

Selective Reporting for Multiple Datasets
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and how to handle it. Further analyses are required to determine

whether there are forms of selective reporting that generate less

severe problems in the context of evidence synthesis and may

suggest how to optimize publication strategies under realistic costs

and benefits.
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