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Abstract 

In the context of the free-fermionic formulation of the heterotic superstring, we construct a 
three-generation N = 1 supersymmetric SU(4) x SU(2)L × SU(2)R model supplemented by an 
SU(8) hidden gauge symmetry and five Abelian factors. The symmetry breaking to the standard 
model is achieved using vacuum expectation values of a Higgs pair in (4, 2R) + (7, 2R) at a high 
scale. One linear combination of the Abelian symmetries is anomalous and is broken by vacuum 
expectation values of singlet fields along the flat directions of the superpotential. All consistent 
string vacua of the model are completely classified by solving the corresponding system of F- and 
D-flatness equations including non-renormalizable terms up to sixth order. The requirement of 
existence of electroweak massless doublets imposes further restrictions to the phenomenologically 
viable vacua. The third generation fermions receive masses from the tree-level superpotential. 
Further, a complete calculation of all non-renormalizable fermion mass terms up to fifth order 
shows that in certain string vacua the hierarchy of the fermion families is naturally obtained in the 
model as the second and third generation fermions earn their mass from fourth- and fifth-order 
terms. Along certain flat directions it is shown that the ratio of the SU(4) breaking scale and 
the reduced Planck mass is equal to the up quark ratio mc/mt at the string scale. An additional 
prediction of the model, is the existence of a U(1) symmetry carried by the fields of the hidden 
sector, ensuring thus the stability of the lightest hidden state. It is proposed that the hidden states 
may account for the invisible matter of the universe. @ 1999 Elsevier Science B.V. All rights 
reserved. 

PACS: l l.25.Mj; 12.10.Dm; 12.60.Jv 
Keywords: Superstring compactifications; Unified models 

0550-3213/99/$ - see frontmatter @ 1999 Elsevier Science B.V. All rights reserved. 
PII S0550-3213 (99)  00303-X 



4 G.K. Leontaris, J. Rizos/Nuclear Physics B 554 (1999) 3-49 

1. Introduction 

During the last decade, a lot of work has been devoted to the construction of effec- 
tive low energy models of elementary particles from the heterotic superstring. Several 
old successful N = 1 supersymmetric grand unified theories (GUTs) have been re- 
covered through the string approach [ 1-6], however only few of them were able to 

rederive a number of successful predictions of their predecessors. Yet, new avenues and 
radical ideas that were previously not considered or only poorly explored, have now 
been painstakingly investigated in the context of string derived or even string inspired 

effective theories. Among them, the issue of the additional U( 1 ) symmetries which nat- 
urally appear in string models and the systematic derivation of non-renormalizable terms 
boosted our understanding of the observed mass hierarchies and impelled people to sys- 

tematically classify all possible textures consistent with the low energy phenomenology. 
Further, new and astonishingly simpler mechanisms of GUT symmetry breaking were 

introduced due to the absence of large Higgs representations, at least in the simplest 
Kac-Moody level (k -- 1) string constructions. 

In addition to the above good omen, some embarrassing difficulties have also ap- 
peared, such as the existence of unconfined fractionally charged states - which belong 
to representations not incorporated in the usual GUTs - and the very high unification 
scale. The new representations come as a result of the breaking of the large string 
symmetry via the GSO projections. The appearance of such states are not necessarily 
an ominous warning for a particular model, although a mechanism should be invented 
to make them disappear from the light spectrum. The real major difficulty however, 

was the generic property of the high string scale in contrast to the usual supersym- 
metric GUTs which unify at about two orders of magnitude below the string mass. In 

the weakly coupled heterotic string theory, this problem can find a solution in specific 

models, when extra matter multiplets exist to properly modify the running of the gauge 
couplings, or possible intermediate symmetries and string threshold effects [7] can help 
gauge couplings converge to their experimentally determined values at low energies. 

In this paper, we derive an improved version of a string model proposed in [5], 
based on the observable gauge symmetry SO(6) x 0 (4 )  (isomorphic to SU(4) x 
SU(2)t. × SU(2)R Pati-Salam (PS) gauge group [8]) in the context of the free- 
fermionic formulation of the four-dimensional superstring. As shown in [4] this gauge 
symmetry breaks down to the standard model without the use of the adjoint or any higher 
representation thus it can be built directly at the k = 1 Kac-Moody level. (Higher Kac- 
Moody level models are also possible to build, however, they imply small unification 
scale values of sin 20w [9].) 

The models based on the PS gauge symmetry have also certain phenomenological 
advantages. Among them, is the absence of coloured gauge fields mediating proton decay. 
This fact allows for the possibility of having a low SU(4) breaking scale compared to 
that of other GUTs, provided that the Higgs coloured fields do not have dangerous 
Yukawa couplings with ordinary matter. Possible ways to avoid fast proton decay have 
been discussed also recently in the literature [ I0]. 
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Moreover, specific GUT relations among the Yukawa couplings, like the bottom-tau 

equality, give successful predictions at low energies, while at the same time such relations 

reduce the number of arbitrary Yukawa couplings even in the field-theory version. 
The above nice features are exhibited in the present string construction. Using a 

variant of the original string basis and the GSO projection coefficients [5], we obtain 
an effective field theory model with three generations and exactly one Higgs pair to break 
the SU(4) x SU(2)R gauge symmetry. The effective low energy theory is the N = 1 

supersymmetric SU(3) x SU(2) x U(1) electroweak standard gauge symmetry broken 
to SU(3) X U( 1)em by the two Higgs doublet fields. We derive the complete massless 
spectrum of the model and the Yukawa interactions including non-renormalizable terms 
up to sixth order. Among the massless states, a mirror (half)-family is also obtained 
which acquires mass at a very large scale. There are also singlet fields and exotic doublet 

representations with a sufficient number of Yukawa couplings. All the observable and 

hidden fields appear with charges under five surplus U(1) factors where one linear 
combination of them is anomalous. The anomalous U(1) symmetry generates a D- 
term contribution, which can be cancelled if some of the singlet fields acquire non-zero 

vacuum expectation values (vevs). To find the true vacua, we solve the F- and D- 
flatness conditions and classify all possible solutions involving observable fields with 
non-zero vevs. We analyze in detail three characteristic cases where superpotential 

contributions up to sixth order suffice to provide fermion mass terms for all generations. 
Phenomenologically interesting alternative solutions are also proposed in the case where 

some of the hidden fields develop vevs too. 
Among the novel features of the present model is the existence of a U(1) symmetry 

- carried by hidden and exotic fields - which remains unbroken. As a consequence, 
the lightest hidden state is stable. These states form various potential mass terms in 
the superpotential of the model. In our analysis, we show the existence of proper flat 
directions where the lightest state obtains a mass at an intermediate scale, leading to 
interesting cosmological implications. 

The paper is organized as follows. In Section 2 we give a brief description of the 
supersymmetric version of the model and discuss various phenomenological features, 

including the economical Higgs mechanism, the mass spectrum and the renormalization 
group. In particular we show how the Pati-Salam symmetry dispenses with the use of 
Higgs fields in the adjoint of SU(4) to break down to the standard model. In Section 3 

we propose the string basis as well as the GSO projections which yield the desired 
gauge symmetry and the massless spectrum. In Section 4 the gauge symmetry breaking 

of the string version is analyzed. Moreover, due to the existence of additional U(1)  
symmetries, the issue of new (non-standard) hypercharge embeddings is discussed. 
Particular embeddings where all fractionally charged states obtain integral charges are 
discussed in some detail. In Section 5 we derive the superpotential couplings and present 
a preliminary phenomenological analysis to set the low energy constraints and reduce 
the number of phenomenologically acceptable string vacua. In Section 6 we classify all 
solutions of the F- and D-flatness equations including non-renormalizable superpotential 
contributions up to sixth order. A detailed phenomenological analysis of the promising 
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string vacua in connection with their low energy predictions is presented in Section 7. 
Particular attention is given in the doublet Higgs mass matrix, the fermion mass hierarchy 
and the colour triplet mass matrix. In Section 8 we present a brief discussion on the 

role of the hidden sector and extend the solutions of string vacua including hidden field 
vevs. Finally, in Appendices A-D we present tables with the complete string spectrum, 
details about the derivation of the higher-order non-renormalizable superpotential terms, 
the D- and F-flatness equations with non-renormalizable contributions and the complete 

list of their tree-level solutions. 

2. The supersymmetric SU(4) X SO(4) model 

There is a minimal supersymmetric SU(4) x 0 (4 )  Model which can be considered 
as a surrogate effective GUT of the possible viable string versions, incorporating all 
the basic features of a phenomenologically viable string model. The Yukawa couplings 

are determined by the Pati-Salam (PS) gauge symmetry and possible additional U ( I ) -  
family symmetries which are usually added (as in any other GUT) by phenomenologi- 
cal requirements, (i.e. fermion mass hierarchy, proton stability etc.). This GUT version, 

however, provides us with insight in constructing the fully realistic string version. There- 
fore, here we briefly summarize the parts of the model relevant for our analysis [4] 
The gauge group is SU(4) x 0 (4 ) ,  or equivalently the PS gauge symmetry [8] 

SU(4) × SU(2)L x SU(2)R. (1 

The left-handed quarks and leptons are accommodated in the following representations: 

i 

F L = ( 4 , 2 , 1 ) =  d '~ e ' 

i 

P/xR= ( a , l , 2 )  = uC,~ pc (3) 

where a = 1 . . . . .  4 is an SU(4) index, a , x  = 1,2 are SU(2)L,R indices, and i = 1,2,3 
is a family index. The Higgs fields are contained in the following representations, 

h+" ho d 
h,~ = (1 ,2 ,2 )  = ho u h_d j , (4) 

where h a and hU are the low energy Higgs superfields associated with the minimal su- 
persymmetric standard model (MSSM). The two 'GUT'  breaking Higgs representations 
are 

(5) H ' ~ b = ( 4 ' l ' 2 )  = \d~r eH ' 

( u~," e~ "~ (6) /4<~x= (Zl, 1 , 2 ) =  \ d ~  #.,~J " 
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Fermion generation multiplets transform to each other under the changes 4 ~ 4 and 

2L ~ 2R while the bidoublet Higgs multiplet transforms to itself. However, the pair of 
fourplet-Higgs fields does not have this property, discriminating 2L and 2R. Thus, when 
they develop vevs along their neutral components ~r/, D~, 

(H) = (~14) ~ MGUT, (/7/) = ( ~ )  ,,~ MGUT (7) 

they break the SU(4) x SU(2)R part of the gauge group, leading to the standard model 
symmetry at MGUW 

SU(4) × SU(2)L X S U ( 2 ) R  , S U ( 3 )  c x SU(2)L X U(1)y. (8) 

Under the symmetry breaking in Eq. (8),  the bidoublet Higgs field h in Eq. (4) splits 
into two Higgs doublets h ~, h a whose neutral components subsequently develop weak 
scale vevs, 

(ho d) = Vl, (h~)) = v2 (9) 

with tan f l  -- v2 /v j .  

In addition to the Higgs fields in Eqs. (5), (6) the model also involves an SU(4) 
sextet field D = (6 ,1 ,1 )  and four singlets ~b0 and q~i, i = 1,2,3. ~bo is going to 
acquire a vev of the order of the electroweak scale in order to realize the Higgs doublet 
mixing, while ~Pi will participate in an extended 'see-saw' mechanism to generate light 
majorana masses for the left-handed neutrinos. Under the symmetry property ~Pl,2,3 
( - 1 ) × ~P1.2,3 and H( / ]  r) ~ ( - I ) × H(H)  the tree-level mass terms of the superpotential 
of the model read [4] 

ij - 
W = A~iFiLPjRh + A2 HHD + A3/t/~D + '~4 HFjR~pg + tz~oi~oj + Izhh, (10) 

where/~ = (&0) ~ O ( m w ) .  The last term generates the Higgs mixing between the two 
SM Higgs doublets in order to prevent the appearance of a massless electroweak axion. 
The following decompositions take place under the symmetry breaking (8): 

F L ( 4 , 2 , 1 ) - - ~ Q ( 3 , 2 , - ~ )  + g ( 1 , 2 , ½ ) ,  

FR(4, 1, 2) ~ uC(3, 1, ~) + dC(3, 1 , -½)  + ~,c(1, l ,  0) + eC(1, 1, - l ) ,  

/4(4, 1, 2) --~ u~(3, 1, 2) + d~/(3, 1, -½) + u~4(1, 1,0) + e~(1, 1, - l  ), 

H(4,  1, 2) --~ uH(3, 1, _2 )  + dH(3, 1, ½) + e l l ( l ,  1,0) + e l l ( l ,  1, l ) ,  
1 l D(6,  1, 1) ~ D3(3, 1, 7) -I-/)3(5, 1 , - g ) ,  

h(1 ,2 ,2) - -~  hd(1,2, ½) + hU(1,2 , -½) ,  

where the fields on the left appear with their quantum numbers under the PS gauge 
symmetry, while the fields on the right are shown with their quantum numbers under 
the SM symmetry. 

The superpotential equation (10) leads to the following neutrino mass matrix [4] 
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(mo, o) 0 m u 

2t4~,~, ~o = 0 MGUT ( 1 1 ) 

MGUT # 

in the basis (~,i, ~,j, ~k)- Diagonalization of the above gives three light neutrinos with 
mzi/gBu T) as required by the low energy data, and leaves the masses of the order/z(  ij 2 

right-handed majorana neutrinos with masses of the order MGUT. Additional terms not 
included in Eq. (10) may be forbidden by imposing suitable discrete or continuous 
symmetries [11,12] which, in fact, mimic the role of various U(I )  factors and string 
selection rules appearing in realistic string models. The sextet field D(6,  1, 1) carries 
colour, while after the symmetry breaking it decomposes in a triplet/triplet-bar pair with 
the same quantum numbers of the down quarks. Now, the terms in Eq. (10) HHD and 
/z//)D combine the uneaten (down quark-type) colour triplet parts of H, /7/with those 
of the sextet D into acceptable GUT scale mass terms [4]. When the H fields attain 
their vevs at MGUT "" 1016 GeV, the superpotential of Eq. (10) reduces to that of the 
MSSM augmented by right-handed neutrinos. Below MGUT the part of the superpotential 
involving matter superfields is just 

i.j c i j  c W = AiJuQiuCjh2 -k- A~QidCjhln + AE~.ie j h l  + A N L i P j h 2  Jr- . . .  (12) 

The Yukawa couplings in Eq. (12) satisfy the boundary conditions 

" ij ij ij ij 
A]/(MGuT) ~ A/)(MGuT) = AD(MGUT) = AE(MGuT) = AN(MGuT). (13) 

Thus, Eq. (13) retains the successful relation mr = rnb at MGU T. Moreover from the 
ij relation Ab(MGuT) = ~-~/(MGUT), and the fourth term in Eq. (10), through the see-saw 

mechanism we obtain light neutrino masses which satisfy the experimental limits. The 
U(1) symmetries imposed by hand in this simple construction play the role of family 
symmetries U(1)A, broken at a scale M A  > MGUT by the vevs of two SU(4) x 0 (4 )  
singlets 0, (~, carrying charge under the family symmetries and leading to operators of 
the form (a~l)r(onOm~ 

Oij~(Fif'J )h ~ T  \ ~ j  +h.c.  (14) 

obtained from non-renormalizable (NR) contributions to the superpotential. Here, M ~ 
represents a high scale M ~ > M~UT which may be identified either with the U(1)A 
breaking scale MA or with the string scale Mstring. Such terms have the task of filling in 
the entries of fermion mass matrices, creating textures with a hierarchical mass spectrum 
and mixing effects between the fermion generations. 

Before we proceed to the construction of a particular string model let us examine 
how a three-generation SU(4) x SU(2)L x SU(2)R model can be realized. As we have 
already explained the fermion generations are accommodated in FL (4, 2, 1) + FR(4, 1, 2) 
while the Higgs fields are accommodated in FR(4, 1,2) + fi'R(4, 1, 2) representations. 
In the free-fermionic formulation the SU(2)c x SU(2)R is realized as 0 (4 )  and the 
2c and 2R representations are the two spinor representations (2 +) of 0 (4 ) .  Calling 
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n+, n_,  h+, h_ the number of  (4, 2+) ,  (4, 2 - ) ,  (4, 2 +) and (4, 2 - )  representations we 

come to the conclusion that the minimal three-generation model is obtained for 

nmin = (n+,n_,n+,h_) = (3, 1 ,0 ,4 ) ,  

where 2L is identified with 2 +. A mirror minimal model can be obtained by interchanging 
the two SU(2) ' s ,  i.e. L +-~ R, and identifying 2 + ,-~ 2R 

/'/min = ( R + , n _ , n + , h _ )  = ( 1 , 3 , 4 , 0 ) .  

Furthermore, one can consider the existence of  vector-like states that do not affect the 

net number of  generations since, in principle they can obtain superheavy masses. Thus 

a general three-generation SU(4)  x SU(2)L X SU(2)R model corresponds to one of  the 

following vectors: 

nr.,.=(n+,n_,h+,h_)=(3+r,l+s,r, 4+s), r , s = 0 , 1  . . . .  

o r  

nr,=(n+,n_,h+,h_)=(l+s, 3+r,4+s,r), r , s =  0, 1 . . . .  

We can rewrite the above relations in a more compact form 

n+÷n_=h++h_=4+p, p = 0 , 1 , 2 , . . . ,  

n+ - h+ = h _  - n_ = i 3  (15) 

Thus, there exist an infinity of  three-generation SU(4) x 0 ( 4 )  ~ SU(4) x SU(2)L x 

SU(2)R models each of  them uniquely characterized by an integer (p)  related to the 

differences (15) and a sign (4-). We will therefore refer to a particular model using the 

notation k + that is the two minimal models will be referred as 0 + and 0 - .  

As stressed in the Introduction, one severe problem that has to be resolved in a 

candidate string model is the discrepancy between the unification scale as this is found 

when the minimal supersymmetric spectrum is considered, and the two orders higher 

string scale implied by theoretical calculations. In previous works, it was shown that this 

difficulty may be overcome in several ways [ 13,14]. In particular, the class of  string 
models as that of  Ref. [5] predict additional matter fields which can help the couplings 

merge at the high string scale without disturbing the low energy values of  sin 20w and 

a,.. Perhaps the most elegant way to achieve this, is to make the couplings run closely 

from the string to the phenomenological unification scale Mu ~ 1016 GeV. As a first 

step one may add the mirror fields [ 14 ] 

M= (4,2,1); hT/= (4,2, 1), (16) 

which guarantee the equality of  the SU(2)L and SU(2)R gauge couplings gL = gR 

between the two scales. According to the classification proposed to the previous para- 
graph, this model is classified as 1 + or 1- .  The running of the SU(4)  coupling can be 
adjusted by an additional number of  extra colour sextets which are in general available 
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in the string versions of the present model. Indeed, with three generations and denoting 

collectively the number of fourplet sets with n4 the beta functions now become 

b2L ~- b2R = --1 --4n4; b a = 6 - n 6 - 4 n 4 ,  (17) 

which show that a sufficient number of sextet fields may guarantee a g4 running almost 

identical with that of gL.R. The string model we are proposing in the next section has 
exactly one mirror pair and four sextet fields, whereas additional exotic states may also 
contribute to the beta functions if they remain in the light spectrum. 

The introduction of the mirror representations (16) leads to the existence of another 
symmetry in the model: we observe that the whole spectrum now is completely sym- 
metric with respect to the two SU(2) ' s  in the sense that under the simultaneous change 
2L ,--+ 2R and 4 ~ ,~ of SU(4),  it remains invariant. More precisely, under this symmetry 
the representations of the model are mapped as follows: 

ff'R ~---~ FL, 

H,/'/+--~ A7/, M, (18) 

D, h, qb i ~-+ D, h, dp i. 

This symmetry persists also in the present string model, while tree-level as well as 
higher-order Yukawa interactions are also invariant under these changes. As we will 
see, this symmetry is broken by the vacuum which will be determined by the specific 

solutions of the flatness conditions. 
After the above short description, we are ready to present the string derived model 

where most of the above features appear naturally. In addition, novel predictions will 
emerge such as the appearance of exotic states with charges which are fractions of those 

of ordinary quarks and leptons, a hidden 'world' and a low energy U(1) symmetry. 

3. The string model 

In the four-dimensional free-fermionic formulation of the heterotic superstring, fermi- 
onic degrees of freedom on the world-sheet are introduced to cancel the conformal 

anomaly. The right-moving non-supersymmetric sector in the light-cone gauge contains 
the two transverse space-time bosonic coordinates ~'~ and 44 free fermions. The su- 
persymmetric left moving sector, in addition to the space-time bosons X ~ and their 
fermionic superpartners ~p~ includes also 18 real free fermions X t, f ,  w t (1 = 1 . . . . .  6) 
among which supersymmetry is non-linearly realized. The world-sheet supercurrent is 

TF = ~b~OX u + Z XI y 1 J .  (19) 
1 

Then, the theory is invariant under infinitesimal super-reparametrizations of the world- 
sheet as the conformal anomaly cancels separately in each sector. Each world-sheet 
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fermion f i  is allowed to pick up a phase t r f i e ( - 1 , 1  ] under parallel transport around a 
non-contractible loop of the world-sheet 

f i ---+ -e'rr'~I' f i. (20) 

A spin structure is then defined as a specific set of  phases for all world-sheet fermions, 

Ol = [ Ol frt , Ol f~ . . . . .  Ol f~ ; Ol f~ , Olf' 2" . . . . .  OL f7 ] ,  (21) 

where r stands for real, c for complex and k + 21 = 64. For real fermions the phases 
O'f~ have to be integers while ot¢,,, is independent of  the space-time index/z.  

The partition function is then defined as a sum over a set of  spin structures ( ~ )  

(o) 
Z ( r )  o( ~ c Z (22) 

/ \ 
where Z [ ~ )  is the contribution of the sector with boundary conditions along ~,, 

\ 

the two non-contractible circles of  the torus and c ( ~ )  a phase related to the GSO 

Both =' and c ( ~ )  are subject to string constraints which guarantee the projection. 

consistency of  the theory. 
A string model in the context of  free fermionic formulation of the four-dimensional su- 

perstring is constructed by specifying a set of  n basis vectors 1 (b0 = 1, bl, b2 . . . . .  b ,_  I ) 

of the form (21) (which generate = = ~ i  m i b i )  and a set of  ~ + 1 independent 2 

(h , )  Once a consistent set of  basis vectors and a choice of  phases c ,  bj ,  • projection c o -  

e f f i c i e n t s  is made, the gauge symmetry, the massless spectrum and the superpotential 
of  the theory are completely determined. In particular, the massless states of  a certain 

sector a = (an;  aR) E ~ are obtained by acting on the vacuum 10),, with the bosonic 
and fermionic mode operators. The massless states (M 2 = M 2 = 0) are found by the 

Virasoro mass formula 

1 Q'L " ~ L  
M~ = - 2  + ~ + E frequencies, 

f 

M~ = - 1 + aR - c e ~  + Z frequencies 
8 

f 

where the sum is over the oscillator frequencies 

I + olfi q- integer, Pf* _ 1 - cefi + integer. (23) 
PJ' - 2 

The physical states are obtained after the application of the GSO projections demanding 

( e " r b ' e " - r 3 , , C * ( b ~ ) ) l p h y s i c a l s t a t e ) , , = O ,  (24) 

i By 1 we denote the vector where all fermions are periodic. 
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where 6~ = - 1  if 0 ~ is periodic in the sector a and 64 = +1 when ~ '  is antiperiodic. 
The operator biFa is 

fEright 

where F~ ( f )  is the fermion number operator counting each fermion mode f once and 
its complex conjugate f*  minus once. It should be remarked that in the sector where 
al l  the fermions are antiperiodic there is always a state [/~,u) = g ' _ ~ l / z ( ~ ) [ l  ]0)0 
which survives al l  projections and includes the graviton, the dilaton and the two-index 
antisymmetric tensor. 

The present string model is defined in terms of nine basis vectors {S, bl,b2, b3, 
b4, b5, b6, 0~, s r} and a suitable choice of the GSO projection coefficient matrix. The 
resulting gauge group has a Pati-Salam (SU(4)  × SU(2)L × SU(2)R) non-Abelian 
observable part, accompanied by four Abelian ( U ( 1 ) )  factors and a hidden SU(8)  × 
U(1 ) '  symmetry. The nine basis vectors are the following: 

= { ; @~...8}, 

s = { ~ ,  x ~ 6 ,  ; }, 
bl = {0 ~, X i2, (y,~)3456, ; ~.1...5,~]1}, 
be = {0'% .,l( 34, (Y.,9) 12, (o)g-~)) 56 ; IPI '5,  ~2}, 
b3 = {O,u., .)(56, ((0(.7.))I234 ; ~1...5 ~3}, 

b4 = {W/x, X 12, (y g) 36, (me-o) 45 ; @l...5,,ff]l}, 
b5 = {O,u., ,9(34, (y.~)26, (w6j)ls ; ~1...s,¢/2}, 
b6 = { ; 1~1""5,~123,ri~1"4}, 
a' = { (yy)36, (0)¢~)36¢~24 ; lpl23,~23,~45}. 

The specific projection coefficients we 
coefficients cij in the following matrix: 

z 1 

S 1 

bj 1 

b2 1 

cij = b3 1 

b4 1 

bs 1 

b6 0 

a 1 

(26) 

are using are given in terms of the exponent 

S bi b2 b3 b4 bs b6 a 

1 1 1 1 I 1 0 0 

0 0 0 0 0 0 1 1 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 0 

1 0 0 0 0 0 0 0 

1 1 l 1 1 0 1 1 

where the relation of cij with c(bi, bj )  is 

(27) 

bi I = etTrc'~" c bj 
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All world-sheet fermions appearing in the vectors of the above basis are assumed 
to have periodic boundary conditions. Those not appearing in each vector are taken 

with antiperiodic ones. We follow the standard notation used in Refs. [3,5]. Thus, 
W/z, ,¥1...6, (y/w)1...6 are real left, (y/~)1...6 are real right, and ~bl'"sc/123qB 18  are com- 

plex right world-sheet fermions. In the above, 1 = bl + b2 + b3 + ( and the basis element 
S plays the role of the supersymmetry generator as it includes exactly eight left movers. 

Further, bl,2,3 elements reduce the N = 4 supersymmetries into N = 1, while the initial 
0 (44)  symmetry of the right-moving sector results to an observable SO(IO) × SO(6) 

gauge group at this stage. The SO(10) part corresponds to the five ~.l...s complex world- 
sheet fermions while all chiral families at this stage belong to the 16 representation of 
the SO(IO). Vectors b4,s reduce further the symmetry of the left moving sector, while 

the introduction of the vector b6 deals with the hidden part of the symmetry. Finally, 
the choice of the vector a determines the final gauge symmetry (observable and hidden 

sector) of the model which is 

S U ( 4 )  × 0 ( 4 )  × U ( I )  4 × {U(1) '  × SU(8)}hidden. (28) 

The observable gauge group consists of the non-Abelian SO(6) × 0 ( 4 )  symmetry which 
is isomorphic to the left-right Pati-Salam symmetry [ 8 ]. There are also four U( 1 )i=l..,4 
factors related to ~/1,2,3-complex and the 6J24-real pair of world-sheet fermions of the 
right-moving sector. All the superfields of the observable sector carry non-zero charges 
under these four U(1) symmetries. Therefore, the latter are expected to play a very 
important role in the determination of the Yukawa couplings, the fermion mass textures, 
R-parity violation and in general in all types of Yukawa interactions of the model. We 
note here that the observable fields do not carry charges under U( 1 )'. 

The Abelian part of the group deserves a separate treatment since this class of models 
in general possess U(1) symmetries which are anomalous. Indeed, while we find two 

of the U( 1 ) factors to be traceless Tr U( 1 ) 1 = Tr U( 1 ) '  = 0, the other three are traceful, 
with Tr U( 1 )2 = Tr U( 1 )3 = Tr U( 1 )4 = 24. However, the U( 1 ) charges can be defined 
in such a way that only one combination is anomalous. Indeed, the linear combination 

DA : U ( 1 )  a = U ( 1 )  2 q- U ( I )  3 + U ( 1 )  4, ( 2 9 )  

has  T r l J ( l ) a  = 72, while there are other three combinations orthogonal to the one 
above, which are free of gauge and gravitational anomalies. These are, 

Di : ( / ( 1 )  I = U ( I )  l, 

D2: U ( 1 ) 2 = U ( 1 ) 2 - U ( 1 )  3, (30) 

D3 : / J ( 1 )  2 = U ( I )  2 + U ( 1 )  3 - 2U( 1)4. (31) 

The choice of the projection coefficients shown in (27) has led to the desired three- 
generation model as well as some refinements of the previously proposed theory [5] 
which are phenomenologically appealing and deserve some discussion. The most impor- 
tant are, the new Yukawa couplings which give fermions masses, the mirror symmetry 
of the massless spectrum and the number of SU(4) Higgs multiplets. 
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We start with the enumeration of representations candidates for families and SU(4) × 
SU(2)R breaking Higgs fields as they appear in Appendix A. We first note that due 
to the presence of the various U(l)-factors,  there is an arbitrariness in the embedding 
of the electromagnetic charge operator. We will discuss this in detail in the end of 
this section, however, to start with, we assume first the simplest case where U( 1)em is 

defined in the standard way (as in the original PS symmetry), i.e. 

1 1T 1T Y = ~ T 4  -r- ~ L -I- ~ R (32) 

where T6, TL, TR are the diagonal SU(4),  SU(2)L and SU(2)R generators respectively. 
Then, the massless spectrum is classified with respect to its group properties as follows: 

• There are three copies of [ (4, 2, 1) + (4, 1, 2)] representations, available to ac- 

commodate the three generations. 
• There is one [(,~, 1,2) ÷ (4, 1, 2)] pair which is interpreted as the Higgs pair 

triggering the SU(4) × SU(2)R breaking. 
• One pair [ (4, 2, 1) + (,~, 2, 1) ], (mirror to each other) replaces the second Higgs 

pair of the old string version [5]. Clearly, since there are no mirror families 
observed in the light spectrum, they should decouple at some high scale by forming 
a heavy mass state. 

• There are a large number of singlet fields with zero electric charge, while carrying 

quantum numbers under the four U ( I )  factors. In the determination of the fiat 
directions of the model, their vevs have to be chosen in such a way so as to 

cancel the D-term. These singlets couple to ordinary matter via superpotential 
terms. When they develop vevs along certain flat directions they may create a 
hierarchical fermion mass spectrum through non-renormalizable couplings. 

• There are eight hidden SU(8)-octet and octet-bar superfields (charged under the 
U(1)  4 × U ( 1 ) ' ) ,  which are also neutral under the usual charge definition. They 
can also acquire non-zero vevs leading to additional mass terms for ordinary or 

exotic matter fields. 
• The exotic states of the model fall into two categories: 

(i) There are two SU(4) fourplets Ha = (4 ,1 ,1 ) ,  /44 = (4 ,1 ,1) .  After the 
symmetry breaking, they result to a 3 and 3 pair with charges ±~ respectively and 

J two singlets with charges ~7 .  

(ii) The second kind of exotic fields includes ten left-handed doublets XiL and 
an equal number of right-handed ones XiR with charges ±½. The presence of 
exotic particles in the massless spectrum of the theory is a generic feature of level 
k = 1 string constructions. Such states in general, are regarded as string models' 
"Achilles heel" since it is likely that they remain in the light spectrum down 
to the electroweak scale. There are mainly three solutions to this problem: first, 
one may choose a suitable flat direction where all of them become massive at a 
relatively large scale; as a second possibility, one can properly modify the string 
boundary conditions on the basis vectors, so that these states appear with non-trivial 
transformation properties under a hidden non-Abelian group. In this latter case the 
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exotic states are confined at the scale where the gauge coupling of the hidden 

group becomes strong [ 15]. Clearly, for a given number of matter representations, 

the higher the rank of the group, the larger the confinement scale. As a third 

possibility, one may consider the modification of the charge operator (32) by the 

inclusion of additional U(1) factors. In the present construction, we will discuss 

in some detail the last two possibilities. Later, we will give a brief account for 

their possible relevance on recent cosmological observations. 

Let us point out here that the observable spectrum of the model respects the symmetry 

discussed in Section 2 with respect to the simultaneous interchanges 2L ~ 2R and 4 ~ 4. 

In particular, left-handed generation superfields are interchanged with right handed ones, 

while there is a similar change of roles of the SU(4) Higgs and mirrors. We will also 

see in the following sections that the tree-level and higher-order Yukawa interactions 

remain also unaltered under the above interchanges. The above symmetry is broken 

however, by the vacuum when consistent F- and D-flatness solutions are found. We will 

discuss this when the superpotential of the theory is presented and the corresponding 

flatness conditions are derived in the next sections. 

4. Symmetry breaking and hypercharge embedding in the string model 

We will discuss now two related issues, the gauge symmetry breaking pattern and the 

various consistent embeddings of the weak hypercharge. After defining the consistent set 

of boundary conditions (26) described previously, one is left with an effective theory 

based on the symmetry (28) with the following general characteristics. There is an 

effective unification scale, namely the string scale Mstring, where all couplings - up to 

threshold corrections - attain a common value. At this point one is left with an effective 

N = 1 supergravity theory while the gauge group structure is of the form G = I~, G,, 
containing an 'observable' and a 'hidden' part. The two worlds are not completely 

decoupled. Hidden and observable fields are charged under five Abelian factors. The 

first symmetry breaking occurs when some of the singlet fields acquire vevs to cancel 

the D-term. Depending of the choice of the singlet vevs several (at most four) of the 

above U( l ) ' s  break, the natural breaking scale MA being of the order of the D-term, 

i.e. 

MA~X/~= ~/TrQ~gstringMP1 X/3 (33) 
V 192 cr = "~--~gstringMpl, 

where TrQA = 72 is the trace of the anomalous U ( I ) A  and Mp1 ~ 4.2 × 10 ~8 GeV is the 
reduced Planck mass. We note here that, if only the singlets were allowed to obtain a 

non-vanishing vev, at most four of the U( 1 ) 's break; since these singlets are not charged 
under the fifth Abelian symmetry U(1) ~, the latter remains unbroken at this stage. The 

observable part SU(4) × SU(2)L x SU(2)R has a rank larger than that of the MSSM 
symmetry, which breaks down to the SM gauge group at an intermediate scale MooT, 
usually some two orders of magnitude below the string scale. The breaking occurs in the 
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way described in Section 2. The necessity of the SU(4) × SU(2)R symmetry breaking 
together with the D- and F-flatness conditions require at least two of the U ( I )  factors 
to break at a high scale. 

There is finally the hidden SU(8) part. This symmetry stays intact, as long as the 8 and 

fields do not acquire vevs. Note also that the octets are charged under U( 1)P, In many 

flat directions which will be discussed subsequently, phenomenological requirements 
force some of the octets to obtain vevs and the symmetry SU(8) × U(1)P breaks to a 
smaller one. Now, a crucial observation (see the relevant table in Appendix A) is that all 

8's come with U( 1 )i positive charge (+1)  whilst all 8's appear with the opposite ( - 1 )  
charge. It is easy to show then, that, no matter how many of the available octet fields 
receive a non-zero vev, there is always a U( 1 )" unbroken which is a linear combination 

of the U(1) ~ and one of the generators of the SU(8). Therefore, the hidden matter 
conserves a new U(1 ) "  symmetry which stays unbroken down to low energies. Its 

cosmological implications will be discussed in a subsequent section. 
We turn now our discussion to the hypercharge embedding. As mentioned above, 

due to the appearance of extra U( 1 ) factors, the hypercharge generator is not uniquely 
determined. It can be any linear combination of the U ( I ) 8 - L  the five available U ( l ) ' s  

of the model and possible unbroken generators of the hidden gauge symmetry, provided 
the minimal supersymmetric low energy particle spectrum is generated. The standard 
weak hypercharge assignment - as this is defined in the original PS symmetry - does 
not involve any of the surplus U( ! ) factors discussed above. It is solely determined in 
the usual sense from the diagonal generators of the PS symmetry as in (32). Under this 
definition in addition to the representations accommodating the MSSM fields, the states 

found in (4, 1, 1) + (4, 1, 1) and (1, 1, 2) + (1, 2, 1) representations obtain the exotic 
charges discussed above. We note again that such representations could not be obtained 
from the available representations of the higher SO(IO) symmetry which breaks to the 
PS symmetry by the Higgs vevs. In the present string construction they appear naturally 

from an SO(10) representation due to the GSO projection mechanism. 
We will discuss here in some detail another possible definition of the hypercharge 

operator which is obtained by including the U(l)t-generator: 

y1 = I 1 1 ~o / 
~ T 4  q- ~TL + ~TR -- -~O , (34) 

where Q' is related to the U(1) p charge of the particular massless state and ~o is the 
appropriate normalization constant. Choosing for example 09 = 1, all extra doublets XL,R 
obtain integral charges ( i  1,0). On the other hand, this new embedding leads to the 
normalization of the hypercharge generator 

5 + 12w 2 
- - -  ( 3 5 )  

3 

The value of the weak mixing angle a t  Mstring is sin 20w(Msn~ng ) = l-~k" Its values for 

the two lower ~o's are given in Table 1. For ~o = 0, we obtain the standard GUT sin 20w 
prediction but the exotic states have fractional charges, whereas for w = 1 the XL.R 
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Table l 
The values of  the weak mixing angle at the Unification scale, for two definitions of the weak hypercharge. In 
the second case, an additional U(1) factor is assumed 

to sin 20w 

0 8 

doublets as well as the (4, 1, 1) and (4, 1, 1) representations, obtain charges like those 
of the ordinary down quarks and leptons. It should not escape our attention that in this 
new hypercharge definition Yt the octet fields now appear with fractional charges :t: 1/2. 

This is not however a real problem. The coupling of the SU(8) group becomes strong 

at a high scale, leading to a confinement (in close analogy with QCD), and forcing 

the octets to form bound states with the corresponding octet-bar fields. We should note 
here that this situation opens up the possibility of giving vevs to these condensates 
at a smaller scale and create new mass terms for the ordinary matter through their 
superpotential couplings. The new hypercharge definition predicts a low value for the 
weak mixing angle which is essentially the value obtained in a Kac-Moody level k = 2 
string construction [9]. Starting however, from such a small initial value for sin 20w at 

Mstring, there is no obvious way how the larger low energy value can be obtained in this 

case. 
Let us close this section with a short comment on one more possibility of symmetry 

breaking. One can give vevs directly to the exotic SU(2)R-doublet fields Xm. (Both 
their components are charged (Qem = 4-1/2) under the standard hypercharge assign- 
ment (32)) .  The vevs should be taken along the neutral direction defined by the proper 
linear combination. This will essentially lead to an embedding of the hypercharge as 
in the case of ~o = 1. However, this approach has the advantage that the small initial 
value of sin 20w is imposed now at the SU(2)R-breaking scale which can be taken 

to be much lower that the string scale. This case requires a separate treatment since 
there are new fields entering the flatness conditions while new mass terms appear in the 
superpotential. Moreover, exotic doublets now look like the ordinary electron doublets 
while far reaching phenomenological implications appear. 

5. The superpotential of the string version 

We proceed now to the calculation of the perturbative superpotential. Clearly, the 
number of fields in the string version is significantly larger than those of its surrogate 
GUT discussed in Section 2. In fact, in the model of Section 2, the construction of the 
superpotential was rather easy since only gauge symmetries had to be respected. Here, 
however, not all gauge invariant terms are allowed; additional restrictions from world- 
sheet symmetries have to be taken into account since they eliminate a large portion of 
the gauge i nvariant superpotential terms. A short description of the calculation [ 16,17] 
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of the renormalizable as well as the non-renormalizable superpotential terms is given in 
Appendix B. 

The tree-level superpotential is 

_ 1 - -  1 - -  - 

W3 _ FsRF4L h4 + -ff 3RF3L h2 + - ~  FsL F4L(2 + --~F5RF4R(3 

+F5LFsLD4 + F4LF4LD1 + F2LF2LD2 + F1LFILD1 + FILH4XTc 

+FIRFIRD1 + F4RF4RD3 + F2RF2RD2 + FsRF5RD2 + F2RH4X3R 

+1@2 ((i-~i 4- (i~i + h3h4 + H4H4) 

4-@4 (~"1~3 4- ~3~1)-~ @5 (~"2~4 -~-(4~2) 

+D1D2@12 + D1D4@~ + D2D3@I2 + D3D4@12 

+h2~lh4 + h2~ah3 + h2XIoLXIoR 4- hl~lh3 + hl(4h4 + hlX9LX9R 

+~,2 (~:4(, + h3h3 + Z3Z3) + ~1-2 (fi l l  + (3~2 + X9RXloR) 

1 

+412 ((i(i + ~:2~3 4- X9LXIOL) + @12~:1~4 ÷ @12h4h4 + - ~  

N ((1X1RX6R 4- ~"3Z4Z5 q- ;4X2RX5R -1- ~'2Z5Z4 -1- ~4X1LX6L q- -~IX2LX5L) 

+(1Z5Z5 4- ~2X2RX6R 4- (2X1LX5L + h3X2RX5L + haX1LX6R. (36) 

The fourth-order superpotential terms are 

w4 =-ff5LF4LX1LX6L q--ff5LF3LZ3-Z4 4--ffsLF1LXaLX6L -~-ff 5RF4RXIRX6R 

+ F4RF3RZ3Z4 + F4R-ff 2RXIRXSR -i- -ff 2RF2L-~4h4 + -ff lRF1L(lh4 

@~"l~Zl Z 1ZI @ (2h4X8L X8R + (2(3X7R X8R -~- (2-~2X7L X8L 

T~2h3X7LX7R -}-~2(2X7RXsR q- (2(3X7L X8L q- (3h3X3LX3R 

4-(3(3X3RXaR -I- (3-~2X3L XaL 4- {3h4X4L X4R 4- ~3~2X3RX4R 

4-(3~3X3LXaL 4- £"4~:1Z2Z2 4- Zl Z4X3RXsR + Z2Z4X2LXTL 

+Z4Z5X2LX5L + Z5ZaX2RX5R q- X3LX4RXIoLX9R + X4LX3RX9LXIOR 

4-XILX2RX9LXIO R 4- X2LXIRX9LXIO R 4- X5LX6RXIoLX9R 

4- X6L X5RXtoL X9 R 4- X7L X8RXIoL X9R 4- X8LX7RX9L XIOR , (37) 

where in each term an O(1)g/Mpl multiplicative factor is assumed. Higher-order terms 
up to sixth order have been also calculated and are presented in Appendix B. 

Having obtained the spectrum of the model, as well as the available superpotential 
terms, we need to determine the vacuum of our theory, by making an appropriate 
choice of the vacuum expectation values of the Higgs fields (fourplets, bidoublets and 
a sufficient number of singlets) and possibly some of the hidden SU(8) multiplets. All 
these choices should be consistent with the D- and F-flatness conditions. A complete 
account of all possible solutions of these conditions will be given subsequently, however, 
not all of those solutions are satisfactory from the phenomenological point of view. A 
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final conclusion about the viability of  a certain flat direction however cannot be drawn 

before adequately high order NR terms are taken into account. There are two main 

reasons for this: first, it is possible that a particular viable flat direction at a certain 

order, is destroyed when higher-order NR terms are included in the calculation. Second, 

even if a phenomenologically promising fiat direction can be proven to persist at higher 

orders, it is possible that the new NR superpotential terms create undesired mass terms. 

For example, a usual phenomenon is that they fill in many entries in the Higgs mass 

matrix, so it is possible that there is no massless Higgs left to break the symmetry. As a 

consequence, one may have further constraints on the particular fiat direction by forcing 

some additional fields to obtain a zero vev. This will be discussed in a subsequent 

section. 

From the above remarks, it is evident that the right choice of  the vacuum of the 

model is not an easy task. In the next section our endeavor will be concentrated in the 

classification of  all flat directions and their relevance to the low energy phenomenological 

expectations. It is useful therefore, in order to pin down the few promising vacua from 

the hundreds of  available solutions, to summarize the basic observations which will 

help us to complete this task. This will enable us to determine the right fiat direction 

and choose those singlet (and possibly hidden) field vevs that guarantee a successful 
description of  the low energy phenomenological theory. 

• We start with the Higgs mechanism; we first observe that there is only one pair 
of  Higgs fields available to break SU(4)  symmetry, namely the fourplet F4R and 

in general one linear combination of  the fields P1,2,3,5. Thus, in order to keep FaR 
massless and prevent a mass term through the tree-level coupling F4RFsR(3, we 

need to impose ((3) = 0. 
• In addition to the three generations expected to appear at low energies, the model 

predicts also the existence of  one additional (4, 2, 1) representation plus its mirror 

P.~r = (4, 2, 1 ). Since no mirror families appear in the low energy spectrum, we 

need a mass term of the form (xi)FiLPsL (where Xi are some of  the singlets with 

non-zero vevs) to give a heavy mass to the mirror PsL. A candidate term could be 

(2P'sLFaL which exists already at the tree level. At fourth order there is also the 

term PsLF3LZ3Zs. Thus, up to fourth order, we obtain 

Z ( x i ) F i L F 5 L  = ((2F4L q- F3LZ3Z4 -b . . - )FsL,  (38)  
i 

where { . . .}  stand for possible higher-order NR terms involving fields that may 

acquire vevs. Clearly, if we wish to make the mirror multiplets heavy with superpo- 

tential terms up to fourth order, we should demand from flatness conditions either 
(~ 4: 0, or Z3Z5 4: 0. Solutions with higher-order NR terms are also possible as 

it will be clear later. 
• A number of  sextet fields, Oi, i = 1 . . . . .  4 containing colour triplets as well as 

triplets surviving the Higgs mechanism appear also in the spectrum. In order to 
avoid possible proton decay problems we need also mass terms for those coloured 
fields. As far as the sextet fields are concerned, the sextet matrix at tree-level is 
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DID2@12 + D1D4q~5-~ + D 2 D 3 ~ I 2  + D3Daq312 • (39) 

Their eigenmasses in terms of the scalar components of the singlet fields are 

1 (  V/( ~q~2 ) 2 ) (40) roD, = q-~ ~ 2  -Jr- -- (~12~J~12 -- ~12~12 )2 

with 

The above eigenvalues are all non-zero whenever the condition 

~124)12 -- ~12~J~12 ::/= 0 

is fulfilled. Therefore, a satisfactory fiat direction should keep the appropriate 

singlets with non-zero vevs. It will be clear later that in most of the phenomeno- 
logically viable string vacua, higher-order NR contributions will prove necessary 
to make all sextet fields massive. 

In forming the mass matrices for triplets, we should also take into account the 
fact that there are also coloured triplets in the Higgs pair (4, 1,2) + (4, 1,2).  Thus, 

recalling in mind the sextet decomposition D4 ----+ D43 + D43, the term F4RF4RD4 
~c gives a heavy mass to d4RD4 and the terms 

PsRPsRD2 + /g'2RP2RD2 + F1RPlRDt 

make another 3-3 combination massive. This linear combination depends on the 
choice of the fields which are going to accommodate the families and Higgses. 
This will be precisely determined as long as a specific fiat direction is chosen. 

• There is a new interesting feature of this version; there are two candidate terms at 
fourth order to provide masses to the second generation 

F'lRFlc h4(l + ~'2RF2L h4~4 . (42) 

They are expected to be of the right order, provided that at least one of the singlets 
(J, (4 gets a non-zero vev. 

After this preliminary analysis, we are ready now to explore other important aspects 
of the model. In the next section we will find all tree-level and higher-order solutions 
to the flatness conditions which determine the consistent string vacua. 

6. The solutions of the F- and D-flatness conditions 

One of the main concerns in constructing effective supersymmetric models from 
superstrings, is to find the flat directions along which the scalar potential vanishes. 
String models in general contain several fiat directions which are lifted by higher-order 
corrections to the superpotential and supersymmetry breaking effects. The latter set 
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also the scale of the scalar potential. Another interesting fact in string model building 
concerning these flat directions, is the existence of a D-term contribution [ 18,19]. As 
has been discussed in the previous section, there is a linear combination of the four 
surplus U(1 ) factors accompanying the observable gauge group of the model, which 
remains anomalous. The standard anomaly cancellation mechanism [ 19] results to a shift 
of the vacuum where several scalar components of the singlet (and possibly hidden) 
superfields develop non-zero vevs. Their magnitude is determined by the solution(s) of 
the complete system of the F- and D-flatness constraints. 

6.1. Derivation of the flatness constraints 

The F-flatness equations are easily derived from the superpotential. They are the set 
of equations resulting from the differentiation of 142 with respect to the fields of the 

massless spectrum fi, 

O__q--W = 0. 
afi 

In this paper we will mainly concentrate on an analysis of the flatness conditions 
involving fields only from the observable sector. For completeness, we also give in 
Appendix B the relevant contributions to the flatness conditions taking into account 
hidden field vevs as well as higher-order corrections from NR terms. 

Taking the derivatives of the renormalizable superpotential W with respect to the 
observable fields, we obtain 

(1)2 i ( i ~ i  = - - ( i ~ i  , ( 4 3 )  

(J04 : ( I  ~3 -~ - - ~ 1 ( 3  , ( 4 4 )  

~b5 :(2(4 = - ( 2 ( 4 ,  (45) 

~lz "s~l(4 = 0,  (46) 

qbl2 : sc4~'1 = 0,  (47) 

'*'~ :( i( i  = -~2~3, (48) 

(°~2 :(i(i = - (3~2,  (49) 

( I  "~2~1  ----- --(P12~4 , ( 5 0 )  

b~l " q~2~:I = --t:2~12~'4 , ( 5 1 )  

~:2 : q~2~2 =" --~P12~73 , ( 5 2 )  

~2 : ~2~'2 = - - I : i ~ 3  , ( 5 3 )  

~ 3  ,/,25~3 = -'b~s~-2, (54) 

b~3 : ~/~2~3 -~ --~PI2b~2 , ( 5 5 )  

¢4 : ~1~2~4 ---- --~J012¢1 , ( 5 6 )  

~4 ; ~2~:4 ---- - - ~ 1 2 ( I  , ( 5 7 )  
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(I : 052~1 -it- 4)4~3 -}" 2'/'~)(j = O, (58) 

~1 : 052(1 -t- 4)4(3 q- 2~72~1 = 0 ,  (59) 

~'2 : 052~2 q- 4)5~4 q- 24)~(2 q- ~'sLF4L/X/-~ = O, (60)  

~2 : 052(2 q- 4)5(4 -4- 2412~2 = 0 ,  (61)  

(3 : 052~3 q- 4)4~1 q- 24)~(3 = 0 ,  (62) 

23 : 052~'3 Jr- 4)4(I if- 24)/2(3 q- ~'5RF4R/V~ = 0 ,  (63)  

(4 : 052~'4 q- 4)5~2 "4- 24)126"4 = 0 ,  (64) 

24 i 052~'4 q- 4)5(2 q- 24)12(4 "= O. (65)  

On the left of the above equations we show the field with respect to which the super- 

potential is differentiated. In Eqs. (60), (63) both SU(2)L and SU(2)R fourplet fields 
have been included to exhibit the invariance of the equations under a straightforward 

generalization of the transformations (19). Indeed, it can be observed now that the 
F-flatness equations as well as the Yukawa interactions remain unaltered under the in- 
terchanges mentioned in previous sections. In particular, when 4 and 2R are interchanged 

with 4 and 2L respectively, it can be seen that the superpotential remains invariant under 
the following renaming of the fields: 

Fs, f5 +-+ F4, f'4, F1, f'l +--+ F2,/~2, DI,D3+--+D2,D4, (66) 

( I ,  (2 +---" ~4, ~3, ( I ,  (2 +--+ (4, (3, 4)1,4)4 +--+ 4)3, 4)5, (67)  

(2, (3 +-+ .£2, .£3, 4)12 ~ 4 ~ ,  4)2 +-+ 4)2. (68) 

This symmetry is also preserved by higher-order Yukawa terms as can be easily checked 
from the terms presented in the appendix. Nevertheless, the D-equations are not invariant. 
Clearly, any solution of them defines a vacuum which does not preserve the symmetry. 
In the subsequent, we make a definite choice with regard to this symmetry putting all 
(gL) = o .  

The D-flatness equations for anomalous or non-anomalous U ( I )  factors with hidden 
field contributions are also derived in Appendix C. In the absence of non-zero hidden 
field vevs, they can be written in the following compact form: 

( D r )  " 

(/92) 

(/93) 

(/94) 

(795) - 

f3 = x2 + x3, (69) 
( 

f4 - f ,  = x2 + }- - 6 ,  (70) 

( 
~_.. xi = - 5 '  (71) 

i 

05 = xl + sc (72) 
5 '  

f4  -- f l  = f2  + f3 + f s ,  (73) 

where we have defined 
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x i =  1~;I 2 -1#;12; ~" = ~-~'(1~1 = - I~ ' i l= ) ,  
i 

a = i~,212 - 1~,212; 6 = 1~7212 - Ir/'~2l 2, 

f 4 ~ l  2. 1 ~IF4R] , fi  =~]p,R] 2, i= 1 ,2 ,3 ,5 .  

23 

(74) 

(75) 

(76) 

6.2. Tree and higher level solutions of  F- and D-flatness constraints 

A consistent phenomenological  analysis of  the model requires a complete knowledge 
of all vacua, therefore, a systematic approach to classify all D- and F-flat directions 

is needed. When this is done, we will be able to know which fields acquire non-zero 
vevs in any specific flat direction. 2 These vevs will determine completely the masses 

of  fermion and scalar fields through their superpotential couplings. 
In the remaining of this section we present a systematic analysis of  the above con- 

straints, taking into account basic phenomenological requirements. This will limit con- 

siderably the number of  possible solutions. Thus, for example, as already has been 
pointed out, it is necessary to impose the constraint {23) = 0, in order to prevent a 
mass term for the Higgs field F4~ at tree level. This, by no means ensures the existence 

of a consistent solution. We postpone the complete presentation after we obtain the 
set of  mathematically consistent cases. In the present paper we restrict the analysis of  

the flatness conditions in the case where only observable fields acquire non-zero vevs. 
Solutions with hidden field vevs are much more involved and may result to interesting 
new vacua. Although a detailed investigation of the latter will not be considered here, a 
brief discussion of  their role is given later in Section 8 of  this paper. 

We find it convenient to start our analysis from the F-flatness conditions (45) ,  (461) 

which imply four distinct cases: 

(i) ~J ----- gel ---- 0 ,  ~:4 :¢: 0; (i i)  gel ---- ge4 ---- 0; 
(iii) ge4=~'l = 0 ;  (iv) ( 4 = ( j  = 0 ,  gel,(4 v~ 0.  

From the above cases, only (iii) and (iv) have consistent solutions. Let us first explain 

why cases (i) and (ii) are rejected. 

Cases (i) and (ii) 
From Eqs. (56) ,  (57) we deduce 052 = 0, while ge4 4= 0 in Eq. (51) imposes ~bl2 = 0. 

This however leads to inconsistency with equation 794, since the left side of  the equation 
is negative while the right side is positive and non-zero. Similarly case (ii) where 
gel = ~c4 = 0, is not soluble as can be easily seen from the equation (793)+(791). We 

consider the two remaining cases (iii) and (iv) separately. 

Case (iii) 
From Eq. (51) ,  we find 052 = 0. Further, 794-flatness tells us that gel and q312 cannot be 

simultaneously zero. Then, combining this with conditions (55) and (56) we conclude 

that 

2 For  s imilar  systematic  analyses in other  models ,  see Refs. [ 20-23 I. 
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Table 2 
The solutions to the F- and D-flatness equations with contributions of NR terms up to sixth order. The fields 
appearing in the table have zero vevs. Those appearing in curly brackets {} are forced to have zero vevs form 
NR contributions, while those in square brackets [l are set to zero to ensure the existence of at least one 
massless Higgs doublet. In the last column f.p. stands for the number of free parameters 

(P12 S (])i (i, ~?i (i, .~i /~i f.p- 

1 12, 12-, 1-2- 2,4,5 4, 1, {2},4- 3,.t {i}, {2},.5 6 
2 12, 12-, I~. - 2,4,5 4 , [ ,4  3,3 {1},{3),5 7 
3 12, 12-, 1-2-- 2,4,5 4, T, {2},?~ T,~ {i}, {2},.~ 6 
4 12, 12-, 1-2.- 2,4,5 4, i,4- i,_3 {1}, {.3}, 5 7 
5 12, 1-2, 12-, 1-2- 2,4,5 4, I i l ,  {'~},4 3,3 {T}, {2},.5 5 
6 12, I~, 12-, 1-2- 2,4,5 4, I i] ,  {2},71 i,_3 {T}, {2-}, .5 6 
7 12, 12-, 1-2.- 2,5 4, i ,4 3,1,3 {i},{3} 7 
8 12, 12-, 1-2.- 2,5 4, i, {2},21 1,3, i,.3 {1}, {2}, {5} 5 
9 12, 12-, 1~- - 2,5 4,/,,~ {1},3, i ,3 {2}, {-3}, {-~} 6 
I0 12, 1-2, 12-, I~ -  2,5 {2},4, 1i l ,4  {I},3, i ,~ {i}, {2}, {.5} 4 
II 12, I--2, 12-, 1~- 2,5 4, I i1,{3},4 1,3, i,.3 {i}, {'2}, {5} 4 
12 12, 12-, 1--2- 2,4 4, i,7~ 2,3,4,2,3,4 {i},{3},5 5 
13 12 2 2, 3,4, [, 2,3,,~ I, 2, 3,4, [,2, 3,7[ {2}, {.~}, .5 6 
14 12, 1-2~, 12-, I-2- 2,4,5 i, {'5},,~ 3,3 {i},5 9 
15 12, 1-2, 12-, 1-2- 2,4,5 i, (2},,~ i._3 {i},.5 9 
16 12, I~, 12-, I~ -  2,5 i, {2},,~ 3, i ,3 {i} 9 
17 2, 3, i,~, 3,,~ I, 2,3,4, i, ~, 3,7~ {2),.~,5 7 

~012 = 0,  ~4 : ~:4 : 0,  ~:1 4: 0, q~2 = 0 ( 7 7 )  

while ~1 • ~12 -- 0. 

Proceeding further, we classify all solutions in this case according to their number  

of free parameters and fields with zero vevs. At the tree-level, there are 17 solut ions 

consis tent  with the F-  and D-flatness condit ions.  These are cases 1-17 of Table D. 1 of 

Appendix  D. Several of  these flat directions are lifted when higher-order NR terms are 

included. On the other hand, other tree-level flat directions remain flat when addit ional 

constraints  are imposed on the field vevs. There are cases where a single tree-level flat 

direction results to more than one distinct cases at a higher level since the solution of  

the constraints  may be satisfied for various choices of field vevs. 

When  NR contr ibut ions to flatness condi t ions  up sixth order are taken into account,  the 

above tree-level solut ions reduce to the first thirteen cases presented in Table 2. The first 

co lumn numbers  the solutions,  while the last one denotes the number  of  free ( complex)  

parameters left. The five co lumns  in the middle  show the fields with zero vevs, where 

for presentat ion purposes abbreviat ions in the field notation have been used. Thus,  in the 

second row, the numbers  12, 12, 1 2 - ,  12 , denote the fields ~12,~/)12,~12,~12, and so 

on. The fields which are forced to obtain zero vevs due to higher-order  NR contr ibut ions 

in the Yukawa potential,  are included in curly brackets. Thus,  for example,  in the fourth 

co lumn of" the first case, the symbol  {2} means  that (~72) has a zero vev due to the 
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inclusion of  NR terms. Further, for the same reason in the fifth column we also use the 

notation {1}, {2} which should be translated to the conditions PIR = P2t¢ = 0 imposed 

by NR terms. In this notation, one can see the effect of  NR terms in the tree-level 

solutions presented in Appendix D. For example, the first solution in Table D. 1 (in the 

appendix) results to the first two distinct cases of  Table 2 and so on. 

Note that in Table 2 we present only the vanishing vev's of  each particular solution. 

Substitution in the F-  and D-flatness conditions, results to a number of  constraints 

characterizing each solution. These constraints are not presented in Table 2 but they 

have been taken into account in the calculation of  free parameters. Specific examples 

will be presented later in Section 7. Due to the existence of  free parameters, each 
solution of  Table 2 can in principle generate a number of  phenomenologically distinct 

cases. We will see in a subsequent section how some of  these free parameters are forced 

to obtain zero vevs following the requirements of  low energy phenomenology. 

Case (iv) 

In a similar manner, we proceed also in this case where ~l = ~4 = 0. Eqs. (51),  (55) 

lead to two sub-cases depending on whether ~b2 is zero or not. 

• (iv,,) When ~b 2 ----- 0, the analysis proceeds in analogy with case (iii). Thus, we 

find eight solutions at the tree level numbered 18-25 of  Table D.1. 

• (ivb) For the case ~b2 v~ 0, a tedious analysis leads to the unique tree-level solution 

(2,3 = ( i  = ( i  = {i  = P3R = PsR = 0 (78) 

with q022 = 4qo12q312 4 : 0  

This is also included as case 26 in the complete list of  the tree-level solutions of  

Table D.I in Appendix D. When NR contributions are taken into account various flat 

directions are lifted and the total number of  solutions is reduced to 4 which are shown 

in Table 2 (cases 14-17).  

Having obtained all consistent solutions, let us try to apply the preliminary phe- 

nomenological discussion of  the previous section. We first point out that in eight of  the 

cases above, all four q~12 fields in the second row have zero vevs. Although nothing can 

be definitely said until a complete analysis with higher NR terms is done, we consider 
them as less favored since they leave all four sextet fields massless at tree level. Another 

two solutions on the other hand, have all (i = (i = 0. Again, according to our previous 

analysis, it would be desirable to obtain a mass term for the second generation at fourth 

order where a natural fermion mass hierarchy is obtained. Such a solution should admit 

at least (t  ~ 0 and (FIR) = 0, or  ~4 5/= 0 and (P2R} = 0. From this point of  view, 
the cases admitting non-zero vevs for some of  the (i, (i are more preferable. Few of 
them leave only the fourplet PJR 4 : 0  to be interpreted as the second SU(4)  × SU(2)R 
breaking Higgs, (the other being definitely F4R), while there are several cases with 
(~R)  4= 0, Moreover, since in most of  the cases (~sR) = 0, this latter field together 

with F4L, are suitable to accommodate the third generation fermions who may receive a 

tree-level mass term via the Yukawa coupling F'sRF4Lh4. 
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7. Higgs fields and fermion mass textures 

We start our phenomenological analysis of the string model with the discussion on 

the Higgs sector. Clearly, all the consistent solutions of the flat directions considered in 
the previous section automatically ensure the existence of one Higgs pair in (4, 1, 2) + 
(4 ,1 ,2 )  to break the SU(4) x SU(2)R symmetry. Our next task is the securing of a 

massless pair of SU(2)L Higgs doublets in order to break the electroweak symmetry. 
It suffices the existence of only one massless Higgs bidoublet ( l, 2, 2), since after the 
first stage of symmetry breaking two electroweak doublets with the correct quantum 

numbers arise 

h (1 ,2 ,2 )  --~ h"(1,2,  ½) + h a ( l , 2 , - ½ ) .  (79) 

The Higgs matrix receives the following contributions from the available tree-level 
superpotential couplings 

mh = (1 ~4 rJ~,2 ~ 2  " ( 8 0 )  

~4 (1 4~2 '1'12 

No further contributions to the Higgs matrix exist up to sixth order. We will explore the 

eigenvalues of the above matrix in conjunction with the flatness solutions discussed in 
the previous section. In order to have at least one zero eigenvalue, the determinant of 

mh should be zero 

Det(mh) = (~:1~1 - ~:4~4) z = 0. (81) 

We notice that the determinant of the Higgs matrix does not depend on the field vevs 
4~12, q512 and ~b2. 

We now come to the particular flat directions of Table 2. We observe that 13 solutions 
arising from cases (iii) and (iv) have automatically ~l = (4 = 0. In the remaining 4 
solutions the additional constraint ~l = 0 has to be imposed in order to ensure the 
existence of at least one massless Higgs doublet. These are the cases (5,6,  10, 11), 
where the symbol [ T] in the third column is used to declare the Higgs matrix constraint 

on the singlet vev (~. 
By inspection of the D-flatness Eqs. (69) - (73)  we infer that two pairs of bidoublets 

are always massive. Going to specific cases we find that the Higgs matrix in solutions 
1-13 has exactly two zero eigenvalues corresponding to the pure states ha, h4, while the 
rest are massive. Solutions 14-16 have two massless bidoublets. These are h2 and the 
combination h ~ o( - (4h3 + (jh4. The remaining solution (17) has only one massless 
bidoublet and more particularly h2. 

Each one of the above cases leads to a distinct phenomenological model. It is con- 
venient to classify them with respect to the (4, 1, 2) multiplet available for the Higgs 
mechanism. 
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• There are seven cases, namely (1,3,5,6,8,10,11), where the only available field of 

this type is F3R since, as can be seen from the table, (PO,Z,5)R) = O. 

• In one single case (7) the (2I, l, 2)-Higgs in general can be a linear combination 

of F2R,/OSR 
• Only three solutions admit (PJR) =~ 0. These are (9,13,17). 

• There are three solutions where the Higgs may be a linear combination of P~2,3)R 

(14,15) or P(2,3.5)R, SU(4) (16) muitiplets. 
• Finally, solutions (2,4,12) admit only {P2R) # 0. 

Let us emphasize at this point that the above distinction between the solutions together 
with the massless electroweak Higgs field classification, is in accordance with common 
phenomenological characteristics. For example, solutions of the first kind above which 
impose (/~3R) ~ 0, have a rather larger number of Yukawa couplings available for 

fermion mass generation, making them more appealing. Also, from a further inspection 
of the superpotential terms, the second class of solutions with {FsR) 4 : 0  implies a 

mass for the hg Higgs via the tree-level term (P.sR)F4Lh4. This fact leaves only one 
Yukawa coupling available for the up quarks, up to fifth order making these solutions 
less interesting. In what follows, we will work out in some detail some representative 

cases from Table 2. 

Case 1: 

Let us start with the first solution in Table 2. Along this flat direction, the following 
15 fields are required to have zero vevs: 

412  = 4 { 2  --= ~i~12 ---- 42,4,5 = ( 4  = ~1,2,4 ---- £"3 ---- ~3 -=" FI,2,5 -- 0 .  ( 8 2 )  

Among them, ~2 and FSR are constrained to have zero vevs from sixth-order contribu- 
tions. Substituting the above condition to the full system of D- and F-flatness equations 
we obtain a reduced system of nine equations for the remaining fields. These are 

+ + + = o ,  

+ = o ,  

~3~3 ~- ~I $I q- ~"2~2 q'- ~"4~4 = 0,  

(2~4 + (4~2 = o, 

, -  2 12 12 ~[F3RI + 1(212 + 1(3 -1~73 =0, 

IF3RI 2 + 21(21 a + I¢~ 12 + 1(212 + 1~"412 - I~l [2 _ 1~212 _ [~412 _- 0, 

IIF3RI 2 - I(l 12 ( 

l(t12 + 1~1212 ( = ~ ,  

IFaRI 2 -IP3RI2 = 0. 

Taking into account that the total number of fields available 
(assuming that hidden sector fields do not develop vevs), we 

(83) 

(84) 

(85) 

(86) 

(87) 

(88) 

(89) 

(90) 

(91) 

to obtain vevs are 30 
end to a six-parameter 
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solution. This is the number of  free parameters (f.p.) presented in the last column 

of  Table 2. As seen from the above equations consistency of the solution requires a 

minimum number of  the remaining 15 fields 

~ R ,  F4R, tibl.3, (1,2,3, ~1,2,3, (I,2,4, ~1,2,4, tPl2 =/= 0 (92) 

to be non-zero. These are sol , ~3, P3R, F4~¢ and at least one of  ( l ,  (2, (4. The conditions 
for FaR and ~R  to have non-zero vevs are not imposed by flatness but are required in 
order to obtain SU(4)  x SU(2)R breaking. Thus the Higgses in this case, in the notation 

of Section 2, are 

F4R =-- H(4,  1, 2); ~R  = / ) ( 4 ,  1, 2). (93) 

To explore the hierarchy of  the fermion mass spectrum, we note first that since (P3R) 
0, the tree-level Yukawa coupling P3RF3Lh2 cannot be used for a fermion mass term. 

Clearly, F3L is more appropriate for a mirror partner for /eSL. Therefore teSR and F4L are 
suitable to accommodate a family and more particularly the heaviest one as indicated 

by the tree-level superpotential term FsRFaLh4. In this case we need to impose ((2) = 0, 

to avoid a mass term of the form ((2)F4LF'SL. 
Then, condition (86) results to two distinct cases, either ((4) = 0, or ((2) = 0, 

each of  them leading to a different phenomenological model. Although at this level of  

calculation it cannot be decided which of  the two cases is appropriate, we consider the 

case ((4) v~ 0 as more favorable since it gives a tree-level mass term to a pair of  exotic 

states. Thus we choose to explore the case ((2) = 0. 

To determine further the low energy parameters, we investigate the SU(4) breaking 

scale constraints as well as the singlet vevs entering the mass operators. From (89),  

(90) it follows that the SU(4) breaking scale has a well-defined upper limit, determined 

exclusively from the D-term 

~ _  gstring 
I~RI ~ 27"r MpI. (94) 

For perturbative values of  gstring (94) gives a bound around the mass scale 1017 GeV. 

Further, from (88) we also conclude that I(ll < l~4l. up  to fifth order, we find the 
following Yukawa couplings suitable for charged fermion masses: 

(~4> .~ <(1) F, RF, Lh4. (95) P, RF4J,4 + e RF Lh4 + Mp-~ 
The last two terms appear at the fourth order, thus an additional mass parameter in their 
denominators appears. (In Appendix B the mass parameters in the denominators are 
omitted in order to simplify the notation.) These two terms are obviously hierarchically 
smaller than the first term which gives masses to the third generation; further, taking 
into account the flatness constraints, we infer that the second and first generations are 
accommodated in ~e2R, F2L and /~lR, FIL respectively. From the constraints above, we are 
able to choose (i << (4, so that we satisfy the mass hierarchies. Moreover, this implies 
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that F3R ~ 24. Recalling that F3R plays the role of  the SU(4)-breaking Higgs at the 

scale MauT, we find that the top-charm relation will determine further these vevs to be 

of  the order 

o MGUT _ {/¢'3R) mc 
- -  (96) 

MpI - -  MpI m °" 

It is worth noticing that this relation which correlates the SU(d) breaking scale with that 

of  the scale M ~ Mp1 through the charm-top ratio at Mstring, is in excellent agreement 

with both, the flatness condition (98) as well as the unification scale of  the minimal 

unification scenario. We thus conclude that in the flat direction under consideration the 
flavor assignments of  the light standard model quarks and lepton fields are as follows: 

F4L: ( t ,b ) , ( r , t ,~ ) ;  

FIL : ( u , d ) ,  (e, re); F1R : uC, dC, eC, vc, 

c F2L : (C, S) ,  (/Z, V#);  /~2R : cC, sC, l'zC, l"a, 

&R : t~,bC, rC,"~. 

(97) 

Up to now, we have a rather successful picture of  the fermion mass spectrum which is 

also in agreement with the string constraints. The above accommodation of  the fermion 

generations and Higgs fields leaves no arbitrariness as far as the extra vector-like states 

are concerned: these are F3L and FsL. The only mass term available at tree-level using 

fields of  the observable sector, is proportional to the singlet vev ((2) however this is 

zero in the present case. Nevertheless, we observe that there are terms involving hidden 

fields which may acquire non-zero vevs and give a heavy mass to the mirror particles. 

For example, this can be obtained with a non-zero vev of the combination {Z3Z4) # 0 

while they are constrained by the D-flatness to have equal vevs [(Z3)[ = [(Z4)[. 3 
We turn now to the neutrino sector. The three terms in (95) imply also Dirac masses 

for the corresponding neutrinos with initial conditions at Mstring being the same as those 

for the up-quarks. Therefore a see-saw mechanism is necessary to bring them down 

to experimentally acceptable scales. An available term exists already in the tree-level 

superpotential, which couples the right handed neutrino v~ ,-~ P~R with the singlet field 

(3 via the vev (F4R). This leads to a see-saw mechanism of the type discussed in 
Section 2. If  we wish to find a final solution within the observable sector field vevs, 

however, a complete account of  the neutrino mass problem needs the calculation of  even 

higher non-renormalizable terms. Restricting ourselves to contributions of  NR terms up 

to fifth order, the see-saw mechanism, in principle, can be effective for all neutrino 
species only when additional hidden fields acquire vevs. In this case it is easily checked 

that the following additional terms are generated, 

A1.'~4)2 q- Bp~qb2 q- CP~'~3 q- Dl-'f~2 (98) 

arising from the hidden sector non-renormalizable contributions: 

3 A similar mechanism has also been used in the flipped-SU(5) case [21] 
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A = (FaRZnZs), B = (F4RZ4Z2), C = (F4RZ2Z4), D = (FaRZ1Z4). (99) 

The terms (98) complete the mechanism for all three flavours of neutrinos and lead to 

an extended see-saw of the type (11).  We note however that the inclusion of  the above 

hidden vevs requires a re-examination of the flatness conditions. 

We come now to the fields having fractional charges. Since no :tzl/2-charge particle 

has been observed, the doublet states XL,R should also receive masses at some point, 
presumably higher than the electroweak scale. If  we write the doublet XiR = (•+, X ~ ) ,  

then a possible mass term would be of  the form 

Wx = a b = x? x.; - x F  x + ) ,  ( l O O )  

where cab is the SU(2)  antisymmetric tensor. & can be any combination of  fields 

acquiring vevs resulting to an effective singlet along the neutral direction. A similar 

term can also exist fbr the left doublets XL. Terms mixing left with right doublets are 

also possible, however, they lead to masses of the order of the electroweak scale and are 

not of  interest here. At the tree level, in the present flat direction we have the following 

mass terms: 

W 3 = (¢4)X2RX5R -r- (~2)X2RX6R -~- (z~I)X1RX6R (101)  

and similarly there are two terms for the left doublet fields. Notice that we have now 

made used of  the non-zero vev ((4) 4 : 0  which, according to the flatness conditions (86) 
implies @2} = 0. There are still three and four pairs of  right and left doublets respectively 

needed to take masses at some scale well above mw. All possible terms up to fifth 

order, have been collected in Appendix B. By an inspection of the relevant (to this 

fiat direction) terms up to this order, it follows that few of  the octet fields Zi, Zi of 

the hidden sector with non-zero vevs, are adequate to make all of  them massive. As 

has already been pointed out, however, this will require a re-examination of the flatness 
conditions [24].  All the same, the observable singlet vevs may prove to be sufficient 

if higher-order contributions are calculated. A similar term may also appear for the two 

SU(4) fourplets H4 = (4, 1, 1), /S/4 = (4, 1, 1). 

There is finally the rather important issue concerning the triplet fields related to the 

stability of  the proton. Recall first from the detailed analysis in Section 2 that the triplets 
live only in the sextets and the fourplet Higgs fields. There are two types of terms here 
to render them massive. In the present case, there is only one mass term available for the 

sextet fields at three level, namely qbl2D3D4,, while the terms F~RD 3 and (I,4F~RD 4 - 2  2 offer 
additional couplings with the uneaten Higgs triplet of  FaR. Thus, up to fifth order, three 

triplet pairs remain light. Higher-order NR terms will make them massive. In particular, 

an inspection of the related seventh-order non-renormalizable superpotential mass terms 
shows that there are plenty of available couplings rendering all but one pair massive 

¢V ~<7 = Di D2(, Z3Z3ZsZ,5 + D1 D3 [b/'4~l Z2Z2( l -~- ~ l )  -~ ~1Z2Z2Z524] D 

+D1 D4 [~'~Z525~1 -t- ~2¢1Z5Zs] . (102) 
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It can be checked that the only coloured field which remained uncoupled is the triplet 

d~ of the Higgs field /7/ _~ P3R leading to a pair of massless triplets. This has to do 

with the fact that fields arising from the second b3 and being charged under peculiar 
U( 1 )4 factor form only few non-zero Yukawa couplings with other fields. For the same 
reason, quarks and lepton fields do not also have dangerous couplings with this triplet 
field up to this order. At higher orders, singlet fields with non-zero U(1)4 charge are 
expected to form NR term mass terms for d~ and its partner so that proton decay could 

be avoided. 

Case 7: 
Here we have the following zero vevs: 

(/312, ~)~, (D2,5, ~:4, ~1,4, ~'3, #1,3, /7"lR, /~'3R = 0. ( 1 0 3 )  

Following the steps of the analysis of the previous case we find that flatness reduces to 
10 equations and thus the number of free parameters is 7. The SU(4)-breaking Higgs 
fields are F4R and a linear combination of the fourplets PzR and /~sR. We now restrict 

ourselves to the case (P2R) = 0. Thus, the Higgses are 

F4R ----- H(4 ,  1, 2); FsR = /:/(,], 1, 2). (104) 

Since ((2) ~ 0, the trilinear term fisLF4L(2 makes massive the extra vector-like states. 

On the other hand the terms 

fi'sRF4Lh4 + P5LF4L(2 ---~ ( (~'~)h~4 + (~2)~5)~4 (105) 

mix a combination of the Higgs doublet in h4 with {5 in FSL leaving massless the 

combination 

h" = cos ~bh~ - sin ~bgs, tan ~b - ((2) (~,~,). (106) 

Once we have determined the electroweak Higgs eigenstates we are in a position to 

examine the available fermion mass terms. As previously, we will analyze Yukawa 
couplings up to fifth order. It is natural to accommodate the third generation in the 
representations arising from the sector b3; due to the existing fermion mass hierarchy 
the heavy fermions are expected to obtain their mass through the only available tree-level 
term 

P3RF3~h~ ~ <h~)( W + ~,~,~) + (h2~)(bV ' + ~.~.c). 

Then the lighter generations receive masses from non-renormalizable terms, 

(h4~4( 1 A- @1 ))F'2RF2L A- (h4)(((I  ( l A- @3) "4- F'5RF4R))FIRFIL, (107) 

where denominators of proper powers of Mstring in the various NR contributions are 
omitted. Taking into account (106), the first term of (107) becomes 
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~'2RF2Lh4~4 ---* COS qb<(4hU')(Q2uC2 + p~g2) + {hda)(Q2d~ + g2eC2) (108) 

and similarly for the other terms. Additional contributions may arise when higher-order 
NR terms are taken into account. 

The triplet mass matrix in the present case, receives contributions from terms involving 

the above non-zero vevs. Assuming the sextet decompositions Di = D3i + b 3 the triplet 

matrix takes the following form in the basis D~, D2, D3, D4,  d~: 

D~ D~ D~ D 3 a,~ (F4R) 

~5R 

(FsR) 

0 x x x 0 

x 0 0 

x 0 0 ~12 ~R  

x 0 ~12 0 0 

(109) 

PsR(~ FSR 0 0 0 

where (i stands for the non-vanishing vevs (2, (4. The symbol x in the first row and 

column of  the above matrix represents possible contributions from NR terms involving 

fields from the hidden sector. These are 

Wff = D1D2( ~2Z3Z3Z5Z4 -1- ~:lZ3Z3Z5Zs) -1- D1D3(4~l Z2Z.2 

+DID4(~2~2ZsZ4 -F ~2~71Z5Z 5 -}- ~2~:1ZsZ4). 

As can be seen from the mass-matrix, observable sector contributions up to seventh 

order make all but one pair of  the coloured triplets massive. If  hidden fields also acquire 
vevs then all triplets could become massive. 

Case 13: 
We briefly comment now on another characteristic case of  Table 2, namely solu- 

tion (13).  This case is distinguished by two remarkable properties which are worth 
mentioning: 

(i) First we observe that all coloured sextets become massive at tree level. This can be 
seen from the mass formula (40) and the fact that only one of  the four singlets involved 

in the tree-level mass matrix is required to have a zero vev (namely (~12) = 0). 

(ii) Second, we point out that the two lighter generations are not pure states, since 
mixing appears already at tree level. To see this, we check first from Table 2 that the 

solution requires (/~'2,3,5) = 0, thus the SU(4) x S U ( 2 ) R  Higgs fields are now F4R and 
FIR- A possible mass term for the mirror states may appear now at a higher order 

(unless - as previously - hidden fields obtain non-zero vevs). The fermion mass terms 
are in this case 

~RF3L (h2) + ~'SR ( F4L ( h4) -+- F1Lh2( ~'IRF4Rh4) ) . ( l l 0 )  

Clearly, the right-handed fields living in FsR mix with both F1L and F4L. The flavor 
assignments are now 
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FIL ( u ' , d ' ) ,  ' ' "F2R u c ' , d  c , e  C,  ~ • ( e ,  r e ) ,  : r e , ,  

F 2 L  : ( c ' , s ' ) ,  , , . ' ' ' c '  ( ].1, , Ptz ) ; F2R C c , S c , # c  , UU ' ( 1 1 1 ) 

F3L: ( t , b ) ,  (~',~'r);P'3R : tC, bC, rC,~ "c, 

where primes are used to denote that there is mixing in the two lighter generations. 
We should point out here that the third family remains essentially decoupled due to the 
peculiar properties of the fourth U(1) .  Only very high-order NR terms are possible to 
mix this family with the lighter ones. This fact of course predicts smaller mixing angles 

between the third family with the rest of the fermion spectrum in consistency with the 

phenomenological expectations. 

8. A brief  discuss ion on the role of  the hidden sector  fields 

Up to now, we dealt with solutions of the flatness conditions considering only non- 

zero vevs for observable fields. In the phenomenological analysis of the previous section, 
however, we have seen that couplings involving only observable-sector field vevs are not 
adequate to make all exotic particles massive. There are mainly two important issues 
to be further investigated before this model is confronted with the low energy physics 
world. First, higher-order NR terms have to be calculated in order to find all possible 

contributions to the mass matrices of fermions, triplets and other fields presented in 
the previous section. Second, hidden fields can also play a very important role on the 
determination of the true vacuum of the model. Since they carry no charge, they can 
also develop non-zero vevs and contribute to the masses of the light fields through their 
Yukawa interactions. This fact has been clear already in the three examples presented in 
the previous section. Neutrino masses, exotic states, and few of the triplet fields become 

massive only when hidden fields are included. At the same time, in both cases, the 
additional terms contribute also to the flatness conditions, thus the new non-zero vevs 
have to be carefully chosen so that they define a consistent F- and D-flat direction. 
For such an investigation, one has to modify the flatness solutions, starting again from 

the tree level cases which are included in Appendix D. A systematic analysis of this 
general case is possible, however, this goes beyond the scope of the present work [124]. 
For completeness, the D-flatness conditions, in the presence of non-zero hidden field 
vevs are given in Appendix C. Moreover, the F-flatness conditions are written with the 
hidden fields contributions up to fourth order in the same appendix. Higher-order NR 
corrections with hidden as well as observable field vevs are easily extracted from the 
terms presented in Appendix B. In the following, we give a brief account of the possible 
solutions the hidden fields may give to some of the unanswered questions of the present 
string construction. 

Several constraints have to be carefully derived before some of the hidden represen- 
tations acquire vevs. An important constraint arises from the demand of existence of 
massless electroweak Higgs doublets. Although up to sixth order we have found no 
extra contributions to the Higgs doublet matrix, such terms may well exist at higher 
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orders, in particular when hidden fields are allowed to obtain non-zero vevs. It should 

be noted that due to the existence of  high vevs associated with the U( 1)a breaking scale 
MA ~ 1 0 - 1 M p I ,  securing the existence of massless electroweak doublets is not an easy 

task for any superstring model. To be more specific, assume a generic form of doublet 

mass term 

g ~ h h  

with q5 representing a typical singlet field obtaining a vev of  the order (45) ~ M A .  It is 

easy to see then that even a n = 14 order NR term would in principle produce Higgs 

masses above the electroweak scale. Of course the existence of  superfluous doublet 

fields - as is the case of  the model under consideration - provides the hope that even 
at this high order of calculation there exist flat directions that preserve at least one pair 

of doublets massless. 

Another severe constraint arises from the necessity to keep the large SU(4) x SU(2)R 

breaking Higgs field FaR massless. Up to sixth order, this can be ensured if the following 

combinations of vevs are zero: 

(3, 23z4, 4)2z425, 
~222z4, 722z124, (~Zi25, 

~3'/'323z4, 721(321z4, (j~12jzs. (112) 

One might think that the above constraints demand most of the hidden fields Zi, 2i 
to obtain zero vevs. We would like to point out however that it is possible to have a 

condition of  the form (Zi2i) = 0, while at the same time both fields may have non-zero 

vevs, (Zi) 4= 0 and (~j) ~ 0. This happens whenever the fields Zi and Zj obtain their 

non-zero vevs in orthogonal to each-other directions. 

When some of  the SU(8) hidden fields acquire non-zero vevs, the SU(8) × U ( I )  ~ 

symmetry is broken to a smaller group. However, independently of the number of  the 

hidden states which develop non-zero vevs, there is always at least one unbroken U( 1 )"  

generator left, which is in general a linear combination of the U ( I ) '  and one of the 

generators of  SU(8) .  On the other hand, we note that the maximum number of  U(1)  

factors which may remain unbroken in this model is two. Indeed, it can be checked that 
the breaking of  the SU(4)  × SU(2)R symmetry on one hand and the consistency of the 

flatness conditions on the other require at least the fields F4R,/~IR and 0512, (1 to develop 
non-zero vevs. These vevs break three of  the five Abelian factors. 

The survival of  U ( I )  symmetries in lower energies would imply the stability of  
lightest observable and/or  hidden fields being charged under these symmetries. In all 

flat directions which were previously analyzed, when the various singlet fields obtain 
their vevs, they break four out of  five U(1)  factors. Thus, only the aforementioned 
U( 1 )" remains at low energies whilst, as a consequence the lightest hidden state will be 
stable. This fact has important cosmological implications which we now briefly discuss. 
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The last few years there is accumulating evidence from astronomical observations 

that the universe is dominated by invisible non-baryonic matter. According to a recent 

proposal [25,26] the dark matter of the universe - which is expected to be ten times 

more that the luminous one - might be composed from non-thermal superheavy states 

produced in the early universe provided that the following two conditions are met: (i) 

candidate particles Y should have a lifetime longer that the age of the universe, rr 3 

lO”y, and (ii) they should not reach local thermal equilibrium with the primordial 

plasma. To avoid this constraint while having the correct number of Y to form the cold 

dark matter of the universe, it was suggested that these particles are created through the 

interaction of the vacuum with the gravitational field. Their mass is found to be around 

my - 1013 GeV4 

In the string vacua found in the previous sections, a number of the hidden states 

Z,, Zj in the present string construction receive masses at scales which are of the order 

of the string mass. There are few of Z;, Z; states however, which remain in the massless 

spectrum to lower scales. It is possible that in certain string vacua the lightest hidden 

state has a mass in the range My N 1013 GeV as required in the above scenario. As 

an example, we construct here the octet mass matrix for the solution 1 of Table 2. In 

the basis ZI,...,5, the contributions up to sixth order involving only the non-zero vev 

observable fields give the following texture: 

5151 0 0 0 0 

0 51540 0 0 

(113) 

In this case, four out of five hidden octet/octet-bar pairs receive masses of the order of 

the U( 1)~ breaking mass scale MA 3 A4 oar. If hidden fields are also allowed to obtain 

vevs, then, 24.5 are further mixed via the mass terms ([tZtZt)&Zs + (@3ZtZt)ZsZ4. 

There is only one massless state (namely the pair Z3 and a linear combination of Zi’S) 

up to this order. It is expected that higher-order terms will provide a higher-order NR 

contribution and make the remaining lightest hidden pair massive at the right scale, 

which is of course much lower that the mass scale MA of the other Z;-fields, as required 

by the above cosmological scenario. 

9. Conclusions 

In this paper, we have worked out an W(4) x sum x su(2)R model derived in the 

context of the four-dimensional free fermionic formulation of the heterotic superstring. 

Choosing a set of nine vectors of boundary conditions on the world-sheet fermion 

phases and appropriate GSO projection coefficients, we derived a three-generation model 

4 For a similar discussion on the role of the hidden matter fields in other string models see also Ref. 127 I. 
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supplemented by a mirror family and just the necessary Higgs representations to break 
the symmetry down to the standard model. In addition to the observable gauge symmetry, 
the string model possesses also five U( 1 ) 's  as well as a hidden SU(8) gauge group. The 

model predicts the existence of new states beyond those of the minimal supersymmetric 
standard model massless spectrum. These involve a large number of neutral singlet fields, 

coloured SU(4) sextets, SU(8) octet hidden fields and exotic states with fractional 
charges under the standard hypercharge definition. 

The superpotential of the model has been derived taken into account string selection 
rules. All fermion mass terms have been worked out in detail up to fifth order and the 
fermion and Higgs mass matrix textures have been assiduously analyzed. The model is 
found to possess an anomalous U(1) symmetry implying the generation of a D-term 

which is canceled by vacuum expectation values of singlet fields along D- and F-flat 

directions of the superpotential. 
To work out the phenomenological implications, we have performed a detailed analysis 

of all D- and F-flat directions including contributions of non-renormalizabte superpo- 

tential terms up to sixth order. At tree-level, 26 solutions to the flatness conditions were 
found and were classified with respect to the fields which are demanded to have zero 
vevs in each particular case. It was further shown that, when sixth order NR terms are 
included, the number of solutions reduces to seventeen. Each solution is characterized by 
the number of free parameters which are essentially the field vevs left undetermined by 

the particular solution. Particular attention has been paid to the determination of those 
conditions necessary to ensure the existence in the massless spectrum of the SU(4) 
breaking Higgses and at least two Higgs electroweak doublets in order to break the 
GUT and SM gauge symmetries respectively. These conditions have been imposed as 
additional constraints on the consistent D- and F-flat directions and all phenomenolog- 
ically acceptable string vacua have been determined. 

Three distinct flat directions, characterized by their SU(4)-Higgs properties are in- 
vestigated in detail and the predictions of the corresponding field theory models are 
discussed. 

(a) The first of these predicts that the MGuT/Mstring ratio is related to the up quark 
mass ratio of the second and third generations. The choice of the GUT breaking Higgs 
representations leaves a sufficient number of Yukawa couplings which produce naturally 
a hierarchical fermion mass spectrum for all three generations through tree-level and 

fourth-order non-renormalizable superpotential terms. Further, an analysis of the super- 
potential NR terms up to sixth order shows that all but one of the colour triplet fields 
become massive. It is worth noting that there are no dangerous proton decay operators 
up to this order of calculation since the massless triplet pair does not couple to ordinary 
matter fields up to the sixth order. The absence of Yukawa couplings between this triplet 
and ordinary matter fields may be attributed to the properties of peculiar U(1) symmetry 
of the specific string basis-vector generating this particular state. It is likely however 
that higher-order terms may provide a heavy mass to the remaining colour triplet pair. 

(b) In a second case analyzed in this work, a similar hierarchical fermion mass pattern 
is found, while all triplets become massive if in addition hidden fields are allowed to 
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acquire non-zero vevs. On the other hand, in contrast to the first model analyzed in 

Section 7, here the GUT scale has only an upper bound determined by the U(I)A 
breaking scale. 

(c) Finally, a third effective field theory model is analyzed where all colour sextet 
fields become massive at the tree level. This model has fewer Yukawa couplings available 
for masses, however, additional fermion mass terms may arise from higher-order non- 

renormalizable terms. 
A novel feature of the effective field theory is the existence of an additional U(1) 

symmetry which survives down to low energies, and it is possessed by exotic states and 

the hidden sector fields. It is argued that if the lightest of these states receives mass at 
some intermediate scale, may play a role in the dark matter of the universe. 

In the present paper our phenomenological explorations have been restricted mainly 

with respect to the following two issues: First, while there exist various ways to define 

the electric charge operator of the model (due to the existence of surplus U(1) factors), 
only the standard hypercharge embedding has been considered in the phenomenolog- 
ical analysis. We believe that it is worth exploring also different types of embedding 
although one has to face difficulties mainly with low initial sin 20w values. Second, the 
investigation of flat directions has been limited in the cases where only 'observable' 
fields are allowed to obtain non-zero vevs. Certainly, the inclusion of the hidden states 
in the analysis will lead to a large number of new mass terms, the breaking of the 

hidden symmetry and modifications of the fiat directions found in this work. Yet, such a 
possibility has to be compared with analogous investigations of higher-order NR terms 
which may or may not prove sufficient to obtain realist low energy effective theory. 

Appendix A. The spectrum 

We collect here the massless observable and hidden superfield spectrum of the model. 

Fermionic string models contain always an untwisted, usually called Neveu-Schwarz 
(NS) sector where all world-sheet fermions are antiperiodic. In this sector, the GSO 
projections leave always in the massless spectrum the multiplet which contains the 
graviton, the dilaton and the two-index antisymmetric tensor. The NS sector includes 
also the gauge bosons and other Higgs and singlet fields. Twisted (R) sectors provide 

the generations and other matter fields. 
The states are classified in four separate tables according to their transformation 

properties under the various parts of the gauge symmetry. In the first column of each 
table we give the symbol of the representation as this is used in the text. In the last 
column we show the relevant sector of the string basis. In all other columns we exhibit 
the gauge group properties of the states. Thus, Table 3 contains the observable fields, 
which have non-trivial transformation properties under the PS symmetry. These are 
obtained from the sectors bl,2.3.4.5 and S + b4 + b5. They include the three generations, 
the Higgses and other fields. Table 4 includes the PS singlets with their charges under 
the four U(1) symmetries. In Table 5 we present the hidden SU(8) fields with the 
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Table A. 1 
Observable sector spectrum of the SU(4) × SU(2)L x SU(2)R model 

Field SU(4) × SU(2)t~ x SU(2) n U(I) t U(I)  2 U(I)  3 U(I) 4 Sector 

I ~ L  0 '  2,1) o o - ~ o t,~ 

0 ,1 ,2 )  o o o 
I F4L (4,2,1) 0 +2 0 0 b4 
i F4R (4,1,2) 0 --~ 0 0 

' 0 0 I F3R (~,, 1, 2) - ~ +7 /'3 

' 0 0 +½ F3L (4, 2, 1) + 

F ~  0 , 1 , 2 )  0 0 + '  0 b2 

F2L (4,2,1) 0 0 +½ 0 

F,~ 0 , 1 , 2 )  0 +~ 0 0 b, 

FIL (4, 2, 1) 0 + /  0 0 

DL ( 6 , 1 , 1 )  0 - I  0 0 S 

De (6, 1, 1) 0 0 -1  0 

D~ (6, 1, 1) 0 +1 0 0 

D4 (6, 1, 1 ) 0 0 + 1 0 

h, ( 1 , 2 , 2 )  0 0 0 +1 

h2 (1,2,2) 0 0 0 -1  
1 1 h~ (1,2,2) 0 +~ +~ 0 S + b 4 + b  5 

l 0 h4 ( 1 , 2 , 2 )  0 -~_ - 5  

Table A.2 
Non-Abelian singlet fields and their U(I)  4 quantum numbers (all these fields have zero U(I)  t- charge) 

Field U(I) l U(I) 2 U(I) 3 U(I) 4 Sector 

. . ,5  S cl~a ,A = I, 
cDi2 

~L2 
( i , i =  I , . .  
~ i , i =  I, .. 
¢J 
~2 
¢3 

¢4 

~2 
~3 
¢4 

o 0 o o 
0 +1 +1 0 
o +1 - I  o 
0 - I  - I  o 

o -1  +1 o 

- -  i 
,4 0 4_ ~ I + 0 S + b4 + b5 
,a o ~ - ;  o 

0 - -  - I  

- '  :i +! o 0 +~ - 1  

0 + i  +1 
+1 + +~ 3 T 0 
+l - ~  7 o 

0 3 - 3  +1 

c o r r e s p o n d i n g  cha rges  u n d e r  the five U ( 1 ) s .  Finally,  in Table  6 we co l lec t  all exot ic  

s ta tes  wi th  f rac t ional  cha r ge s  u n d e r  the  s tandard  hype rcha rge  a s s ignmen t .  
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Table A.3 
Hidden sector states and their U(1) 4 x U(I)  / x SU(8) quantum numbers 

39 

Field U(I) 1 U(1) 2 U(1)3 U(1) 4 U ( l y  SU(8) Sector 

2~ 0 0 + -  + - -  
Z2 0 .1. ! 0 .1. 7 "1"~ 8 b2 .1. b6(3()  
22 o +~ o +~ 
z3 __, +7 +! 0 +{ 8 h3 + h6(+¢) 
2,3 +~ +i +I o, - -  , 

Z4 0 0 ---  .1. ~ 8 b4 "1" b6(3()  

24 o _ !  o . . . .  ~ b.~ + b6(+O 
2~ o +~ o +~ --~ * 2 

Table A.4 
Exotic fractionally charged states and their SU(4) × SU(2) L × SU(2) R × U( 1 )4 x U(l) I quantum numbers 

Field SU(4) x SU(2)L × SU(2)R U(I)I  U(I)2 U(I)3 U(1)4 U(1) t Sector 

XIL ( 1 , 2 , 1 )  _ !  0 + !  0 --1 bj + a  
X2L (1,2,1) +~ 0 +~ 0 --I 
XIR (1,1,2) ---  0 ---  0 --I 
X2R (1,1,2) +~ 0 ---~ 0 --1 
X3L (1,2,1) ---  0 ---~ 0 +1 b 4 + a  
X4L (1,2,1) ---~ 0 +~ 0 --1 
X3R (1,1,2) +~ 0 0 --1 
X4,~ (1,1,2) + i  0 +~ 0 +l  
X~L (1,2,1) __ _ !  0 0 +1 
X6L (1,2,1) +~ --~- 0 0 +1 
XSR (1,1,2) ---  +~ 0 0 +1 
X6R (1, 1,2) +~ 3 i 0 0 .1.1 
X7L (1,2,1) . . . .  0 0 +1 
X~L (1,2, 1) ---~ 
XVR (1,1,2) .1.~ "1"__ 00 00 --1--1 

XSR (1,1,2) +~ + I  0 0 +1 
X9L (1,2,1) 0 _ -  + !  _ !  +1 
X,OL (1,2,1) 0 ---~ .1.! ,1,~ - I  
XgR (1,1,2) 0 +~ _ !  __ --1 
XIO R (1,1,2) 0 + i  --~-_~ +~ +1 

1 H 4 (4,1,1) - - i  0 0 0 -t-1 
- -  I H4 ('4, 1, 1) +~ 0 0 0 -1  

b l + b 4 + b 5 + ~  

b l + b 2 + b 4 + ~  

b 2 + b 3 + b 5 + ~  

S + b 2 + b 4 + ~  

Appendix  B. Non-renormal i zab le  contributions 

In the first part of  this appendix we give a brief description of  the techniques used 
to calculate the tree-level and higher-order NR superpotential terms of  the model.  In 

the second part we give a list of  the non-renormalizable superpotential terms involving 
mass terms (up to fifth order) and F-flatness conditions (up to sixth order). 
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(1) The calculation of non-renormalizable contributions to the superpotential in the 
context of free-fermionic formulation is a straightforward but rather tedious task. The 
rules for calculation of NR terms have been presented in [ 17] while explicit calculation 
for various models have been presented in [20,28,29]. In general, a superpotential term 
involving the chiral superfields q~l, ~2 . . . . .  ( / )N is proportional to the correlator 

CP| ~9 . ~N ( Wf v,f V, b V~ b ) 

where V~/ stands for the fermionic part of the vertex operator corresponding to the 
field ~/, and V,~ for the bosonic part. The correlators can be calculated using conformal 
field theory techniques developed in [30-32]. An important subtlety is that in order 
to guarantee conformal invariance the bosonic vertex operators V~4 . . . . .  V~, need to be 
pictured changed to the zeroth picture. 

A superpotential term vanishes if the corresponding correlator vanishes otherwise it 
leads to an 69(1) coupling. There are two systematic sources of zeros in the superpo- 
tential. The first is group invariance, the second is the internal symmetries associated 
with the fermionized compactified coordinates. The former is obvious while the latter 
has been explored in [ 16] where a set of selection rules has been derived. Since these 
selection rules help significantly to the reduction of candidate superpotential terms we 
summarize here the basic results. 

The fermions X j, X 2 . . . . .  / t  V6 corresponding to the compactified coordinates can be 
bosonized as follows: 

( X  1 ± t X 2 ) / x / 2 =  exp{+tS,2}, 

(X 3 • t X 4 ) / x / ~ =  exp{±tS34}, 

(2( 5 ~ t X6) / x/~= exp{ ±lS56 }. 

N = 2 world-sheet superconformal symmetry implies the existence of an extra current, 
which is expressed in terms of Sij as follows: 

J ( q )  = tOq(Sj2 + $34 -~- $56) (B. 1) 

and which is promoted to three U(1) 's  generated by Sl2, $34, $56. The relevant part of 
the vertex operators has the form 

V j ,  ~ e~'~-½)S.2e (t~ ½)S3,e~Z,-½)ss~ ' -~ 

Vb I ~ e"s~2 ePS34 e~,S~ , (B .2 )  

where - 7, ( - ! ) are the ghost numbers for fermions and bosons respectively. Physical 
states are now separated in two types NS (untwisted) and R (twisted). Each type can be 
further divided in three categories (the three orbifold planes in the orbifold language). 
In the notation of Eq. (B.2) the three categories of NS fields have charges (a,/3,  y) = 

1 1 {(1 ,0 ,0 ) ,  (0, 1,0), (0,0, ! )}  while for the R-fields (a,/3, y) = {(0, ½, ½), (~,0,  ~), 
(7, ~S,J 1 0)} respectively. 
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Table B. I 
The total number of candidate superpotential terms (for N = 3,4, 5) and their number after application of 
the selection rules, group invariance and the final number after complete evaluation of the correlators for the 
model under consideration 

N total Selectionrule Group invariants Final 

3 73150 11719 372 66 
4 595665 128928 339 34 
5 16559487 2268256 10886 339 

Using the terminology explained above we can derive a set of selection rules based 

on the conservation of  the three U(1)  charges S12, $34, $56. These selection rules are 

presented in Table B.2 for NR terms up to ninth order. The notation we use is to write 

in square brackets the allowed partition of  fields in each of  the categories for given 

order N. The allowed field type (NS or R) appears as a subscript. As an example let 

us explain the allowed fifth-order couplings. From the table we read [3R,2R,0]  when 

the number of  NS fields is zero and [2R, 2R, INS] when the number of NS fields is one. 

The first selection rule means that in any non-vanishing coupling between twisted fields 

the three of  them have to belong to a common plane while the other two should both 

reside in one of  the other planes. In the case that one untwisted field participates in the 

coupling, the twisted ones should reside in the other two planes and there should be 

exactly two of  them in each one. As seen from the table, all fifth-order couplings which 

contain more that one NS field, vanish. 

In order to see the effect of  the above selection rules we present in Table B.1 

the number of  couplings that are eliminated (for N ~< 5) from this source in the 

model under consideration. We also present the number of  couplings surviving group 

invariance and the final number of  non-vanishing superpotential couplings. Going further 

to the evaluation of  correlators one finds another source of  zeros. These are the Ising 

type correlators arising due to the existence of  non-trivial left-r ight  paired world-sheet 

fermions. For tree-level couplings, the non-vanishing Ising correlators are 

(o-+o'+), (o-_o-_),  ( o - + o ' _ f ) , ( o ' + o ' _ f )  (B.3) 

for higher-order terms one can follow the rules of  [32].  

The whole problem of  deriving the superpotential terms can be automated using a 

computer  program [33] .  The selection rules are initially used to reduce the number 

of  candidate couplings,  then group invariance is checked and finally all Ising type 

correlators are evaluated. The whole calculation takes a few seconds on a personal 

computer  for N = 5 and comparable time for selected N = 6 couplings. 

Using this program we have calculated the non-vanishing superpotential couplings 

which we now present. 

(2)  Here we present fifth- and sixth-order NR contributions to the superpotential. For 

finiteness we list only terms related to fermion masses and flatness conditions. 

(a)  The fifth-order superpotential terms involving masses for observable fields are 
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Table B.2 
Non-vanishing superpotential couplings up to eighth order 

N 0NS 1NS 2 NS 3 NS 4NS 

I2R+INs,0,0I IlNs, INs, INs] [IR, IR, IR 
I2R,2R,0] 
I3R, IR, IR 
I4R,2R,0I 
I2R,2R,2R 
[5R, IR, IR 
13R,3R, IR 

I2R,2R, INsl 
[3R, IR+INs, IR] [2R,2R,2NS] 

[3R, IR +2NS,IR] 
13R, IR+ INS, IR+ INS] 

12R,2R,3Nsl [4R,2R,1Nsl 
[4R,2R + INS,0I 
[2R,2R,2~ + INS] 

[6R,2R,0I I5R,1R+INs, IRI [4R,2R,2Nsl [3R, IR, IR+3Nsl 
[4R,4R,01 [3R,3R,1R+INsl [4R,2R+INs, INsl [3R, IR+INs, IR+2NS] 
14R,2R,2RI [3R,3R+INs, I~I |4R,2R+2NS,0I 

12R + 2NS,2R,2RI 
12~ + 1NS,2R + INS,2RI 

12R,2R,4NS] 

W5 = F2RF2Lh4(4~I 4- FIRFIL(I h4qb34- F5RF4RF1RFILh4 

4-F2 L ((F~ 2 4- F2L 4- /~'?R)(/)I24- F2R~512 4- Ol(h  24- ~1~:4) 4- 0 3 ( (  24- ~2~3)) 

4-/~5L (/~SR (Ol(2h34- O3(2h4) 4- F4Lfi'2RF2Lh44- F4R(F2RF2L(34- F1RFIL(2)) 

4- F2R ( ( F 24 L 4- F ?L 4- fi" 2R ) 4512 4- F2R C1912 4- D , ( ( 2 4- ~2~:3) 4- O 3 ( h ] 4- ¢1~4)) 

4-fi'5RF4L F3RF3L~I 4- F4L F4R (O2(3h34- O4(3h4) 

4-F24L ((F2R 4- F2L)q~124- D2((  24- ~:2~73)4- D4(h244- (1~4)) 

4-F2. ((P?R + F2c)4h2 4- D ' ( (  2 4- s~2sc3) 4- D3(h4 4- ~1~4)) 

4-r2  ( ( P b  4- 4- 4- &e3) 4- D3(h 2 4- 

4-F2R ((F2R 4- F2L)CI)~ 2 4- 04(224- ~2e3)4- 02( h24- ~1~:4)) 

4- (F?L 4- fi'?R) (02((/24- (2~73) 4- O4( h24- ~:1~4)) (9.4) 

(b)  The fifth-order superpotentiai terms involving masses for exotic fields are 

W; -~ ff  5RF4RC1)4XIRX6R 4- ff 5RF4RCP5XIRX6R 4- -ff 5RF4R(3X9RXIo R 4- ~2Zl Z4X4L X5L 

4- F4R-'ff 2R~4XIRX8R 4- F4R-ff 2Rqb5XIRX8R 4- F4RF2R(3X6LX8L 4- ~2Z2Z4XILX7L 

4- F4RF2R(3X5RX7R 4- F4RFIR(4X3RX5R 4- F4RFIR(4X4LX6L 4- F4RFIR~2X3RX6R 

4- F4RFIR(2X4L X5L 4- (JS! (2~2X7LX8L 4- (1)l(2(2X7RX8 R 4- (1)l(2-~3X7LX8L 

4:- C193-(3(2 X3RX4R 4- CI)3(3(3X3R X4R 4- (193(3~2X3L X4L 4- (I93(3~3X3L X4L 

4- ~OaZ I ZaX3RX5R 4- (I-)4Z2Z4X2L X7L 4- ~4Z4Z5X2LX5L 4- (I)4Z5Z4X2RX5R 

4- cI95Z1Z4X3RX5R 4- ~255Z2Z4X2L X7L 4- cI)5Z4Z5X2L X5L 4- (I)5Z5Z4X2RX5R 
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%- ~1Z2Z4XIRX8R %- ~1Z2ZaX2LX7L %- (2Z5ZaX9RXlOR %- ~'2Zl Z4X3LX2L 

%- ~"2Zl Z4X4RXIR %- (3-Z2Z4X6L X8L %- (3-Z2Z4X5RX7R %- ~3Z4-Z5X9L XIOL 

+ (4-Zl Z4X3RXsR + -(4-gl Z4X4LX6c + ~2-gl ZaX3RX6R + (~Z~Z--aX2RX8R 

%- I~IZIZ5X3LX2L %- (IZIZ5X4RXIR %- ;fflZ2ZsX6LXSL %- ~IZ2ZsX5RX7R (B.5) 

(c)  Fifth- and sixth-order contributions to the F-flatness are 5 

w~ t = qbl sr4(i Z2Z2 %- qb2-ffsRF4RZ4-Z5 %- qb2F4RF2RZ2Z4 %- qb3srl El Z1ZI 

%-crPl2FsRFsRFIRF1R %- @12F2RFzRF1RFIR + cPI2ZzZ2Z4Z4 ÷ @I2Z4Z4ZsZ5 

+q~2FsRFsRF4RF4R + @~F4RF4RF2RF2R + qb~zZl Zl Z4Z4 + (1)~2Z5Z5Z4Z4 

%-F4RF2R(3Z2Z4 %- F4RF1R(2ZI-Z4 %- F4R-ff lR~I ZIZ5 %- ~r2Z1ZI Z4Z--4 

+(3Z2Z2Z4Z4 + (IZIZ1Z4Z5 + (lZ2Z2ZsZ4 (B.6) 

W 6 ---- ~i01 ~01 ~F4(IZ2Z 2 %- t~l F4RF2R(3Z2Z-'-4 %- Cf)l (3-Z2Z2Z4Z--4 %- q01~lZ-2g2z5z4 

%-~2qb5F4RF2RZ2 Z4 %- crp3qb3F4RF3RZ3Z4 %- qb3qO3srl(1ZIZ1%- @3F4RFIR(zZ1Z4 

%-C])3F4R-F1R(1Zl Z5 %- qo3(2Zl ZI Z4Z4 -1- ~3b~lZl Zl Z4Z5 %- q~4q~12F5RF5RF1RF1R 

+cb4q512 F2RF2RF1RFIR + @4q~ ~-2Zl ZI Z424 %- qb4F4RFIR(2ZI Z4 

%-qOaF4R-'ff lR(1Z1-Z5 + (1)4(2Z I ZI Z4-Z 4 %- ~4(1ZIZI  Z4Z-5 %- qb54O12 F2RF2RF1RFII¢ 

%-CrPs~12Z2Z2Z4Z4 %- q~sqblzZ2Z2Z4Z4 %- crpscrp~F4RF4RFzRF2R 

+qbsF4RF2R(3ZzZ4 + qbs(3-g2ZzZ4-Z4 + q55qOl:~Z2ZzZ4Z4 + q~ScrP~F4RF4RF2RFzR 

%-qO5F4RF2R(3Z2Z4 + ~5~'3Z2Z2Z4Z4 %- ~5~12Z2Z2Z4Z4 %- CI)5~F4RF4RF2RF2R 

%-c195F4RF2R~3Z2Z4 %- ~b5(3Z2Z2Z4Z4 %- qb5~12Z2Z2Z4Z4 %- q~SqS~2FaRFaRF2RF2R 
%-(D5F4R F2R(3 Z2 Z 4 %- (195(3Z 2 Z2 Z4Z 4 %- ~i)5~I Z 2 Z2 Z5Z4 

%-F5RF5RF3RF3R~I~2 %- F4RF4RF3RF3R~4~2 + F4RF4RF1RF1R(I~3 

%-F4RF4RFIRF1R(I(3 %- F4Rff 3R(I(I Z3Z4 %- F4R-'ff3R¢2(2Z3Z4 %- F4R-ff 3R~3¢3Z3Z4 

+F4RF3R(3(I Z3Z5 %- F4R'-ff 3R~4(4Z3Z4 %- F4RF3R~2~2Z3Z4 %- F~R-F3R(3~3-Z3Z4 

%-F4R-ff 3R(I~IZ3Z4 %- F4R-ff 3R~4~4Z3Z4 %- F4R-ff lR¢I ~'3Zl Z4 %- F4RFIR(I ~'3Zl Z4 

4-F4RFIR(1 (1ZIZ5 -Jr F3RF3RF2RF2R(I~2 %- F3RF3RFIRF1R~I~3 %- ~"1 ~'3ZI Z1Z4Z4 

-~-~'1 ~'3 Z1 Z1 Z4Z4 %- ~1 ~1Z l Z1Z4Z5 %- (2-~4Z2Z2ZaZ4 %- ~2~4Z2Z2ZaZ4 

-]-~4¢1 Z2Z2ZnZ5 %- ~2~4Z3Z3Z4Z4 %- ~:2~4Z3Z3ZaZ4 (B.7) 

5 For convenience, we include here some of the terms listed above since they can contribute in both categories 
depending on the generation assignment. 
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A p p e n d i x  C. F -  a n d  D- f l a tnes s  e q u a t i o n s  

The identification of the flat directions in the scalar potential requires the vanishing 
of the F- and D-terms. In Section 6, the complete F-flatness conditions with tree-level 
superpotential contributions were presented. Hidden field contributions are also easily 
calculated from the superpotential (36).  Fourth-order contributions from both hidden 

and observable sectors can also be found from the superpotential terms (37) presented 
in the same section. Higher-order terms have also been calculated and are given in 
Appendix B. For convenience, the contributing fifth- and sixth-order NR superpotential 

terms are written separately in the w" and w6 pieces of the NR superpotential. 5 

D-flatness 
The D-flatness equations for the non-anomalous U ( l ) i  factors are given by 

(Di) "~-~O}l~bjl2=0,  i -  1 ,2 ,3.  (C.1) 

On the other hand, the Green-Schwarz anomaly cancellation mechanism in string theory 
generates a constant Fayet-Il iopoulos contribution to the D-term of the anomalous 
U(1)A. This is proportional to the trace of the anomalous charge over all fields. To 

preserve supersymmetry the following D-flatness condition should be satisfied, 

(DA): ~--~ Q AIq'jl2 ; - - ( ,  (C.2) 
$J 

where the sum extends over all singlet fields (including the SU(4)  x 0 ( 4 )  breaking 
3 @L) ones) and ( = w e  . If  hidden fields acquire vevs, they should also be included in the 

above expressions. 
2 Taking the combinations ( D j ) ,  ½ ( ( D , )  + (D2)) ,  .~ ( (D3)  - (DA)), ½(DA) from 

the definitions (29) and (31) ,  we obtain 

1 - -  e 
51F3RI + 1#212- 13212+ 1#312- 13312 - ~ , - -0 ,  (c3)  

I (IT2RI2 I~,RI2+ 1~3~12+ IF4RI 2) (C.4) 4 
4 

+ ~ ,2 - , ~ 1 
I~_t - 13212 + 1 . ;21 -  I*i21- + ~ ~ ( I ; # -  ILl2) - ~2-- 0, (c.5) 

i=I 

I ff 2 12 12 sc (C.6) 3~1 + 13, - 1 6  + 134l 2 - 1 ( 4 1 2  - " ~ 3  - 3 '  

I#,1 e -  13,12+ 1~,2[ 2 -14'1212 -~ -~4 - - -  ~-- (C.7) 
2 

~-~1,2.3,4 stand for hidden vev contributions. These are 

'(12312 IZ~l 2) 7~1 = ~ - , 

"]"[2 ---- ¼ (-12~12 - 12,12 ÷ 12212 + 12212 + 12312 -I2312 + 12512 -12512 - 121412 + 12412) , 
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~ 3  = ½ ( - 1 2 2 / 2  - Iz=l = - 12~ 12 - rz~ 12 + J2412 + [z412 - 12512 + Iz s f2 ) ,  

"]"~4 = ~' (12~12 + I z~ 12 + t2212 + IZ212 - 12412 - I z41=+125[2+lZsI2+lZ~12+1231 e) 

We finally have the D-flatness conditions for the non-Abelian part of the gauge symme- 
try. For the SU(4)  x O(4) ,  

IT, RI= + 1 2RI= + + IT, I = - IF4RI 2 =0, ( C . 8 )  

while in the presence of the hidden non-zero vevs, the SU(8)  and U(1) '  D-flatness 
conditions should also be satisfied 

5 
(O~,<g)) : ~ ( IZ I  2 -  IZ, I 2) = o ,  (C.9) 

i=1 

(Du( , ) , )  : Z QJIXJ[ 2 = O, (C. lO)  
Xj 

where Xj stand for all fields carrying U(1) '  charge. 

F-flatness 
For completeness, we also write here the F-flatness conditions including superpotential 

contributions up to fourth order and hidden fields. Fifth and sixth-order contributions 
are easily calculated from the NR terms presented in Appendix B. 

'/'2 : sri(i + (is~ = 0 (C. l  1 ) 

~)4 :(1~3 37 ~1~'3 --= 0 (C.12)  

@12 :(1~4 = 0 (C.14) 

4'12 "(4~1 -~ Z3Z3 =0 (C.15)  

~1512 : ( i f i  @ (2~3 = 0 (C.16)  

4'72 : ( i ( i  + (3~2 = 0 (C.17) 

(1 :~2~1 @ (P12~4 ~- /5Z5 ~- ~IZ1Z1 -~- ~4Z222 = 0 (C.18)  

.~1 : ~/)2(1 -]- 4"12(4 = 0 (C.19)  

~2 : ~b2~2 + q~-2(-s = 0 (C.20) 

~2 : ~2~z2 q- 4"~(3 = 0 (C.21)  

(3" ~b2(3 + ~ ( 2  = 0 (C.22) 

~3 : q~2(3 -]- ~12(Z = 0 (C.23)  

(4 " ~b2~4 + q312(1 = 0 (C.24) 

~4 : ~D2(4 -~- (PI2(I = 0 (C.25) 

(1 : q~2~1 n u- ~4~3 -]- 2gb~2¢1 -- 0 (C .26 )  

~1 : q~2~"l -I- q04~" 3 + 2~12(1 + (1Z121 = 0 (C.27)  
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cb2¢2 + 4~5~4 + 2 ~ 2 &  + I &LF4L = 0 
x/2 

~b2sr2 + 4'5(4 

~b2~3 -}- ~4~'1 

q~2~'3 q- ~:P4(I 

: 4~2(4 + '/'5 (2 

: ~1 sel Z,l = 0 

: ( i s e i Z l  = 0 

" ~"4sel Z2 = 0 

: ~'4sel Z2 = 0 

: q~12Z3 + ]75LF3L24 = 0 

: 4~12Z3 + F4RP3Rz4 = 0 

• ¢ 3 & / V 5  + F4RP3R23 : 0 

: ~ 2 2 4 / v ~  + ~', 2~ = 0 

: & z s / v ' 5  = o 

: ¢3Z4/v~ + se, zs = o 

: F4R~3 = 0 

q- 2q3~2~2 q- ZsZ,4/x,/2 = 0 

q- 2qb12~'3 q- Z 4 Z s / V ~  = 0 

q- 2qb12~" 3 q- FsRF4RIv/2 = 0 

q- 2q012~'4 + selg2Z2 = 0  

q- 2qb12(4 = 0 

(C.28) 

(C.29) 

(C.30) 

(C.31) 

(C.32) 

(C.33) 

(C.34) 

(C.35) 

(C.36) 

(C.37) 

(C.38) 

(C.39) 

(C.40) 

(C.41) 

(C.42) 

(C.43) 

(C.44) 

Appendix D. Tree-level fiat directions 

We present here the tree-level flat directions of  the model. As has been explained 

in Section 6, the solutions are classified in four distinct cases according to whether 

the singlet vevs sel,4, (1,4 are zero or non-zero. It was shown there that only the cases 

sei = sea = 0 ( assigned as case (iii) in Section 6) and ~t = ~4 = 0 (with sel,= (4 4: 0, 
referred as case (iv) in the same section) have solutions consistent with F- and D- 

flatness constraints. 

Our analysis proceeded as follows: First we solved the constraints taking into account 
contributions only from the tree-level Yukawa superpotential. An exhaustive analysis 

shows that at tree-level there are 17 solutions for case (iii) and nine solutions for case 

(iv). These solutions are presented in Table D.1. The five columns in the middle show 
the fields with zero vevs and the last column the number of  free parameters. For further 
details in the notation, see explanation in Section 6. Higher-order NR contributions up 
to sixth order, reject several of  these cases, resulting to those presented in Section 6. 

The complete list of  the tree-level solutions given in Table D. 1 is related to flatness 
constraints involving fields only from the observable sector. These are easily extended 

to solutions involving hidden fields by using the flatness conditions of Appendix C. 
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Table D.I 
The tree-level solutions to the F- and D-flatness equations. The fields appearing in the table have zero vevs. 
In the last column f.p. stands for the number of free parameters 

t~12s tibi ~i, (i sri, (i ~ f.p. 

1 12, 12- ,  1-2- 2,4,5 4, i,,~ 3,3 .5 9 

2 12, 12- ,  l-~- 2,4,5 4, i,,~ i ,3  5 9 

3 12, IT, 12- ,  1-2- 2,4,5 4,4 3, .] .5 9 

4 12, 1-2, 12-,  1T- 2,4,5 4,,~ 1,3 .5 9 

5 12, 12- ,  I--2- 2,5 4, i ,4  3, i,.3 9 

6 12, IT, 12-,  1-2- 2,5 4,,~ 3,1,3 9 

7 12, 12-,  1-2- 2,5 4, i,,~ 2,3, i,:~,~ 8 

8 12, 12-,  1T- 2,4 4, i , 4  2, 3,4,2, 3,4. 5 7 

9 12, 1T, 12- ,  1T- 2,4 4,5 2, 3, 4, :2, .3, 4. 5 7 

10 12, 12-,  I T -  2 2,3,4, L 3,4- 1,2,3,4, i ,2 ,  3,4- 5,2 6 

11 12, 1-2- 2,4,5 2 ,4 ,1 ,3 ,4  1,2,3,4,3 5 8 

12 12, 1--2- 2,5 2,4, i , 3 ,4  1,2,3,4, i ,3  5 8 
13 12, I T -  2,4 2,4, 1,3,4 1,2, 3, 4, 2,.3,4 5 7 

14 12, IT-  2 2,3,4, 1,3,4 1,2,3,4, i,,2, 3,4 _5 7 

15 12,12,12 2 2 ,3 ,4 ,1 ,3 ,4  1,2, 3,4, i, 2, .],4. .5 6 
16 12 2 2, 3,4, i,'~, 3,4 1,2,3,4, i ,2 ,  3,4. ~,~ 7 

17 12, IT, 12- ,  I T -  2 3 ,4 ,3 ,4  1,2, 3,4,1,2,3,7~ .5,2 8 

18 12, 12, 12- ,  12 2,4,5 1,4 3,.3 .5 9 

19 12, 1-2, 12- ,  1--2- 2,4,5 i , 4  i ,3  .g 9 

20 12, IT, 12- ,  IT-  2, 5 i,4- 3, i,.3 9 
21 12, 1T, 12- ,  1--2- 2,4 i,,~ 2, 3,4,2, 3,4. .5 7 

22 12, 12, 12 2,4,5 2, 1,3,4 1,2,3,4,3 5 8 

23 12, 12, 12 2,5 2, i,3,4- 1,2,3,4, i ,3  .g 8 
24 12,12,12 2,4 2, 1,3,4 1,2, 3,4, '5,3,4 .5 7 

25 12,12,12 2 2 ,3 ,1 ,3 ,4  1,2, 3, 4, i, '~, .],4- 5 7 
26 2, 3, i,'~, 3, 4- 1,2, 3,4, i,2,3,4- .3,5 7 

S o l u t i o n s  i n v o l v i n g  h i d d e n  f ie ld  con t r i bu t ions  o f  h i g h e r  N R  supe rpo ten t i a l  t e rms  are  

m o r e  i n v o l v e d  and  n e e d  a sepa ra te  t r ea tment .  
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