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Naturally small Dirac neutrino masses in supergravity
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We show that Dirac neutrino masses of the right size can arise from the Kähler potential of super-
gravity. They are proportional to the supersymmetry and the electroweak breaking scales. We find
that they have the experimentally observed value provided that the ultraviolet cut-off of the Mini-
mal Supersymmetric Standard Model (MSSM) is between the Grand Unification (GUT) scale and
the heterotic string scale. If lepton number is not conserved, then relatively suppressed Majorana
masses can also be present, resulting in pseudo-Dirac neutrino masses.

I. INTRODUCTION

We have recently learned a great deal about mixing in
the neutrino sector [1]. However we have thus far learned
relatively little about why the neutrino masses are so
small, or their relation to the other much higher scales
in particle physics. The presence of such vastly different
mass scales remains a great puzzle. The current favoured
explanation for small neutrino masses is the “see-saw”
mechanism [2]. In this picture a large Majorana mass
for the right handed neutrino suppresses the mass of the
light states, and the active neutrinos we observe today
are therefore almost pure Majorana. However, in this
framework there is no room for Dirac or pseudo-Dirac
neutrinos, and so it is worth examining alternative ways
to generate neutrino masses.

There is one other instance in supersymmetry where
it was possible drastically to suppress a mass scale, the
solution of the µ- problem by Giudice and Masiero [3].
The µHuHd term in the superpotential is a mass term
for the Higgs fields required for electroweak symmetry
breaking. The parameter µ, which has dimensions of
mass, therefore has to be of the order of 1 TeV. But
in global supersymmetry it is apparently independent of
the supersymmetry breaking terms which also have to
be of order 1 TeV, appearing as it does in the superpo-
tential. At first glance there is no connection between
supersymmetry breaking and the parameter µ. However
the problem is resolved if the HuHd interaction appears
in the Kähler potential of supergravity rather than the
superpotential. Then an effective µ−term is generated
only upon supersymmetry breaking and is of the order of
the gravitino mass m3/2 ∼ 1 TeV. The crucial ingredient
of this solution to the µ problem is the absence of this
term in the superpotential of unbroken supergravity, and
its subsequent generation through an analogous coupling
in the Kähler potential, once supersymmetry is broken.

Could such a Kähler suppression be responsible for the
smallness of neutrino masses as well? The numbers cer-
tainly suggest that it could be as has been occasionally
noted in the literature in the context of global super-
symmetry or globally supersymmetric approximations to
supergravity [4, 5, 6, 7, 8]. Consider for example a con-

tribution to the Kähler potential of the form

K ⊃ LHuN̄

M
+

LH∗
dN̄

M
+ H.c.

where N̄ is the right handed neutrino and M is the
scale at which higher dimensional operators first make
their appearance in the Kähler potential. For the sake
of argument assume that M = MP = (8πGN )−1/2 =
2.44×1018 GeV. One would expect the effective neutrino
mass to be suppressed by a factor m3/2/M which (taking

〈Hu〉 = mtop) gives a neutrino mass mν ∼ 10−4 eV. This
is rather small but intriguingly quite close to the mea-
sured [21] value of (0.04 − 0.05) eV (within 1σ). Even
more intriguingly, the measured value corresponds to tak-
ing M = 5 × 1015 GeV, just below the GUT scale. We
think that this coincidence deserves more careful inspec-
tion in the context of full supergravity [9].

The above operators are expected to be generated in
various ways (perhaps from some kind of GUT theory or
by the underlying string theory) and so M does not have
to be close to MP. Because of this the scale M (when it
was not set by some model building assumption or other)
has always been treated as a moveable parameter. In this
letter we take a more phenomenological approach. If the
operators above are indeed responsible for the neutrino
masses, what does the scale M of new physics have to be?
Exploiting supergravity as a possible breakdown scenario
of supersymmetry, we find that within this scenario, the
scale M may differ by two orders of magnitude from the
naive expectation above. Indeed, for gravitino masses of
100 GeV < m3/2 < 10 TeV, the correct mass automati-
cally arises from the general couplings of supergravity if
the scale M is in the range

M = (4 × 1016 − 5 × 1017)GeV.

This range, remarkably, is between the GUT scale and
the heterotic string scale of old. At tree level the relation
for the latter is Ms = gGUT MP ≈ 1018 GeV if αGUT =
1/24. Including threshold effects in the MS scheme gives
[10], Ms = 3.8 × 1017 GeV. To find this result, we need
to consider the contributions to fermion masses in full
supergravity.
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II. FERMION MASSES IN SUPERGRAVITY

Consider a set of chiral superfields {Si, yα}. The fields
Si are those fields of the hidden sector that are respon-
sible for the spontaneous breaking of supergravity. They
are assumed to be singlets of the gauge group, and we
make no other assumptions about them or their super-
potential, apart from that they eventually acquire a v.e.v.
of order Si ≃ M . It is convenient to set Si = Mσi. The
superfields yα are those of the observable sector, namely
yα = {Q, Ū, D̄, L, Ē, N̄ , Hu, Hd}. The most general su-
perpotential, W , and Kähler potential, K, read [11]

W (σ, y) = W (h)(σ) + W (o)(σ, y) , (1)

K(σ, σ∗, y, y†) = K(h)(σ, σ∗) + K(o)(σ, σ∗, y, y†) ,(2)

where the superscript (h) and (o) denote hidden or ob-
servable superpotential and Kähler potentials, respec-

tively. If local supersymmetry is spontaneously broken
then the visible matter fermions have a Lagrangian of
the form [12, 13] [22]

L = i gαβ∗χ̄β σ̄µ∂µχα −
(

mαβχαχβ + H.c

)

, (3)

where gαβ∗ = ∂2K
∂yα∂yβ∗

Eq.(2)
= ∂2K(o)

∂yα∂yβ∗
is the Kähler

metric. The fermion fields χα in Eq.(3) need not be in the
canonical basis. Nevertheless as is known from deriva-
tions of higher order operators in the Kähler potential (in
for example string theory in Ref.[14]), the various sym-
metries of the theory dictate that their coefficients are of
order one in the canonical basis. For simplicity reasons,
we confine our numerical discussions to that case, namely
gij∗ = gαβ∗ = 1.

With a general Kähler metric, fermion masses in su-
pergravity read,

mαβ =
1

2

{

∂2W (o)

∂ya∂yβ
− gγδ∗ ∂3K(o)

∂yα∂yβ∂yδ∗

∂W (o)

∂yγ
− 1

M2

[

gij∗ ∂3K(o)

∂yα∂yβ∂σj∗

∂W (h)

∂σi

]

− 1

M

[

gγi∗ ∂3K(o)

∂yα∂yβ∂σi∗

∂W (o)

∂yγ
+ giδ∗ ∂3K(o)

∂yα∂yβ∂yδ∗

∂W (h)

∂σi

]

}

− m3/2

2

{

gγδ∗ ∂3K(o)

∂yα∂yβ∂yδ∗

∂K(o)

∂yγ
− ∂2K(o)

∂yα∂yβ
+

1

M2

[

gij∗ ∂3K(o)

∂yα∂yβ∂σj∗

∂K(h)

∂σi

]

+
1

M

[

gγi∗ ∂3K(o)

∂yα∂yβ∂σi∗

∂K(o)

∂yγ
+ giδ∗ ∂3K(o)

∂yα∂yβ∂yδ∗

∂K(h)

∂σi

]

}

. (4)

In the above m3/2 is the gravitino mass given by

m3/2 = 〈W
(h)

M2
P

exp(K(h)/2M2
P)〉 , (5)

and we have taken the flat limit, MP → ∞ and m3/2 →
const. We should remark here that we have made no
other approximations in deriving Eq.(4). Contributions
to the visible fermion masses in Eq.(4) arise from both
the hidden and the observable sectors. We have divided
the contributions to the fermion masses into two classes:

i) terms which are not proportional to the gravitino
mass and survive in the global supersymmetry limit
m3/2 → 0, m3/2MP → const. (the first two lines of
Eq.(4)). Of these terms the first can be recognized as
the standard term present in global supersymmetry. The
second term arises purely from the observable sector. It
was used by the authors of Ref. [6] in order to induce
Majorana neutrino masses from dimension six Kähler op-
erators. In our scenario, the third term in the first line

of Eq.(4) is precisely the term that produces the domi-
nant contribution to the neutrino masses. Note that this
term has not previously been considered in the context
of neutrino masses, and can significantly change any es-
timates that one might make within the framework of
Supergravity. It vanishes in the limit of exact local su-
persymmetry transformations as it should. Terms in the
second line of Eq.(4) can only be non-zero if the v.e.v.
of the Kähler metric mixes fields from the visible sector
with fields from the hidden sector. We shall not consider
this possibility here.

ii) terms that are proportional to the gravitino mass
(the last two lines of Eq.(4)) and exist only in the frame-
work of supergravity. They depend only on the structure
of the Kähler potential. Of these terms the second gives
rise to a relatively suppressed Dirac neutrino mass and
was used (in a different context) in Ref.[8]. Actually it
is obvious that all terms in the third line of Eq.(4) can
contribute to Dirac neutrino masses. The terms in the
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Q Ū D̄ L Ē N̄ Hu Hd

2 − d − h d + 2h d h − n 2 − 2h + n n −h h

TABLE I: R-characters for the MSSM fields under the require-
ment that the operators HuHd +LHuN̄ +LH∗

d N̄ appear only
in the Kähler potential.

fourth line of Eq.(4) require mixed hidden and observable
sector kinetic terms and as with the terms in the second
line of Eq.(4) we assume they are absent. They are only
relevant when K(0) and/or W (0) contain a tadpole gauge
singlet.

III. (PSEUDO-) DIRAC NEUTRINO MASSES

An obvious starting point for a theory of small Dirac
neutrino masses is to prevent them from appearing di-
rectly in the superpotential. A natural solution to the µ-

problem [3] would require in addition the non-existence of
the operator HuHd in the superpotential. This can nat-
urally be done with a discrete R-symmetry or perhaps
some other symmetry. As a working example, let us con-
sider an R-symmetry with R-characters for the matter
superfields given by Table 1. To these we have added a
right handed gauge singlet superfield N̄ with R-character
R(N̄) = n. The symmetry has to be chosen so that the
operators LHuN̄ + HuHd are forbidden in the superpo-
tential but are present in the Kähler potential. In addi-
tion we will for definiteness suppose that the singlet S
has a non-zero R character as well, so that its appear-
ance in the superpotential will be limited as we’ll see
shortly. (Zero R-character for this singlet is also possible
but necessitates other hidden sector fields.) The visible
superpotential has R(W ) = 2. The Kähler potential is
R-neutral R(K) = 0. We shall choose n = −1. For the
moment we shall also assume lepton number conserva-
tion. The allowed terms are then

W (o)(σ, y) ⊃ YELHdĒ + YDQHdD̄ + YUQHuŪ + W σ , (6)

K(o)(σ, σ∗, y, y†) ⊃ c1(σ, σ∗)HuHd +
c2(σ, σ∗)

M
LHuN̄ +

c3(σ, σ∗)

M
LH∗

dN̄ + H.c , (7)

where M is our ultraviolet cutoff and W σ is the σ depen-
dent part of the superpotential which will be responsible
for supersymmetry breaking (to be discussed later). As
an example if R(s) = 2 then this could be a Polonyi-
like term βS where β is some constant. The c(σ, σ∗)
coefficients are the result of all perturbative and non-
perturbative contributions to the Kähler potential so we
do not need to insist that σ < 1 although this is where we
need to be to have perturbative control. We may quite

reasonably assume these coefficients and their derivatives
to be of order one. Of course W (o) and K(o) contain other
non-renormalizable terms, irrelevant to neutrino masses,
of order 1/M and higher [23].

We can now use the master formula of Eq.(4) together
with Eq.(7) to obtain the relevant terms for the Dirac
neutrino masses. Consider for simplicity one singlet, σ,
and one generation of neutrinos with χα = νR, χβ = νL ;

mD
ν = v

(

m3/2

M

)

sin β

[

c2(σ, σ∗) − c1(σ, σ∗)c3(σ, σ∗)

]

− v

(

FS

M2

)

sin β

[

∂σ*c2(σ, σ∗) + cotβ ∂σ*c3(σ, σ∗)

]

, (8)

where ∂σ ≡ ∂/∂σ and

FS = ∂SW (h) + m3/2 ∂SK(h) . (9)

Notice that in Eq.(8) there exists a source for Dirac neu-
trino masses which survives even in the global supersym-
metric limit. In this limit, only the term proportional to

∂SW (h) remains and for mD
ν = (0.04− 0.05) eV we find

FS

M2
≃ mD

ν

v sin β (1 + cotβ)
= (1.6 − 2.8) × 10−13 , (10)

where we used v = 174.1 GeV and tanβ = 1 − 60 and
have assumed that the v.e.v. of all the c’s and their
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derivatives are unity (there is the possibility of cancel-
lation). This is a rather model independent result. In
local supersymmetry for example, vanishing of the vac-
uum energy implies that FS =

√
3MPm3/2, and varying

100 GeV < m3/2 < 10 TeV we obtain

4 × 1016 GeV < M < 5 × 1017 GeV . (11)

The terms in the second line of Eq.(8) are enhanced by
a factor MP/M relative to the terms in the first line,
and thus are the dominant ones for any scenario. This
is important for example in no-scale models where the
gravitino can be quite light. In addition, one should note
that the new non-holomorphic term proportional to ∂σ∗c3

dominates in Eq.(8) if c1 and c2 take on small values.

We should remark that the soft breaking masses of
other particles such as squarks are proportional to m̃ ∼
FS/M making them generically somewhat larger than de-
sirable, which requires some degree of tuning. For exam-
ple if there are terms ci(σ, σ∗)φ⋆

i φi in the Kähler poten-
tial then for M = MGUT we obtain m̃i ∼ 3 TeV− 6 TeV
and for M = Ms we obtain m̃i ∼ 100 TeV. A suppression
of the σ dependence in the operator φ∗

i φi in the Kähler
potential is therefore required. For example it could be
forbidden by hidden sector symmetries. This is model
dependent and we will not present a detailed discussion
of this as we would like to preserve our phenomenological
approach.

We emphasize that the constraint of Eq.(10) survives
in the global supersymmetric limit. This is an impor-
tant condition for incorporating Dirac neutrinos in mod-
els with low scale supersymmetry breaking as for example
in the case of gauge mediated supersymmetry breaking.

The values obtained for M in Eq.(11), naturally lie
between MGUT and the heterotic string scale Ms for a
very wide range of parameters, the result anticipated in
the introduction. Note that the neutrino mass in Eq.(8)
varies as the square of M so that the value is rather ac-
curately determined. This is the central point of this
paper, that in supergravity small neutrino masses of the
experimentally observed size can arise, and that neutri-
nos are predominantly Dirac fermions. In contrast, the
operation of a see-saw mechanism demands the introduc-
tion of extra scale(s) in order to obtain the correct order
of magnitude. Of course, the input in our case was an
R-symmetry which forbade direct neutrino masses. How-
ever this requirement is more general than the neutrino
mass problem at hand, since it is also necessary to resolve
the µ-problem.

If we relax the assumption of lepton number con-
servation then the Dirac neutrinos obtained from the
Kähler potential can be “polluted” by the presence of
active Majorana neutrino masses derived from extra non-
renormalizable terms in addition to those in Eqs.(6,7);

W (o)(σ, y) ⊃ g4(σ)

M
(LHu)(LHu) , (12)

K(o)(σ, σ∗, y, y†) ⊃ c4(σ, σ∗)

M3
W (h)N̄2 + H.c. (13)

Assume that only the first term is present. (The second
term is quite high order to get a zero R-charge, so one
could argue that such terms become suppressed.) Then
from the first term in Eq.(4) with χα = νc

L, χβ = νL we
obtain

mL
ν = g4(σ)

v2

M
sin2 β . (14)

For the range of M above we obtain mL
ν = (3 × 10−5 −

7 × 10−4) eV. In summary, Dirac and Majorana neu-
trino masses (we consider one generation of neutrinos)
are combined in the basis (χ = νL + νc

L, ω = νR + νc
R)

(χ ω)

(

mL
ν mD

ν

mD
ν 0

)(

χ

ω

)

, (15)

with eigenvalues close to mD
ν . The small mass splitting

between the two physical eigenstates is

δm2 ≃ 2mD
ν mL

ν = (3 × 10−6 − 5 × 10−5) eV2 , (16)

and the mixing angle tan 2θ = 2
mD

ν

mL
ν

very close to

maximal, sin 2θ = 1. Thus, neutrinos are pseudo-
Dirac [15, 16]; the Dirac neutrino splits into a pair of
two maximally mixed Majorana neutrinos with almost
equal masses. Furthermore, the effective mass for the
neutrinoless double beta decay is given by [17],

〈meff〉 =
1

2

∑

j

U2
ej

δm2
j

2mj
, (17)

where U is the neutrino mixing matrix determined by
the solar and atmospheric neutrino oscillations. Using
the numbers quoted above, we find that Eq.(17) gives
〈meff〉 = (10−5 − 3 × 10−4) eV. One cannot detect neu-
trinoless double β decay of such small magnitudes, and
these contributions are therefore unobservable for the
forseeable future. One may instead have to resort to as-
trophysical techniques to distinguish pseudo-Dirac from
Dirac neutrinos [17]. Furthermore, if the N̄2 operator of
Eq.(13) is present and of equal size, the situation becomes
highly involved, with the three generations of neutrinos
having a general 6 × 6 mass matrix.

IV. QUESTIONS AND CONCLUSIONS

There are a number of questions that arise. The most
pressing concerns the source of the non-renormalizable
terms in the Kähler potential of Eq.(7). The analysis
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presented here leads us to suspect that the required op-
erators may appear simply as effective operators in het-
erotic string theories in much the same way as the µ term
does [14]. The scale M may also appear radiatively in
the Kähler potential, along the lines discussed in [18] or
explicitly by construction in a GUT model. One aspect
of this picture that we find appealing is that, in contrast
with the see-saw picture, the connection with string or
GUT scale physics is rather immediate. The neutrino
masses and mixings are not filtered through unknown
Majorana terms but carry direct information about the
structure of the Kähler metric. This fact certainly offers
new opportunities for neutrino model building.

In this paper we have been arguing that the scale
of neutrino masses may quite easily be associated with
the scale of supersymmetry breaking and hence the
Weak/Planck scale hierarchy, in the very same way that
the µ-term can. Although this is a general observation,
we are obliged to present a simple model of supersym-
metry breaking where FS is generated with the correct
size with the charges we have been using. Consider for
example an R-charge for the singlet R(S) = 1. In this
case the supersymmetry breaking part of the potential
can take the form

W σ = βS2

where β is a dimensionful coupling of order MW . The fact
that this represents a fine-tuning is of course the usual
tuning problem associated with supersymmetry break-
ing. S needs to get a v.e.v and in order for this to hap-
pen we may further suppose that the R-symmetry we
are using is gauged and anomalous. Such models were
considered in ref.[19], and it is known that such a sym-
metry must be broken at scales M ≤ MP, and that there
are no effects from gauging the R-symmetry remaining
at low energies. Because of the R-charge of S it is now
perfectly natural for S to get a v.e.v of order M from the
Fayet-Iliopoulos D-term of the R-symmetry, especially as
it has no other D terms to force it to zero v.e.v. This

then gives

〈W σ〉 ∼ βM2 ; FS ∼ βM2 KS

M2
P

+ WS ∼ βM .

The value of FS may now be tuned to
√

3MW MP get
zero cosmological constant as usual. But the point is of
course that we now have to make no additional tuning to
get the Dirac neutrino masses of the right order and this
is the main finding of the paper.

Another important question is how to account for
non-trivial (maximal) neutrino mixing matrix. The an-
swer to this question may be linked to the fact that
the Kähler potential parameters are not protected by
the non-renormalization theorem, and vertex corrections
may induce large flavour mixing through Renormaliza-
tion Group running.

To summarize, we have shown that minimal super-
gravity naturally allows Dirac masses without the ad-hoc
addition of any new mass scales. If there is lepton num-
ber conservation, then the MSSM naturally contains pure
Dirac neutrino masses that are comparable to the atmo-
spheric neutrino mass. The only other remnant would
be a slowly decaying right-handed s-neutrino with mass
∼ 1 TeV. We have throughout been focussing on the at-
mospheric neutrino mass, but the remaining masses and
mixings could be generated by the Yukawa couplings in
the Kähler potential of Eq.(7) in much the same way as
the quark masses and mixings. If lepton number is vio-
lated, then we have seen that it is possible to get either
pseudo-Dirac neutrinos or a general 6×6 Majorana mass
matrix structure with naturally small elements. Finally,
we should remark that baryogenesis can be accommo-
dated via leptogenesis with Dirac neutrinos [20].
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