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Negative-energy perturbations in circularly cylindrical equilibria
within the framework of Maxwell-drift kinetic theory

G. N. Throumoulopoulos and D. Pfirsch
Division of Theoretical Physics Department of Physics, University of Ioannina, P O. B. oz II88, GR 45I IO Ioannina, Greece

Max Pla-nck Ins-tuttut fur Plasmaphysik, EURATOM Association, D 857/-8 Garching, Germany
(Received 1 August 1995; revised manuscript received 26 October 1995)

The conditions for the existence of negative-energy perturbations (which could be nonlinearly
unstable and cause anomalous transport) are investigated in the framework of linearized collisionless
Maxwell-drift kinetic theory for the case of equilibria of magnetically confined, circularly cylindrical
plasmas and vanishing initial field perturbations. For wave vectors with a nonvanishing component
parallel to the magnetic field, the plane equilibrium conditions (derived by Throumoulopoulos and
Pfirsch [Phys Rev. E 49, 3290 (1994)]) are shown to remain valid, while the condition for perpen-
dicular perturbations (which are found to be the most important modes) is modified. Consequently,
besides the tokamak equilibrium regime in which the existence of negative-energy perturbations is
related to the threshold value of 2/3 of the quantity rt„= 8lnT„/8ln N, a new regime appears,
not present in plane equilibria, in which negative-energy perturbations exist for any value of g„. For
various analytic cold-ion tokamak equilibria a substantial fraction of thermal electrons are associated
with negative-energy perturbations (active particles). In particular, for linearly stable equilibria of a
paramagnetic plasma with fiat electron temperature profile (rt, = 0), the entire velocity space is oc-
cupied by active electrons. The part of the velocity space occupied by active particles increases from
the center to the plasma edge and is larger in a paramagnetic plasma than in a diamagnetic plasma
with the same pressure profile. It is also shown that, unlike in plane equilibria, negative-energy
perturbations exist in force-free reversed-field pinch equilibria with a substantial fraction of active
particles. The present results, in particular the fact that a threshold value of g is not necessary for
the existence of negative-energy perturbations, enhance even more the relevance of these modes.
PACS number(s): 52.35.Mw

I. INTRODUCTION

Negative-energy perturbations are potentially danger-
ous because they may become nonlinearly unstable and
cause anomalous transport [I—15]. Conditions for the ex-
istence of perturbations of this kind can be obtained on
the basis of the expressions for the second variation of
the free energy which were derived by Pfirsch and Mor-
rison [6] for arbitrary perturbations of general equilibria
within the framework of collisionless Maxwell-Vlasov and
Maxwell-drift kinetic theories.

For homogeneous, magnetized plasmas and vanish-
ing initial field perturbations they found that negative-
energy perturbations exist for any wave vector k having
a nonvanishing component parallel to the magnetic field
(parallel and oblique modes) whenever the condition

(o)
fg

t9v
ii

holds for the equilibrium guiding center distribution func-
tion fs for some particle species v and parallel velocity
vi~ in the frame of lowest equilibrium energy. For in-
homogeneous magnetically confined plasrnas with equi-
libria depending on just one Cartesian coordinate y,
Throumoulopoulos and Pfirsch [14] showed that, in ad-
dition to parallel and oblique modes, for which condition
(1) also applies, perpendicular modes have negative en-
ergies if

dI ( l af('. l
gV

p
dy By

(2)

holds, where P~ ) is the equilibrium plasma pressure. For
tokamaklike equilibria, condition (2) implies a threshold
value of 2/3 of the quantity rl = Bin T /0ln K, where
T is the temperature and N the density of particle
species v. These investigations are extended in this pa-
per to the more interesting case of circularly cylindrical
plasmas. The method of investigation consists in evaluat-
ing the general expression for the second-order perturba-
tion energy obtained by Pfirsch and Morrison within the
framework of the linearized collisionless Maxwell-drift ki-
netic theory. The most important conclusions are (i) con-
dition (1) for the existence of parallel and oblique modes
remains valid, (ii) for tokamak and reversed-field pinch
cold-ion equilibria a new regime appears, not present in
plane equilibria, in which perpendicular negative-energy
perturbations exist without restriction on the values of
IV

The equilibrium properties of the circularly cylindri-
cal plasmas under consideration are discussed in Sec. II.
The second-order perturbation energy for vanishing ini-
tial field perturbations is derived in Sec. III. Some of the
relevant lengthy calculations are presented in Appendix.
A. The conditions for the existence of negative-energy
perturbations are obtained in Sec. IV. The cases of par-
allel, oblique, and perpendicular wave propagation are
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examined separately. The consequences of the condition
for the existence of perpendicular negative-energy per-
turbations in straight tokamak and reversed-Beld pinch
equilibria are discussed in Sec. V. For various analytic
cold-ion equilibria with non-negative and negative g, val-
ues, the part of the velocity space occupied by electrons
associated with negative-energy perturbations is also ob-
tained. An example is presented in Appendix B. The
main results are summarized in Sec. VI.

II. EQUILIBRIUM

The collisionless Maxwell-drift kinetic theory applied
in the present paper is based on Littlejohn's Lagrangian
formulation of the guiding center theory [16] in the form
given by Wimmel [17]. A brief review of this theory is
given in the first paragraph of Sec. III. More details can
be found in Ref. [6] and in Sec. II of Ref. [14].

For a magnetically confined, circularly cylindrical
plasma the equilibrium vector potential and magnetic
field are given by

B( ) = Bs( )(r)eg + A( ) (r)e„
with

-' —"(rx,")) = a('),
p dp

—(~(0))' = a,"'.
Here, r, 0, z are cylindrical coordinates with unit base
vectors e„, eg, e and the prime denotes diKerentiation
with respect to r. It is assumed that there is no equilib-
rium electric field. To calculate the guiding center veloc-
ity, Eq. (25) below, one needs the following quantities:

B Bo Bz (0) (p)
(0) (0) (0)

b — — eg+
(

ez = be eg+b, e„

and

Ye, (x) =b) ) (% x b) ))

b(0) b(P) b(P) b(P) g z

With the aid of Eqs. (6)—(13) the guiding center velocity
takes the form

(0)
v = vllb — e„x b(p) (p) p, c dB (0)

b(o)

+ ll
~ b(o)
P

(14)

g(0) ~ x B(0)
4'

= ) e dv~~dpa
~~

fo vg„*(0) (p)

with cu" = e B
I~

/cm, . The first, second, and third

terms in (14) are the component of v0 parallel to B( ),
the grad-B drift, and the curvature drift. Vg has no r-
component and therefore r is a constant of motion. Since
there is also no force parallel to B( ), another constant
of motion is the parallel guiding center velocity vll ~ The

guiding center distribution functions fg, are therefore
functions of r, vll, and the magnetic moment p.

To calculate the current density 3( ), we apply the gen-
eral formula (8.15) of Ref. [18], which was derived in the
context of collisionless Maxwell-drift kinetic theory. The
result is

V
ev

~*(0) B(o) + ~~ 2
ev —P ll~

(7)

—Q wx d~~dp, a
V

(x pb — v
vll vgv JB (15)

(
E() B()

v = c(o) =0,
(a(0) )

E*)o) vy t» x p)o))
ev

h gv& = v» "lib' The erst and second sums in
(15) represent, respectively, the guiding center and the
magnetization contributions to J( ). Taking the cross
product of Eq. (15) with B(0), using Ampere's law on
the left-hand side of the resulting equation and doing
some straightforward algebraic manipulations yields

and

B*(0) ~ A*(0)
V V

b(0)
with

B()~(0) +
dT 8'

(a(o) )
2

+ II(r) = 0,
4mr

(16)

with

B~(0) B*(0) b(o) B(o) + vll (12)

Q(0) ) dv dp pa(0)a*( ) f(0)
ll vll gv (17)
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&(o)

rr(r) —= ) dnlldPB III ( B —m u') f
distribution functions it holds that II = 0, and Eq. (16)
reduces to the known MHD equilibrium relation.

b(o)b(o) (—2) d lldlg II P(B . )
V

III. SECOND-ORDER PERTURBATION
ENERGY

The second. -order energy of perturbations around an
equilibrium state is given by

Relation (16) can also be derived by the momentum-
conservation relation T~ = 0 with the tensor T~ given iniP P
explicit form by Eq. (76) of Ref. [19]. (The comma in the
subscript denotes covariant derivative. ) For Maxwellian

T(2)0X 0 (19)

w llere To is the energy component of the second-order(2)o .

energy-momentum tensor [6]

—2S'(') ) dqdP f(')

gS(i) ) /' (i) X 2 ( )r(')" = —) dqdP

(p) (i) l9 +~ (p) c)SgI I 0Rv2 (p) ( (i) i (p)

c)Ppc)F ( BP, ), BP),

e & @2+"' (o)
g(&) f (P)P(i)

) gP gP( ) " g~( )gP( )
p, A ~ Q'T

(1)+(1)gA

4~ »

+gA ) dqdPf(P)(/(2) /( )(2)) +. y( )P ( )
V V V 16 (20)

Here, the superscripts (0), (1), and (2) denote, re-
spectively, equilibrium first- and second-order quantities;
A~ = (—P, A), where P is the scalar potential and A
the vector potential of the electromagnetic field; E„ is

the electromagnetic tensor; S„are generating functions
associated with the perturbations; the scalar quantity

[f (c)S /BP;)]; results from the contraction in the

second-order tensor [f( )(I9S /OP, )] ~", the rest of the
notation is defined on page 273 of Ref. [6]. In expression

(20) the time derivatives c)S /Ot are given by

e

ExB
V@=C

E = —V'P ——1BA
cOt' B=VxA,

e„P„=e P+pB+ "
(q ) +v~

b = —.B

aa("
lg(~) ~(o)l A(~) .e.ao

(y) BHV(0)

p, A (0) &

gA

(21)

I = A".~ —e (22)

with

where the mixed variable Poisson bracket is defined as

C)a Bb I9a C)b

c)q; c)P,. c)P,. I9q,

The Hamiltonian for the guiding center motion of particle
species v is obtained from the Lagrangian

This Lagrangian is defined in terms of the variables

t, x = x (q', q', q'), and q'.

Here, q, q, q are generalized coordinates in normal
space and q is an additional independent variable for
which one of the Lagrangian equations yields the relation
q = v. b = e~~. The momenta canonically conjugated to
x and q4 follow from (22) as

OL OL ) e OLp= . = . e'= —A. , J4 —— . —0,
Oir. 8q' c ' 8q4

where e' are the reciprocal base vectors. Since Eqs. (23)
do not contain x and q, they are constraints between
the momenta and the coordinates. It therefore follows
that Hamilton's equations based on the usual Hamilto-
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II„=e P"„+vg„. [p —(e„/c)A"„] + V p4,

from which

(24)

x=v= =vg (t, x, q') = „B"„+ „E"„xb

nian corresponding to the above nonstandard Lagrangian
are not the equations of motion. To overcome this difI1-

culty, Dirac's theory of constrained dynamics [20] is ap-
plied, which yields the Dirac Hamiltonians:

In the present paper, the second-order perturbation
energy is calculated for the case of equilibria defined in
Sec. II and for initial perturbations A( ) = A( ) = O.
It is also shown a posteriori that one can choose initial
perturbations without changing the particle contribution
to the energy such that the corresponding charge density
p( ) vanishes. Therefore, choosing initial perturbations
of this kind, we put from the outset

(29)

(25) Equation (21) then reduces to

and

~ 4 I/ ~4
( 4) v E* B * (26)

as"v +(1)~(P)
V V

the Dirac Hamiltonians to

(30)

f =&(u4)&(v .— &:)&.„~fg. (~, v', v, &) (27)

where the guiding center distribution functions f~ are
constants of motion and solutions of the drift kinetic dif-
ferential equations

Of „ Of Of
Bt ' 0X Bq4

follow. [Here, E" = VP" —(1/c)OA" /Ot, B„*
V x A", and B"II ——B" . b.] Special solutions of the
equations of motion following from the Hamiltonians
(24) are the constraints (23). The distribution functions
f (x, q, p, p4, t) must guarantee that these constraints
are satisfied. As concerns this requirement, it is impor-
tant to note that p —(e /c) A" = 0 and p4 —0 do
not represent special values of some constants of motion.
Therefore, b functions of the constraints are not constants
of motion either. But f„m sut be proportional to such
b functions and, at the same time, also a constant of
motion. Both conditions are uniquely satisfied by

II(o) y*(o) + v(o) P A*(o)
V V V gV

and Eq. (19), after integration by parts of the term which

contains derivatives of f, i.e. , (f„OS„ /OP;);, takes(o) ~ (o) (1)

the form

y (') = ) d'~dq4dpf (o)~

Here,

I'OH."OS."lA=-
2OP; Oq*~Oq' OP, ~

OP, Oq'
~

Oq' OP, )

with i, j = 1, . . . , 4. As is shown in Appendix A, one
further obtains

ggv 6 Av g ggv 8 Agv

*p l

O v" -(~) (l) (o)le 4 2 OS~ l. (o) O S~
A, O(v~~ )' OS(1)~

2 C Bq4 Oq4
+

Oql Oql g~ OqkOql Oq4 Oql

*(p) *(p)

r„(P)i& 4 (P) 1 ) (P)iI ' 1 (P)
2 "(1)

A; 8 Av 1 g A*(p) g l k Av g l
l ~ (4+~vg ~O4Ol& +

Oq4 Oq"

(34)

with k, l = 1, . . . , 3. Since the equilibrium is independent of q and q, an appropriate ansatz for the functions 8 is

g(1) G(1) ( 1 4 l i(k23 K)
V = V iq ~q )pi~

The wave vector k23 ——kg introduced here has constant covariant components k2 and k3 and physical components
kg and k:

k23 ——k2e + k3e = knee+ k e = kg, .

Therefore, it lies on magnetic surfaces. Substituting the integral over the momentum space according to the rule
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jdPf . m f dpB*II fg . (a proof is given in Ref. [18]), introducing real quantities by the rule AB —i zRA*B,
inserting Eqs. (37)—(40 of Ref. [14] for ( and Eq. (36) into Eq. (32) and integrating in Eq. (32) the terms in which
c)~G( )

~
/c)q and c)~G(

] /c)q appear yields (after a lengthy algebra) the concise form

F(2) — S) rdrdvllld~ & G kg v kll + k& *( )

1 (9fgv
(o)

*(0)
V

(Here, 8 is a normalization surface = 27t rpL, rp
plasma radius, and I = length of plasma column to
which F( ) refers. ) We note that F( ) depends on G„
only via ~G( )

~

Since the first-order charge density p( ) is a vll, p inte-

gral over an expression that is linear in S and therefore
also linear in G„, one can satisfy the relation p( ) = 0
(invoked at the beginning of the second paragraph of this
section) by a proper distribution of positive and negative
values of G, on which E( ) does not depend.

For vanishing field line curvature (Bg —— 0 or
r -+ oo), Eq. (37) reduces to the F( ) expression for
plane equilibria which was derived by Throumoulopou-
los and Pfirsch [14] [Eq. (82) therein]. New terms
here are the curvature-drift component of v~, and(o)

k~vII/cu„(bg ) /rBfg /BvII. The latter term signifies

that Bfg /c)vII plays a role for perturbations propagat-(o)

ing not parallel to B( )(k~ g 0), a property deriving

from the fact that the curvature drift component of vz(o)

depends (quadratically) on the parallel velocity vII.

IV. CONDITION FOR THE EXISTENCE OF
NEGATIVE-ENERGY PERTURBATIONS

B. Oblique modes (kII g 0 and ki g 0)

With the definitions

pc dB(')
C=vll , B*(o)

ll

*(0) (4o)

II ~fg~
k~ Bvll

P

1 Ofg„(o)

*(0)
&gg

bg g (o)

r C9V
ll

restrictions on the magnitude or orientation of the wave

vector other than kII g 0: it suffices to localize G to the(i)

region in r, vII, and p where vII(Bfg /BvII) ) 0. Outside(o)

this region G vanishes. All the other G&, i.e., with~ (~) (~)

A g v, are set equal to zero. The sign of F( ) is then
determined only by the sign of the integrand in the region
of localization. This result agrees with those obtained by
Correa-Restrepo and PGrsch for several Vlasov-Maxwell
equilibria [7—10].

First it is again noted that the conditions for the exis-
tence of negative-energy perturbations hold if the chosen
frame of reference is that of minimum energy. Perturba-
tions propagating parallel, obliquely, and perpendicularly
to B( ) are separately considered.

A. Parallel modes (k~ ——0)

Eq. (37) yields F( ) ( 0 if

C ) 0 and D ) 0

or

C(0 and D&0.

(41)

(42)

(43)

In this case Eq. (37) reduces to

F(2) — g )

Thus, one obtains E( ) & 0 if

(o)f" )ovll Bvvll

B*(o) ~f (o)
rdrdv dpr r vll p ~ llvll Bvvll

(38)

(39)

The following two cases are now considered separately.
(a) Let us first assume that

Ofg
(o)

vll
vtl

(44)

again holds locally in r, vll, and p for any particle species
v. It then follows from inequalities (42) and (43) that

holds for some r, vll, and p for any particle species v.
Condition (39), first derived by Pfirsch and Morrison [6]
for a homogeneous, magnetized plasma, guarantees the
existence of negative-energy perturbations without any

( min(A, M„) or ) max(A, M ),
J

with
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1 pc dB(')
A

II, B"(') dv vll

(g(oI)
'

*(o) II

u)v

Here, W
II

and W ~ are the parallel and perpendicu-
lar particle energies. Negative-energy perturbations exist
whenever the condition

and
2

vll 8 1 6 gz 8 gv
*(0) + *() Br ( c)q )(dv

or

R & 0 and Q & 0

R &0 and Q &0

(52)

(53)

cifg-(o)

vll ( )
vll

(46)

at some r, vll, and p for any v, a condition which is
more frequently satisfied (e.g. , in the case of Maxwellian
distribution functions), it follows from inequalities (42)
and (43) that negative-energy perturbations exist if, in
addition to (46),

min(A„, M ) « max(A„, M )
kll

kg
(47)

holds. For thermal particles the latter condition implies
that

(rl. )~h.

k~ ro
(48)

Therefore, the most important negative-energy perturba-
tions, in the sense that the less restrictive condition (46)
is involved, concern nearly perpendicular modes.

The perturbations G are localized. as in the previous
case of parallel propagation. The orders of magnitude of
Av and M depend on the particle energy. For thermal
particles, these being the most representative particles, it
holds that iA„i iM„i (rL, )th/ro && 1, [(rl. )th/ro is
the thermal Larmor radius], and consequently condition
(45) imposes no essential restriction on the magnitude or
orientation of kg associated with negative-energy per-
turbations.

(b) If one has

holds. Condition (53), which cannot be satisfied by plane
equilibria with singly peaked pressure profiles for which
R = dP( )/dr & 0, determines a new regime of negative-
energy perturbations. The consequences of (52) and (53)
for straight tokamak and reversed-field pinch equilibria
are examined in Sec. V. To simplify the notation, the
superscript (0) will be suppressed on the understanding
that all quantities pertain to equilibrium.

V. PERPENDICULAR NEGATIVE-ENERGY
PERTURBATION IN EQUILIBRIA

OF MAGNETIC CONFINEMENT SYSTEMS

A. Straight tokomak equilibria

Straight tokamak plasmas which are close to thermal
equilibrium can be described by shifted Maxwellian dis-
tribution functions

m 2 N r
27r T'~'(„)

PB(r) + '
vll

—V (r)
x exp

T„(r) (54)

vv th ~0
(55)

N and T are, respectively, the number density and tem-
perature (in energy units) for particles of species v.
leads to a net "toroidal" current and satisfies

C. Perpendicular modes (k~l
——0)

In this case, with the aid of the equilibrium condition
(16), Eq. (37) reduces to

B*(0)
r dr dv

II
d p I

G (F(') = 4~S)
2

if
(B())' & ."(') r

( B ) B2
dr q 8~) 4~r

(49)
and

(56)

In the remainder of the paper the analysis will be car-
ried out up to zeroth order in (rl, )gh/ro, i.e. , small terms
of the order of [(rl,~)|,h, /r] (with n & 1) will be dropped.
In this context, from (18) one obtains II = 0, and Eqs.
(16) and (50) reduce to, respectively,

with

-ll i+a(, )
d~(o) B( ) 2

dr 47rr ( W ~) (50)

R = +
i
1+2Be ('

dr 47rr ( W ~ j (57)

For distribution functions (54), negative-energy pertur-
bations exist if the relation

and

(gf(o) (5(o))2 gf(o) )
Q l

9~ 8 9~
c)r r c)vll )

(51)
RQ =R

i iU fg„&0
/1V' i
(X )

is satisfied. Here,

(58)
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U„=—1--q.+q. i1+ " I+W~ (
2 T„( Wi j 82 T„

with

To get some simple kind of insight, we now restrict discus-
sion to T, = 0, a case often considered in the literature,
e.g. , [21, 22]. For cold ions Eqs. (63) and (64) yield

6 c
c—I —ebs%, V, = ——BB

Oln T
Bln& (60) and

It is now assumed that both the density and temperature
profiles are singly peaked and therefore g„) 0 for all v.
Negative-energy perturbations thus exist in the following
two regimes.

(a) R & 0. This implies that B (N'/N„) ) 0 and,
consequently, condition (58) is satisfied if U & 0. Since
the last two terms of U are non-negative and vanish for
R'„~~ ——W ~ ——0, the condition U & 0 can be satisfied if

bg I c1
c P'—+ eb, N, V, = ———(rBg)'B 4' r (66)

with e, = —e and

P=N T. (67)

To obtain analytic straight tokamak equilibria, it is con-
venient to use, instead of Eqs. (65) and (66), Eq. (65)
and

2
q~ &— (61)

(68)

which is equivalent to the equilibrium condition (56).
Here, vP(r) is the usual poloidal Hux function. Assigning
the g dependence of the functionals P(g) and B,(g) and
the r dependence of V, (r), one obtains from the solution
of Eq. (68) the poloidal magnetic field Bg = V'g x e, =
—(dg/dr)eg, the electron density from Eq. (65), and the
electron temperature from Eq. (67).

We have considered two classes of equilibria: (i) B, and
P are linear in Q and (ii) B, = const and P = quadratic
in g. For both classes we chose iI, = 0, g, = 1, rt, —+ oo,
and g, ( 0, the latter with singly peaked density and
hollow temperature profiles or with singly peaked tem-
perature and hollow density profiles. From these equi-
libria the following results are deduced (an example is
discussed in Appendix B).

(1) A substantial fraction of the thermal electrons are
active, e.g. , (a) for linearly (marginally) stable equilibria
of a strongly diamagnetic plasma with g = 1, more than
one-third of the thermal electrons are active; (b) for lin-
early stable equilibria of a paramagnetic plasma with Hat
electron temperature profiles, the entire velocity space is
occupied by active electrons.

(2) The fraction of active particles increases from the
center to the plasma edge.

(3) The fraction of active particles in a paramagnetic
plasma is higher than in a diamagnetic plasma with the
same pressure profile.

holds for some particle species v. The existence of per-
pendicular negative-energy perturbations for any perpen-
dicular wave number is therefore related to the threshold
value of 2/3 of the quantity rt . As discussed in Ref. [14],
this threshold value is subcritical in the sense that it is
lower than the critical value g = 1 for linear stability of
temperature-gradient-driven modes.

(b) R„)0. Condition (58) is now satisfied if U„) 0.
In this case negative-energy perturbations exist for any
k~ without restriction on the values of q„.

We now find the part of the velocity space occupied by
particles associated with negative-energy perturbations
(active particles). The particular particles with energy
components W

~~

= T /2 and W„~ ——T, and conse-
quently with velocities equal to the root mean square
velocity (v„)„,= Q3T„/m„, are first examined. For
these particles, henceforth called representative particles,
the quantity U becomes independent of q„. Condi-
tion A ( 0, U ( 0 is then impossible and condition
B ) 0, U„& 0, concerning the new regime, takes the
simpler form

47r N~ ( , Bg )
2~r) (62)

Condition (62) guarantees that the representative parti-
cles are active particles.

For particles with arbitrary velocities the part of the
velocity space occupied by active particles is determined
on the basis of analytic solutions constructed in the fol-
lowing way.

Inserting the distribution function (54) into the equi-
libriurn equation (15) and carrying out the integrations
with respect to v~~ and p, one obtains

B. Reversed-Beld pinch equilibria

The same distribution function (54) is employed to de-
rive force-free equilibria. Linearizing Eq. (68) by means
of the Ansatzes P' = 0 and B oc g and then solving
the resulting equation, one obtains B, = B (0)Jo(p) and
Bg = B,(0)Ji(p). These profiles satisfactorily describe
the central region of the relaxed state of a reversed-field
pinch [23]. We note that perpendicular negative-energy
perturbations do not exist in force-free plane equilibria
with sheared magnetic field, which were studied in Ref.
[14], because for this case the second-order perturbation
energy vanishes. For cold ions and by appropriately as-

and

—J = b, ) e N„V—„+ P'= — —(rBg) .B 4' r (64)

Jg=bg) e N V + 'P'= B'——
B 47t
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signing the mean electron velocity profile, one can derive
equilibria with various density and temperature profiles
having nonpositive values of g, for which negative-energy
perturbations exist and a substantial fraction of active,
thermal electrons are involved.

As an example we consider an equilibrium with peaked
density and hollow temperature electron profiles:

, B(o)
V, = const, %, = N, (0), &~ = Te(0)BO '

Condition (53) then yields

for any p, which implies that more than half of the ther-
mal electrons throughout the poloidal cross section are
active.

VI. CONCLUSIONS

The general expression for the second-order pertur-
bation energy, derived by Pfirsch and Morrison in the
framework of linearized collisionless Maxwell-drift kinetic
theory, was evaluated for the case of circularly cylindri-
cal equilibria and vanishing initial field perturbations.
From this expression we obtained the following condi-
tions for the existence of negative-energy perturbations,
which need only be satisfied locally in r, v~~, and p and
are valid in the reference frame of minimum equilib-
rium energy. (i) If the equilibrium guiding center dis-
tribution function fg of any species v has the property
v~~(afg„ /v~~) ) 0, parallel and oblique negative-energy
perturbations (k~~ g 0) exist with no essential restriction
on k. (ii) If v

~~
(af~ /v ~~) & 0, the oblique negative-energy

perturbations possible are nearly perpendicular. With
the quantities R and Q defined by (50) and (51), the
condition for perpendicular perturbations is R„Q & 0.
From this condition it follows that the curvature, which
is associated with B&, modifies the plane-equilibrium
condition dP( )/drafs /ar & 0.

For the case of tokamak equilibria there are two
regimes. (i) If R & 0, the existence of negative-energy
perturbations is related to the threshold value of 2/3 of
the quantity g = a ln T /a ln W . (ii) If R ) 0, a new
regime appears, not present in plane equilibria, in which
negative-energy perturbations exist for any value of g .

For various tokamak cold-ion equilibria with non-
negative and negative values of g„a substantial fraction

of the thermal electrons are associated with negative-
energy perturbations (active particles). In particular, (i)
for linearly (marginally) stable equilibria of a strongly
diamagnetic plasma with g, = 1, more than one-third
of the thermal electrons are active; (ii) for linearly sta-
ble equilibria of a paramagnetic plasma with flat electron
temperature profiles, the entire velocity space is occupied
by active electrons.

The part of velocity space occupied by active particles
increases from the center to the plasma edge region and
is larger in a paramagnetic plasma than in a diamagnetic
plasma with the same density and temperature profiles.

It is also shown that, unlike in plane equilib-
ria, negative-energy perturbations exist in force-free,
reversed-field pinch equilibria with a substantial fraction
of active particles. The present results, in particular the
fact that a threshold value of g is not necessary for the
existence of negative-energy perturbations, enhance even
more the relevance of these modes.
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APPENDIX A: CALCULATION OF THE
EXPRESSION A AP PEARING IN THE

SECOND-ORDER PERTURB ATION ENERG Y

The two terms of this expression, Eq. (33), are calcu-
lated separately.

We start with the term

as(i) a faII(o) as(i') )
aP, aq* ( aq~ aP

To make treatment of the constraints easier, we first in-
troduce the vector

(A1)

Using the relation aII /aq~~v o ——0, one has

as'" a faII" as" i a'H.'" as"' as"
ap; aq'

I
aq' aP ) aq'aq& aP; ap,

a'H."as."' as." a &aII(')& as."' as."' a'H."' (as.")& '
aq" aq' aPI, l9P( aq4 ( aP' ) l9qt aP4 l9(q4) 2

t aP4 )
(A2)
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B2H(p) a( (p)
)

~ a(+*(p) )
a(q') 2 c aq' aq'

V=O

and

a (BH."i
On the basis of relations (A3) and (A4) and

a'H"' e a(v")' a(~*"),
(aq4) 2 c aq4 aq4

V=O

a(„( ))& a(~"( )),
c aq' aq4

one obtains

as(' a (as ' BH '
~ 8 a(v ')'a(A*')$

BP; aq' ( aq' BP, ).c aqi aqi

a( ( ))t a(~ (o))

a(„(o)))a(~ (o)),

c aq4 aq4

(A3)

(A4)

(A5)

with i, j = 1, . . . , 4 and k, l = 1, . . . , 3. We note that
the constraint P4 ——0 is not involved here, because P4
does not appear in H . Since the equilibrium quan-
tities depend on just q, the only nonvanishing compo-
nents of B2H( /aq" aq and a/aq (BH /aq'), according
to Hamiltonians (31), are

as„" a &as„"BH.")l
aq* ( aq& ap, . )

as„"' a &as."BH„"~
ap; aq'

~
aq' apr )

as(i) a t'as(i) BH(p) )
BP; aq' ( aq4 BP4 )

(A7)

as.'"
ap

V=O, P4 —0

as."
ap4 V'=0, E'4 —0

(A9)

(i, j = 1, . . . , 4, t = 1, . . . , 3) vanishes. We note here
that, whereas Eq. (27) for f is suKcient in the nonlinear
theory to pick out the correct solutions, this is not so with
the linearized theory. In this case, since the constraints
are imposed along the perturbed orbits, a displacement
vector (g,(4) in x, q space, similar to that in macroscopic
theory, is introduced [6]. That is, since the zeroth-order
distribution function always selects V = 0 and P4 ——0,
with V as defined by Eq. (Al), it is reasonable to expand
S in powers of V and P4.(~) ~

S()=S()(x,q) —(.m V —(P
+(higher-order terms), (A8)

so that

(A6)

We now calculate the second term of Eq. (33), i.e.,

as." a (as„"aH.")
ap; aq' '~ aq' ap, )

By virtue of BH /BP4 ——0, the second term on the(o)

right-hand side of

Using Eq. (A8), one has

as" as(')
aq' aq'

P V

as"

and, therefore,

as.'"
aq' aPk

X

a(~+(o))„as( )

c aq aPk
(A10)

BSv BHv BSv
( (p))(

(~) (0) (~) '

V
aq' aPl aq'

P P

(~) *(0) (&)
(p) ) ev (p) ) a ev (p) ) a(+ )k BSv
g g g a l

V x
(A11)

Since A depends only on q and vg is perpendicular to
vanishes. This has the consequence that higher-order terms in
do not contribute to Eq. (A13) below. Applying the operator

gvaq
~

aq' apI, ) aq aq'
P / v v

( ) l as (~)

aq- (".) Bq~ v v

e, the last term on the right-hand side of Eq. (All)
expansion (A8), after the constraint V = 0 is imposed,
a/aq ~&, m = 1,4, to Eq. (All), one has

ev a(A v) Jc a (p) ) BSv*(0) (1)

m aP gv aql
x

c aq g BPg ( aq' )

8 (0) l as (1)(,.)
V V

aqrn gv BP aqk
(A12)
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With the expansion (AS) and (A9), the last equation yields

as.")
Oq'

P

aa.("
BPi

P V=o

(p) i (9sv
"(i)

(,.)
e c)(A"( ))i (0),c)("

Oq t9q'
(A13)

Equation (A7) can then be written in the form

c)S~ l9 r9S~ r9H~ t B(vg~ ) l9S~ i (o) i l9 S~ i l9(vg~ ) OS'(i) ( "(i) (0) $ (0) l (i) 2
"(i) (0) i

"(i)

c)P c)q* c)q& c)P Bq' c)q' g r9q" r9q' c)q4 c)q'
+ U +

2 -(&) *(O) *(o)

(
(Q)

)
( '9 Sl/ (4 ev

(
(Q) )( c)(Al/ ) Q 8( (i e~

(
(o) )( c)(Agp ) i l9(

4g 1
+ gv g i g &

+ Vgv g 4 (A14)

Insertion of (A6) and (A14) into (33) leads to expression
(34) for A.

APPENDIX B: ACTIVE PARTICLES FOR
AN EQUILIBRIUM WITH q = 0

With the ansatz d/d@ (P + B,) = const, the solution
of Eq. (68) is of the form g oc p2, with p—:r/ro. This
yields a class of equilibria with the following characteris-
tics.

Peaked parabolic pressure profile P = P(0)(1 —p2),

The requirement that the "toroidal" magnetic field, Eq.
(Bl), must be a real function, sets an upper limit 1+P
on the values of o, . Thus, the right-hand inequality of
condition (62), P(n —1) & 1, is satisfied for all possible
values of n The. left-hand inequality, 0 & p(n —1), is
satisfied for o. ) 1, and therefore only in a paramagnetic
plasma are the representative particles active.

For particles with arbitrary velocities, conditions (52)
and (53) yield, respectively,

1&2
Wi 2 kn2 )

B, = B,(0) + S~P(0)(1 —n )p ~ (») and

o. is a parameter. The plasma is diamagnetic for o. & 1
and paramagnetic for o. ) 1,

Bg ——2+vrP(0) np;

constant "toroidal" current density. Choosing the V pro-
file as

and

p, W.~ p, W.
~~—(2 —n) + —n & —1

4 T. 2 T.

W,
ii

1 f'2
Wg 2 (n2

(B9)

Q2
V, =V, (0) (1 —p )

z

with

B—:(Bg + B,) = B,(0) + 4vrP(0) (2 —n )p

and

Bf —= [B,(0) +4vrP(0)(l —n )p

one obtains

K, = K, (0)(1 —p ) and T, = T, (0) = const.

(B5)

We note here that, owing to the (1 —p ) ~ dependence
of V, the equilibrium profiles are possible only in the
interval 0 & p & p, & 1, with p, appropriately chosen so
that inequality (55) is satisfied (e.g. , p, = 4).

Condition (62) concerning the representative particles
leads to

and

—(2 —n ) + —o. & —l.p 2 Wet p
4 T. 2 T

W,
~~

1 p (1 W,~ 1 W, ~~'}

We~ 2 2 (2 T, 2 T, )
(B11)

and therefore half of the velocity space is occupied by
active electrons for all p. For n2 = 2 condition (B10)
leads to

&0 and p & —1
TV,g

Wg T (B12)

Condition (B9) is impossible for any n, as is expected
because g takes its lowest non-negative value well below
the subcritical one. For n —+ 0 condition (B10), con-
cerning the new regime of negative-energy perturbations,
is also impossible and therefore no negative-energy per-
turbations exist in a strongly diamagnetic plasma. For
n = 1 condition (B10) yields

0&P(n —1) &1

with

P(0) P(0)
B2/S~ B2(0)/S~

(BS)

and therefore all particles are active. Thus, since the
value q = 0 is far lower than the critical value for linear
stability (n, = 1), negative-energy perturbations involv-
ing a large number of thermal electrons exist in a linearly
stable regime.
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