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Abstract 

A very simple extension of the Standard Model to include an Abelian family symmetry is able 
to describe the hierarchy of quark and lepton masses and their mixing angles together with the 
unification of gauge couplings. We consider the implications of this model for neutrino masses 
and mixing angles and show that they are determined up to a discrete ambiguity corresponding to 
the representation content of the Higgs sector responsible for the Majorana mass matrix. 

1. Introduction 

If  we are to understand the pattern of fermion masses and mixing angles it is necessary 
to go beyond the Standard Model. One obvious possibility is that there is further 
structure, Grand Unification, strings etc., at a high scale which determines the Yukawa 
couplings responsible for the masses. However attempts to implement such ideas have 
to explain why the electroweak breaking scale is much less than the unification scale. 
Low energy supersymmetry [ 1 ] provides a way of protecting such an hierarchy of mass 
scales and if supersymmetry is broken by a gaugino condensate it can even explain the 
origin of the hierarchy. 
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Within the context of supersymmetry, unification [2,3] has had considerable suc- 
cess in determining the parameters of the Standard Model [4]. The measured values 
of the gauge couplings are consistent with simple unification values with a unification 
scale of O(1016 GeV) provided the Standard Model spectrum is extended to that of 
the minimal supersymmetric model (the MSSM). In addition the pattern (and mag- 
nitude) of spontaneous breakdown of the Standard Model follows naturally from the 
structure of radiative corrections in the MSSM provided there is some unification of the 
supersymmetry breaking masses at the unification scale [2,5]. This simplicity in the 
parameters of the (supersymmetric) Standard Model at high scales appears to extend 
to the Yukawa couplings involved in determining the fermion masses. The measured 
values of the bottom quark and the 7- lepton masses are consistent with their equality at 
the unification scale [6,4]. Further the mixing angles and masses have values consistent 
with the appearance of "texture" zeros in the mass matrix [7-10],  such texture zeros 
indicating the appearance of additional symmetries beyond the Standard Model. This, 
and the hierarchical structure observed in the quark and lepton mass matrices, strongly 
suggests the existence of an underlying family symmetry with breaking characterised by 
a small parameter, ~ [ 11,12]. In the limit the symmetry is exact only the third genera- 
tion is massive and all mixing angles are zero. Symmetry breaking terms gradually fill 
in the mass matrices in powers of ,t generating an hierarchy of mass scales and mixing 
angles. Thus a broken symmetry can explain not only the "texture" zeros but also the 
relative magnitude of the non-zero elements. 

It proves remarkably easy to construct such a broken symmetry giving rise to a realistic 
mass matrix. A simple Abelian gauge family symmetry spontaneously broken close to 
the Planck scale generates all the observed structure in the mass matrices. The structure 
is consistent with a much larger symmetry suggesting further unification, namely left- 
right symmetry giving symmetric mass matrices, SU(2)R symmetry relating up and 
down quark couplings and a down-quark lepton symmetry 2. In addition, consistency of 
this fermion mass structure with freedom of anomalies yields the successful prediction 
sin2(0w) = 3/8 at the unification scale even though the gauge group is not Grand 
Unified [ 13 ]. 

In this letter we consider the implications of this scheme for neutrino masses and 
mixing angles in the case that the minimal multiplet content of the MSSM is extended 
to include right-handed neutrino components (plus the Standard Model singlet Higgses 
needed to generate their masses and to break the extended gauge family symmetry). 
Although this extends the multiplet content of the Standard Model it represents perhaps 
the most likely departure from the original Standard Model if neutrinos prove to have 
masses. The introduction of this sector requires the introduction of a Majorana mass 
matrix which has no counterpart in the Standard Model. Most attempts to deal with 
this matrix use very simple but ad hoc assumptions about its structure [ 14]. We will 
show that, within the context of an extended family gauge symmetry with symmetric 
mass matrices, the structure of the Majorana mass matrix is determined up to a discrete 
ambiguity and that the resultant form is different from the usual assumptions made 

2 Such an extended symmetry would be consistent with (SU(3))3 or E6 gauge unification but not with 
SU(5). 
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Table 1 
U( 1 )Ft) symmetries 

Qi u~" d~" Li e~" v~ H2 H1 

U ( 1 ) FD Oti °ti Oti ai  ai ai  --2or i - 2 a  I 

about its form. We will be particularly concerned to determine whether the pattern of 
light neutrino masses and mixings resulting from this structure can explain any of the 
experimental indications of neutrino mass. 

2. Quark and charged lepton fermion masses 

We start by reviewing the construction of the model [ 12] of quark and charged 
lepton masses. The structure of the mass matrices is determined by a family symmetry, 
U( 1)FD, with in general non-integer charge assignment of the Standard Model states 
given in Table I. The need to preserve SU(2)L invariance requires (left-handed) up and 
down quarks (leptons) to have the same charge. This plus the requirement of symmetric 
matrices then requires that all quarks (leptons) of the same ith generation transform 
with the same charge o l i ( a i ) .  The  full anomaly free Abelian group involves an additional 
family independent component, U( 1 )vI, and with this freedom we may make U( ! )FI~ 
traceless without any loss of generality. Thus as = - ( c q  + a2) and a3 = - ( a !  + a2). 

The U( 1 )FI~ charge of the quark-antiquark pair has the form 

-2(al  + ce2) - a l  - a 2  ) 
- o q  2o~2 Ofl + or2 . 
--~2 OL1 -']- O~2 2OL1 

(1) 

This matrix neatly summarises the allowed Yukawa couplings for a Higgs boson coupling 
in a definite position. They should have charge minus that shown for the relevant position. 

For the leptons we have a similar structure of lepton-antilepton charges 

- 2 ( a l  + a 2 )  - a l  - a 2  ) 
-a~  2a2 al -{'- a2 • 
- a 2  al + a2 2a~ 

(2) 

If the light Higgs, /-/2, Hi, responsible for the up and down quark masses respectively 
have U( 1 ) charge so that only the (3,3) renormalisable Yukawa coupling to/-/2, HI is al- 
lowed, only the (3,3) dement of the associated mass matrix will be non-zero as desired. 
The remaining entries are generated when the U(1) symmetry is broken. We assume 
this breaking is spontaneous via Standard Model singlet fields, 0, t~, with U( 1 )vo charge 
- 1 ,  +1 respectively, which acquire equal vacuum expectation values (vevs) along a 
"D-flat" direction 3. After this breaking all entries in the mass matrix become non-zero. 

3 The spontaneous breaking of gauge symmetries at high scales in supersymmetric theories must proceed 
along such flat directions to avoid large vacuum energy contributions from D-terms, giving (O) = (t~). 
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For example, the (3,2) entry in the up quark mass matrix appears at O( •  1'~2-~'1) be- 
cause U(1) charge conservation allows only a coupling cCtH2(O/M2) ~2-~, a2 > al  or 
cCtH2(O/M2) '~-~2, eel > c~2 where M2 is the unification mass scale which governs the 
higher dimension operators. As discussed in reference [ 12] one may expect a different 
scale, M1, for the down quark mass matrices (it corresponds to mixing in the H2, Hi 
sector with M2, Mj the masses of heavy/-/2, H1 fields). Thus we arrive at mass matrices 
of the form (suppressing unknown Yukawa couplings and their phases which are all 
expected to be of order 1 ) 

/ El2+6at •13al •ll+3a[~ 
M___gu ~, [ el3a I •2 •1 , ) mt \ •11+3al •1 1 

E:12+6al ~13al gll+3aJ) 
M____aa ~ ~13al ~:2 gl , 

mb gll+3al ~:l 1 

(3) 

(4) 

where ~ = ( (O)/M1)  1~2-'~'1, • = ( (O)/M2)  1'~2-'~'1 and a = oq/ (a2  - O ' l ) .  With a = 1 
the mass matrices are in excellent agreement with the measured values. We also point 
out that to a good approximation we have the relation [ 12] 

• = ~2,  ( 5 )  

which also implies that M2 > MI. This relation will be very helpful below when 
determining the structure of the neutrino spectrum. 

The charged lepton mass matrix may similarly be determined. Requiring the good 
relation mb = mT at unification sets al = al and we get 

/ ~ 12+6a-2bi @13al ~ll+3a-bt 
M___2 ~ / ~13a[ gl2(l-b)l fll-bt , (6) ) mr \ ~ll+3a-bl ~[l-bl 1 

where b = ( c e 2 -  a 2 ) / ( a 2 -  a t ) .  We will consider two choices for b which give 
reasonable lepton masses. 

For b = 0 the lepton charges are the same as the down quark sector, and so the 
structure of the down quark and lepton mass matrices are identical. In order to explain 
the detailed difference between down quark and lepton masses it is necessary in this 
case to assume that the constants of proportionality determined by Yukawa couplings 
which we have so far taken to be equal (and of O( 1 ) ) differ sightly for the lepton case. 
A factor 3 in the (2,2) entry is sufficient to give excellent charged lepton masses. 

An alternative which does not rely on different Yukawa couplings is to choose b half 
integral. In this case the form for the lepton mass matrix, Eq. (6) must be modified and 
has the form 

M! = ~lBal e 12<1-b~1 0 . (7) 

0 0 1 
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The zeros in this mass matrix result because there is now a residual Z2 discrete gauge 
symmetry after U(1) breaking by which the electron and muon fields get transformed 
by a factor ( -  1 ). For a = 1, b = 1/2 we get excellent agreement for the charged lepton 
masses; for this choice one gets the following relations at laboratory energies 

ms 
m~, ,.~ 3 ~ '  

md6 ( 8 ) 
me -.~ - - ,  

3 

where the factor 3 is due to the renormalisation group corrections found when continuing 
from the Grand Unification scale to the laboratory scale. This is in good agreement with 
the experimentally measured values for the value i -- 0.23 needed to fit the down quark 
masses and mixing angles. Using Eq. (5) this in turn implies that e = 0.053. 

3. Neutr ino  mass  matrices  

We turn now to a discussion of the implications of this broken symmetry for neutrino 
masses in the case we add three generations of right-handed neutrinos. Note first that 
SU(2)L fixes the U(1)FD charge of the left-handed neutrino states to be the same as 
the charged leptons. The left-right symmetry then fixes the charges of the right-handed 
neutrinos as given in Table I. Thus we have no freedom in assigning right-handed 
neutrino charges and as a result the neutrino Dirac mass is also fixed to be 

/ E 12+6a-2bl 613al 611+3a-bl 
M~R ~ [ 613a' 6 [2(l-b)' 611( b' ) (9) 
m~, \ ell+3a_bl ell_bl 

for b integer or 

M D /612+6a-2b. 613a[ 0 ~  

~ /  e l0~ '  El2(1-b)[ 1 ~  (10) 
m~ 0 

for b half integer. Thus the Dirac neutrino mass matrices are related in scale to the 
up-quark mass matrices, similar to models based on Grand Unified Theories. 

Of course the mass matrix structure of neutrinos is more complicated due to the 
possibility of Majorana masses for the right-handed components 4. The right-handed 
fields on the other hand can get Majorana masses from a term of the form vRz'R2 where 
2? is a SU(3) ®SU(2) ®U(1)  invariant Higgs scalar field with lw  = 0 and ~'R is a right- 
handed neutrino. In many models 2? [ 15] is a combination of scalar fields 2 = ~R15R 
where ~'R is the scalar component of a right-handed antineutrino supermultiplet: ~R. For 
definiteness we mostly focus on this model but our main results do not depend on this 
choice. 

4 For the left-handed components these do not appear for the usual reason, namely the absence of AIw = 1 
mass terms coming from weak isospin 0 (lw = 0) Higgs fields. 
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The structure of the resulting Majorana mass matrix depends on the U( 1 )FD invariant 
combinations contributing. Clearly the right-handed neutrino bilinears have the U( 1 ) ~  
charge structure of Eq. (2). Thus the Majorana mass matrix, M~ u, depends entirely 
on the 2" U( 1)FD charge. The possible choices for it will give a discrete spectrum of 
possible forms for the Majorana mass. 

For example if, in the absence of U(1)FD symmetry breaking the 2; charge is the 
same as the H1,2 doublet Higgs charges, only the (3,3) element of M,, will be non- 
zero. Allowing for U(1)vo breaking by (0) the remaining elements in the Majorana 
mass matrix will be generated in an analogous way to the generation of the Dirac mass 
matrices 5. The important question is what is the appropriate expansion parameter? It 
will be given by r/ = (O)/M3, where M3 is the scale determining the mixing in the 
lw = 0 sector. In the case of H1, //2 the scale was identified with the massive HI, H2 
fields which mix with the light H1, /-/2 fields when (0) is non-zero. Likewise, in the 
lw = 0 Higgs sector M3 should be identified with the massive 2; modes. For the case 
that 27 is the bilinear 27 = URUR it is the mixing of the ~R fields that generates the mixing 
and hence the mass of the intermediate 9R fields that is relevant. 

What is the expectation for such masses? The pattern of masses generated here relies 
on the mixing of light and heavy Higgs fields. Consider a string compactification which 

a,b... -a,b... in addition to Hi and H2, leaves additional Higgs multiplets Hi, 2 , Hi, 2 light. The 
pairs of Higgs fields in conjugate representations can have gauge invariant masses and 
may be expected to become massive if there is any stage of spontaneous symmetry 
breaking below the compactification scale with a common mass, M, where M = (q~) and 
q5 is a gauge invariant Higgs scalar field (or a gauge invariant combination of Higgs 
fields). There may be further sources of Higgs mass. As we have stressed our left-right 
symmetry essentially requires an extension of the gauge symmetry to SU(2) L ® SU (2) R 
at high scales. This will be broken by a right-handed sneutrino vev in which case the 
mass degeneracy of the Hj and //2 pair which transform as a (1/2,  l / 2 )  representation 
under SU(2)L ® SU(2)n can be split via the coupling (fJR)H2Hx where Hx transforms 
as (1/2,  0). Such a contribution will generate M2 ~ (gR), MI ~ M agreeing well with 
Eq. (5) and the phenomenological findings of [12]. 

Turning to the expectation for uR masses we may expect the ~R fields to acquire 
mass of O(MI) via a @u~ coupling. These fields may also acquire a mass via the term 
(~R)2(~R) 2 giving a mass (~n)2/Mpl. Given that (~R) ~ M2 then e = ~2 from Eq. (5) 
implies that (~n}2/Mp1 = M1 (M2/MpI)/& To preserve the successful relations between 
up and down quarks we require that non-renormalisable contributions to the up quark 
masses should be less than that coming from the mixing with the heavy/-/2 fields and so 
M2/MpI << 1. Thus these terms are not expected to spoil our estimate that m~, ~ MI. 

This implies that the appropriate expansion parameter for the Majorana mass matrix 
is the same as that for the down quarks and charged leptons, namely 7 / ~  & In a specific 
model this relation can be determined exactly. In general we only expect this to hold up 
to factors of order one. 

We may now compute the patterns of Majorana mass for the different possible choices 
of 2: charge. These are given in Tables 2 and 3 together with the mass eigenvalues. We 

5 (2'} is significantly below the Planck scale and thus (0) dominates the U( 1 )FD breaking. 
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Table 2 
Majorana mass matrix, Mv,~, for the right-handed neutrinos for a range of choices of Q,~, the U( 1 ) charge of 
the I~, = 2 effective Higgs field. These cases correspond to b = 0 and a = 1 in Eq. (6). Note that we have 
suppressed all coefficients of O( 1 ). For example in case 1 the (2 ® 2) submatrix comprising the second and 
third rows and columns does not have vanishing determinant for random choices of these coefficients and the 
mass eigenvalues quoted refer to such generic cases 

Diag 
Case Q.~/al + 2 M ~  MvR 

1 0 ~3 #2 g ~2 
~4 ~ 1 1 

2 - 1  ~4 ,~ - 1  + g  
g.5 I 1 + ~  

3 - 2  ~.5 1 1 
~6 ~ ~2 / g2 

4 2 1 g5 ~ --1 +~2 

5 4 @ ~ ~.s ~6 
1 g5 ~4 - -  1 + ~.2 

6 8 ~5 ~10 ~9 glO 
~4 ~9 ~ g8 

Table 3 
Majorana mass matrix, Mv~, for the right-handed neutrinos for a range of choices of Q,~, the U( 1 ) charge of 
the lw R = 2 effective Higgs field. These cases correspond to b = 1/2,a = 1 in Eq. (6) 

,lffDiag Case Q~/al + 2 M ~  ,'.vR 

7 0 ~ 
0 1 

8 - 1  1 1 
0 

9 3 1 ~ 00 - 1  1 

0 0 ~3 ~3 

10 7 g4 g8 ~ i8 
0 0 ~7 ~7 
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Table 4 
Masses and mixing angles for the light neutrino components 

Case M~, ff'Diag Rev ff 

1 #7 _~3 1 #2 
1 #5 _#2 I 

2 #5 _#3 l #2 
#-  l ~.7 _f=2 1 

3 ~2 _@5 1 #2 
#-2 g7 #2 1 

4 #9 _#3 1 #2 
#-3 #7 _#2 1 

5 #9 _#3 1 #2 
#--4 #5 _#2 1 

6 #-2 _#3 1 g2 
#--8 #5 _#2 1 

have made use of Eq. (5). Note the result is quite different from the usual ansatz which 
assumes it is family independent. In fact none of the possibilities of Table 2 give a 
family independent structure for the Majorana mass. This is perhaps the most important 
lesson to be derived from this model; if symmetries are responsible for the hierarchical 
pattern of fermion masses they are very likely to generate an hierarchical pattern for the 
Majorana mass matrix. Moreover, as may be seen from Table 2, in most of the cases 
the lighter M~ R eigenstate is suppressed by several powers of ~ compared to the heavier 
one. The implications for the phenomenology of neutrino masses is quite different as 
we shall now discuss. 

Of relevance to low energy phenomena is the pattern of light neutrino masses and 
mixing angles. To compute these we must determine the light neutrino mass matrix, 

eft M~ , coming from the "see-saw" mechanism. It is given by 

M M ) -1 D M e f f = M ~ . (  ,,R, .M~ . (11) 

Using the two forms for the neutrino Dirac matrices given in Eqs. (9) and (10) 
together with the appropriate possibilities for the Majorana mass matrix, Tables 2 and 3 
respectively, we may compute the masses and mixing angles for the light neutrinos. 
These are given in Tables 4 and 5 respectively. The use of Eq. (5) greatly simplifies 
the results. 

As mentioned above, in no case does the light Majorana mass matrix have degenerate 
eigenvalues, the most common assumption made for its structure. The reason is that the 
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Table 5 
Masses and mixing angles for the light neutrino components 

469 

Case ~v ff'D~ag Rev ff 

7 - ~5 _g4 1 
1 0 0 

8 ~ - ~  1 
~-J 0 0 

9 ~,8 - O  1 
i -3 0 0 

10 g-'* - #  1 
~-7 0 0 

gauge symmetry charges of the right-handed neutrinos force the mass matrix entries to 
be of  different orders in powers of the expansion parameter E. The only way a degenerate 
set of eigenvalues can occur in this case is if two components are coupled through an 
off diagonal mass term as in cases 2, 4, 5 and 9. As may be seen this only leads to 
two of the three eigenvalues being approximately equal. The implications of this for the 
light neutrinos is clear from Tables 4 and 5. In no case are the mass eigenvalues simply 
given in terms of the square of  the up quark masses divided by a common Majorana 
mass (the usual ansatz, giving the ratio 1 : ~2 : ~4). Rather the effect of structure in the 
Majorana masses is to allow for a greater spread in masses. As may be seen from these 
Tables there is no example of closely degenerate pairs of neutrino masses; clearly this 
is of considerable significance for neutrino oscillation phenomenology. In particular all 
three hints for neutrino masses (solar neutrino problem, atmospheric neutrino problem, 
and the structure formation problem, requiring a one third component of hot dark matter 
[17]) taken at face value can only be resolved in agreement with collider bounds 
(without the use of additional sterile neutrinos) for three nearly degenerate neutrinos of 
approximate mass 2-3 eV [ 18]. This can not be accommodated in our scheme without 
fine tuning. However, as we discuss below, we can find simultaneous solutions to the 
solar neutrino problem and the neutrino mass needed for structure formation. 

4. Neutr ino  mix ing  angles  

The second point of interest are the predictions for mixing angles in the light neutrino 
sector. It may be seen that the consequence of the gauge symmetry is to generate mixing 
angles which are small, given by some power of the expansion parameter e. Of course 
the mixing angles of relevance to experiment are the combination of charged lepton 
mixing angles and neutrino mixing angles given by e~tofftal = ( e  eft) ~-1 RL, where 
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1 6e,u. 0 ( ~  "4) ) 
RL = --6~ u 1 0(~)  (12) 

\ - - O ( g  4) - - 0 ( ~ )  1 

for the charged lepton mass matrix of Eq. (6) with b = 0 and a = 1. Here, due to the 
(1,1) approximate "texture" zero ~e/z - ~ p . .  For the charged lepton mass matrix 
of Eq. (7) with b = 1/2, a = 1 we have 

1 •e/x ! ) 
RL = --Se~z 1 

0 0 
(13) 

From Table 4 we may easily determine that the only effect of the neutrino mixing 
• • eft 4 angles for cases ( 1 ) - ( 6 )  is in the (1,3) element of Rtota I where the term of order e 

in RL becomes of order e 3 in R~f~al . The remaining elements are the same as in RL, 
Eq. (12) or Eq. (13), because of the smallness of the neutrino mixing angles. 

The situation for the cases (7 ) - (10 )  is simpler due to the residual Z2 symmetry. For 
eft 

them in all cases the neutrino mixing angles are so small that Rtota 1 ~ RL. In this case 
there is no mixing p~-u~. These cases could be excluded by a positive finding of the 
CHORUS and NOMAD experiments [ 19]. 

5. Phenomenology 

Let us now discuss the implications for neutrino phenomenology following from 
these mass structures. Although we have determined the relative magnitude of the M y  

eft and M~,  we are of course interested in the expectation for their absolute magnitudes. 
This depends on the origin of the lw R = 2 effective Higgs field, X. If £ = ~'R~R the 
Majorana masses of Tables 2 and 3 are given in units (~R)(~R)/M where M is the 
mass scale governing the appearance of higher dimension operators, typically the string 
scale or Mr'lanck. Given the success of the unification of gauge couplings at a scale 
of O( 1016 GeV) it is reasonable to choose (VR) = O(1016 GeV) leading to the scale 
1013-1014 GeV for the Majorana mass scale. This in turn implies the unit of mass for 
the light neutrinos masses given in Tables 4, 5 is (4 - 0.4) eV for a top quark of 
0(200)  GeV. This means that it is quite reasonable for the heaviest neutrino to have a 
mass of the magnitude needed for structure formation (i.e. of O(10 eV) ) [ 17]. 

Remarkably, as we will now discuss, for a subset of the solutions the light neutrinos 
have masses and mixing angles of the magnitude needed to explain solar neutrino 
oscillations. The experimental data on solar neutrino observations may be explained if 
the masses and mixing angles of the neutrinos fall in the following ranges [20]: 

(a) The small mixing angle solution for the MSW effect requires 

2 6m~e~ ~ (0.6-1.2) x 10 -5 eV 2 , (14) 

sin 2 20~,e ~ (0.6-1.4) x 10 -2 . (15) 

(b) Vacuum oscillations can solve the solar neutrino if 
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2 6m~,~ ~ (0.5-1.1) × 10 -1° eV 2 , (16) 

sin 2 20ue >/0.75. (17) 

Consider the small mixing angle solution. If  the lightest two neutrinos are to have 
masses in the range needed for the MSW explanation of the solar neutrino deficit we 
need a suppression factor of O(10 -3) relative to the heaviest neutrino corresponding 
to O(e  4) for ~ ~ 0.23. We see this is true for case 3 and is marginally consistent too 
with cases 7, 8 and 10. We may go further and consider whether the expectation for the 
mixing angle between the two lightest generations is in the range needed by the MSW 

eft effect. The mixing angle of relevance to the solar neutrino problem is (Rtota 1) ue. In most 
of the cases presented in the tables the light neutrino mixing matrices exhibit negligible 

eft 
vs,-Ve mixing and (Rtotal)p.  e i s  mainly determined by the charged lepton mixing angle 
mex/-~--~u. Although of the correct order of magnitude, in detail this mixing is larger 
than that required to solve the solar neutrino problem. However in cases 1, 2, 4, 5 and 6 
the contribution to uu-ue mixing from the neutrino sector is not entirely negligible and 
we have 

pelf m~ 
- - to ta l )#e  ~ '  - -  O ( g  3)  . (18) 

For ~ = 0.23 and taking the constant of proportionality to be unity, one gets sin 2 20e u i> 
1.3 × 10 -2 which is within the limits of the mixing required to explain the solar neutrino 
problem. 

The vacuum solution to the solar neutrino problem as well as the neutrino oscillation 
solution to the atmospheric neutrino problem require large mixing angles of O( 1 ). As 
may be seen from the Tables this is not to be expected in the U(1) family symmetry 
presented here. Large mixing angles can be obtained but only by fine tuning of the 
Yukawa couplings. As we have stressed although we cannot rule out such a possibility 
we consider it unlikely as no symmetry requires such fine tuning. 

Finally we comment on how one may choose between the ten different cases discussed 
above. As we have stressed they correspond to possible choices for the 2 charge. Is 
this constrained? In [ 12] the constraints of anomaly freedom were used to limit the 
possible fermion mass matrix structures coming from the U( 1 ) ~ .  We would like to 
extend this to the case of interest here involving additional right-handed neutrinos and 
the 2: field. However as these are SU(3) ® SU(2)L @ U( I )  singlets they do not affect 
the anomaly structure discussed in [ 12]. If, however, the gauge group is extended 6 to 
SU(3) ® SU(2)L ® SU(2)R @ U(1) there will be constraints on the X charge. From 
the left-right symmetry we may conclude that the contributions to the SU(2)~U(1)FD 
and SU(2)~U(1)FD anomalies are the same from the matter fields. In [12] the Higgs 
fields had to be neutral under U( 1)VD to maintain anomaly cancellation (via the Green 
Schwarz mechanism [21]) .  The same consideration applied to the £ field requires 
Qz + 2al to be zero corresponding to the cases 1 and 7. We note that these cases were 
consistent with neutrino masses generating structure and solar neutrino oscillations via 
the MSW effect. 

6 This seems inevitable if we are to explain the symmetric mass matrix structure assumed here. 
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