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content and an additional discrete Z3 symmetry (instead of R-parity), which allows lepton

number violating terms and results in non-zero Majorana neutrino masses. We investigate

whether the currently measured values for lepton masses and mixing can be reproduced.

We set up a framework in which Lagrangian parameters can be initialised without recourse

to assumptions concerning trilinear or bilinear superpotential terms, CP-conservation or

intergenerational mixing and analyse in detail the one loop corrections to the neutrino

masses. We present scenarios in which the experimental data are reproduced and show

the effect varying lepton number violating couplings has on the predicted atmospheric and

solar mass2 differences. We find that with bilinear lepton number violating couplings in the

superpotential of the order 1 MeV the atmospheric mass scale can be reproduced. Certain

trilinear superpotential couplings, usually, of the order of the electron Yukawa coupling can

give rise to either atmospheric or solar mass scales and bilinear supersymmetry breaking

terms of the order 0.1 GeV2 can set the solar mass scale. Further details of our calculation,

Lagrangian, Feynman rules and relevant generic loop diagrams, are presented in three

appendices.
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1. Introduction

Once one allows for R-parity [1] violation in the Minimal Supersymmetric Standard Model

(MSSM) there is an embarrassingly large class of possible models. Building on the sem-

inal paper of Ibanez and Ross [2], it has been shown that there are three preferred ZN

symmetries which can be imposed when constructing the MSSM with minimal content of

particle fields [3]: one is the standard R-parity under which the Standard Model particles

are R-parity even while their superpartners are R-parity odd, the second is a unique, Z3

symmetry which results in the MSSM with lepton number violation; denoted here as (

/L-MSSM ) and the third is a Z6 symmetry refered to as proton hexality. The former guar-

antees a stable lightest supersymmetric particle and thus missing energy at colliders, the

Z3 and Z6 lead to proton stability1 together with neutrino flavour changing phenomena

and masses. In this paper we want to investigate in detail neutrino masses and mixings in

the /L-MSSM motivated from the current observations of neutrino flavour metamorphosis

and proton stability [4].

In the /L-MSSM a single neutrino mass arises at tree level due to the mixing between

neutrinos, gauginos and higgsinos [5 – 8]. This tree level mass is proportional to the bilinear

lepton number violating superpotential parameter, µi, squared, which is assumed to be of

order2 of MeV, and is suppressed by the “TeV” supersymmetry breaking gaugino masses,

resulting in a low energy see-saw mechanism with light neutrino and heavy neutralino

masses. The other two neutrino masses arise from quantum loop corrections made up from

lepton number violating superpotential or supersymmetry breaking vertices. We shall refer

to these neutrinos with the term “massless neutrinos”.

Calculations for neutrino masses in the /L-MSSM have been addressed many times in

the literature. The tree level set-up of the model was first given in [5], and details worked

out later in [6 – 8]. Calculations of the one-loop neutrino masses including only the bilinear

superpotential term are given in [11 – 15]. Corrections involving the trilinear superpotential

Yukawa couplings λ, λ′ considered mostly in the mass insertion approximation [17 – 20] and

under the assumption of CP-conservation and flavour diagonal soft SUSY breaking terms.

Renormalization group induced corrections to neutrino masses have been studied in [21 –

23]. There is of course a vast number of articles using these calculations, or simplified

1Baryon number violating operators of the form QQQL or ŪŪ D̄Ē are not allowed in /L-MSSM .
2This can be naturally accommodated by employing an R-symmetry [9, 10, 23].
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versions of them, in order to describe the solar and atmospheric neutrino puzzles [24, 26 –

34].

In this work, we calculate the complete set of the one-loop corrections to the massless

neutrinos without resorting to approximations about CP-conservation or bilinear superpo-

tential operator dominance. The outline of our paper is as follows: in section 2 we show

how to define the Lagrangian parameters in the fermion sector of the theory, by starting

out with physical input parameters like the lepton masses and mixing angles. In section 3

we describe our renormalization procedure and present analytical results for the one-loop

corrections together with approximate formulas (if necessary) for individual diagrams. We

compare with the current literature. In section 4 we present numerical results for the size

of the input parameters when these account for the neutrino experimental data, and in

section 5 draw our conclusions. Finally, in three appendices, we set out our notation, in

appendix A, the Lagrangian and the mass terms, and present the relevant Feynman rules

in appendix B. Furthermore, in appendix C we present a pedagogical brief introduction to

the Weyl spinor calculation that are employed throughout this paper and present general

one-loop self energy corrections that are employed in this paper and can be used elsewhere.

The Fortran-code for calculating the neutrino masses used in this article has been

made publicly available3. It can be used in adding additional constraints when other

/L-MSSM processes are studied.

2. Fermion masses and mixings in /L-MSSM

Fermion masses and couplings of the general /L-MSSM are defined by the superpotential

of the model, vacuum expectation values (vevs) of the neutral scalar fields and the soft

supersymmetry breaking gaugino masses. The most general superpotential takes the form

W /L−MSSM = (2.1)

εab

(
1

2
λαβkLa

αLb
βĒk + λ′

αjkLa
αQb,x

j D̄k,x + (YU )jkQ
a,x
j Hb

2Ūk,x − µαLa
αHb

2

)
,

where Qa x
i , D̄x

i , Ūx
i , La

i , Ēi, Ha
1 , Ha

2 are the chiral superfield particle content, i = 1, 2, 3 is

a generation index, x = 1, 2, 3 and a = 1, 2 are SU(3) and SU(2) gauge indices, respectively.

The simple form of (2.1) results when combining the chiral doublet superfields with common

hypercharge Y = −1
2 into La

α=0,...,3 = (Ha
1 , La

i=1,2,3). µα is the generalized dimensionful

µ-parameter, with µ0 and µi, i = 1, . . . 3 the lepton number conserving and violating parts

respectively, and λαβk, λ′
αjk, (YU )ij are Yukawa matrices with εab being the totally anti-

symmetric tensor ε12 = +1.

Physical masses of the fermion fields depend on appropriate λ, λ′, µ and YU couplings

multiplied by the vevs of the neutral scalar fields. As it has been shown in [36, 35],

by unitary rotation in the 4-dimensional space of the neutral scalar components of Lα,

3Please send e-mail to Steven.Rimmer@durham.ac.uk or Janusz.Rosiek@fuw.edu.pl for further

details regarding the code and guidelines. The Fortran source files can be obtained from

http://www.ippp.dur.ac.uk/∼dph3sr/rpv or from http://www.fuw.edu.pl/∼rosiek/rpv/rpv.html
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it is possible to set three of the four vacuum expectation values of the Lα fields to zero,

leaving two real non-zero vevs in the neutral scalar sector and, simultaneously, significantly

simplifying its structure. It is convenient to apply such a transformation not just to scalars,

but to the whole chiral superfield,

Lα = UαβL
′
β , (2.2)

and redefine the Lagrangian parameters to absorb the matrix U in eq. (2.2) such that it

does not appear explicitly in the Lagrangian,

λ̃γδj = λαβjUαγUβδ ,

λ̃′
γij = λ′

αijUαγ , (2.3)

µ̃γ = µαUαγ .

The tildes and primes on the fields are then dropped.

In a standard way, both isospin components of Q superfield and of Ū , D̄ superfields

can each be redefined by a unitary rotation in the flavour space. As such, it is possible to

diagonalise the Yukawa couplings (YD), (YU) (note that (YD) ≡ λ′
0ij in the basis with

two non-vanishing scalar vevs) and absorb the rotation matrices in field redefinitions such

that they do not appear explicitly in the Lagrangian, apart from a specific combination of

rotation matrices which appear in the gauge and Higgs charged currents which is identified

as the CKM matrix. In this basis, it is clear how to initialise the Lagrangian parameters, as

the diagonal values are then proportional to the measured values for the up- and down-type

quarks. For more details concerning this point the reader should consult appendix A.

In the lepton sector, however, the same approach cannot be adopted for two reasons.

Firstly, even with a diagonal Yukawa matrix, the charged lepton masses are given by three

eigenvalues of the larger (5 × 5) mass matrix which includes mixing between the charged

fermionic components of the L, Ē and the charged gauginos and higgsinos. Thus, the

diagonal entries in the Yukawa matrix would not correspond exactly to the masses of the

physical mass eigenstates which describe the charged leptons. Secondly, the L-basis has

already been fixed by the property that three neutral scalar vevs should be zero, so we are

not free to absorb a rotation matrix4.

Still, there is some freedom remaining due to the fact that the Ē-base has not, as yet,

been fixed. Flavour rotation in the Ē-space can be used to remove some of the unphysical

degrees of freedom in YL ≡ λ0ij coupling5. As every general, complex matrix, λ0ij can

be uniquely decomposed (polar decomposition theorem [38]) into a product of positive

4This is not entirely true: it is actually possible to perform a rotation into the vanishing sneutrino vev

basis and to diagonal Yukawa couplings [37]; it is possible to use the freedom in the 3-dimensional lepton

space, which we used in ref. [35] to diagonalise the sneutrino masses, in order to make the lepton Yukawa

couplings diagonal. But then one will have a 10× 10 mass matrix for the neutral scalars because this 3× 3

rotation is, in general, complex (unitary). We want to avoid this complication by all means.
5If the decomposition is unique, then all unphysical degrees of freedom will be removed, because then

the full U(3) rotation is absorbed into Ē and every rotation in the Lα-space will “destroy” some of the

properties we want to keep.
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semi-definite Hermitian matrix λ̂0 and unitary matrix VE :

λ0ij = λ̂0ik (VE)kj , (2.4)

VE can be then adsorbed in the chiral superfield Ē redefinition and the ‘hat’ over λ is

dropped.

After all the transformations described above, we arrived to the form of the superpo-

tential (2.1) where (YD)ij = λ′
0ij and (YU)ij are flavour-diagonal and (YL)ij = λ0ij is

hermitian. Other coupling constants are free and, in general, complex parameters.

2.1 Block diagonalising

In the following sections we outline the procedure by which the parameters of the general

hermitian matrix (YL)ij can be initialised such that the correct values are obtained for

the charged lepton masses and the MNS mixing matrix [39]. In order to do that, it will

be convenient to diagonalise the neutralino-neutrino and chargino-charged lepton mass

matrices in two stages. First an approximate, unitary or biunitary transformation will

result in matrices in block diagonal form; the standard model and supersymmetric fermion

masses being split into separate blocks. Then, a second transformation will diagonalize the

blocks.

The block diagonalisation can be performed for any complex matrix. Every general

matrix M can be diagonalised by two unitary matrices V,U :

V †MU = M̂ = diag(m1,m2, . . . ,mn) =

(
M1 0

0 M2

)
, (2.5)

where m2
i are eigenvalues of MM † and M1,M2 are two diagonal sub-matrices of a chosen

size. Hence, one can always rewrite M in the form

M = V M̂U † = V A†AM̂B†BU † , (2.6)

where A and B are some unitary matrices of the form

A =

(
A1 0

0 A2

)
, B =

(
B1 0

0 B2

)
, (2.7)

with sub-matrices A1,2, B1,2 which are also unitary. Thus we can write

M = QMBP † , (2.8)

where

MB = AM̂B† =

(
A1M1B

†
1 0

0 A2M2B
†
2

)
, (2.9)

is block diagonal in form and Q = V A†, P = UB†. Of course, MB is not uniquely defined.

– 5 –
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Block diagonalisation is particularly useful in case of hierarchical matrices, when one

can find analytical approximate formulae for P,Q matrices in eq. (2.8). Consider for

example a hermitian matrix (other cases can be considered analogously) of the form:

M =

(
mA mB

m†
B mC

)
, (2.10)

where mA = m†
A, mC = m†

C and ||mA|| À ||mB ||, ||mC ||. In such case, the approximately

(up to the terms O(||mB,C ||2/||mA||2)) unitary matrix U ,

U =

(
1 −(mA)−1mB

m†
B(mA)−1 1

)
, (2.11)

transforms M into approximately block-diagonal form:

U †MU =

(
mA+(mA)−1mBm†

B + mBm†
B(mA)−1 (mA)−1mBmC

m†
Cm†

B(mA)−1 mC − m†
B(mA)−1mB

)

+O
( ||mB,C ||3

||mA||2
)

≈
(

mA 0

0 mC − m†
B(mA)−1mB

)
+ O

( ||mB,C ||2
||mA||

)
. (2.12)

We kept explicitly the O
(
||mB,C ||2
||mA||

)
term in (22) element of block-diagonalised form of M

as in many models mC ≡ 0 and in this case it will be the only term which survives (the

see-saw mechanism [40, 41] for neutrino masses being the most famous example of this

hierarchical structure).

As a next step one needs to find matrices that diagonalise the sub-blocks in eq. (2.12).

We employ this method in the next sections where we present explicit perturbative (1st

order) results for analogs of the matrices Q and P in eq. (2.8), in both neutral and charged

fermion masses in the /L-MSSM . In passing that, although we use only the approximate

analytical expressions for the see-saw type expansions above, in our numerical predictions

we perform exact block diagonalization, iteratively finding the correct, and strictly unitary,

matrices P,Q of eq. (2.8).

2.2 Fermion masses and mixing

In the following section we shall present the tree level phenomena of the fermion sector

in the /L-MSSM . We consider in turn, the neutral and charged fermion sectors and the

patterns of the mass matrices. We consider the tree level eigenvalues, particularly for the

neutral sector and the approximate block diagonalisation of the matrices. In section 2.3,

we use the approximate block diagonalisation to consider the way in which the MNS matrix

appears in this model, as it is now a sub-block of a larger unitary matrix, the MNS matrix

itself is not generally unitary. This analysis is then used to ensure the correct low energy

parameters are reproduced, despite mixing between the leptons and heavy fermion fields.

– 6 –
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In section 3 we consider the effect of radiative corrections at the order of one-loop. After

setting out the renormalisation framework, we present in turn various loop diagrams and

highlight the important contributions. The full numerical analysis has been completed,

however approximate expression are presented for each contribution which demonstrate

from where the important effects arise. We will consider the case where the tree-level effect

dominates and gives rise to the larger, atmospheric mass squared difference, in which case

the solar mass squared difference is generated by the loop effects. We also show that it is

possible for loop effects to be greater than the tree level affects, in which case both mass

squared differences are generated at the level of one-loop.

2.2.1 Neutral fermion sector

In the lepton number violating extension of the minimal supersymmetric standard model

( /L-MSSM ) the neutrinos (νL1,2,3), neutral higgsinos (νL0 and h̃0
2) and neutral colourless

gauginos (W̃0 and B̃) mix. To transform the fields into the mass basis, the 7×7 neutralino

mass matrix must be diagonalised. In the interaction basis,

L ⊃ −1

2

(
−iB̃ , −iW̃0, h̃0

2, νLα

)
MN




−iB̃

−iW̃0

h̃0
2

νLβ


 + H.c , (2.13)

where the full 7 × 7 mass matrix reads

MN =

(
MN4×4 dN 4×3

dT
N 3×4 03×3

)
, (2.14)

and the sub-blocks are, in the basis (−iB̃ ,−iW̃0, h̃
0
2, νLα ≡ h̃0

1, νi) [35]

MN 4×4 =




M1 0 gvu

2 − gvd

2

0 M2 − g2vu

2
g2vd

2
gvu

2 − g2vu

2 0 −µ0

− gvd

2
g2vd

2 −µ0 0


 , (2.15)

and

dN4×3 =




0 0 0

0 0 0

−µ1 −µ2 −µ3

0 0 0


 . (2.16)

There is no quantum number to differentiate between neutralinos and neutrinos, the states

of definite mass do not have definite lepton number and, as such, there is no reason to think

of neutrinos and neutralinos separately. However, for realistic values of parameters, four

of the mass eigenstates are heavy and three are very light, so it is convenient to refer to

them as to neutralinos and neutrinos, respectively. In addition to this, it can be seen that

the mixing is sufficiently small that these three light neutral states are the states which

– 7 –
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dominantly appear in the decay of the W boson to charged leptons, differentiating between

the eigenstates we refer to as neutrinos from those we refer to as neutralinos.

The matrix, ZN , which rotates the fields in (2.13) from the interaction basis to the

mass eigenstate basis is given by



−iB̃

−iW̃ 0

h̃0
2

νLα


 = ZN




κ0
1
...

κ0
7


 . (2.17)

where κ0
1,...,7 are seven neutral two component spinors.

The matrix MN , as it has been split in eq. (2.14), contains block diagonal terms

that conserve lepton number and off diagonal blocks which violate lepton number. The

latter are expected to be very small, as they are strongly constrained by the bounds on

neutrino masses or other lepton number violating processes. Thus, one can use the block

diagonalization procedure of section 2.1 and, neglecting terms of the order
d2

N

M2
N

and assume

ZN to be of the form

ZN =

(
1 −M−1

N dN

d†NM †−1
N 1

)(
ZN 0

0 Zν

)
. (2.18)

The first matrix on the r.h.s. of eq. (2.18) which is the analog of the matrix Q† in (2.8)

block diagonalises the neutrino-neutralino mass matrix:
(

1 M †−1
N d∗N

−dT
NM−1

N 1

)
MN

(
1 −M−1

N dN

d†NM †−1
N 1

)
≈

(
MN 4×4 0

0 meff
ν 3×3

)
, (2.19)

where the “TeV” see-saw suppressed effective 3× 3 neutrino mass matrix is given by [6 – 8]

meff
ν = −dT

NM−1
N dN =

v2
d(M1g

2
2 + M2g

2)

4Det[MN ]




µ2
1 µ1µ2 µ1µ3

µ1µ2 µ2
2 µ2µ3

µ1µ3 µ2µ3 µ2
3


 . (2.20)

Physical neutralino masses and mixing matrix ZN can be found in a standard manner by

numerical diagonalization of the matrix MN . Diagonalization on meff
ν can be easily done

analytically, leading to two massless and one massive neutrino, with its mass given by:

mtree
ν =

∣∣∣∣
v2
d(M1g

2
2 + M2g

2)

4Det[MN ]

∣∣∣∣ (|µ1|2 + |µ2|2 + |µ3|2) , (2.21)

and the mixing matrix Zν is

Zν =




|µ2|√
|µ1|2+|µ2|2

|µ1||µ3|√
|µ1|2+|µ2|2

√
|µ1|2+|µ2|2+|µ3|2

|µ1|√
|µ1|2+|µ2|2+|µ3|2

−|µ2|µ1

µ2

√
|µ1|2+|µ2|2

µ1µ∗
2|µ3|

|µ1|
√

|µ1|2+|µ2|2
√

|µ1|2+|µ2|2+|µ3|2
|µ1|µ∗

2

µ∗
1

√
|µ1|2+|µ2|2+|µ3|2

0 − µ1|µ3|
√

|µ1|2+|µ2|2
µ3|µ1|

√
|µ1|2+|µ2|2+|µ3|2

|µ1|µ∗
3

µ∗
1

√
|µ1|2+|µ2|2+|µ3|2




(
X2×2 0

0 1

)
,

(2.22)

– 8 –
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where X2×2 is an SU(2) rotation. At tree level, the five massive eigenstates are unam-

biguously defined by diagonalising the mass matrix. The two massless eigenstates, due

to the fact that they are degenerate in mass, are not fully defined. The eigenstates are

chosen to be orthogonal, but it is still possible to perform a rotation on the eigenstates.

As such, statements about the lightest neutrinos, ν1,2, are basis dependent. Because of

this, the one loop contributions to M̂N pq are also basis dependent. By choosing a different

linear superposition of the tree level eigenstates, the one-loop contributions to the 2 × 2

sub-lock M̂N (5,6)(5,6) referring to the massless neutrinos would be redistributed between

themselves. This freedom of basis choice is only present at tree level and is not physical.

Thus, we start from X2×2 = 12×2 and after calculating the radiative corrections to the

neutralino-neutrino mass matrix we adjust X2×2 such that the off-diagonal one-loop con-

tribution δMN 56 is approximately zero (this can be done iteratively). As such the effect of

rediagonalising the neutrino sector after loop corrections are added is small. As we discuss

in section 2.3, choosing the basis in this manner helps also to define the lepton Yukawa

couplings in terms of measured quantities like lepton masses and the UMNS mixing matrix.

The result that two of the neutrino masses vanish at the tree level is not the effect of

the approximations made [6 – 8]. The explicit calculation of the secular equation for the

full neutralino-neutrino mass matrix MN , results in

det(MN − λ) = −λ2

[
λdet(MN−λ) − (µ2

1 + µ2
2 + µ2

3)

(
λ(M1 − λ)(M2 − λ) +

g2
2v

2
d

4
(M1 − λ) +

g2v2
d

4
(M2 − λ)

)]
.

Hence, MN always has at least two zero modes. This can be seen directly, by noting that

the final three columns of the 7 × 7 mass matrix are proportional to each other.

Finally, the physical eigenstates of neutralinos and neutrinos are approximately given

by, respectively:

ZN




κ0
1

κ0
2

κ0
3

κ0
4


 =




−iB̃

−iW̃0

h̃0
2

νL0


 + M−1

N dNνLi , (2.23)

and

Zν




κ0
5

κ0
6

κ0
7


 = −d†NM †−1

N




−iB̃

−iW̃0

h̃0
2

νL0


 + νLi , (2.24)

with νL0 = h̃0
1 is the down type Higgsino. For a quick view of definitions see also ap-

pendix A.

2.2.2 Charged fermion sector

In a similar fashion to the neutral sector, charged leptons, gauginos and higgsinos mix.
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The full 5 × 5 chargino mass matrix in the basis of ref. [35] is given by

MC =

(
MC 2×2 0

dC 3×2 mC 3×3

)
, (2.25)

with the lepton number conserving sub-locks

MC 2×2 =

(
M2

g2vu√
2

g2vd√
2

µ0

)
, mC ij =

vd√
2
λ0ij , (2.26)

and the lepton number violating being

dC 3×2 =




0 µ1

0 µ2

0 µ3


 . (2.27)

The rotation matrices which transform between interaction eigenstates and mass eigen-

states are given by 


−iW̃+

h̃+
2

eRi


 = Z+




κ+
1
...

κ+
5


 , (2.28)

(
−iW̃−

eLα

)
= Z∗

−




κ−
1
...

κ−
5


 , (2.29)

and, as such, the mass matrix is diagonalised

M̂C = Z†
−MCZ+ , (2.30)

where the ‘hat’ denotes that the matrix is diagonal.

The matrices Z+ and Z− can be determined by the requirement that they should

diagonalise the Hermitian matrices M†
CMC and MCM†

C , respectively. The off-diagonal

blocks in the latter two combinations are small comparing to the diagonal ones, so one can

again use block-diagonalising approximation of section 2.1. Keeping just the leading terms

in 1/MC expansion, one obtains

Z− ≈
(

1 −M †−1
C d†C

dCM−1
C 1

)(
Z− 0

0 Zl−

)
,

Z+ ≈
(
Z+ 0

0 Zl+

)
. (2.31)

Substitution of (2.31) in (2.30) results in the physical effective mass matrix

M̂C =


Z†

−MCZ+ + O
(

d2
C

MC

)
O

(
dCmC

MC

)

O
(

d2
C

M1
C

)
Z†

l−mCZl+ + O
(

d2
C

mC

M2
C

)

 ≈

(
Z†
−MCZ+ 0

0 Z†
l−mCZl+

)
.

(2.32)
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Then the matrices Z+,Z− can be again determined as diagonalising matrices for the

M †
CMC , MCM †

C products, with the additional requirement that physical fermion masses

are real and positive. Matrix mC in our basis is hermitian and as such Zl+ = Zl− ≡ Zl.

Furthermore, physical eigenstates of fermion fields are given by

Z+

(
κ+

1

κ+
2

)
≈

(
−iW̃+

h̃+
2

)
,

Zl




κ+
3

κ+
4

κ+
5


 ≈




eR1

eR2

eR3


 , (2.33)

and

Z∗
−

(
κ−

1

κ−
2

)
≈

(
−iW̃−

eL0

)
+ M−1T

C dT
C




eL1

eL2

eL3


 ,

Z∗
l




κ−
3

κ−
4

κ−
5


 ≈ −d∗CM−1∗

C

(
−iW̃−

eL0

)
+




eL1

eL2

eL3


 . (2.34)

For a quick view of the full charged fermion mass matrix see appendix A.

2.3 Constructing the MNS matrix

The lepton mixing matrices appear in the charged current gauge boson vertex. Whereas

in the lepton number conserving case the UMNS matrix is a 3 × 3 matrix describing the

mixing of three charged leptons into three neutral leptons, the R-parity violating case has

the mixing of five charged fermions into seven neutral fermions, of which the UMNS is a

3 × 3 sub-matrix, only approximately unitary. Thus,

L ⊃ g2√
2

W+
µ ν̄ ′

Liσ̄
µe′Li + H.c =

g2√
2

W+
µ κ̄0

p σ̄µ (UMNS)pq κ−
q + H.c , (2.35)

where primes refer to interaction eigenstates, and the MNS matrix,

UMNS = Z†
νZ∗

l + O
(

dcdN

MCMN

)
, (2.36)

is defined in terms of the mixing matrices introduced in (2.22) and below (2.32).

As the first term in eq. (2.36) is unitary, unitarity violation in UMNS is at most of the

order of dcdN

MCMN
∼ mtree

ν

M SUSY
M2

Z tan2 β ∼ 10−12 tan2 β, which is well below sensitivity of

current (or planned) experiments determining the MNS matrix.

2.4 Input parameters

The parameters characterising the light charged fermions are already very well known;

masses are measured with very good accuracy. In contrast to this, the neutrino sector is

– 11 –
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not, as yet, known with the same precision. There is however, information about the mass

square difference between neutrinos and the mixing between different interaction states,

and upcoming experiments should improve our knowledge of neutrino parameters in the

near future. Furthermore, supersymmetric fermions have not yet been discovered, and their

masses and couplings (those which are not determined by supersymmetric structure of the

model) are entirely unknown. In the /L-MSSM both sectors mix, and thus the question

of effective and convenient parameterisation arises. In this section, we will consider the

parameters in the Lagrangian which effect the tree level masses and mixing. Later, we

discuss parameters which affect the neutral fermions at the order of one loop.

As the SUSY sector has not been measured directly, it is convenient to take as an input

the following set of Lagrangian parameters: M1, M2, tan β, µ ≡ µ0. With µi of the order

of MeV, corrections to the supersymmetric sector from the light fermion sector are see-saw

suppressed and negligible. Chargino and neutralino masses and lepton-number conserving

couplings are thus to a very good accuracy determined by the above four parameters.

Reconstructing their values from the actual experimental measurements has already been

discussed in the literature [42].

In a next step, neutrino masses can be parameterised at tree level by setting the lepton-

number violating parameters µi, i = 1, 2, 3. In the future, when the neutrino mass matrix

is known to better accuracy, it could become more convenient to reconstruct µi from the

experimental data - for that, the knowledge of radiative corrections to the neutrino masses

would be vital.

To initialize the Lagrangian parameters in the light charged lepton sector, one needs

to input the lepton masses, me, mµ, mτ and the mixing matrix UMNS. The lepton rotation

matrix Zl can be then calculated from (2.36)

Zl ≈ Z∗
ν U∗

MNS . (2.37)

As we have seen from (2.22), the neutrino mixing matrix, Zν is defined at tree level up to a

U(2) rotation for a given set of µi. The same matrix is then defined completely at one-loop

where all the neutrinos are no longer degenerate. Thus, a complete definition of Zl requires

a one-loop corrected neutrino mixing matrix. Then, the light charged fermion mass matrix

mC in (2.26), which is hermitian and proportional to the Yukawa matrix λ0ij =
√

2
vd

mC ij

is given by:

mC = Zl diag(me,mµ,mτ ) Z†
l . (2.38)

eq. (2.38) holds under the assumption that one-loop corrections to Zl are small. Otherwise,

one needs to find mC iteratively, such that physical (i.e. loop corrected) Zν and Zl produce

the correct experimentally measured UMNS matrix of eq. (2.37).

As we have repeatedly mentioned so far, it is important to notice that the matrix mC

is not diagonal.
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3. One-loop neutrino masses in /L-MSSM

3.1 Renormalization issues

As we have already seen in the previous section, the presence of the bilinear lepton number

violating mass term in the superpotential, µi, triggers the mixing between neutrinos and

neutralinos. Diagonalization of the full 7 × 7 neutralino mass matrix generates four heavy

“neutralino” masses and one “neutrino” mass at tree level. Furthermore, the two remaining

neutrinos become massive at the one loop level due to the presence of other lepton-number

violating couplings and masses.

Physical neutralino masses are defined as poles of the inverse propagator. The appro-

priate formula can be derived from (C.6) and the definition for the one-particle irreducible

(1PI) self-energy functions,

κ0
q κ0

p
= i σ̄µ qµ ΣL

Npq(q
2) , (3.1)

κ0
q κ0

p
= −i ΣD

Npq(q
2) , (3.2)

where the momentum qµ flows from left to right, and σµ are the Pauli matrices6. The

requirement that the determinant of the inverse propagator is zero, leads to the expression

for the physical neutralino mass matrix

mpole
Npq = mbare

Nq (µR)δpq +
[
<eΣD

N pq(m
2
Np) − mNp ΣL

N pq(m
2
Np)

]
, (3.3)

where µR is the renormalization scale and ΣD,L
N qq the 1PI contributions to the effective action

defined (3.1), (3.2). mNp are the diagonal tree level neutrino masses (they are zero for the

two massless neutrinos). Our renormalization analysis is similar to the one in ref. [11]. We

have also studied an on-shell renormalization analogous to the one in [44]. In this scheme,

the physical mass formula is similar to (3.3).

Some additional remarks regarding the present are in order:

a) The two one-loop induced neutrino masses are perfectly defined at one loop through

eq. (3.3). We have proven both analytically and numerically that these masses are

finite and numerically that they are gauge independent at one-loop order. This result

remains valid also when one takes into account mixing between them.

b) The one-loop formula for neutralino masses (3.3), receives, in addition to diago-

nal corrections, off diagonal ones, mpole
Nqq → mpole

Nqp. Physical neutralino and neu-

trino masses are then obtained from the diagonalization of mpole
Nqp as m̂pole

N = (1 +

δZ†
N )mpole

N (1 + δZN ). Then the corrected mixing matrix ZN has to be replaced

6We use Weyl spinor notation in our calculation. The corresponding formulae for Weyl-propagators and

vertices are defined in appendix C and in [45].
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by ZN → (1 + δZN )ZN everywhere in our expressions for the self energies. How-

ever, the corrections to ZN matrix are of the order δZNpq ∼ δmNpq/(mNpp − mNqq)

and are small if the tree level masses are not degenerate. In our case this happens

only for the two massless neutrinos, so we include off-diagonal corrections, shifting

Zν → (1+δZν )Zν where δZν has only the upper 2×2 block non-trivial7. As discussed

previously in section 2, this is actually necessary to fix the neutrino basis. The re-

sulting corrections to lighter neutrino masses are formally two-loop, but numerically

important and have to be taken into account. One should note that, as mentioned

in the previous point, one-loop corrections to the light neutrino mass sub-matrix are

finite - going beyond the approximation described above would require performing

formal renormalization on the neutral fermion mass matrix. Finally, similar consid-

erations apply to the case of the charged fermion mixing matrix Zl in (2.37).

c) As we have already mentioned, in our neutral scalar basis [35] the sneutrino vevs are

zero at tree level. Non-zero sneutrino vevs will appear in general at one-loop. As a

result, the neutrino tree level mass in eq. (2.21) should be corrected. However, loop

induced vev contributions do not arise for the massless neutrinos-they are generated

outside the 2 × 2 light neutrino mass matrix-which is the case we are interested in.

d) We choose µR = MZ as renormalization scale in (3.3) were we input the DR param-

eters for mbare
Nq (µR) at tree level. These parameters are taken after diagonalising the

full neutralino mass matrix in eq. (2.14).

e) The infinities which arise in the calculation of the one loop corrections, must be

absorbed in parameters of the tree-level Lagrangian. It is possible to check that there

are no infinities which must be absorbed where the mass matrix contains zero entries.

The divergent parts of the integrals do not depend on the masses of the particles in

the loop integral and as such the infinities only arise when a diagram exists in the

interaction picture with only a mass insertion on the fermion in the loop. That is, the

symmetry which prevents a term existing in the classical Lagrangian also causes the

divergent part to cancel in the mass basis. This guarantees that it is always possible

to absorb the infinite part of the integral in the bare parameters of the classical

Lagrangian.

Having considered the above points we find that for the calculation of the one-loop

corrections to the eigenstates which are massless at tree level, it is sufficient to consider

corrections to the bilinear terms purely between these eigenstates. We find that it is

possible to neglect the one-loop effects which correct other entries of the neutral fermion

mass matrix, describing neutralino masses of neutralino-neutrino mixing.

7Possible exception is the case when µi parameters are very small, so that one-loop corrections to the

neutrino masses are of the order of tree level neutrino mass or bigger. In this case one needs to rediagonalise

the full 3 × 3 neutrino mass matrix. This is done numerically in section 4 when presenting our results for

µi = 0.
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3.2 One loop contributions to the massless neutrino eigenstates

The mixing of neutrino, neutral Higgsino and neutral gaugino interaction eigenstates has

been shown to result in two mass eigenstates with zero mass. It is important to note the

composition of the massless eigenstates; they consist solely of neutrino interaction states,

not containing any contribution from the fermionic components of the gauge supermulti-

plets or the Higgs supermultiplets. This can be stated, entirely equivalently as the rotation

matrix in eq. (2.18) becomes [6]

ZN{1→4}{5→6} = 0 . (3.4)

Radiative corrections at one-loop will affect all three of the light mass eigenstates (‘neu-

trinos’) and will lift the degeneracy between the massless eigenstates. The possibility that

the hierarchy of mass differences in the neutrino sector can be explained in the /L-MSSM is

considered. If the ‘atmospheric’ mass difference were to result from the tree level splitting

and the ‘solar’ mass difference originated from loop effects, the distinct hierarchy could be

accommodated within the model. If the solar mass difference is to originate purely from

loop corrections to massless eigenstates, we must find loop corrections from diagrams with

external legs comprised purely of neutrino interaction states. A small caveat is required to

compare with the literature. In a general basis where the sneutrino vacuum expectation

values are not zero, the massless neutrinos are comprised of interaction state neutrinos

and the interaction state Higgsino which carries the same quantum numbers. In the ‘mass

insertion’-type diagrams, this means that only diagrams without mass insertion or with a

mass insertion which changes the original neutrino external leg to the down-type Higgsino

can contribute to the solar mass [15], if the assumption that the solar mass arises purely

from loop corrections to eigenstates which were massless at tree level.

The one-loop, one-particle irreducible self energies needed in (3.3) are calculated in

appendix C, see (C.14), (C.15), (C.18), (C.19). Results are presented for general vertices

and for a general Rξ gauge. One then has to just replace these vertices with the appropriate

Feynman rules of appendix B in order to obtain ΣD,L. Since this, rather trivial replacement,

leads to rather lengthy formulae for the self energies, we refrain for presenting the full

expressions here. Instead we examine in detail the dominant contributions to the massless

neutrinos, i.e., contributions to ΣD. Of course, our numerical analysis exploits the full

corrections.

From the expressions (C.14), (C.15), it can be seen that these corrections are propor-

tional to the mass of the fermion in the loop. As such, the diagrams that give a large

contribution are the diagrams with sufficiently heavy fermions compared to any suppres-

sion from the vertices. In addition, standard model neutral fermion masses arise entirely

due to Supersymmetry breaking in the /L-MSSM so corrections are expected to be large

for individual diagrams or a certain amount of fine tuning is required for large SUSY soft

breaking masses.

In the next section of this section we analyze analytically all the possible contributions

to ΣD
N for the massless neutrinos, isolating the dominant ones. For simplicity, we shall

confine ourselves only to the diagonal parts of ΣD
N , although our numerics account also for

the off diagonal effects in the massless neutrino sub-block.
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3.2.1 Neutral fermion - neutral scalar contribution

Diagrammatically this contribution reads as:

κ0
r κ0

r

H0
s

κ0
q κ0

p

κ0
r κ0

r

A0
s

κ0
q κ0

p

This can be easily calculated by using the formula (C.14) and with the Feynman rules

read from appendix B.1. The result for the full contribution to the massless neutrinos,

p = q = {5, 6}, is:

ΣD
N pp = −

7∑

r=1

5∑

s=1

3∑

i,j=1

mκ0
r

(4π)2
×

[
e

2cW
ZN(4+i)pZN1r−

e

2sW
ZN2rZN(4+i)p

][
e

2cW
ZN(4+j)pZN1r−

e

2sW
ZN2rZN(4+j)p

]

[
ZR(2+i)sZR(2+j)sB0(m

2
κ0

p
,m2

H0
s
,m2

κ0
r
) − ZA(2+i)sZA(2+j)sB0(m

2
κ0

p
,m2

A0
s
,m2

κ0
r
)
]

, (3.5)

where H0
1,...,5 and A0

1,...,5 are the CP-even and CP-odd neutral scalar fields, respectively,

each containing a mixture of Higgs and sneutrino fields. The matrices ZN , ZR, ZA are those

that diagonalize the neutralino, CP-even, and CP-odd Higgs boson mass matrices and are

defined in (2.22) and (A.8), (A.10), respectively (for analytic expressions for ZR, ZA see

eq. (3.14) and (3.25) of [35]). Individually, the neutral fermion - neutral scalar diagrams

in (3.5) are large, however, if there were no splitting between the mass of CP-even and

CP-odd neutral scalar eigenstates there would be an exact cancellation between the two

diagrams. Notice also that the whole contribution is multiplied by a neutralino mass

which is generically of the order of the electroweak scale. It is rather instructive to simplify

eq. (3.5) by expanding around m2
H0

s>2
and m2

A0
s>2

as,

ΣD
N pp ' −

7∑

r=1

3∑

i=1

m3
κ0

r

4(4π)2
Z2

ν ip

[
e

cW
ZN 1r −

e

sW
ZN 2r

]2 ∆m2
ν̃i

(m2
ν̃i − m2

κ0
r
)2

ln
m2

κ0
r

m2
ν̃i

, (3.6)

where ∆m2
ν̃i = m2

ν̃+i
−m2

ν̃−i
is the CP even - CP odd sneutrino square mass difference. Its

analytical form can be derived from eqs. (3.14) and (3.25) of [35] to be

∆m2
ν̃i =

B2
i tan2 β

M2
A − M2

i

+ O(B4
i /M6

i ) , (3.7)

where MA is the CP-odd Higgs mass and Mi the soft breaking slepton masses which are

diagonal in our basis, see ref. [35]. A similar expression has been derived in ref. [18]. Zν and
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ZN are defined in (2.18) and (2.22). The contribution (3.6) is driven by the lepton number

violating terms in the soft supersymmetry breaking sector, Bi and the whole expression

for the neutral scalar contribution collapses approximately to

ΣD ∼
( α

4π

)
mκ0

(mκ0

M

)2 B2
i tan2 β

(m2
κ0 − M2)2

, (3.8)

where M is the sneutrino or Higgs and mκ0 the neutralino masses in the loop, respectively.

The importance of this contribution has already been pointed out in refs. [15, 19]. The

mass insertion approximation diagram reads as

B̃/W̃ 0 B̃/W̃ 0

ν̃L

h0
2

ν̃L

h0
2

νL νL

where the ‘blobs’ indicate insertions of Bs, scalar and gaugino masses. The neutral scalar-

fermion contribution is thus a) suppressed from the CP-even-CP odd sneutrino mass square

difference, i.e, the lepton number violating soft SUSY breaking parameter Bi, b) is enhanced

by tan2 β, and finally c) suppressed by three powers of SUSY breaking masses.

The approximate formula (3.6) does not in general capture the full neutral fermion-

scalar correction. There are other corrections of the same order of magnitude, including

the Higgs bosons in s = 1, 2 states. This expansion is more complicated than (3.6) and is

given explicitly in section 4, eq. (4.10), where we discuss our numerical results and compare

with approximate formulae of this section.

Ignoring other than the above diagrams possible cancellations, [Bi tan β] must be

smaller than the 0.1% of the sneutrino mass squared, M2, in order to have mν ≤ 1 eV. On

the other hand, numerically, if the ‘solar’ neutrino mass difference were to be generated

by this diagram, then Bi ∼ O(1)GeV2. Because Bi is in principle not constrained from

above by other means, we conclude that this diagram dominates the whole contribution

especially when the trilinear couplings, λ, λ′, are negligible.

3.2.2 Charged fermion - charged scalar contribution

This contribution reads diagrammatically as:

κ+
r κ−r

H+
s

κ0
q κ0

p

Using the generic formula the self energy, (C.14), the Feynman rules from appendix B.2,

and also by applying eq. (3.4), we find that the full diagonal contribution for p = q = {5, 6},
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is:

ΣD
N pp =

8∑

s=1

5∑

r=1

3∑

i,j,k,l=1

3∑

α,β=0

mκ−
r

(4π)2

(
λαlkZ

∗
H(2+α)sZ+(2+k)rZN(4+l)p

)
×

[
e

sw
ZH(2+i)sZ

∗
−1rZN(4+i)p−λβijZH(5+j)sZ

∗
−(2+β)rZN(4+i)p

]
B0(m

2
κ0

p
,m2

H+
s
,m2

κ−
r
),

(3.9)

where ZN , Z+, Z−, ZH are rotation matrices in the neutral fermion, charged fermion,

and charged scalar sectors, and defined in (2.18), (2.30), and (A.11), respectively. It is

important to notice that following (2.30) we obtain, Z+(2+k)r ' Zl kr, with r > 2 and

hence the contribution (3.9) is proportional to the mass of a light fermion, mκ−
r

. In

addition, since ZN(4+l)p ' Zν lp, (2.18) shows that the contribution (3.9) contains the

rotation mixing matrix Zν , which has been presented analytically in (2.22). In order to

analyze the dominant pieces from the charged scalar - fermion contribution, it is instructive

to consider two cases: λijk = 0 and λijk 6= 0.

In the case where the trilinear superpotential couplings are absent the charged lepton

loop has a small contribution to the massless neutrino eigenstates. From the discussion

above and (3.9), we obtain at the limit of small lepton masses (compared to the SUSY

breaking ones),

ΣD
N pp =

8∑

s=1

3∑

i,j,k,l=1

5∑

r>2

mκ−
r

(4π)2
(λ0lk Z∗

H2s Zl kr Zν lp) ×

[
e

sW
ZH(2+i)sZ

∗
−1rZν ip − λ0ijZH(5+j)sZ

∗
−2rZν ip

]
B0(0,m

2
H+

s
, 0) , (3.10)

where λi0j = −λ0ij is the lepton Yukawa coupling obtained from eq. (2.26). We can anal-

yse further equation (3.10) by Taylor expansion with respect to m2
H+

s
(commonly named

“Mass Insertion Approximation”, or MIA, see, for example, review in ref. [43]) and us-

ing (2.27), (2.30) and (A.11), (A.12) ,

Z−1r '
(

d†C
MC

Zl

)

1r

' µi

MC
, (3.11)

Z∗
H2sZH(2+i)sm

2
H+

s
= M2

H+ 2,2+i ' µiml tan β , (3.12)

Z∗
H2sZH(5+i)sm

2
H+

s
= M2

H+ 2,5+i ' Bi tan β , (3.13)

where ml is the lepton mass and MC a generic gaugino mass. Hence, the neutrino couples to

either the right handed component of the electron, the W̃− or the Higgsino with couplings

proportional to µi. All the above can be diagrammatically depicted with mass insertions

as:
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eR W̃−

ẽLh−
1

νL νL

∼ ml
µi

MC

Bi

M2
H+

tan β , (3.14)

eR h̃−
1

ẽRh−
1

νL νL

∼ ml
µi

MC

µiml

M2
H+

tan β , (3.15)

where M2
H+ is a generic charged Higgs mass. Obviously, both the fermion and the scalar

propagator are suppressed by lepton number violating couplings. This contribution is then

compared with the one previously considered with neutral particles in the loop. Indeed, in

order to account for the atmospheric neutrino mass scale it must be µi ¿
√

Bi ∼ O(1 GeV)

and hence the charged particle contribution is always smaller than the neutral one. Our

finding here is in general agreement with the discussion in refs. [27, 19]. Finally, notice the

Goldstone contribution vanishes since this always conserves lepton number.

If the trilinear superpotential lepton number violating coupling λijk is turned on, then

a lepton - slepton loop contribution is generated. In contrast with the pure bilinear case,

the trilinear contribution may dominate depending on the magnitude of λ. In this case the

full contribution in (3.9) results in

ΣD
N pp =

8∑

s=1

5∑

r=1

3∑

i,j,k,l,m,n=1

mκ−
r

(4π)2
×

[
λmikZ

∗
H(2+m)sZ+(2+k)rZN(4+i)p

]
×

[
λlnjZH(5+j)sZ

∗
−(2+n)rZN(4+l)p

]
B0(m

2
κ0

p
,m2

H+
s
,m2

κ−
r
) . (3.16)

Again, making use of (2.22), (2.30) we see that the contribution is proportional to the light

lepton masses and involves the neutrino mixing matrix. We can go a little bit further and

perform MIA expansion of (3.16) as we did before. The contribution then reads,

ΣD
N pp =

3∑

i,j,k,l,m,n=1

mlq

(4π)2
λmikλlnjZν ipZν lpZl kqZ∗

l nq ×

[
(M2

H+)2+m,5+j

(M̂2
H+)2+m − (M̂2

H+)5+j

ln
(M̂2

H+)2+m

(M̂2
H+)5+j

]
, (3.17)

where mlq is a light charged lepton mass, (M2
H+) is the charged scalar mass matrix in

the interaction basis and is given by (A.12). In our notation (M̂2
H+)5+j ≡ (M̂2

H+)5+j,5+j,

and so on. In the denominator and logarithm of (3.17) one has the difference of diagonal

elements mm and jj of LL and RR slepton mass matrices, respectively. The approxima-

tion (3.17) is proportional to the mixing matrix elements (M2
H+)2+m,5+j which is nothing

other than the LR mixing elements of the charged slepton mass matrix (A.12). These

matrix elements are (almost) unbounded from experiments when m = j in contrast to the

case m 6= j.
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This contribution has been discussed largely in the literature, see for instance [18 –

21, 24, 27, 29]. It is instructive to draw the mass insertion approximation diagram corre-

sponding to (3.17):

eRk eLn

ẽRjẽLm

νLp νLp
i l

In the case of dominant λikk coupling,

ΣD
N ∼ λ2m2

l

µ0 tan β + Al

M2
, (3.18)

with Al being a trilinear SUSY breaking coupling and M a generic soft SUSY breaking

mass for a slepton. Comparing (3.18) with (3.14), (3.15) of the previous case with λ →
0, we see that the latter is suppressed with at least a factor µi/M . In the case where

the final two indices are different, λikl, k 6= l there is an extra suppression from slepton

intergenerational mixing and the couplings must be stronger if the lepton in the loop is

lighter. Our calculation is general enough to allow for these effects too. Furthermore, it is

obvious from (3.17) that the τ − τ̃ -contribution, λi33, is the dominant one and this coupling

tends usually to be strongly bounded.

3.2.3 Quark - squark contribution

In general, this contribution originates from up and down quarks and squarks in the loop:

uLr uRr

ũs

κ0
q κ0

p

dLr dRr

d̃s

κ0
q κ0

p

The up-quark-squark contribution vanishes identically, for the mass eigenstates which

are massless at tree level. This can be easily seen by applying the master equation (3.4)

to the corresponding [neutralino-up-quark-up-squark] vertex given explicitly in the ap-

pendix B.3.

The case of down quark-squark contribution (the right Feynman diagram above) can

be divided in two cases depending on the dominance of the trilinear superpotential con-

tribution: If λ′ → 0 and the only source of lepton number violation is the bilinear term

then the contribution vanishes. Note that this does not necessarily disagree with the find-

ings of refs. [13, 12] where apparently this contribution is claimed to be the dominant

one. Recall that we are working in the basis of [35] where the sneutrino vevs are zero and

thus we cannot directly compare, at least graph by graph with this work. In the case of

ref. [12] for example, the bilinear term, µiLiH2 is rotated away. This rotation generates
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new, non-negligible superpotential trilinear couplings which is the case we are about to

consider. Hence, if λ′
ijk 6= 0, then the situation changes dramatically. Following (C.14),

the Feynman rules for the down type quarks of the appendix B.3, we find that the most

general contribution to the massless neutrinos, p = q = {5, 6}, reads as,

ΣD
N pp =

3∑

i,j,k,n,m=1

6∑

s=1

3mdk

(4π)2

[
λ′

jikλ
′
nkmZ∗

d̃is
Zd̃(3+m)sZN(4+j)pZN(4+n)p

]
×

B0(m
2
κ0

p
,m2

d̃s
,m2

dk
) , (3.19)

where the rotation matrix in the down squark sector, Zd̃, is defined in (A.13), and ZN

in (2.18). It is much more instructive to Taylor expand the full contribution (3.19) around

a constant SUSY breaking mass into parameters of the original Lagrangian. In the limit

of small neutrino and quark masses, this results in

ΣD
N pp =

3∑

j,n,k,m=1

Zν jp Zν np

(4π)2

[
3 mdk

λ′
jikλ

′
nkm

(M2
d̃
)i,3+m

(M̂2
d̃
)i − (M̂2

d̃
)3+m

ln
(M̂2

d̃
)i

(M̂2
d̃
)3+m

]
, (3.20)

where the mass matrix M2
d̃

is defined in (A.14). Notice that (M2
d̃
)i,3+m are the elements

of the LR mixing block of M2
d̃

and our notation reads (M̂2
d̃
)i ≡ (M2

d̃
)ii. The Feynman

diagram with quark and squark mass insertions representing (3.20) is:

dRk dLk

d̃Rmd̃Li

νLj νLn

Some remarks are in order: First the quark-squark contribution is proportional to neutrino

mixing through the matrix (2.22), and hence to possible hierarchies between µis. Second,

it is proportional to squark flavour mixing. Experimental results for K − K̄, and B − B̄

mass difference set severe constraints in the intergenerational squark mixings in the lepton

number conserving MSSM [(M2
d̃
)i,3+m must be small for i 6= m]. Although, our calculation

is as general as possible and allows for these effects we shall assume (M2
d̃
)i,3+m = 0, i 6= m in

our numerical results below. The quark-squark contribution may be dominant for sufficient

large λ′ couplings.

3.2.4 Neutral fermion - Z gauge boson contribution

The corresponding Feynman diagram is:

κ0
r κ0

r

Zµ

κ0
q κ0

p
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Due to the approximate unitarity of the neutrino sub-block of ZN , the contribution of this

diagram is suppressed either by the lightness of the particle in the loop or by the value of

the coupling. However, as we obtain from eq. (C.15) and appendix C, this contribution is

gauge dependent. The dependence again cancels the neutral fermion-scalar contribution

in (3.5) with the Goldstone boson (s = 1) in the loop. Although we prove this cancellation

numerically, it can be also shown analytically.

3.2.5 Charged fermion - W gauge boson contribution

The Feynman diagram for this contribution is:

κ+
r κ−r

Wµ

κ0
q κ0

p

Following (3.4) and the Feynman rules of appendix B.4, when the external legs are purely

neutrino interaction eigenstates (p, r = 5 or 6), there is no κ0-κ+ vertex. Hence, the

contribution of this diagram vanishes identically.

3.2.6 Summary of the one-loop radiative corrections to massless neutrinos

The total one loop contribution to massless neutrino masses is given by the sum of the

neutral scalar loop in (3.5), the charged scalar loop in (3.9), and the squark loop in (3.19).

The gauge boson contributions are negligible. If the trilinear superpotential couplings are

tiny then the dominant contribution arises from the neutral scalar fermion loop and is

proportional to CP-even — CP-odd sneutrino mixing [see eq. (3.6)]. If trilinear couplings

are not small, then depending upon their nature λ or λ′ dominate through lepton−slepton

[see eq. (3.16)] and quark − squark [see eq. (3.20)] diagrams.

3.3 Comparison with literature

Our work improves on other work which can be found in the literature as no assumptions

or approximations need to be made. Calculations can be performed in the most general

supersymmetric model with minimal particle content, without any assumption that matri-

ces are flavour diagonal, or that any complex phases are set to zero. We have not neglected

any terms or phases in the neutral scalar sector [35], a basis was chosen in which to perform

the calculation that had a decoupled CP-odd and CP-even sector and two real vevs. In

choosing this basis, it is clear that the lepton Yukawa matrix is not, in general, diagonal

and the lepton mixing matrix does not come purely from the neutrino sector. This is in

contrast to previous work where, in whatever basis the calculation is performed, the lepton

Yukawa is chosen to be diagonal. In [14] assumptions are made in the soft sector, such as

intergenerational mixing being zero, which allows a basis to be chosen where the Yukawa

matrices are diagonal. Similarly, in [18, 19] there is the assumption of CP conservation in

the neutral scalar sector.
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Many diagrams are suggested in the literature as being important in generating a

correct solar mass difference. Under the assumption that the solar mass difference comes

solely from loop corrections to eigenstates which are massless at tree level, in a general

basis the external legs must consist purely of neutrino and down-type Higgsino interaction

eigenstates (in the basis with sneutrino vevs rotated to zero the external legs must consist

purely of interaction state neutrinos). As such, when diagrams are presented with ‘mass

insertions’, it is clear that any diagrams with insertions coupling the neutrino to an up-type

Higgsino or gaugino on the external leg will not contribute to the solar mass difference at

one loop. In a basis where sneutrino vevs are not zero, the diagrams with an insertion

mixing between interaction state neutrinos and the down-type Higgsino contribute to the

radiative correction of massless tree level eigenstates. In the basis where sneutrino vevs

are zero this contribution is included in the trilinear vertex, λ(′).

Many papers [18 – 21, 27] note the contribution of the loops driven by trilinear couplings

λ(′) and produce expressions, often with flavour mixing suppressed, that agree with the

expressions given here.

The contribution to the charged scalar loop from bilinear couplings is also widely

noted. Whether a contribution is due to bilinear or trilinear couplings is a basis dependent

statement [20]. We agree with the results in [14, 19, 12], however in our basis the diagrams

in [14, 12] are accounted for in the trilinear loops.

The importance of the neutral scalar loop has also been noted previously. We agree

with the general result of [16, 17] that a sneutrino mass difference will give rise to a

radiative correction in the neutrino sector and with [19] that this loop can be the dominant

contribution. The neutral scalar contribution is included in the analysis presented in [13],

but is not discussed in [14].

The role of tadpole corrections is stressed in [13]. If we assume the solar mass difference

arises from the loop corrected ‘massless’ neutrinos, we can see that the tadpoles do not play

a role the determining its magnitude. In the interaction picture, there is no να-να-Higgs

vertex, so the tadpole contributions vanish. Of course, the tadpoles will affect the other

heavy neutral fermions.

A certain class of two-loop diagrams and resulting effects on bounds for lepton number

violating couplings have been considered [25]

4. Numerical results

In this section we present our numerical results for the neutrino masses. As we have

already explained, in our most general analysis we use the MNS matrix defined by neutrino

oscillations as an input. Of course this matrix is not accurately known, but its general

‘picture’ has been emerging during the last five or so years with angles and the 3σ allowed

ranges of the neutrino oscillation parameters from a combined, global data, analysis [49],

reading,

sin2 θ12 = 0.24 − 0.40 , sin2 θ23 = 0.34 − 0.68 , sin2 θ13 ≤ 0.046 , (4.1)

∆m2
21 = (7.1 − 8.9) × 10−5 eV2 , |∆m2

31| = (1.4 − 3.3) × 10−3 eV2 . (4.2)
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Figure 1: Neutrino mass scales: tree level dominance

In our analysis we fix the neutrino mixing angles to reproduce the tri-bimaximal mixing

scenario of ref. [50] ,

sin2 θ12 =
1

3
, sin2 θ23 =

1

2
, sin2 θ13 = 0 , (4.3)

in agreement with (4.1); the resulting predictions for neutrino mass squared differences are

then compared with (4.2), to see whether the values chosen for the input parameters give

results in agreement with current experimental limits. At present, there is no experimental

evidence for CP-violation in the leptonic sector; as such, although our analysis is general

enough to accommodate these effects, in what follows, we shall assume that they are

negligible.

In addition to the experimental inputs for the quark and lepton fermion masses and

mixings, soft supersymmetry breaking masses and couplings must also be initialised. We

follow the benchmark SPS1a [51] where

M0 = 100 GeV , M1/2 = 250 GeV , A0 = −100 GeV , tan β = 10 , µ0 > 0 ,

(4.4)

and read the low energy SUSY breaking and superpotential parameters at low energies

using the code of ref. [52]. The input parameters of primary interest are those which

violate lepton number. In the basis of [35], these are,

µi , Bi , λijk , λ′
ijk , hijk , h′

ijk , (4.5)

where the last two, h and h′ are the trilinear lepton number violating parameters in the

supersymmetry breaking part of the Lagrangian. Apart from these latter parameters, which

concern trilinear couplings of scalar particles, all others can be used to set the atmospheric

neutrino mass2 difference or the solar mass2 difference. There are two main cases:

• Tree level dominance: the atmospheric mass2 difference originates from tree level

contributions to neutrino masses (figure 1).

• Loop level dominance: The atmospheric mass2 difference originates from one-loop

contributions to neutrino masses (figure 2).
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Figure 2: Neutrino mass scales: loop-level dominance

In either case, the solar mass2 difference originates from loop effects from the lepton number

violating parameters in (4.5).

The correct neutrino mass hierarchy can be always generated by the proper choice of

just two of the lepton number violating parameters from the list of (4.5) — one of which sets

the scale of the atmospheric mass2 difference, the second setting the solar mass2 difference.

Of course, in the most general case all parameters can contribute.

After choosing the lepton number violating (LNV) parameters, the method described

in section 2.4 is then employed to determine the charged lepton Yukawa matrix. In general

it needs to be non-diagonal, in order to reproduce correct masses of both neutral and

charged leptons and the UMNS mixing matrix. The non-diagonal Yukawa matrix (thus

also non-diagonal charged lepton mass matrix), may easily give rise to effects which are

already subject to strong experimental bounds; tree level lepton flavour processes, such as

µ → eγ or µ → eee, are not suppressed and loop corrections to the electron decays will

have contributions proportional to the tau mass. To avoid such problems, the specific cases

considered in the next sections are those for which the large mixing in the lepton sector,

as seen in the MNS matrix, has its origin purely in the neutral sector, and the charged

lepton Yukawa couplings remain flavour-diagonal. The formalism we have described thus

far allows the correct masses and mixing of charged leptons to be initialised. However,

this will lead, in general, to an off-diagonal lepton Yukawa matrix. These, less natural,

initial parameters are not necessarily ruled out and within the framework set out above,

it is entirely possible to perform the calculations as described. However, we now prefer to

consider a set of parameters for which we do not rely on cancellations in the charged lepton

sector to make the model phenomenologically viable. The simplest way in which this can

be achieved, is to find LNV parameters for which lepton Yukawas are diagonal.

From eq. (2.36), for the case where the lepton Yukawa is diagonal and therefore Zl is

the unit matrix, we see that

Zν = U †
MNS , (4.6)

up to higher order terms. Using the MNS matrix as an input, it is possible to see which

ratios of entries in the mass matrix give rise to the correct leptonic mixing, being,

meff
ν = Z∗

ν diag(m1,m2,m3) Z†
ν = mk UMNS ki UMNS kj . (4.7)

– 25 –



J
H
E
P
0
8
(
2
0
0
6
)
0
0
5

1x10-3

2x10-3

3x10-3

4x10-3

5x10-3

6x10-3

 2.8  3  3.2  3.4  3.6  3.8  4  4.2

∆m
2 A

T
M

 [e
V

2 ]

µ1 [MeV]

All LNV=0 except µ1

a)

1x10-3

2x10-3

3x10-3

4x10-3

5x10-3

6x10-3

 2.8  3  3.2  3.4  3.6  3.8  4  4.2

∆m
2 A

T
M

 [e
V

2 ]

µ1 [MeV]

All LNV=0 except µ1

a)

6x10-5

7x10-5

8x10-5

9x10-5

1x10-4

1.9x105 2.0x105 2.1x105

∆m
2 S

O
L 

[e
V

2 ]

B1 [MeV2]

All LNV=0 except µi fixed, B1 varied

b)

6x10-5

7x10-5

8x10-5

9x10-5

1x10-4

1.9x105 2.0x105 2.1x105

∆m
2 S

O
L 

[e
V

2 ]

B1 [MeV2]

All LNV=0 except µi fixed, B1 varied

b)

6x10-5

7x10-5

8x10-5

9x10-5

1x10-4

2x10-5 3x10-5 4x10-5 5x10-5

∆m
2 S

O
L 

[e
V

2 ]

λ133

All LNV=0 except µi fixed, λ133 varied

c)

6x10-5

7x10-5

8x10-5

9x10-5

1x10-4

2x10-5 3x10-5 4x10-5 5x10-5

∆m
2 S

O
L 

[e
V

2 ]

λ133

All LNV=0 except µi fixed, λ133 varied

c)

6x10-5

7x10-5

8x10-5

9x10-5

1x10-4

2x10-5 3x10-5 4x10-5 5x10-5

∆m
2 S

O
L 

[e
V

2 ]

λ’133

All LNV=0 except µi fixed,  λ’133 varied

d)

6x10-5

7x10-5

8x10-5

9x10-5

1x10-4

2x10-5 3x10-5 4x10-5 5x10-5

∆m
2 S

O
L 

[e
V

2 ]

λ’133

All LNV=0 except µi fixed,  λ’133 varied

d)

Figure 3: Predictions for atmospheric and solar neutrino mass2 differences (∆m2
ATM) and (∆m2

SOL)

for the tree level dominance scenario vs. variations of Lepton Number Violating (LNV) parameters

as displayed in figure titles. The 3σ gray (green) band consistent with experiment is displayed for

comparison, as well as the full (gray or red curve) and approximate (dark or blue curve) results. a)

Only µ1 is varied. For all other figures, µi is fixed as in hierarchy (A) as explained in the text and

b) B1, or c) λ133, or d) λ′
133, is varied respectively.

For example, to set the atmospheric scale at tree level, we can see from eq. (2.20) that as

long as the hierarchy of µi matches the ratios of any of the rows in the MNS matrix, the

mass matrix follow the correct pattern to be consistent with the observed mixing matrix.

If a second mass scale is set up using the pattern dictated by one of the other rows of the

MNS matrix, the full MNS matrix will be produced upon diagonalisation.

It is worth noting the nontrivial fact that such an approach, i.e. generating correct

structure of neutrino masses and mixings, while keeping FCNC processes in charged lepton

sector suppressed, is at all possible.

4.1 Tree level dominance scenario

At tree level, the mass of a neutrino can be set using µi parameters (2.21). The top left

panel in figure 3 shows how the value of (∆m2
ATM) varies with µ1 only, setting µ2,3 = 0.

The grey (or red in color) line is the result given by diagonalising the full neutralino matrix

in (2.14) and the dark (blue in color) line is given by (2.21). They agree perfectly in

figure 3a and thus only one line is shown. The shaded band shows the current 3σ limits.
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From eq. (2.21) it can be seen, however, that it is |µ1|2 + |µ2|2 + |µ3|2 which sets the mass

of the tree level neutrino and as such it is straightforward to set any hierarchy between the

µi and still maintain the same value for the atmospheric difference. To correctly reproduce

the MNS matrix, we choose as an input a very simple hierarchy between the µi parameters,

Hierarchy (A) : µ1 =
µ2√

2
=

µ3√
3

. (4.8)

The scale of all three µi is set such that a tree level neutrino of the correct mass is generated

which result in the observed atmospheric mass difference, being,

µ1 = 1.47 MeV , µ2 =
√

2 × 1.47 MeV , µ3 =
√

3 × 1.47 MeV . (4.9)

At tree level, this choice of hierarchy gives rise to the MNS matrix, up to the SU(2) rotation

described earlier, being driven solely by the neutral sector; the charged lepton mass matrix

is diagonal, and as such we have chosen a set of parameters within this basis which avoids

the possible phenomenological problems.

A further, single lepton number violating parameter can then be chosen to set the

scale of the solar mass2 difference. The question of the arbitrariness of the tree level

neutrino basis is complicated by the requirement that once the loop corrected mass matrix

is diagonalised, Zl being the unit matrix is consistent with the experimentally observed

MNS matrix. As only one further lepton number violating coupling is initiated, the ratios in

which the loop effects are distributed in the loop corrected mass matrix are approximately

determined by the tree level mixing matrix. As such we can determine an approximate

expression for the extra contribution to the full rotation matrix from rediagonalising the

loop effects. The further condition that the full rotation must reproduce the MNS matrix

allows us to fix the tree level basis.

The three further figures 3(b,c,d) show the range of possible parameters in this scenario.

In each of these plots, the set of µi are given the values (4.9) and another, single lepton

number violating coupling is varied. In each case, the gray (or red) line shows the full result

and the dark (blue) line is the result predicted by the approximate solutions. The fact that

λ133 and λ′
133 give the correct solar mass difference over a similar range of parameters is a

numerical coincidence. For this example, the factors from the different fermion masses in

the quark loop, colour counting and scalar mixing cancel each other.

The contribution of the neutral scalar loop discussed in section 3, results from cancel-

lations between the CP-even and the CP-odd diagrams and may includes contributions of

approximately the same order. As such, the approximation presented earlier in the text,

eq. (3.6), does not agree well with the full result. The discrepancy between the full result

and the approximate result reflects the fact that various contributions arise from differ-

ent places in the full calculation (e.g. the effect on the mixing matrices, the effect on the

sneutrino masses). The approximate result plotted in figure 3b is given by

ΣD
N pp ' −

7∑

r=1

3∑

i,j=1

mκ0
r
Z2

ν ip

4(4π)2

[
e

cW
ZN 1r −

e

sW
ZN 2r

]2

×
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([
∆m2

ν̃i

(m2
ν̃i − m2

κ0
r
)
−

m2
κ0

r
∆m2

ν̃i

(m2
ν̃i − m2

κ0
r
)2

ln
m2

κ0
r

m2
ν̃i

]
δij

+

[
B2

i sin2(β − α)

cos2 β(M2
H − M2

i )2
+

B2
i cos2(β − α)

cos2 β(M2
h − M2

i )2
− B2

i cos2 β

(M2
A − M2

i )2

]

×δij

M2
i ln M2

i − m2
κ0

r
ln m2

κ0
r

M2
i − m2

κ0
r

+

[
BiBj cos2(β − α)

cos2 β(M2
i − M2

h)(M2
j − M2

h)

]
M2

h ln M2
h − m2

κ0
r
lnm2

κ0
r

M2
h − m2

κ0
r

+

[
BiBj sin(β − α)

cos2 β(M2
i − M2

H)(M2
j − M2

H)

]
M2

H ln M2
H − m2

κ0
r
ln m2

κ0
r

M2
H − m2

κ0
r

−
[

BiBj

cos2 β(M2
i − M2

A)(M2
j − M2

A)

]
M2

A lnM2
A − m2

κ0
r
ln m2

κ0
r

M2
A − m2

κ0
r

)
. (4.10)

The approximate result for the charged scalar loop, given by eq. (3.17) agrees well with the

full result (figure 3c). However, as λ133 = −λ313, there are other diagrams which contribute

to the full result which are not included in the approximation. The approximate expression

captures the important effect. The agreement between the full result and the approximate

result, given by eq. (3.20) when varying λ′
133 (see Fig 3d) is very good, as the diagram

highlighted in the text is the only diagram which contributes.

4.2 Loop level dominance scenario

It is possible for both the solar and the atmospheric scales to be set by loop corrections.

This happens if the bilinear parameters µi are small enough. In this section we analyse

this case setting strictly µ1 = µ2 = µ3 = 0, so that the one-loop corrections to the full 3×3

neutrino mass matrix are finite. Otherwise a more involved renormalisation scheme has to

be implemented.

Again, we would like to set the Lagrangian parameters such that one can generate the

correct structure of the MNS matrix while keeping the charged Yukawa couplings flavour-

diagonal. This can be achieved if the neutrino mass hierarchy is governed by the trilinear

λ and λ′ couplings. For the diagrams dominated by trilinear couplings the flavour of the

external legs of the loop can be “swapped independently” of the flavour of the particles in

the loop, just changing the appropriate indices of the λ, λ′ matrices in the loop vertices.

Setting the λ and λ′ entries which control the couplings of the external legs in certain

hierarchies, one can ensure that also the ratios of the various entries in the one loop

corrected neutrino mass matrix are such that they give rise to the correct UMNS rotation

matrix.

The possible hierarchies are given by the rows of the MNS matrix and are, with a
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Figure 4: Same as in figure 3 but for the loop-level dominance scenario. All LNV parameters are

zero apart from a) λi33 that is varied in hierarchy (D). For all other figures, λi33 is fixed to a value

(see the text) consistent with the atmospheric mass2 difference and b) only λ′
i11 is varied in hierarchy

(B) or c) only λ′
i22 in hierarchy (B) or d) only λ′

i33 in hierarchy (B) in order to accommodate the

solar mass2 difference.

generic coupling λ
(′)
ijj as follows8,

Hierarchy (B) : λ′
1jj =

λ′
2jj√
2

=
λ′
3jj√
3

(4.11)

Hierarchy (C) : λ′
1jj =

λ′
2jj√
2

= −λ′
3jj√
3

(4.12)

Hierarchy (D) : λ1jj = −
√

2λ2jj , λ3jj = 0 . (4.13)

Due to the antisymmetry of the first two indices of λ it can only be chosen to follow

hierarchy (D) described above.

As the nature of the loop corrections due to Bi means that the external legs cannot

be swapped without affecting the flavour structure inside the loop, it is difficult to fix a

hierarchy of Bi in the Lagrangian which will automatically give rise to the correct ratios

in the one loop corrected mass matrix.

We consider first, the case where the atmospheric mass2 difference is set by λi33 in

hierarchy (D). The range of values for which the correct atmospheric mass difference is

8Couplings with λ
(′)
ijk, with j 6= k have only negligible contributions to neutrino masses and excluded

from our hierarchy list.
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Figure 5: Same as in figure 3 but for the loop-level dominance scenario. All LNV parameters are

zero apart from a) λ′
i33 that is varied in hierarchy (B). For all other figures, λ′

i33 is fixed to a value

(see the text) consistent with the atmospheric mass2 difference and b) only λ′
i11 is varied in hierarchy

(C) or c) only λ′
i22 in hierarchy (C) or d) only λi33 in hierarchy (D) in order to accommodate the

solar mass2 difference.

given is plotted in figure 4a. Note that although we plot on the x-axis λ133, the coupling

λ233 is also varying to keep the hierarchy (D) fixed. The fact that both λ133 and λ233

contribute is the reason the value of the coupling is only a little greater than the value

of λ133 which correctly reproduces the solar mass difference in the tree-level dominated

scenario.

The further three panels [figure 4(b-d)] have a fixed set of λi33 in hierarchy (D) giving

the atmospheric difference. Being,

λ133 = 6.7 × 10−5 , λ233 = −6.7 × 10−5

√
2

, λ333 = 0 . (4.14)

λ333 = 0 due to the antisymmetry between the first two indices, fitting hierarchy (D).

In addition to this, figure 4b varies λ′
111,211,311 in hierarchy (B) giving the solar mass2

difference. Again, we plot the solar mass2 difference against the value of λ′
111, however

λ′
211,311 are being varied at the same time. The two remaining panels take in turn different

sets of three λ′ couplings, λ′
i22 and λ′

i33. The final two indices determine which particle is

produced in the loop. As such, with a lighter particle in the loop, the couplings must be
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greater to compensate. We see that, in moving from one panel to the next figure 4(b→
d), to produce the same mass difference, a smaller value of the coupling is required with a

heavier particle in the loop. With the down quark in the loop (figure 4b) the value needed

for the coupling may result in large contributions to the neutrinoless double beta decay

rate as it is already approaching the excluded regime [53].

Finally, figure 5a, we show how the atmospheric mass2 difference can be set by the three

λ′
i33 couplings in hierarchy (B), plotting the result for the atmospheric mass2 difference

against λ′
133. Next, we set λ′

i33 to take the following values

λ′
133 = 3.25 × 10−5 , λ′

233 =
√

2 × 3.25 × 10−5 , λ′
333 =

√
3 × 3.25 × 10−5 .

(4.15)

The remaining three plots, figure 5(b,c,d), show the change in solar mass2 difference, as

sets of either λ′
i11,i22 in hierarchy (C) or the set λi33 in hierarchy (D) are varied.

5. Conclusions

An increasingly accurate picture of the neutrino sector, with masses much smaller than

the charged leptons and a distinctive mixing matrix in the W -vertex, is being discerned

by current experiments. We note that there are three preferred ZN symmetries in the

supersymmetric extension of the Standard Model with minimal particle content. Imposing

a Z2 symmetry results in the widely studied R-parity conserving MSSM, however another

preferred symmetry, Z3, gives rise to a Lagrangian which explicitly violates lepton number.

These interactions lead to neutrino masses, both through a ‘see-saw’ type suppression at

tree level and through radiative corrections. We have considered the most general scenario

in this model; no assumptions have been made concerning CP-violation or intergenerational

mixing, for example.

We present, in appendix A, the tree level mass matrices of the model and, in ap-

pendix B, the full set of Feynman rules for the neutral fermion interactions. The calculation

has been performed using two-component Weyl fermion notation; appendix C contains a

derivation of the propagators in this notation, included primarily for pedagogical reason,

and generic self-energy diagrams for scalar and gauge boson corrections to fermions.

In the basis set out in our previous work [35], we find that a non-zero neutrino mass will

arise at tree level unless all µi are zero and analyse in detail, the further contributions to

masses that come from loop corrections. We show that the magnitude of the contributions

due to neutral fermion loops, examined in section 3.2.1 are determined by the size of

the bilinear supersymmetry breaking parameter, Bi; that loops with charged fermions,

described in section 3.2.2, have a contribution due to trilinear lepton number violating

couplings in the superpotential, λijk; and that quark loops, section 3.2.3, are determined

by the trilinear lepton number violating coupling λ′
ijk. Each of these contributions can be

dominant. In sections 3.2.4 and 3.2.5, we consider the gauge loops and why they do not

give large contributions to neutrinos which are massless at tree level. We derive expressions

for the full calculation, which form the basis of our numerical analysis. We also present
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approximate expressions in each section, which are simple, compact formulas encoding the

important information pertaining to each diagram. In our presentation of the results, as

seen in figures 3, 4, 5 these simple expressions are shown to be in good agreement with the

full result.

The lepton sector in the /L-MSSM is much more involved than the lepton number

conserving MSSM. Mixing between leptons, gauginos and higgsinos ensures the question

of initialising Lagrangian parameters must be carefully considered. A framework has been

constructed in section 2 to correctly reproduce the charged lepton masses and MNS matrix

for any set of lepton number violating couplings.

In constructing the framework in which to perform the calculation it is clear that there

will be, in general, large intergenerational mixing in the lepton Yukawa matrix, this allows

the possibility of unsuppressed tree level flavour violating processes, already subjected to

strong bounds. To circumvent this problem we considered sets of Lagrangian parameters

for which the MNS matrix has its origin solely in the neutral sector, the lepton Yukawa

matrix being diagonal. The three rows of the MNS matrix correspond to three sets of ratios

between entries in the loop corrected mass matrix which will give the correct MNS angles.

It is possible to set these ratios by setting hierarchies in the couplings between generations.

With the condition that it must be possible to change the flavour of the external legs of

the diagram without affecting the flavour structure of the loop, there is some freedom in

choosing which group of Lagrangian parameters we set in each hierarchy.

Lepton number conserving parameters were fixed to be the SPS1a benchmark point,

and we have investigated the effect of varying the lepton number violating couplings, as

seen in figures 3–5. We have shown that values for lepton number violating couplings exist,

which give the correct atmospheric and solar mass2 difference, charged lepton masses and

mixing, which are not already excluded by existing studies of low energy bounds. There

are two distinct scenarios that achieve this: the tree level dominance scenario, in which

the atmospheric scale is set at tree level and the solar scale set by radiative effects, and

another, the loop level dominance scenario, in which both the atmospheric and solar scales

are set by radiative corrections.

In the tree level dominance scenario, we choose the µi parameters to be of the order of

1 MeV, such that the correct result for the atmospheric mass2 difference is obtained. They

are chosen to obey a certain hierarchy, which ensures the mixing matrix is consistent with

observed MNS.

In addition to this, a further, single lepton number violating coupling can set the

scale of the solar mass2 difference by determining the contribution of the appropriate loop

diagram. It is possible to generate loop diagrams of the appropriate scale, by including

either a non-zero λ,λ′ or B coupling. We find that the correct solar scale can then be set

by any of

B1 ∼ 0.21GeV2 ∼
[
300µ1

]2
,

λ133 ∼ 3.4 × 10−5 ∼ ye ,

λ′
133 ∼ 3.2 × 10−5 ∼ 0.1yd , (5.1)
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where ye,d is the Yukawa coupling of either the electron or the down quark, presented here

merely for the sake of comparison.

In the second case, the correct masses and mixing for both charged and neutral fermions

can be achieved without a massive neutrino at tree level. The solar and atmospheric mass2

differences both arise from radiative corrections at one loop, using loop contributions whose

value is determined by sets of λ or λ′ couplings in given hierarchies, such that the observed

MNS is generated. Firstly, we show that we can set the atmospheric scale with a set of λ

couplings of the order of the electron Yukawa coupling, then find the solar scale is correctly

set by λ′ couplings of the order of the down quark Yukawa coupling.

Alternatively, the atmospheric scale can be set by λ′ couplings,

λ′
133 =

λ′
233√
2

=
λ′

333√
3

= 3.25 × 10−5 ∼ 0.1yd , (5.2)

and the solar mass2 difference can be generated by another set of λ′ couplings,

λ′
122 =

λ′
222√
2

= −λ′
322√
3

∼ 6.5 × 10−4 ∼ 2yd , (5.3)

or a set of λ couplings of the order of the electron Yukawa.

We include some comments on how this work compares with previous work in the

literature. We highlight where our results agree with statements made in the literature

and comment on results presented in different bases.

The study of neutrino masses will provide the basis for further work concerning lepton

number violating phenomena. The ranges of values for lepton number violating parameters

required to produce the correct masses and mixing, will be reflected in processes such as

tree level lepton flavour violating decays and will have repercussions concerning rare events

such as neutrinoless double beta decay. This will make a valuable link between collider

experiments and upcoming neutrino experiments. In this paper, we have made a framework

for these investigations.
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A. The Lagrangian and the mass matrices of the /L-MSSM

We strictly follow the notation of refs. [23, 35]. The /L-MSSM superpotential is given

by eq. (2.1). The main discussion of this paper is confined in the lepton sector, but for
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completeness we define here also the mass basis in the quark sector. To this end, we rotate

the four quark superfields to a basis where both λ′
0ij and (YU )ij are diagonal

D′
L −→ Z∗

dL
DL , D̄′ −→ ZdR

D̄ ,

U ′
L −→ ZuL

UL , Ū ′ −→ Z∗
uR

Ū . (A.1)

By absorbing a rotation matrix into the Lagrangian parameters, one can write down the

superpotential (2.1) as

W =
1

2
εabλαβjLa

αLb
βĒj + λ′

αijL1
αQ2x

i D̄x
j − λ′

αkjK
∗
ikL2

αQ1x
i D̄x

j − εabµαLa
αH2

b

+ (YU )ij Q1x
i H2

2Ūx
j − (YU )kj KkiQ

2x
i H2

1Ūx
j , (A.2)

where λ′
0jk and (YU)ij are diagonal matrices and L1 (L2) is the neutrino (electron) com-

ponent of the SU(2) doublet. The charged current part of the Lagrangian,

LW =
e√
2sW

ūLiKijσ̄
µW+

µ dLj + H.c , (A.3)

diagrammatically reads (in Weyl spinor notation) as,

Wµ uLi

dLj

:
ie√
2sW

Kijσ̄
µ

(A.4)

with Kij = Z∗
uLkiZ

∗
dLkj being the CKM matrix. We rotate all fields in the basis where

sneutrino vevs are zero. Then the soft supersymmetry breaking terms are,

LSSB = −
(
M2

L̃

)
αβ

ν̃∗
Lαν̃Lβ −

(
M2

L̃

)
αβ

ẽ∗LαẽLβ − m2
H2

h0∗
2 h0

2 − m2
H2

h+∗
2 h+

2

−
(
m2

Ẽc

)
ij

ẽ∗RiẽRj −
(
m2

Q̃

)
kl

KikK
∗
jlũ

∗z
Liũ

z
Lj −

(
m2

Q̃

)
ij

d̃∗zLid̃
z
Lj

−
(
m2

D̃c

)
ij

d̃∗zRid̃
z
Rj −

(
m2

Ũc

)
ij

ũ∗z
Riũ

z
Rj

[
− (hu)ij ũy

Lih
0
2ũ

∗y
Rj + (hu)kj Kkid̃

y
Lih

+
2 ũ∗y

Rj − hαβkν̃LαẽLβ ẽ∗Rk − h′
αjkν̃Lαd̃Lj d̃

∗
Rk

+h′
αkjK

∗
ikẽLαũLid̃

∗
Rj + Bαν̃Lαh0

2 − BαẽLαh+
2

+
1

2
M1B̃B̃ + M2W̃

+W̃− +
1

2
M2W̃

0W̃ 0 +
1

2
M3G̃

RG̃R + H.c.

]
, (A.5)

where Bα is the four-component bilinear term Bα = (B0, Bi) and h, h′ are trilinear soft

breaking couplings. In the basis of [35], in addition to vanishing sneutrino vevs, one obtains

also diagonal sneutrino soft breaking mass terms,
(
M2

L̃

)
ij
≡

(
M̂2

L̃

)
ij

is given in eq. (2.25)

of [35]. Notice also that the soft breaking mass which corresponds to the mixing of the Higgs

with the slepton is just the term Bi tan β. In this basis, we shall now present the spectrum

of the model. The neutral Higgs sector and approximate formulae has been displayed in

ref. [35]; we repeat only the mass matrices here for completeness and definition.
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A.1 Mass terms for CP-even neutral scalars

After electroweak symmetry breaking, sneutrinos, {ν̃Li
}, mix with Higgs bosons, {ν̃L0 =

h0
1, h2}, resulting in CP-even and CP-odd scalars (recall that CP-symmetry is preserved

at tree level even in the most general R-parity violating MSSM [35]). The corresponding

CP-even neutral scalar mass terms are

L ⊃ −
(

Reh2
0 Re ν̃L0 Re ν̃Li

)
Z∗

RZT
RM2

HZRZ†
R




Reh2
0

Re ν̃L0

Re ν̃Lj


 ,

where

M2
H =




cos2 βM2
A + sin2 βM2

Z −1
2 sin 2β(M2

A + M2
Z) −Bj

−1
2 sin 2β(M2

A + M2
Z) sin2 βM2

A + cos2 βM2
Z Bj tan β

−Bi Bi tan β M2
i δij


 , (A.6)

and

M2
i ≡ (M̂2

L̃
)i +

1

2
cos 2βM2

Z , M2
A =

2B0

sin 2β
. (A.7)

The rotation matrix is then given by

ZT
RM2

HZR = diag[m2
h0 ,m

2
H0 , (m

2
ν̃+

)i] . i = 1, . . . 3 . (A.8)

An approximate formula for the matrix ZR is given in eq. (3.9) of ref. [35].

A.2 Mass terms for CP-odd neutral scalars

Mass Terms for CP-odd Neutral Scalars can be read from

L ⊃ −
(

Im h2
0 Im ν̃L0 Im ν̃Li

)
Z∗

AZT
AM2

AZAZ†
A




Im h2
0

Im ν̃L0

Im ν̃Lj


 ,

where

M2
A =




cos2 βM2
A + ξ sin2 βM2

Z
1
2 sin 2β(M2

A − ξM2
Z) Bj

1
2 sin 2β(M2

A − ξM2
Z) sin2 βM2

A + ξ cos2 βM2
Z Bj tan β

Bi Bi tan β M2
i δij


 , (A.9)

and ξ is the gauge-fixing parameter. The rotation matrix ZA is defined through,

ZT
AM2

AZA = diag[m2
G0 ,m

2
A0, (m

2
ν̃−)i] , i = 1, . . . 3 . (A.10)

An approximate formula for the matrix ZA is given in eq. (3.22) of ref. [35].
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A.3 Mass terms for charged scalars

In /L-MSSM charged Higgs and charged sleptons mix. The mass terms and the rotation

matrix ZH , can be read from the Lagrangian

L ⊃ −
(

h+∗
2 h−

1 ẽLj ẽRk

)
M2

H+




h+
2

h−∗
1

ẽ∗Li

ẽ∗Rl




= −
(

h+∗
2 h−

1 ẽLj ẽRk

)
ZHZ†

HM2
H+ZHZ†

H




h+
2

h−∗
1

ẽ∗Li

ẽ∗Rl




= −(M̂2
H+)pqH

+∗
p H+

q , p, q = 1, . . . 8 , (A.11)

where the notation is self explanatory and

M2
H+ =




M2
A cos2 β + M2

W cos2 β + ξM2
W sin2 β M2

A sin β cosβ + M2
W (1 − ξ) sin β cosβ

M2
A sinβ cosβ + M2

W (1 − ξ) sin β cosβ M2
A sin2 β + ξM2

W cos2 β + M2
W sin2 β

Bj Bj tan β
1√
2
λ∗

0mlµmvd
1√
2
λ∗

0mlµmvu

Bi
1√
2
λ0mlµ

∗
mvd

Bi tan β 1√
2
λ0mlµ

∗
mvu

M2
i δij − M2

W cos2 2β δij + 1

2
λ∗

0imλ0jmv2
d

1√
2

(
− λαjlµ

∗
αvu + h0jlvd

)

1√
2

(
− λ∗

αjlµαvu + h∗
0jlvd

) (
m2

Ẽc

)
lk

+ (M2
W − M2

Z) cos2 2β δlk + 1

2
λ0mlλ

∗
0mkv2

d




.

(A.12)

A.4 Mass terms for down-type squarks

Mass terms and rotation matrices for down-type squarks arise from the Lagrangian part

−L ⊃
(

d̃∗zLi d̃∗zRj

)
M2

d

(
d̃z

Lk

d̃z
Rl

)
=

(
d̃∗zLi d̃∗zRj

)
Z∗

d̃
ZT

d̃
M2

dZ∗
d̃
ZT

d̃

(
d̃z

Lk

d̃z
Rl

)

= M̂2
dpq

d̃∗zp d̃z
q , p, q = 1, . . . , 6 (A.13)

where

M
2

d = (A.14)
0

@

“

m2
Q̃

”

ik
+ 1

2
λ′

0kmλ′∗
0imv2

0 + ( g2

24
+

g2
2

8
)(v2

u − v2
0)δik − 1√

2
µαλ′∗

αilvu + 1√
2
h′∗

0ilv0

− 1√
2
λ′

αkjµ
∗
αvu + 1√

2
h′

0kjv0

“

m2
D̃c

”

jl
+ 1

2
λ′

0qjλ
′∗
0qlv

2
0 + g2

12
(v2

u − v2
0)δjl

1

A .

(A.15)

Recall that λ′
0km = ŶDk δkm are diagonal down-quark Yukawa couplings.
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A.5 Mass terms for up-type squarks

The mass terms for up-type squarks are

−L =
(

ũ∗z
Li ũ∗z

Rj

)
M2

u

(
ũz

Lk

ũz
Rl

)
=

(
ũ∗z

Li ũ∗z
Rj

)
ZũZ†

ũM2
uZũZ†

ũ

(
ũz

Lk

ũz
Rl

)

= M2
upq ũ∗z

p ũz
q , p, q = 1, . . . , 6 . (A.16)

where

M
2
u =

0

@

“

Km2
Q̃

K†
”

ik
+ 1

2
(YUY

†
U )kiv

2
u + ( g2

24
−

g2
2

8
)(v2

u − v2
0)δik

1√
2

(h∗
u)

jk
vu − 1√

2
µ0 (YU )∗

jk
v0

1√
2

(hu)
li

vu − 1√
2

(YU )
li

µ∗
0v0

“

m2
Ũc

”

jm
+ 1

2
(YUY

†
U )jmv2

u − g2

6
(v2

u − v2
0)δjm

1

A

(A.17)

Recall that (YU )ij = ŶUi δij are diagonal up quark Yukawa couplings.

A.6 Mass terms for down quarks

L ⊃ − 1√
2
λ′

0ijvdd
z
Lid

z
Rj −

1√
2
λ′∗

0ijvdd̄
z
Lid̄

z
Rj

= −md id
z
Lid

z
Ri − md id̄

z
Lid̄

z
Ri , i = 1, . . . 3 . (A.18)

A.7 Mass terms for up quarks

L ⊃ − 1√
2

(YU )ij vuuy
Rju

y
Li −

1√
2

(YU )∗ij vuūy
Rj ū

y
Li

= −mu iu
y
Riu

y
Li − mu iū

y
Riū

y
Li , i = 1, . . . 3 . (A.19)

A.8 Mass terms for neutrino-neutralino

L ⊃ −1

2

(
−iB̃ −iW̃ 0 h̃0

2 νLα

)
MN




−iB̃

−iW̃ 0

h̃0
2

νLβ


 − H.c.

= −1

2

(
−iB̃ −iW̃ 0 h̃0

2 νLα

)
Z∗

NZT
NMNZNZ†

N




−iB̃

−iW̃ 0

h̃0
2

νLβ


 + H.c.

= −1

2
M̂Npqκ

0
pκ

0
q −

1

2
M̂∗

Npq
κ̄0

pκ̄
0
q , p, q = 1, . . . 7 . (A.20)

where

MN =




M1 0 g
2vu − g

2v0δ0β

0 M2 − g2

2 vu
g2

2 v0δ0β
g
2vu − g2

2 vu 0 −µβ

− g
2v0δ0α

g2

2 v0δ0α −µα 0αβ


 . (A.21)
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A.9 Mass terms for charged lepton-chargino

L ⊃ −
(
−iW̃− eLα

)
MC




−iW̃+

h̃+
2

eRk


 −

(
i
¯̃
W

−
ēLα

)
M∗

C




i
¯̃
W

+

¯̃
h

+

2

ēRk




= −
(
−iW̃− eLα

)
Z−Z†

−MCZ+Z†
+




−iW̃+

h̃+
2

eRk




−
(

i
¯̃
W

−
ēLα

)
Z∗
−ZT

−M∗
CZ∗

+ZT
+




i
¯̃
W

+

¯̃
h

+

2

ēRk




= −M̂Cpqκ
−
p κ+

q − M̂∗
Cpq

κ̄−
p κ̄+

q , p, q = 1, . . . 5 (A.22)

where

MC =

(
M2

1√
2
g2vu 0

1√
2
g2v0δ0α µα − 1√

2
λα0kv0

)
. (A.23)

B. Feynman Rules for Neutral Fermions in the /L-MSSM

B.1 Neutral scalar - neutral fermion - neutral fermion interactions

H0
q κ0

r

κ0
p − ie

2cW
ZR1qZN3pZN1r +

ie

2sW
ZR1qZN2pZN3r

+
ie

2cW
ZR(2+α)qZN(4+α)pZN1r −

ie

2sW
ZR(2+α)qZN2pZN(4+α)r

− ie

2cW
ZR1qZN3rZN1p +

ie

2sW
ZR1qZN2rZN3p

+
ie

2cW
ZR(2+α)qZN(4+α)rZN1p −

ie

2sW
ZR(2+α)qZN2rZN(4+α)p

A0
q κ0

r

κ0
p − e

2cW
ZA1qZN3pZN1r +

e

2sW
ZA1qZN2pZN3r

+
e

2cW
ZA(2+α)qZN(4+α)pZN1r −

e

2sW
ZA(2+α)qZN2pZN(4+α)r

− e

2cW
ZA1qZN3rZN1p +

e

2sW
ZA1qZN2rZN3p

+
e

2cW
ZA(2+α)qZN(4+α)rZN1p −

e

2sW
ZA(2+α)qZN2rZN(4+α)p
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B.2 Charged scalar - neutral fermion - charged fermion interactions

H+
q κ0

r

κ−
p −i

e

sW
ZH(2+α)qZ

∗
−1pZN(4+α)r

−iλαβjZH(5+j)qZ
∗
−(2+β)pZN(4+α)r

+i
e√
2cW

ZH(2+α)qZ
∗
−(2+α)pZN1r

+i
e√
2sW

ZH(2+α)qZN2rZ
∗
−(2+α)p

H+∗
q κ0

r

κ+
p −iλαβjZ

∗
H(2+β)qZ+(2+j)pZN(4+α)r

−i
√

2
e

cW
Z∗

H(5+i)qZ+(2+i)pZN1r

−i
e√
2cW

Z∗
H1qZ+2pZN1r − i

e

sW
Z∗

H1qZ+1pZN3r

−i
e√
2sW

Z∗
H1qZN2rZ+2p

B.3 Squark - neutral fermion - quark interactions

d̃∗yq dy
Lj

κ0
p −iλ′

αjkZd̃(3+k)qZN(4+α)p − i
e

3
√

2cW

Zd̃jqZN1p

+i
e√
2sW

Zd̃jqZN2p

d̃y
q dy

Rj

κ0
p

−iλ′
αijZ

∗
d̃iq

ZN(4+α)p − i
e
√

2

3cW
Z∗

d̃(3+j)q
ZN1p

ũ∗y
q uy

Lj

κ0
p −i

e

3
√

2cW

Z∗
ũjqZN1p − i (YU )jk Z∗

ũ(3+k)qZN3p

−i
e√
2sW

Z∗
ũjqZN2p

ũy
q uy

Rk

κ0
p

i
2e
√

2

3cW
Zũ(3+k)qZN1p − i (YU )ik ZũiqZN3p

– 39 –



J
H
E
P
0
8
(
2
0
0
6
)
0
0
5

B.4 Fermion - fermion - gauge boson interactions

Zµ κ̄0
r

κ0
q ie

2sW cW

[
Z∗

N(4+α)rZN(4+α)q − Z∗
N3rZN3q

]
σ̄µ

W+
µ κ̄0

r

κ−
q

i

[
e√
2sW

Z∗
N(4+α)rZ

∗
−(2+α)q +

e

sW
Z∗

N2rZ
∗
−1q

]
σ̄µ

W−
µ κ̄0

r

κ+
q

i

[
e√
2sW

Z∗
N3rZ+2q −

e

sW
Z∗

N2rZ+1q

]
σ̄µ

C. Weyl spinors and self-energy one-loop corrections

Throughout this article we make an extensive use of Weyl spinor notation. Generally

speaking, working with Weyl spinors is advantageous because of two reasons: first they

appear naturally in a supersymmetric Lagrangian (no extra work is required to make

the connection with Dirac or Majorana four-component spinors and their corresponding

Feynman rules) and second, when used in Feynman diagrams, they present transparently

their structure as for example, the dominance of a particle mass or the appearance of a

mixing etc. In this appendix we give a pedagogical introduction to the use of Weyl fermion

propagators and vertices. We then calculate at the end the generic self energies that appear

in (3.1), (3.2). This appendix is complementary to the work of ref. [45].

Using path integral technics we want to find the propagator of a massive Weyl fermion

in Minkowski space. The path integral involving a Weyl fermion ξα(x) and a source field

Jα(x) is

W [J, J̄ ] = N

∫
d[ξ] d[ξ̄] eiS[ξ,ξ̄,J,J̄] , (C.1)

where N is a constant and

i S[ξ, ξ̄, J, J̄ ] = i

∫
d4x

{
1

2

[
iξ̄σ̄µ∂µξ + iξσµ∂µξ̄ − m(ξξ + ξ̄ξ̄)

]
+ Jξ + J̄ ξ̄

}
. (C.2)

In writing the above action functional we use the conventions of Wess and Bagger [48] with

the metric being gµν = (1,−1,−1,−1). It is simpler to work in momentum space and thus

we Fourier transform (in four dimensions) both fields and sources as

ξα(x) =

∫ +∞

−∞

d4p

(2π)2
eip·x ξα(p) , ξ̄α̇(x) =

∫ +∞

−∞

d4p

(2π)2
e−ip·x ξ̄α̇(p) ,
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Jα(x) =

∫ +∞

−∞

d4p

(2π)2
eip·x Jα(p) , J̄ α̇(x) =

∫ +∞

−∞

d4p

(2π)2
e−ip·x J̄ α̇(p) , (C.3)

where p · x ≡ pµxµ. We also make use of the four dimensional definition of the δ-function,

δ(x − x′) =

∫ +∞

−∞

d4p

(2π)4
eip·(x−x′) . (C.4)

The action functional (C.2) is conveniently written in a matrix notation

i

∫
d4p

1

2

(
Ω†MΩ + Ω†X + X†Ω

)
, (C.5)

where

Ω(p) ≡




ξα(−p)

ξ̄α̇(p)


 , X(p) ≡




J̄ α̇(p)

Jα(−p)


 , M(p) ≡




σ̄ · p −m

−m σ · p


 , (C.6)

where σ · p = σµ

αβ̇
pµ and σ̄ · p = σ̄α̇β

µ pµ and the matrix M is hermitian. The path integral

measure does not change when transforming the Weyl fermions ξ by a constant (J) as

Ω = Ω′ −M−1 X . (C.7)

After this transformation is applied in (C.5), sources and fields “get decoupled”

i

∫
d4p

1

2

(
Ω

′†MΩ′ − X†M−1X
)

, (C.8)

where the inverse of M is easily found to be

M−1 =
1

p2 − m2




σ · p m

m σ̄ · p


 . (C.9)

The first integrand term in (C.8) is exactly the same as the one in square brackets of (C.2).

Recalling that X = X[J, J̄ ] the path integral in (C.1) takes the form

W [J, J̄ ] = NeiS0[ξ,ξ̄] exp

{
− i

2

∫
d4p X†M−1X

}

= W [0] exp

{
− i

2

∫
d4p X†M−1X

}
, (C.10)

where S0 is the free Weyl fermion action functional

S0[ξ, ξ̄] =

∫
d4x

[
iξ̄σ̄µ∂µξ − 1

2
m(ξξ + ξ̄ξ̄)

]
. (C.11)

The propagators for the Weyl fermions can be read from

exp

{
− i

2

∫
d4p X†M−1X

}
= −1

2

∫
d4p

{
Jβ(p)

iσβα̇ · p
p2 − m2

J̄ α̇(p) + J̄α̇(p)

[−iσ̄α̇β · p
p2 − m2

]
Jβ(p)

+ Jα(p)
imδβ

α

p2 − m2
Jβ(−p) + J̄α̇(−p)

imδα̇
β̇

p2 − m2
J̄ β̇(p)

}
. (C.12)
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JβJ̄α̇

p

Jα Jβ

J̄α̇ J̄ β̇

:
imδβ

α

p2−m2

:
imδα̇

β̇

p2−m2

:
−ip·σ̄α̇β

p2−m2 or
ip·σβα̇

p2−m2

Figure 6: Massive Weyl spinor propagators.

Diagrammatically the propagator of a massive Weyl fermion is depicted in figure 6. The

convention we adopt here is that arrows run away from dotted indices at a vertex and

towards undotted indices at a vertex. As it is obvious from (C.12), the kinetic part of the

propagator [the top one in figure 6] is uniquely defined from the height of the indices that

link this propagator with the vertex.

The propagator for two different Weyl spinors η and ψ (forming a Dirac spinor in four

component notation) with action functional,

i S[ξ, ξ̄, J, J̄ ] = (C.13)

i

∫
d4x

{[
i η̄σ̄µ∂µη + i ψ̄σ̄µ∂µψ − m(ηψ + η̄ψ̄)

]
+ Jηη + Jη̄η̄ + Jψψ + Jψ̄ψ̄

}

have the same form as in (C.12) with obvious Lorentz invariant substitutions. Vertices

with Weyl fermions arise from the superpotential and from the supersymmetric gauge

interactions. They are displayed in figure 7.

We now proceed in calculating the general self energies of (3.1), (3.2). The 1PI self

energy, ΣD, obtains corrections from diagrams which have either gauge particles or scalar

particles in the loop. The scalar contributions for general scalar-fermion vertices iAqrs and

iBprs is

ψr
ηr

φs

κ0
q κ0

p

Aqrs Bprs
ΣD

pq(m
2
κ0

q
) =

iBprsAqrsmψηr

iπ2

(2π)4µ4−D
B0(m

2
κ0

q
,m2

φs
,m2

ψηr
) ,

(C.14)

where mψηr
denotes the physical mass of the mass eigenstate which is composed out of

the interaction eigenstates ψr and ηr. The corresponding neutrino self energy arising from

vector boson contributions with generic vertices iCqrσ̄
µ and iDqrσ̄

µ is
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ηr α ψβs

φt

ηα̇r ψs β̇

φt

iArst δ
α
β

iA∗
rst δ

β̇
α̇

ηr ψs

Vµ

Vµ

α β̇

ψs ηr

β̇α

: iBrsσ̄
µ β̇α

or − iBrsσ
µ

αβ̇

: iB∗
rsσ̄

µ β̇α
or − iB∗

rsσ
µ

αβ̇

Figure 7: General vertices involving Weyl spinors used in this article. In case of the vector boson

vertex the Feynman rule is defined completely from the height that link a propagator with this

vertex. Vertices on the left arise from LY = Arstφtψsηr + A∗
rstφ

∗
t ψ̄sη̄r and vertices on the right

arise from L = Brsψ̄sσ̄
µVµηr + B∗

rsη̄rσ̄
µV ∗

µ ψs.

ψr
ηr

Vµ

κ0
q κ0

p

Cqr Dpr

ΣD
pq(m

2
κ0

q
) = iDprCqrmψηr

iπ2

(2π)4µ4−D

{
(ξ + 3)B0(m

2
κ0

q
,m2

V ,m2
ψηr

) +

+ (ξ − 1)ξm2
V C0(0,m

2
κ0

q
,m2

κ0
q
,m2

V , ξm2
V ,m2

ψηr
)

}
, (C.15)

where ξ is the gauge fixing parameter, mV is the mass of the vector boson and B0, C0 are

the Passarino-Veltman functions [46] in the notation of ref. [47],

B0(q
2,m2

φ,m2
ψ) =

(2π)4µ4−D

iπ2

∫
dDk

(2π)D
1

(k2 − m2
φ) ([q + k]2 − m2

ψ)
, (C.16)

C0(0, q
2, q2,m2

V , ξm2
V ,m2

ψ) =
(2π)4µ4−D

iπ2

∫
dDk

(2π)D
1

(k2 − m2
V )(k2 − ξm2

V )([q + k]2 − m2
ψ)

.

(C.17)

Finally, self energy corrections to the Weyl fermion kinetic terms read as
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ψr

φs

κ0
q κ0

p

Aqrs A∗
prs

ΣL
pq(m

2
κ0

q
) =

iA∗
prsAqrs

iπ2

(2π)4µ4−D
B1(m

2
κ0

q
,m2

ψr
,m2

ϕs
) ,

(C.18)

and

ψr

Vµ

κ0
q κ0

p

Cqr C∗
pr

ΣL
pq(m

2
κ0

q
) = iC∗

prCqr
iπ2

(2π)4µ4−D

{
−(ξ+1)B0(m

2
κ0

q
,m2

V ,m2
ψr

)−2B1(m
2
κ0

q
,m2

V ,m2
ψr

)

− (ξ − 1)ξm2
V C0(0,m

2
κ0

q
,m2

κ0
q
,m2

V , ξm2
V ,m2

ψr
)

−(ξ − 1)(m2
κ0

q
− m2

ψr
)

C2(0,m
2
κ0

q
,m2

κ0
q
,m2

V , ξm2
V ,m2

ψr
)

}
,

(C.19)

where B1, C2 are defined in [47].
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