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Abstract

In this paper we present solutions to the fermion mass hierarchy problem in the context of the
minimal supersymmetric standard theory augmented by an anomalous family dependent U(1)y
symmetry. The latter is spontaneously broken by non-zero vevs of a pair of singlet fields whose
magnitude is determined through the D- and F-flatness conditions of the superpotential. We
derive the genera solutions to the anomaly cancellation conditions and show that they allow
numerous choices for the U(1),, fermion charges which give severa fermion mass textures in
agreement with the observed fermion mass hierarchy and mixing. Solutions with U(1), fermion
charge assignments are found which forbid or substantially suppress the dangerous baryon and
lepton number violating operators and the Iepton-Higgs mixing coupling while a Higgs mixing
mass parameter ( u-term) can be fixed at the electroweak level. We give a general classification of
the fermion mass textures with respect to the sum of the doublet-Higgs U(1)y charges and show
that suppression of dimension-five operators naturally occurs for various charge assignments. We
work out cases which retain a quartic term providing the left-handed neutrinos with Majorana
masses in the absence of right-handed neutrino components and consistent with the experimental
bounds. Although there exist solutions which naturally combine all the above features with rather
natural U(1)y charges, the suppression of the u-term occurs for particular assignments. © 2000
Elsevier Science B.V. All rights reserved.

1. Introduction

The minimal supersymmetric extension of the standard model theory (MSSM) has
had a remarkable success in explaining the low energy parameters in the context of
unification scenario. Among them, the measured values of the strong coupling constant
a{m,) and the weak mixing angle sin®,,(m,,) are in perfect agreement with those
predicted when the unification scale is taken to be of the order M, ~ 10'® GeV and only
contribution of the MSSM spectrum is assumed to the beta-function coefficients for the
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gauge coupling running. These remarkable properties of the simplest unified model,
naturally raise the question whether the fermion mass spectrum observed in low energies
is also reproduced from few basic symmetry principles encountered at the unification
scale.

The experience from string model building has shown that a natural step towards this
simplification is to assume the existence of U(1) symmetries which distinguish the
various families. A further indication that additional symmetries beyond the standard
gauge group exist, has been the observation that the fermion mixing angles and masses
have values consistent with the appearance of ‘‘texture’’ zeros in the mass matrices [1].
More precisely, it has been observed that in string model building one usualy ends up
with the effective field theory model which, in addition to the non-abelian gauge group
includes an anomalous abelian gauge symmetry whose anomaly is cancelled by the
Green—Schwarz mechanism [2]. In fact, this mechanism allows for the existence of a
gauged U(1), whose anomaly is cancelled by assigning a non-trivia transformation to
an axion which couples universally to all gauge groups. In the spectrum of a string
model, there are usually singlet fields ¢;, ¢, charged under this U(1) symmetry which
develop vacuum expectation values (vevs) in order to satisfy the F- and D-flatness
conditions of the superpotential. This results in a spontaneous breaking of the anomalous
U(1) symmetry, naturally at some scale one order of magnitude less than the string
(unification) scale.

Surprisingly, the existence of an anomalous or non-anomalous U(1) symmetry has
remarkable implications in low energy physics: for example, one may try to explain
[3—14] the mass hierarchies observed in the quark and charged leptonic sector. In this
approach, all quark, lepton and Higgs fields are charged under the extra abelian
symmetry. The charges are chosen so that when the U(1) symmetry is unbroken, only
the third generation is massive and all mixing angles are zero. However, when the
singlet fields obtain a non-zero vev, symmetry breaking terms gradualy fill in the
fermion mass matrices and generate a hierarchy of mass scales and mixing angles. It
turns out that the symmetry breaking terms appearing in the fermion mass matrices may
be expressed as powers of a few expansion parameters leading to a rather impressive
predictability of the whole scheme. If further the U(1) is anomalous, then the vacuum
expectation values of the singlets are also given in terms of the unification (string) scale
and definite predictions may arise for the masses and mixing angles. In fact, it will turn
out that successful hierarchical mass patterns appear only if the U(1), symmetry is
anomalous.

It is rather interesting that this scenario may also give the correct prediction for the
weak mixing angle without assuming unification. It was shown in Ref. [4] that in the
presence of an anomalous U(1), symmetry, the value of sin%,, could be predicted in
terms of the U(1), charges of the massless fermions. The anomaly cancellation
mechanism may work in a way that the gauge couplings have the correct predictions in
low energies. The simplest possibility of symmetric mass matrices was worked out in
Ref. [5] and found that the hierarchical pattern of the fermion mass spectrum can be
successfully reproduced.

In the present paper, we wish to extend the analysis by considering the most general
U(1),, symmetry with fermion charges respecting the anomaly cancellation conditions.
We first find that, even in the simple case of a U(1) factor obtained from linear
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combination of the standard model symmetries, the fermion mass matrix structure is
richer than that exhibited in [5]. Thisis a simple consequence of the fact that the vacuum
expectation values of the two singlet fields ¢ and ¢ differ from each other since they
have to respect the D-term anomaly cancellation condition. Going further, we find that a
general family dependent U(1) anomalous symmetry generates four approximate
texture-zero mass matrices of Table 1. It is found that the Higgs U(1),, charges play a
crucia role, particularly in the determination of the lepton textures as well as baryon and
lepton number violation. For a non-zero sum of the U(1),, Higgs chargesit is possible to
ban all dangerous dimension-five proton decay operators. We further find that one can
choose a consistent set of U(1), charges which prevent the appearance of an unaccept-
ably large Mgjorana mass term for the left-handed neutrino.

The paper is organised as follows: In Section 2, we introduce the notation for fermion
charges, we set our assumptions and solve the constraints from mixed anomalies for the
fermion and Higgs U(1), charges. In Section 3 we derive the general forms of the quark
and lepton mass matrices. Using specific values for the charges, consistent with the
solutions obtained in Section 2, we classify with respect to the sum of the Higgs-doubl et
U(D)y charges all possible fermion mass textures. In Section 4 we analyse the baryon
and lepton number violating operators, as well as other dangerous terms which are not
prevented from the standard model gauge symmetry. We impose constraints to eliminate
these dangerous operators and in Section 5 we present particular examples of fermion
matrices which fulfill these requirements. In Section 6 we present our conclusions.

Tablel
The five symmetric texture-zero mass matrices for the up- and down-quarks consistent with the observed
hierarchical pattern [1]

Texture my mp
0 V2% o0 0 2 0
T, V225 A% 0 204 2A% 428
0 0 1 0 48 1
0 A° 0 ) 0 2\ o0
T, A0 A2 224 2A% 228
0 X 1 0 22 1
0 0 2t 0 2x 0
T3 0o A 0 204 223 axd
V2a% o 1 0 43 1
0 228 0 0 24 0
T, V248 3a4 A2 204 28 o)
0 21 0 0 1
0 0 A4
0 V2 2 0 2x 0
TS V2 (2)«‘ 223 o)
/\4 LZ 1 0 0 1
2
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2. The solutions to anomaly cancellation conditions

The Yukawa terms of the superpotential needed to provide masses to quarks and
leptons are SU(3) X U(2), X U(1), gauge invariant and are written as follows:

7 = X QU H, + /\idj Qi DfH; + AF L EfH,. (1)
Although all these terms are invariant under the standard model gauge group, there is no
explanation why some of the Y ukawa couplings are required to be much smaller than
others to account for the fermion mass hierarchy. Extending the standard gauge group by
one anomalous U(1), with the MSSM fields being charged under this abelian factor,
only terms which are invariant under this symmetry remain in the superpotential. The
observed low energy hierarchy of the fermion mass spectrum and the demand to have
natural values of the Yukawa couplings A;; of order one, suggest that only tree-level
couplings associated with the third generation should remain invariant. In this case, the
mass terms involving some of the lighter fermions are generated through non-renormal-
izable superpotential couplings at some order. These higher order invariants are formed
by adding to the tree-level coupling an appropriate number of singlet fields (¢ or ¢)
which compensate the excess of the U(1), charge. Since the anomaly cancellation
mechanism [15] requires vevs for the singlet fields that are about an order of magnitude
below the unification scale, the above scenario naturally reproduces hierarchical fermion
mass spectra. We therefore assume that the anomalous charge of the singlet fields ¢ and
¢ is +1,— 1 respectively which is equivalent to measuring al charges in ¢ charge
units.

In the present work we are interested in symmetric fermion mass matrices. To obtain
a symmetric structure we need to define proper constraints on the fermion charges under
the U(1)y symmetry. Under the assignments of Table 2 the charges of the mass matrices
ae Cj =q +u;, CJ =q +d; and C =/ + e. The conditions for symmetric mass
matrices in the above notation take the form

q+u=0q+u,

q +d=q+d,

The requirement that the third generation has tree-level couplings imposes the con-
straints

g; + Uz +h,=0,
g;+d;+h =0,
/y+e+h =0. (3)

By demanding tree-level couplings for the third generation and the minimum number of
Higgs doublets (one for the up-quarks and another for the down-quarks and charged
leptons) we essentially seek solutions for the case of large tan 8. In fact, this implies that
the top, bottom and = Y ukawa couplings are equal (up to order one coefficients) at the
unification scale. Clearly, the difference between the top mass (m,) and the bottom mass
(m,) must arise entirely from a large Higgs vev ratio tang = UZ/U1>> 1. Although we
restrict here the analysis only of the large tanB case, yet, there is enough freedom to
generate a variety of acceptable mass matrices. The case of small tang8 ~ @(1) can also
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Table2

Charge assignments for MSSM fields under the U(1)

Field Charge
Qi ]

Dic di

ue Y

L, /,

Ef €

HZ h2

Hl hl

be worked out easily in a similar way, by modifying conditions (3) so that the b—7
Y ukawa coupling appears at a higher order. In this case, the fermion mass structures
obtained are slightly modified [5]. They can be made consistent with the experimentally
observed fermion mass spectrum by a suitable choice of the order one coefficients
associated with each mass entry.

After imposing the conditions (2), (3) the charges of the possible quark couplings to
the appropriate Higgs field take the form

2(0,—d3) (oh—0s) +(d2—03) G — s
CQU™M2 = CRP™Mi = | (g, — ) 2(d, —d3) d;— s |. (4)
(0, — Gs) (9, —ds) 0

Similarly, for the charged leptons we have

2(/1_/3) (/1_/3)+(/2_/3) /1_/3
CLE™H = (/1 _/3) 2(/2 _/3) /2 _/3 : (5)
(/1_/3) (/2_/3) 0

We observe that the charges of the up- and down-quark entries are the same. This result
is obtained only due to the fact that we require symmetric textures and one-tree level
coupling for each one of the quark matrices. Further, the quark charge-entries depend
only on two combinations, g, — ¢; and g, — g,. This is also the case for the leptons,
with the replacements ¢, —/,. Anomaly cancellation conditions will give further
relations between ¢, and /; charges, so if U(1), charges are somehow fixed in the
quark sector, then one ends up with predictions in the lepton matrices.

We proceed with the analysis of the quarks. At this stage, one can readily conclude
that in order to have acceptable quark masses we must have

n m
0 —0;= =, qz—q3=EWherem+naé0,m,n=J_rl,i2,... (6)

2
We do not write down a similar parametrization for the charged lepton entries since, as
we will see, due to the various conditions we have imposed we will be able to express
them in terms of the quark entries. We will discussin detail the remaining constraints on
the quark and lepton entries in the subsequent section but first we need to dea with the
mixed anomalies associated with the MSSM and U(1),, gauge groups.
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It is well known that the MSSM is anomaly free. The introduction of an extra
anomalous U(1),, group factor leads to anomalies which should be absorbed. As already
discussed, the Green—Schwarz anomaly cancellation mechanism may cancel the pure
U(1), anomaly and mixed U(1)y-gravitational anomalies, however there are mixed
anomalies of the form A; = (GG U(1) x) where G, = (SU(3),SU(2),U(1)y). In terms
of the U(1), charges these are written as

1
As:ZQi"‘EZ(Ui"'di): (7)
3 1 1
AZ:EZqi+EZ/i+E(h1+h2)’ (8)
Mg At s Td s Nut o DA+ Tat g(h+hy). (©

It was pointed out in Ref. [4] that in a model where the anomalies are canceled
through the Green—Schwarz mechanism, the mixed anomalies with the standard model
gauge group are proportional to the corresponding Kac—Moody level,

A, Kk
22 (10)
AZ k2
A, Kk
22 (11)
Al kl

There are aso mixed anomalies of the form A, = (U(1),U(1)%) which should be
zero:
A of+ df -2y uf— /% + Yef + (h3—hi) =0. (12)

We should note here that in the calculation of anomalies we have only considered the
fields of the MSSM spectrum and a pair of singlets ¢,¢ which are necessary to break
the U(1),, symmetry and create the non-renormalizable terms which fill in the fermion
mass matrices. In string constructions, however, there are additional particles (some of
them carry fractional charges), which may also be charged under U(1),. Even in the
case that these fields belong to non-trivial representations of SU(3) X SU(2) X U(D)y
group they usually come in pairs with opposite U(1), charges so they do not contribute
to the mixed anomalies.

The conditions (10), (11) have rather remarkable implications on the determination of
the low energy parameters. Indeed, to confront with the standard unification scenario we
have to impose the conditions

sinf,, (My) = 3, (13)

ks =k, (14)
which lead to the constraints

A A 3

s _2_ 2 (15)

A A, 5

To proceed further, we should combine the equations obtained from the anomaly
cancellation with the symmetry constraints (2). These can be solved with respect to the
charges uy,u,,d;,d,,e; and e, while the constraints (3) can be solved with respect to
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Uz,d; and e;. Furthermore, we may solve the constraints (15) with respect to the charges
03,5, While treating as parameters the sums h,, q,, 7, :

hy=h+h,, q,=0+0, 7Z.=/+7,. (16)
Then, in terms of (16) we obtain

/3=4_18[_5h+_18(q+_/+)]’ (17)

q3=%[—17h++6(q+—/+)]. (18)

This parametrization considerably simplifies the analysis of the quadratic constraint (12).
Indeed, substituting the above solutions into (12) we arrive at the equation

6hi +5(11q, +7/, — 4h,)h, —6(/ .+ 3q,)(q, -/, + 4h,) =0, (19)

which can be solved easily. We find it convenient now to solve the above equation for
h,, keeping as parameters the sums h,, q,, /, as before. We find two solutions
depending on the value of h,:

- For h,=2(g, — 2qg,) # 0 we obtain the simple relations
1%/+=%q3=§/3=q+. (20)
- For h,# 2(q, — 2q,) we obtain the solution
—5h% +h, (g, —290q5) +2405(d, — 2g5)

2 6(h, —2q, + 4qs,) ’
/+=q+_ 805 — %th,
/3= —1Ih, 30, (21)

The first solution is characterized by three parameters q,,qd,,h, or equivaently m,n,h,
(see Eq. (6)). The second is a four-parameter solution that depends on m,n,qz,h, and
/,. As will become clear later (see Section 3), /, can be exchanged with an integer
parameter k and h, has to be integer too. Thus the first solution depends on two integer

Table3
U(1)y charge assignments for the case h, = m+ n (Eq. (20))
Field Generation
1 2 3
Q 2n;03m 2m163n _3(m+n)
10

uc 3m128n _ h2 8m1463n _ h2 3(nl:; n _ h
D¢ —Imian 4, —Inram g, —_7(”1*0"‘)+ h,
L _ 15k+23m+8n 15k + 7m—8n _4m+n)

30 30 15
EC _15k+3;g1+22n+h2 15k—73|g—22n_ h, 1U(m+n)_ h

15
Higgs

H, m+n-—h, H, h,
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Table4
U(1)y charge assignments for the case h, # m+ n. The value of h, is not an independent parameter but it is
related to gg,h,,m,n through Eg. (21). The integer k is defined as k= 2/, +6qg; — m+ £h, (see Section 3)

Field Generation
1 2 3
Q 2+ 0 2+ 0s U
uc 3= 03— hy 7—03—h, —gz3—hy
D¢ 2—Os—h,+h, 7—Gs—h,+h, —hy+hy—q
L "3 —30;—5% " =30, - T -30; - 7%
E° L +3g,— 5+ h, P 430+ %+ h, %+ hy +3q;
Higgs
H, h,—h, H, h,

and one non-integer parameters while the second depends one three integers and one
non-integer ones. The detailed charge assignments for each solution are shown in Tables
3 and 4, respectively.

We wish to emphasize here that these are the most general solutions to the anomaly
cancellation conditions under the assumptions of symmetric mass matrices and tree-level
Yukawa couplings for the third generation with b— 7 unification. Using the
parametrization (16), we have succeeded in linearizing the quadratic equation constraint
and expressing the solutions in terms of a few parameters. The solutions above are
suggestive for a classification with respect to the sum h, of the Higgs charges.

At this point we find it useful to close this section with a remark on the necessity of
the U(1) symmetry of being anomalous. Indeed, one may wonder whether an anomaly
free abelian symmetry can comply with the above phenomenological requirements.
Actually one can easily derive the most general solution of the constraints (2), (3)
together with A;=A,=A; = A, =0 that gives aso vanishing trace for U(1), and
vanishing U(1)3 anomaly. This solution is 2g, =dy; = —u,/2= —/, /3=¢€;/3=1q,,
u=-309,/2-0, U=-5q,/2+0,d,=q,/2+0,, d,=30,/2-0, /=
-3q,.-4,, =38q,/2-7/,, e,=94,/2+/,, hy= —h,=1;=—30q, /2. Unfortu-
nately this solution predicts two additional tree-level couplings, namely Q,U,H, and
Q,U, H, which are not consistent with phenomenological requirements (see Table 1).
Thus one is forced to search for an anomalous U(1) symmetry.

3. The derivation of the fermion mass matrices

In the subsequent analysis with regard to the derivation of the fermion mass matrices
and the investigation of baryon and lepton number violation, a crucial role is played by
the value of the parameter h, =h, + h,. Some first conclusions may be drawn by
inspection of the forms of the charge matrices (4), (5), when they are written in terms of
the parameters m,n,h,.. Thus, the up and down quark mass matrices are independent of
the value of h_, while, on the contrary, the structure of the charged lepton mass matrix
depends decisively on h,. It can be also easily checked that the baryon and lepton
number violating operators are h_-dependent. It is therefore convenient for our subse-
quent analysis to distinguish three cases for the h, value: we will first examine the case
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h, =0 which means that the two Higgs doublets possess opposite charges. Next we
consider h, to be an integer and finally we comment on the non-integer values of h,.

31.h,=0

Starting from this particular vaue h, , we first find that one of the two solutions (20),
(21) does not lead to sensible results. Indeed, by a simple inspection we infer that
solution (20) would imply m+ n =0 and therefore, a tree-level mass for the 12 and 21
entries. Thus, there is only acceptable one solution for (19), namely (21) which for
h, = 0 takes the form

/i +4,=(0,+0,) —80d;, /3= —-30;, h,=—-h =-2q;. (22)
We can easily calculate the charges which are given in Table 5 in terms of the four
free-parameters.

Using these charge assignments one finds that the quark- and lepton-charge matrices
take the form

m+n n
n J—
2 2
CQUCH2=CQDCH1= m+n m T 23
2 2 ’ ( )
n m
— — 0
2 2
m+n n—k
n—k
2 2
. m+n m+ Kk
CLEH = > m+ k > , (24)
n—k m+ k
—_— 0
2 2

where m,n are given in (6) while al the additional dependence of the lepton matrix has
been absorbed in the parameter k defined as follows:
k=2/,+60; —m. (25)
Let us now come to the parameters entering the quark and charged lepton mass
matrices. We first note that the only tree-level couplings entering the fermion mass
textures are those corresponding to the 33-entries of (23) and (24), i.e. the third
generation mass terms for the up, down and lepton fields, i.e. Q;t°H,, Q;b°H, and
L,7°H,. The remaining mass matrix entries are expected to be generated from non-re-
normalizable terms formed by proper powers of the singlet fields ¢/M,, ¢/M, and
$/M,, ¢/M,. The powers of non-renormalizable terms have to be such that the
charges of the entries in the matrices (23), (24) are cancelled out. The singlets are
divided by the mass parameters M;,M, which refer to some high energy scales. If the
dominant source of these terms is from string compactification, then M; = M, =M and
there are only two expansion parameters which enter in the mass matrices, namely ¢/M
and ¢/M. It is aso possible that additional vector-like Higgs pairs may acquire their
mass via spontaneous breaking after compactification. Then, a strong violation of the
SU(2); symmetry of the quark sector may occur, and as a result M; # M, [5].
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Table5
U(1)y charge assignments for the case h, =0
Field Generation
1 2 3
Q 5+ 03 7+ 0 0
ue 5+ 7+0s s
D¢ 5 =30, 7—30; —30;
L 75 —30, 3 — 30, ~30
EC "+ O "+ s
Higgs
H; 20, H, —20;

We further point out here that in the case of an anomalous U(1) symmetry we should
necessarily take ¢ # ¢. This is because the cancellation of the D-term requires these
values to differ from each other. In particular, the Green—Schwarz anomaly cancellation
mechanism generates a constant Fayet—Iliopoulos [16] contribution to the D-term of the
anomalous U(1)y. This is proportional to the trace of the anomalous charge over all
fields capable of obtaining non-zero vevs. To preserve supersymmetry the following
D-flatness condition should be satisfied [15,17]:

Y Q¢ P = —£+0, (26)
¢

where Q7 is the U(1), charge of the field ¢;, while the sum extends over al possible
singlet fields and the parameter ¢ is proportional to the trace of the anomalous U(1)y.
Clearly, in the case of two singlets with opposite charges — as in our case — one should
have

K —K)I* = —¢. (27)
Thus, in the construction of the quark and lepton mass matrices in the general case we
may define the following four parameters:

6 B

€=M—l. S—Vl, (28)
)

)\=M—2, /\=M—2. (29)

According to our previous discussion, the parameters ¢ and e should appear in the
up-quark mass matrix while the second set, i.e. A and A, in the down quark and charged
lepton mass matrices. Thus the possible mass terms should have one of the following
forms:

QinHzgr”- QY Hye'
for the up quarks and

Q,DfH, &5, Q,DfH, &%,

LiEfH, &Py, LiEfH, &P
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for the down quarks and charged leptons. Here, r;;,s; and p; are numbers which
represent the necessary powers of the expansion parameters in order to cancel the charge
of the corresponding ij-entry in (23) and (24). Clearly these numbers have to be
integers.

In the convenient parametrization (25) the charge entries depend only on the three
free parameters m,n,k. Every charge entry is scaled with the charges of the singlet fields
&, . Thus, without loss of generality we may simply take the charge of the latter to be
+1 and —1 respectively. Under a certain choice of the U(1), charges of the various
fermion and Higgs fields, the entries of the charge matrices (23) and (24) can be either
positive or negative. (We exclude the case of charges leading to zeros in these entries
since this would lead to an additional tree-level order entry in the mass matrix.) Now, if
the charge of an entry is positive we may cancel this only by adding powers of the
singlet fields carrying negative U(1),, charge. On the contrary, entries with negative
charge require powers of positively charged singlets. Therefore, in certain choices it is
possible that two expansion parameters may enter in the mass matrices, leading thus to
new structures. Note the fact that, there is no loss of predictability compared to previous
cases [5] where only one expansion parameter was used in the fermion mass textures.
Indeed, the two singlet vevs are related through Eq. (26), while the parameter ¢ in the
right-hand side of this equation is completely determined by the trace of the anomalous
symmetry, the value of the common gauge coupling at M,; and the string (unification)
scale itself [15,17].

In order for a mass entry to be generated, the specific combination of the free
parameters m,n,k entering the charge entry has to be integer. Otherwise the correspond-
ing mass entry is zero since no power of singlet vevs with + 1 charge could make the
relevant Y ukawa coupling invariant under this U(1). With the above remarks in mind,
we are ready now to proceed in the determination of the viable fermion mass textures.

Quarks

We proceed now with the determination of all possible structures of the quark matrix.
Although in this section we deal only with the case h, = 0, we will soon see that even in
the most general case where h, # 0 the form of the quark mass matrices does not
change as long as we impose the symmetric mass textures conditions on the U(1),-
charges and the requirement of one tree-level coupling for each fermion matrix®. Thus,
since only the 33-entry is filled up by a renormalizable coupling, clearly as long as the
U(1)y remains unbroken the two lighter generations remain massless. When the singlets
¢, ¢ develop non-zero vevs along the D-flat direction, their magnitudes are of the order
(p) ~{P) ~ &, which is approximately one order lower than the unification scale.
Then the anomalous symmetry is broken and the remaining fermion mass matrix entries
are filled up with mass terms suppressed by powers of the expansion parameters. These
powers depend on the certain choice of U(1), charges.

Let us now determine the possible viable cases for the parameters m,n which enter
the quark mass matrices. In order to have a non-zero value for the second generation

1 As a matter of fact, this requirement on the U(1)y-charges only ensures that at least one entry admits a
tree-level coupling. It does not exclude the appearance of more than one tree-level couplings. Such solutions
do appear and are excluded for phenomenological reasons.
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quarks it is evident from the structure of the charge matrix (23) that the parameter m has
to be an integer. Only in this case at least one of the entries 22, 23 /32, may survive.
With similar reasoning, while taking also into consideration the necessity of the Cabbibo
mixing, we may also conclude that the parameter n has to be an integer too. No
constraint from mixing effects can be imposed in the case of leptons, however, due to
the fact that m,n are integers we have also to take k to be integer otherwise we would
end up with two massless charged lepton states. Therefore there are four possibilities
among which we distinguish three viable cases, namely (i) m,n even; (ii) m odd, n
even, (iii) modd, n odd. (The case m even, n odd does not lead to acceptable mixings.)
We consider these cases separately and, further, we work out certain choices of m,n
pairs which lead to viable mass textures with reasonable values of the expansion
parameters. We note that due to our freedom to have two different expansion parameters
and to adjust order-one coefficients in the mass matrix entries, additional pairs of m,n
values are also possible. They imply different values for the expansion parameters but
do not lead to different textures thus they are not elaborated here.

Case (i): n,m even

io. We first start with positive n,m values. In this case all quark charge entries in
(23) are positive, so the lowest power of singlets needed to cancel this charge involves
only the singlet ¢ to a proper power. (Additional contributions involving pairs (¢¢)”
are always possible but relatively suppressed.) Taking n=2m> 0 we obtain a quark
mass structure similar to the texture T, of Table 1. For example, for m=4,n=8 we
get?

g8 =% &*
m,=|[2s% &* &2]. (30)
4 82 1

This matrix is not actually an exact texture-zero as the T, case, however, one can
observe that the entries replacing the zeros of texture T are highly suppressed here.
Remarkably, this texture is also an outcome of the string derived flipped SU(5) model
[18,19].

The corresponding down quark matrix has the same form but in genera involves a
different expansion parameter, namely A. This gives the freedom to adjust the two
parameters so that the correct hierarchy and Cabbibo mixing arise®. Thus, the matrix
takes the form

PLE LI
mp=|[26 ¢ 2A2|. (31)
PR G |

We note here that the mass entries in the above textures are accurate up to order one
coefficients which are not calculable in this approach. As far as we know the calculation

2 The mass matrices are scaled by the appropriate Higgs vev.
® Note, however, that the same expansion parameter A enters in the lepton sector, so additional constraints
will also come from the charged lepton mass eigenvalues.
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of the coefficients is only possible in string models. The remarkable fact, however, in
the present simple approach is that one does not need to introduce unnaturally small
Y ukawa couplings to explain the huge ratios of mass eigenstates. The present procedure
tell us that the hierarchical pattern is just a simple consequence of the U(1),, symmetry.

ig: Next, we give an example where both parameters enter in the structure of the
quark mass matrices. Thus, taking one of the integers to be negative, we may obtain
textures with & and & powers in the matrices. For example, an appropriate choice is
n= —4m, where we obtain a structure which is very close to the texture T, of Table 1.
In particular, choosing m=4,n= —16, the lower 2X 2 charge entries in (23) are
positive, while the rest are negative so we have the following structure of the up- and
down-quark mass matrices:

816 e 6 & 8 )\16 )\6 )\8
my £® B4 2%, my=1| A% 2A* A?]. (32)
e 8 z 2 1 )\8 7\2 1

ic: We finally give the mass matrices for one more choice, which, as we will see
coincide with the one presented in Ref. [5]. With our definitions of charges, this case
arises if we put m=2and n= —8,

88 83 84 )\8 /\3 )\4
m=|[g® 22 z|. my=|A> A2 A |. (33)
etz 1 A1

Notice, however, the appearance of two expansion parameters in (33) compared to only
one used to appear in Ref. [5].

Above, we have provided examples based on a different charge assignment (m,n
values) which naturaly give hierarchical patterns for the quark sector. A natural
guestion now arises as to which of these cases fits better the observed hierarchy and
mixing effects. There are mainly three sources of further constraints that would
definitely guide us to pick up one definite case. First, one needs an exact value of the
parameter £ which determines the singlet Higgs vevs. Second, the order one coefficients
which are not calculable, may point to a certain choice. Finally, the structure of the
lepton mass matrix will provide further information on the parameters A,A. We proceed
now to the other two possibilities for m,n.

Case (ii): modd, n even

This case assumes odd values for m and even for n which lead to an exact
texture-zero as in the case of Table 1. To obtain viable matrices, we may take either
n=2m or n= —2m. These choices lead to the same texture T, but with different
expansion parameters. Taking m= 3,n= +6 we get

5 0 &8 e 0 &°
m=|0 8 0| aad my=|0 2 0] (34)
2 0 1 e> 0 1

respectively. How do these zero entries arise? Bearing in mind that m was taken to be
odd and n even, the charge entries 11, 12, 21 and 23, 32 in the charge matrix of (23) are
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half-integers. Since the singlet charges are +1, it is not possible to generate contribu-
tions in these entries from non-renormalizable terms. These are exact texture-zero mass
matrices and their form was proposed purely from phenomenological analysis in Ref.
[20]. As in the first case discussed above, the down-quark mass matrices of these two
cases are obtained with the replacements & — A and z — A, thus these are

20 a8 A0 A8
mp=|0 2 0| ad my=[0 A o0]. (35)
20 1 A0 1

We will work out this case further when we will discuss the corresponding lepton matrix
for total Higgs charge h,# 0.

Case (iii): n,m odd

We finally examine the case where both n,m are odd. Here we obtain mass matrices
similar to the up-quark texture T,. We have the freedom to use several sets of m,n pairs.
A suitable choiceis m= —3, n= 11 which gives

st ozt 0
my=|[z* &% 0Of- (36)
0 0 1

A dightly different matrix involving only one parameter arises for n=5and m= 3. It
leads to the same texture zero, however different powers of the expansion parameters
appear. One gets

5 4

0
3 0]- ( 37)
0 0o 1

A general comment for the case (iii) is necessary here: due to the same structure of
the up- and down-quark mass matrices, the exact texture-zero mass matrices in this case
have small chance to reproduce the correct Kobayashi—Maskawa (KM) mixing. Indeed,
since the down-quark mass matrix has the same form with the up, the KM mixing of the
third generation with the other two — although experimentally is measured to be small —
cannot be generated due to the complete decoupling of the third generation. However, in
aredigtic case, as in string model building, more than one pair of singlet fields acquire
non-zero vevs. Usually, some other singlets with different charge assignment form some
higher order Y ukawa couplings with the fermions and generate small but nevertheless
important contributions to the zero entries of the fermion matrices. Another source of
induced small mixing arises from renormalization group effects. If charged lepton and
Dirac—neutrino Y ukawa couplings are not flavour diagonal (and as we will seg, thisis
exactly what happens in the present case), then small calculable non-zero entries will
replace the zeros in the above m;, texture.

Having completed the analysis of the quark textures, we now need to consider the
implications on the lepton mass matrix structure. Closing this subsection we simply note
the remarkable fact that, even with one U(1),, anomalous symmetry and only one pair of
singlet fields one is able to reproduce four out of the five phenomenological textures of
Table 1.

™l &l
Ml Ml

mU: 4
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Leptons

The analysis of the quark mass matrices in the previous section, has put several
constraints on the values of m,n parameters. Note also that aready the phenomenologi-
cal constraint which implies the successful relation m, = m, at the unification scale has
also been imposed on the U(1), charges. Thus, the only remaining freedom to construct
the charged lepton mass matrices in the case h, = 0 is the value of the parameter k.
Note further that there is no freedom to adjust the 12, 21 elements of the charge—lepton
matrix since they are fixed completely by the quark matrix. Bearing in mind that the
parameters m,n are integers, we can easily see that only the case of integer values
k=0,+1,+2,... can lead to acceptable lepton mass matrices. In the following, we
examine viable lepton textures with respect to the value of k for each of the three cases
in the quark sector discussed above.

(i): Asin the corresponding case for quarks, we derive here the lepton mass matrices
for three (m,n) sets and viable choices for k.

io: For n=2m> 0, we may take for example m=4, n=8and k=0o0r k= —1, s0
we obtain

A8 A8 ATA° 0
me=1{2° A% N[, o m=|% X3 ol (38)
AN 0 0 1

respectively. These correspond to the approximate hierarchies mg:m,:m, = A%:A%1 or
mg:m,:m, = A”:A%1. Thefirst matrix predicts exactly the correct relation det m, = detm,
[21] whlle the second gives also a quite satisfactory result up to order one coefficients.

ig: Let us now take n= —4m, with the additional restriction that m+ k> 0.
Certainly, by inspection of the charge matrix (24) we conclude that the entries 22, 23, 32
have positive charges whilst all entries connected to the first generation obtain negative
ones. This means that to lowest order we can cancel the charge of the first with
A-powers and the charge of the second with powers of the expansion parameter A. Thus,
the following texture arises:

A4m+k) A3M/2 \@mtk)/2
m, = A3m/2 Am+k Am+k/2 (39)
A@m+k/2 J(m+k)/2 1

Choosing now m= 4 (as in the corresponding quark case) and k= —1 we arrive at a
texture-zero matrix of the form

AP A8 0
m =1 A 0] (40)
0 0 1

Comparing with the previous case (39) we see that we now have the possibility of
adjusting the value of the 22-entry independently from the other matrix elements.
Indeed, recall that the down-quark mass hierarchy in this caseis A*2:A*:1, which implies
the hierarchical relation A = A%? to A? (depending on the order one coefficients). This
relation fits also well the charged-lepton mass hierarchy.
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ic: Finally, we derive the lepton matrix which corresponds to the case i of the quark
sector. For m=2, n= —8 and k= 3 we obtain

A A8 o0
m =1 A o0l (41)
0 0 1

in accordance with the texture derived in [5]. We note also that we may have more
possibilities by choosing m+ k < O, obtaining a different lepton structure but such cases
will not be elaborated here.

(ii): Here, asin the case of quark mass matrices, we take the cases m= 3,n = 6 (the
case m= 3,n= —6 can be worked out similarly). Now we are free to choose the value
of k in order to obtain a natural charged-lepton mass hierarchy. Assuming k-values in
the range — 3 < k < 6 we can write the lepton mass matrix in form

6—k
< 2

A6k 0 A

1+ k
m_= 0 )\3+k /\T (42)
6—k 1+k
-2 T2
A A 1

An interesting texture arises for the k= —2. This gives a lepton matrix which has the
same structure with the quarks:

220
m=|0 a1 o]l (43)
A0 1

This matrix gives eigenvalues in the ratios —A%:A to be compared with the mass
eigenstates m,/m_:m, /m_ at the unification scale. We note however that this relation is
satisfied for a rather Iarge val ue of the expansion parameter A. Further, for k= —1 we
obtain

A0 0
m=|0 22 2af, (44)
0 A 1

which gives the ratios —A":A? for m,/m.:m, /m.. We will see soon that the matrices
obtained for the case (ii) are phenomenologically more promising when we assume
h, # 0. We note here that this texture implies large mixing in the u—7 sector and it
could be distinguished from the first one, due to the different flavour violating processes
it implies. In particular, we should expect an enhancement of the r— wy branching
ratio compared to the first case.

(iii): In this last case we choose n = 11,m= — 3. We have observed that in the quark
sector there is no mixing between the two heavier generations. In contrast, in the case of
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charged leptons this mixing may arise from a suitable choice of the additional parameter
k. Thus, for the quark matrix (37) choosing k = 1 we obtain

7\10 7\4 7\5
m =] A% A2 A?|. (45)
A5 1

32.h,#0

We come now to the most general case where the sum of the Higgs doublet charges
is different than zero. As explained in Section 2, there are two solutions of the anomaly
equations under the symmetry requirements and the tree-level constraints. The full
U(1)y-charge assignment of the two solutions for the matter and Higgs fields are now
shown in Tables 3 and 4.

It is a welcome fact that the quark mass matrices (as can be easily checked), do not
change at all under this generalization thus, our analysis concerning the up and down
quark textures remains intact. We therefore turn our attention to the case of the charged
lepton mass matrices. In this case we can easily see that only the entries connected with
the first generation in (24) receive additional contribution. The charge-lepton matrix in
the general case h, # 0 becomes

m+n—h n—k—nh
n—k—h, - .
2 2
. m+n—h m+ k
CLEH = T* m+ k 5 (46)
n—k—h, m+ k
—_— 0
2 2

with the replacement now of a new value for k= 2/, + 6g; —m+ Zh,.

There is an additional contribution which equals the minus sum of the Higgs charge
(=h,)intheentries 11,12 /21 and 13 /31 thus, in the general case the elements 12 and
21 are no-longer equal to the corresponding ones of the quark matrix. Our notation here
might be confusing in the sense that there appear four different parameters in the lepton
case, namely m,n,k and h, . In fact, (asis clear from (5)), there are only two parameters
/4, —/4 and /,—/, which enter in this structure; here they can be taken to be the
combinations n+ m—h, and m+ k. Thisis the price we have to pay in order to keep
the parametrization already used, and transfer the constraints from the quark sector.

In the above parametrization we can easily see now that the case h, # 0 has some
important implications on the lepton mass matrix structure. First, from our analysis in
the quark sector we observe that we are forced to take integer values for the parameters
m,n. We can easily see that a non-integer value of the total Higgs charge h, would lead
to a massless state. As a result we are forced to assume only integer values for both, k
and h, parameters.

Let us consider now the first solution (20). As seen from Table 3 the sum of the
Higgs doublet chargesis fixed h, = m+ n and thus the elements 12 and 21 of the lepton
matrix (46) vanish. This means that the associated couplings become of the order of the
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T mass and this texture leads to two heavy eigenstates. Thus we will not consider this
solution further and from this point we will refer only to Solution (21) when discussing
h, #0.

Another important constraint arises from the relation detmy = detm, [21]. Assum-
ing* n> 0 we have

detm,, = ir A m<0,.m+n=odd (47)
AM o ATMTN otherwise
for the quarks. Similarly for k+n—h_ > 0 we have
—k—-myn—k—h, k + < +n—nh,.=
detm, — i\ A m<0,m+n-h,=odd (48)
AMEN=hy gp AT MmNty otherwise
The eigenvalues of the lepton mass matrix can also be worked out. They have the form
(Aor )" (or 1) 1 (49)

Notice that the presence of h, affects only the lightest eigenvalue.

We wish now to give one more example where we can obtain a realistic texture-zero
matrix. We choose the values m= 1,n = 2 which correspond to quark matrices of case
type T; asin ii. Taking k= —2 and h, =9 we obtain

220 A MA% 0
my=(0 A 0|, mM=[x A 0 (50)
A 0 1 0 0 1

while m; has the same texture-zero as my, provided that we replace A — ¢. The above
texture-zero charged lepton matrix is different from the my-matrix. It implies no mixing
for the = lepton while it predicts the correct hierarchy, provided we impose the relation
A=\

We give a final example by taking m=3,n=6, h,=12, h;=1, k= -2 and
g; = —4. Then, we obtain the same texture-zero for both, down quark and lepton
matrices:

A0 a8 A0 A
m=(0o 28 o, m=|0 a2 o0 (1)
20 1 A0 1

4. Baryon and lepton number violating operators

In addition to the standard Y ukawa couplings which provide with masses quarks and
leptons, the gauge symmetry of the MSSM alows also terms which violate baryon and

4 Similar relations are obtained for n< 0 by interchanging ¢ < &.
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lepton number aready at the tree-level. Suppressing generation indices, the terms
relevant to proton decay are written

ALLE® + XLQD®+ X'U°D°D°. (52)
There are also gauge invariant Higgs, and lepton-Higgs mixing terms of the form
pmH H, + w'LH,. (53)

If al terms (52) are alowed in the superpotential they lead to fast proton decay. In
particular, the combination of the terms LQD® and U°D°D°® generates an effective
dimension-four operator via the diagram generated by exchanging the scalar component
of the D¢ superfield. Imposing the R-parity [22,23] multiplicative symmetry R=
(—1)*B*25*L under which matter fields (quarks and leptons) change sign while the
Higgs doublets transform to themselves, al dangerous terms change sign and are
eliminated from the superpotential.

R-parity prevents also the appearance of the second Higgs mixing term in (53).
However, the usual u-term, i.e. the direct mixing between the two electroweak Higgs
fieldsisinvariant under the R-symmetry. In the model under consideration this may lead
to a disaster, as this mixing can be generated by a term of the form d)%_b’Hle where
r,s are suitable powers matching the sum of the charge of the two Higgs doublets. With
vevs (¢),(¢) ~10"*M, — as required by the D-term cancellation condition and the
fermion mass textures — a large power (at least r + s> 15) is needed to sufficiently
suppress the u-mass parameter and bring it down to the electroweak scale.

In addition to the tree-level couplings there are also higher order gauge invariant
terms leading to dangerous dimension-five operators which induce proton decay. The
ones surviving R-parity are [24]

)\i4jk| )\L_)jkl

M_U Qin Qk L| s M_U UichCDEEIC1 (54)
where the indices i,]j,k,| = 1,2,3 refer to the three generations. Although the induced
amplitudes of dimension-five operators are relatively suppressed compared to those
arising from the terms (52), due to the fact that they arise as non-renormalizable
interactions, the baryon decay bounds on their Yukawa coupling constants are very
restrictive. In the general case one hasto impose A, < 10~ for operators involving light
quarks while the constraints are less important for Ag [24]. If an expansion parameter
€~ 0.23 is involved in the coupling, we should require a power €° for a coupling
involving only first and second generation fermions to comply with the experimental
bound. Couplings involving third generation fields suffer additional suppression from
mixing angles and the bounds are less restrictive. Therefore it is crucial to examine
whether the charge assignment of the fermion fields under the anomalous U(1)y
symmetry is also capable of eliminating these baryon and lepton number violating
operators.

We have classified all possible non-zero couplings involving the various generations
together with their U(1), charges and exhibit them in Table 10. The total U(1), charge
of each operator is now expressed only in terms of the free parameters m,n,k and the
sum of the Higgs charges h, = h, + h,.

In the first column of this table we write the particular operator in terms of its family
indices while in the second column we present its charge. Since everything here is
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parametrized in terms of the charge of the singlet, we should simply check whether the
charge of a particular operator is integer or non-integer. We now distinguish two cases:

- Ath+h,=h,=0
To analyse the effects of the anomalous abelian symmetry on these operators, let us
start with the case h,.=h, + h,=0. As seen in Table 10, the charges of these
operators depend only on the integer parameters m,n,k and they involve 1/2
fractions of these parameters. Therefore, we consider which of these operators
survive for various choices of m,n,k. We assume that the value of the parameter k is
odd. This choice of k fits perfectly with the findings in the lepton mass matrices.
(Indeed, in Section 3, most of the acceptable lepton mass textures where constructed
choosing odd values for k.) Clearly, the most favorable case is when both m and n
are even as it eliminates most of the operators involving the light generations. The
rest of the operators are needed to be suppressed with appropriate selection of m and
n and k. As it will become clear in the next section one can easily find charge
assignments (see e.g. solution A of Table 11) that give acceptable fermion mass
textures and adequately suppress all these operators.

- B:hy+h,=h,#0
Now let us come to the most general case. It is interesting that the dimension-five
proton decay operators can also be expressed in terms of integer parameters, namely
m,n,k,h, and they do not involve h,. Actually the dimension-five operators of Table
10 are receiving additional charge, the first seven (of the form QQQL) obtain an
— 2h, additional charge while the remaining receive a contribution of — Zh,. The
charges of the operators of the type U°U°DC°E® are obtained by adding " to the
charge of the QQQL operator in the same line.
We can choose the Higgs charges so that the contributions 2h, and ¢h, are neither
integers nor half-integers. Then, all operators are eliminated simultaneously.

Another non-renormalizable operator allowed by R-parity is the following [26]:
Ae o _

where i, ] refer to generations. This operator, which violates lepton number by two units,
may have interesting phenomenological consequences as it is capable of generating a
Majorana mass for the left-handed neutrino. A coupling Ay = 1-10"2 would be of the
right order for such a mass term. In Table 6 we present al relative operators and their

Table6

U(Dy charges of the operators L;L;H,H, for the case h, = 0. Indices refer to generations
Operator U(Dy charge

L,H,L H, n—k—10q;

LiH; Ly H; 75" —100q,

LiH;L3H, "5 —10q,

L,H,L,H, m+ k—100q,

LiHyLgH, 5™ —100,

LyH,LgH, —10q;
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charges for the case h, = 0. When h_ # O the relative charges can be calculated using
Table 4. The role of this term in specific examples will be presented in the next section.

A more difficult problem however is related to the u-term. As is well known, there
must be a Higgs mixing via a term of the form whh with u ~ m,, in order to prevent
the appearance of an unwanted axion. In the simple scenario of one U(1) symmetry and
the two singlet fields we discuss here, this is not easy. In general, if the charge
h,=h, + h, is an integer, then the singlet fields ¢,¢ may couple to the combination
hh, giving rise to a u ‘mass parameter of the order (E/MU)h+ ~%p!! Since the vev of
{(¢) ~107*M,, one has to impose the condition h, > 15, otherwise the Higgs doublets
receive unacceptably large masses [25].

There are also other possible ways of avoiding such a large mass term for the Higgs
doublets. For example, one may introduce a Peccei—Quinn symmetry [27] to ban [28]
simultaneously the Higgs mixing as well as the proton decay operators discussed above.
In our case, since the Higgs charges are basically unconstrained, it is possible to work
out cases where their sum is not an integer. Therefore, the Higgs term does not appear.
We note however, that solutions which eliminate completely the u-term are not
favourable; if aterm is completely forbidden for symmetry reasons in the superpotential,
it is not obvious how it can appear in the Kéhler potential. We think that the suppression
of the Higgs mixing coupling by an appropriate choice of the Higgs charges is a rather
natural solution. In Table 11 we give cases with field charges which lead to a large
u-term suppression and a viable set of Yukawa mass matrices.

We note that, even if we ignore the above problem of the Higgs mixing — assuming
the existence of another type of solution — and impose a half-integer value of h,, we

Table7
U(Dy charges of the R-parity violating couplings L;Q; Dy for the case h, = 0. The indices refer to the
generations

Operator U(1)y charge
L,Q,Df $—50,
L,Q,D3, L,Q, D1 n-ﬁ-m%k—Sq3
L,Q,Ds, L,Q;D7 n—4—50q;
L,Q,DS m+"5¥—5q,
L,Q, D3, L;Q;D3 =K —5q,
L,QsD3 7" —50
L,Q,Df n+ 5" —5q,
L,Q,D3,L,Q,Df m+452 —~5q,
L,Q, D3, L,Q3D7 K2t 5,
L,Q, DS % —503
L,Q, D3, L,Q;D3 m+5 50,
L,Q;D5 “" =50,
L;Q, D% n—5d,

L3Q; D3, L3Q, D7 5t =50,
L3Q. D3, L3Q;DF 7505

LsQ, D3 m-—>50;
L;Q,D§, L;Q;D5 750,

L3Q3D5 —50;
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Table8
U(Dy charges of the R-parity violating couplings L;L;E¢ for the case h, = 0. The indices refer to the
generations

Operator U(1)y charge
L, L, Ef n+m-X_—5q,
L,L,ES m+”*k—5q3
L Lo ES ot —-50,
L, L;Ef n—k—50q,
LiLsES 3" —50;
LiL3Eg 3¢ =50,
LoLgEf " =50,
L,L;ES k+ m—5q;
LoL3Es K™ —5q,

encounter another difficulty; we know from the analysis of the quark mass matrices that
m,n are integers while from the lower 2 X 2 charged-lepton mass matrix, we find that k
also hasto be integer. Then, we infer that the non-integer values of h, lead unavoidably
to a massless electron state. In a more complicated theory we may hope that radiative
effects or other weakly coupled singlets could generate a small entry adequate to provide
the electron with a mass.

We would like now to abandon the R-parity symmetry and investigate the possibility
of constructing a set of charges which give viable fermion mass textures with baryon
and lepton violation within the existing limits. In Tables 7, 8, 9 we present all dangerous
trilinear operators capable of inducing proton decay. In the second column we exhibit
their total charge under the U(1),, anomalous symmetry. We have expressed the total
charge in terms of the parameters m,n,k (which parameterize all quark and charged
lepton mass matrices) and the charge of the third generation quark doublet g,. Thus, in
order to generate a gauge invariant baryon violating term we should be able to add a
singlet ¢ or antisinglet ¢ to the proper power r, ¢ (qb ) to cancel the charge. For
example, if g, + g; +7\ = +£r, then the operator QI QLo (o ) cannot be avoided.

In this case, the Yuka/va couplings of the terms (52) should be highly suppressed, in
particular those involving first generation quark and lepton states. According to our
natural assumption that the non-calculable coefficients should be of order one, we infer

Table9
U(D)y charges of the R-parity violating couplings U,°D{"Dg for the case h, = 0. The indices refer to the
generations

Operator U(1)y charge
U/ DSDS n+3—-50q;
UyDiDg n—50;
UrD3 D3 "t —5q,
U;DiD; + —50;
U;DiDs ot —5qs
U;D; D3 m—50,
UsDiD35 m*"—5q3
UsDiDs 250

ERNE]

UsD3 D3 250
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Table10

Dimension-five operators leading to proton decay are presented in the first and second column. The associated
charges for the case h,, = 0 are presented in the third column. The symbol / marks the surviving operators for
the allowed values of m and n assuming Kk is odd. When h, # 0, all QQQL operators receive an additional
charge (¢h, or ¢h,), thus for appropriate h, values are forbidden. The DUCUCE® receive similar
contributions. (For details see Section 6)

Operator U(Dy charge m,n even m odd, n even n,m odd

QL DfUSUSES ek v

Qi Qsly DIUFUSET Ik %
DIUZUSE]

Q:Q,Q;L, D3UUSE? n+ ok Vv Vv
D3UTUZEY

Q,Q:Q, L, DSUrUZEF m+n—4%

Q,Q,Q5L, DSU;USEF m+ 1k Vv

Q:Q:QsL, DSUTUSET n—s

Q3Q,Q;L, D3U;USET gk v

QQ;L; DiUUFEZ n+m+§

QQ:QsL, D{USUSES n+5" Y y
DiU;UsE;

Q:Q,Q5L, D3SUSUSES m+ k40 Vv
D3UUSEZ

QQ:Q,L, D3UUZES K Vv

Q:Q,Q;L, D3USUSES amk % v

Q:QQsL, DSULUSES mpe %

Q3Q,Q5L, D3U;USE; m+4§

Q:Q,Q,L5 DfUfU;ES n+3 Vv

Q1 QQsL5 DIUfUSES n v v v
DiU;UsES

Q:Q2Q3L5 D3ULUSES e Vv Vv
D3UTUS ES

QQ;Q;,L5 D3UUZES m+3 Vv Vv

Q,Q,Q5L5 D3U;U5ES m Vv Vv Vv

Q3Q:QsL; D3UTUSES 2 v v

Q3Q,Q;L,4 D3U;USES 7 v

that the U(1),, symmetry should prevent the appearance of such terms at the renormaliz-
able superpotential. These operators should appear at high orders so that their couplings
are suppressed by proper powers of the expansion parameter. In order to put appropriate
constraints on the U(1)4-charges, we first need the experimenta bounds on the relevant
Y ukawa couplings. The most severe bounds are imposed on the Y ukawa couplings A,
and A5, of this operator. In particular, from the absence of the exotic reaction of
BB-decay we have Aj;; <1072 and from the bounds on the left-handed neutrino
Majoranamass, X35 < 2 X 10~ 3. Other exotic decays imply bounds to various combina
tions of couplings, while more restrictive bounds arise for products of the form AX'; a
recent analysis on the various Yukawa couplings predicted in U(1) models and a
relevant discussion of the above operators can be found in [29]°.

® See also Ref. [30].
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Note also that, when R-parity is absent, additional dimension-five operators involving
Higgs multiplets are also dangerous when they are combined with the couplings (52)
leading to proton decay via loop-graphs (For a complete list of these operators see Ref.
[24]). In particular, operators of the form [QQQH;, ] are dangerous in the presence of
LQD*® couplings while the operators [QU °E°H, ] are also dangerous in the presence of
U°D°D° terms. The former, leads to a tree-level proton decay diagram viathe Higgs vev
H, and its coupling to the down quark QD°H,, and similarly the second leads to an
effective U °U°D°E® operator. Finally, one should avoid the simultaneous existence of
the term U °D°D°® with the lepton number violating operators [QU °L* ], and [QU°L" 1.
It is now straightforward to turn the above bounds to constraints on the U(1), charges.
Since in our subsequent analysis we will present cases where al the tree-level operators
are either suppressed, or banned by the symmetry, we will not pursue this issue further.

5. A few typical solutions

We now pass to an investigation of possible solutions which are in accordance with
the phenomenological requirements discussed in the previous section. There are numer-
ous case of U(1)y charge assignments which give textures consistent with the hierarchi-
cal fermion mass pattern. Here, we present only few characteristic examples which
mainly fall into two categories: Those, which alow baryon and lepton number violating
operators and need additional underlying symmetries to evade them and, those which
strictly forbid any lepton and baryon violating operator.

- Solution A. It is a remarkable fact that one of the most promising texture-zero mass
matrices found in Section 3 arises from a simple generation independent charge
assignment. The first generation fermions are assigned with charge 4, the second with
2 and third with O (see Table 11). This yields (30) for the up quarks

8 56 4

& &
m,=128°% &* &?|, (56)
gt 8?2 1
and similarly for down quarks and leptons
A8 a8 At
m ~my=|)8 A* A?[|. (57)
PR |

The above charge assignment, although it allows dimension-five operators, suffi-
ciently suppresses the dangerous ones. The suppression factors are

A% L A2,

333 (3223 )3282 2

AL \3222 3132 )1233 26
AZBL )81 \1232 N1183 ) 2123 28,
AL3L \l132 2122 1123 j10,
ALsL 2121 j1122 A2

An2L A4 (58)
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Tablell
Some typical U(1), charge assignments consistent with anomaly cancellation and acceptable fermion mass
matrices
Solution A Solution B Solution C Solution D Solution E
Field Generation Field  Generation Field Generation Field  Generation Field Generation
12 3 1 2 3 12 3 1 2 3 1 2 3
Q 42 0 Q 6 4 2 Q 33 33Q F ¢ -5Q -3 -3 -3
D¢ 42 0 D* -2 -4 -6D° %% -2p°c 5 I 2 D¢ ¥ - _4
uc 42 0 U 6 4 2 U° 23 Ty I 2 -%2uc I
L 42 0 L -2-4-6L 23 -2L 5 1 2 L -2 1 2
EC 42 0 E° 6 4 2 E° 23 1 EC I 2 -2 -2 -3z _3
Higgs Higgs Higgs Higgs Higgs
H, OH,0 H, 4 H, —-4H, 1H, -1H —-%H, % H ¥ H ¥
Singlets Singlets Singlets Singlets Singlets
¢ 1¢ -1¢ 1 ¢ -1¢ 14 -1¢ 1 ¢ -1¢6 1 ¢ -1

and similarly for AJX', where the couplings refer to Eq. (54).
This solution has also the advantage of not suppressing the quartic couplings
LiLjH,H,. Actualy they have the form

[ S
LiLyH H, ~ PUNSCID T B (59)
US|

Therefore, this simple charge assignment predicts also a hierarchical texture for the
left-handed neutrino Majorana mass. The mass scale is determined by the suppression
mass factor mﬁ,/ My, so there is a sufficient suppression without the use right-handed
neutrino fields and the see-saw mechanism. As in al other matrices, only the
third-generation diagonal coupling L,L,H2 appears at the tree level.

This solution does not suppress R-parity violating couplings so one has to assume
that R-parity is a good symmetry. It does not also suppress the u-term so one has to
assume the existence of another mechanism that deals with this problem.

Solution B. Here we present another example which results in the same mass matrices
as in solution A, and with similar suppression of dimension-five operators. The
difference here is that L;L;H,H, operators are also suppressed (the stronger
coupling is of the order Alz) S|m|Iar comments with solution A hold for the R-parity
violating couplings and the w term.

In the above two cases, we have used integer U(1), charges for fermions and Higgs

fields. Going further, we present few more examples where now we introduce fractional
U(1), charge assignments.

Solution C. This solution gives mass matrices similar to solution A. The dimension-
five operators are suppressed according to (58). The difference here is that all
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R-parity violating couplings in (52), (53) vanish explicitly. However, the Mgjorana

neutrino mass operator survives and takes the form

> [A3 At At

LiLjHy Hy ~ L A A% (60)
MU Al /\3 AS

- Solution D. The charges in this case appear also in Table 11. They yield up-quark

fermion mass textures of the form

g 0 &8
my={0 & 0 (61)
2 0 1

and similarly for down quarks and leptons

A6 0 A8
mp=m=|0 2A* 0| (62)
20 1

This solution completely eliminates all dimension-five proton decay as well as all
R-parity violating couplings (52). L, L;H, H, operators are also suppressed. The only
additional mechanism one needs is for the suppression of the u term as the solution
belongs to the category h, = 0.

- Solution E. The quark and lepton matrices are

8 6 4

& &g &g
mU — 56 54 EZ , (63)
gt 8?2 1
and similarly for my with z — A, while the charged leptons are given by
AB A2
m = 2a* A]|. (64)
Moa o1

This solution forbids al dimension-five operators as well as baryon and lepton
number violating couplings (52). One concludes that all additional dimension-five
operators are also suppressed whatever the charges of these operators. At the same
time it suppresses the Higgs mixing as the w-term appears now through the
non-renormalizable term

16
My H,H,, (65)

¢

U

Wyr —

therefore the Higgs doublets are protected from receiving an unacceptable large mass.
Surprisingly the operator L;L;H,H, is not suppressed; it gives a left-handed
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Majorana neutrino texture,

e, PRSI E
LiLiHH~ —= [ 3® A, (66)
My 5
A
which exhibits the phenomenologically interesting feature of a rather large mixing in

the ,—v, sector. The price one has to pay for all these welcome features is the rather
exotic charges. This is a feature also pointed out in Refs. [3,7,8].

6. Conclusions

In this work we have attempted to generate the hierarchical standard model fermion
mass spectrum by means of an anomalous abelian family symmetry U(1), and in the
context of the minimal unification scenario. We have extended previous analyses by
considering the U(1), to be family dependent a possibility that naturally arises in
superstring model building. A minimum number of fields — one singlet and its conjugate
— were used to break the anomalous U(1), symmetry at a high scale. We have assumed
that the U(1),, anomaly is cancelled by the string Green—Schwarz anomaly cancellation
mechanism. We have imposed conditions on the U(1),-matter and Higgs charges by
requiring symmetric mass matrices and tree-level couplings for the third generation. We
have demanded the mixed SU(3)?U(1),, SU(2)?U(1), and U(1)7U(1), anomadliesto be
proportional to the Kac—Moody constants k; = k, = 3k, /5 =1 as well as cancellation
of the U(1)2U(1), mixed and U(1)3 anomalies. The general solution of the resulting
equations has been determined and all possible textures of the fermion mass matrices
were classified in terms of the admissible values of the sum of the two U(1),-Higgs
charges. The cases of zero and integer values of the Higgs sum charge where considered
while non-integer values, athough possible, were not discussed since they lead to a
massless charged-lepton eigenstate and prevent the appearance of a u-term to all orders.
Using the freedom left by the anomaly conditions on the U(1),, charges, four distinct
phenomenologically acceptable texture-zero solutions for the fermion mass hierarchy
problem have been predicted. The mass hierarchy is determined from powers of
parameters defined as the dimensionless ratio of the singlet vevs over some high (string)
scale. The magnitude of the expansion parameters is constrained due to the D-term
cancellation mechanism which determines the singlet vevs in terms of the unification
scale and the common (string) coupling. We note that up- and down-quark mass
matrices are predicted to have the same form due to the initial assumptions that the
matrices are symmetric and the requirement that both top and bottom Y ukawa couplings
appear at the tree-level. However, the predicted quark masses can be reconciled with the
low energy measured values due to the possible appearance of different expansion
parameters in the matrices and renormalization running effects. The success of the above
scenario might look more impressive if some of the simplifying assumptions were
relaxed. Nevertheless, we find it remarkable that even in this simple extension of the
minimal supersymmetric standard model one may predict to a good approximation the
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big mass gaps observed in the particle spectrum. It is tempting to extend the analysis by
relaxing some of the unnecessary assumptions and re-examine the above model.

A rather remarkable fact is that this simple U(1), anomalous symmetry with the
constraints implied by the anomaly cancellation conditions alows fermion charge
assignments which can suppress, or in certain cases eliminate, al dangerous baryon and
lepton number violating operators. In the case that R-parity is a good symmetry we have
found solutions that can suppress the dangerous dimension-five proton decay operators
(allowed by R-parity). We have aso found solutions that do not need the introduction of
R-parity since there, all R-parity violating couplings are naturally suppressed.

We have further shown that these solutions may also suppress sufficiently the Higgs
doublets mixing parameter ( u-term) and keep them massless down to the electroweak
scale. This latter possibility requires the introduction of a rather large charge for the sum
of the Higgs doublets which demand rather peculiar U(1)y assignments for MSSM
fields at least in the case that the singlet charge is unity. In the context of these solutions
we have also succeeded to find cases which provide the left-handed neutrino with
acceptable Majorana masses.

It is remarkable that most or al of the good features mentioned above can occur
simultaneously in a few simple solutions which we presented in this work.
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