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Abstract

In this paper we present solutions to the fermion mass hierarchy problem in the context of the
Ž .minimal supersymmetric standard theory augmented by an anomalous family dependent U 1 X

symmetry. The latter is spontaneously broken by non-zero vevs of a pair of singlet fields whose
magnitude is determined through the D- and F-flatness conditions of the superpotential. We
derive the general solutions to the anomaly cancellation conditions and show that they allow

Ž .numerous choices for the U 1 fermion charges which give several fermion mass textures inX
Ž .agreement with the observed fermion mass hierarchy and mixing. Solutions with U 1 fermionX

charge assignments are found which forbid or substantially suppress the dangerous baryon and
lepton number violating operators and the lepton-Higgs mixing coupling while a Higgs mixing

Ž .mass parameter m-term can be fixed at the electroweak level. We give a general classification of
Ž .the fermion mass textures with respect to the sum of the doublet-Higgs U 1 charges and showX

that suppression of dimension-five operators naturally occurs for various charge assignments. We
work out cases which retain a quartic term providing the left-handed neutrinos with Majorana
masses in the absence of right-handed neutrino components and consistent with the experimental
bounds. Although there exist solutions which naturally combine all the above features with rather

Ž .natural U 1 charges, the suppression of the m-term occurs for particular assignments. q 2000X

Elsevier Science B.V. All rights reserved.

1. Introduction

Ž .The minimal supersymmetric extension of the standard model theory MSSM has
had a remarkable success in explaining the low energy parameters in the context of
unification scenario. Among them, the measured values of the strong coupling constant
Ž . 2 Ž .a m and the weak mixing angle sin u m are in perfect agreement with thoses W W W

predicted when the unification scale is taken to be of the order M ;1016 GeV and onlyU

contribution of the MSSM spectrum is assumed to the beta-function coefficients for the
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gauge coupling running. These remarkable properties of the simplest unified model,
naturally raise the question whether the fermion mass spectrum observed in low energies
is also reproduced from few basic symmetry principles encountered at the unification
scale.

The experience from string model building has shown that a natural step towards this
Ž .simplification is to assume the existence of U 1 symmetries which distinguish the

various families. A further indication that additional symmetries beyond the standard
gauge group exist, has been the observation that the fermion mixing angles and masses

w xhave values consistent with the appearance of ‘‘texture’’ zeros in the mass matrices 1 .
More precisely, it has been observed that in string model building one usually ends up
with the effective field theory model which, in addition to the non-abelian gauge group
includes an anomalous abelian gauge symmetry whose anomaly is cancelled by the

w xGreen–Schwarz mechanism 2 . In fact, this mechanism allows for the existence of a
Ž .gauged U 1 whose anomaly is cancelled by assigning a non-trivial transformation toX

an axion which couples universally to all gauge groups. In the spectrum of a string
Ž .model, there are usually singlet fields f , f charged under this U 1 symmetry whichi i

Ž .develop vacuum expectation values vevs in order to satisfy the F- and D-flatness
conditions of the superpotential. This results in a spontaneous breaking of the anomalous
Ž .U 1 symmetry, naturally at some scale one order of magnitude less than the string

Ž .unification scale.
Ž .Surprisingly, the existence of an anomalous or non-anomalous U 1 symmetry has

remarkable implications in low energy physics: for example, one may try to explain
w x3–14 the mass hierarchies observed in the quark and charged leptonic sector. In this
approach, all quark, lepton and Higgs fields are charged under the extra abelian

Ž .symmetry. The charges are chosen so that when the U 1 symmetry is unbroken, only
the third generation is massive and all mixing angles are zero. However, when the
singlet fields obtain a non-zero vev, symmetry breaking terms gradually fill in the
fermion mass matrices and generate a hierarchy of mass scales and mixing angles. It
turns out that the symmetry breaking terms appearing in the fermion mass matrices may
be expressed as powers of a few expansion parameters leading to a rather impressive

Ž .predictability of the whole scheme. If further the U 1 is anomalous, then the vacuum
Ž .expectation values of the singlets are also given in terms of the unification string scale

and definite predictions may arise for the masses and mixing angles. In fact, it will turn
Ž .out that successful hierarchical mass patterns appear only if the U 1 symmetry isX

anomalous.
It is rather interesting that this scenario may also give the correct prediction for the

w xweak mixing angle without assuming unification. It was shown in Ref. 4 that in the
Ž . 2presence of an anomalous U 1 symmetry, the value of sin u could be predicted inX W

Ž .terms of the U 1 charges of the massless fermions. The anomaly cancellationX

mechanism may work in a way that the gauge couplings have the correct predictions in
low energies. The simplest possibility of symmetric mass matrices was worked out in

w xRef. 5 and found that the hierarchical pattern of the fermion mass spectrum can be
successfully reproduced.

In the present paper, we wish to extend the analysis by considering the most general
Ž .U 1 symmetry with fermion charges respecting the anomaly cancellation conditions.X

Ž .We first find that, even in the simple case of a U 1 factor obtained from linear
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combination of the standard model symmetries, the fermion mass matrix structure is
w xricher than that exhibited in 5 . This is a simple consequence of the fact that the vacuum

expectation values of the two singlet fields f and f differ from each other since they
have to respect the D-term anomaly cancellation condition. Going further, we find that a

Ž .general family dependent U 1 anomalous symmetry generates four approximate
Ž .texture-zero mass matrices of Table 1. It is found that the Higgs U 1 charges play aX

crucial role, particularly in the determination of the lepton textures as well as baryon and
Ž .lepton number violation. For a non-zero sum of the U 1 Higgs charges it is possible toX

ban all dangerous dimension-five proton decay operators. We further find that one can
Ž .choose a consistent set of U 1 charges which prevent the appearance of an unaccept-X

ably large Majorana mass term for the left-handed neutrino.
The paper is organised as follows: In Section 2, we introduce the notation for fermion

charges, we set our assumptions and solve the constraints from mixed anomalies for the
Ž .fermion and Higgs U 1 charges. In Section 3 we derive the general forms of the quarkX

and lepton mass matrices. Using specific values for the charges, consistent with the
solutions obtained in Section 2, we classify with respect to the sum of the Higgs-doublet
Ž .U 1 charges all possible fermion mass textures. In Section 4 we analyse the baryonX

and lepton number violating operators, as well as other dangerous terms which are not
prevented from the standard model gauge symmetry. We impose constraints to eliminate
these dangerous operators and in Section 5 we present particular examples of fermion
matrices which fulfill these requirements. In Section 6 we present our conclusions.

Table1
The five symmetric texture-zero mass matrices for the up- and down-quarks consistent with the observed

w xhierarchical pattern 1

Texture m mU D

6 4'0 2 l 0 0 2l 0
4 3 36 4T 2l 2l 4l'1 2 l l 0 ž /� 0 30 4l 10 0 1

6 40 l 0 0 2l 0
6 2 4 3 3T l 0 l 2l 2l 2l2 ž / ž /2 30 l 1 0 2l 1

4 4'0 0 2 l 0 2l 0
4 4 3 3T 0 l 0 2l 2l 4l3 ž /3� 04' 0 4l 12 l 0 1

6' 40 2 l 0 0 2l 0
6 4 2 4 3T ' '2 l 3 l l4 2l 2l 0ž /� 0 0 0 120 l 1

40 0 l
24 l 4'0 2 l 0 2l 0
'2 4 3T5 2l 2l 0ž /24 l 0 0 1l 1� 0'2
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2. The solutions to anomaly cancellation conditions

The Yukawa terms of the superpotential needed to provide masses to quarks and
Ž . Ž . Ž .leptons are SU 3 =SU 2 =U 1 gauge invariant and are written as follows:L Y

WWslu Q U cH qld Q DcH qle L EcH . 1Ž .i j i j 2 i j i j 1 i j i j 1

Although all these terms are invariant under the standard model gauge group, there is no
explanation why some of the Yukawa couplings are required to be much smaller than
others to account for the fermion mass hierarchy. Extending the standard gauge group by

Ž .one anomalous U 1 with the MSSM fields being charged under this abelian factor,X

only terms which are invariant under this symmetry remain in the superpotential. The
observed low energy hierarchy of the fermion mass spectrum and the demand to have
natural values of the Yukawa couplings l of order one, suggest that only tree-leveli j

couplings associated with the third generation should remain invariant. In this case, the
mass terms involving some of the lighter fermions are generated through non-renormal-
izable superpotential couplings at some order. These higher order invariants are formed

Ž .by adding to the tree-level coupling an appropriate number of singlet fields f or f

Ž .which compensate the excess of the U 1 charge. Since the anomaly cancellationX
w xmechanism 15 requires vevs for the singlet fields that are about an order of magnitude

below the unification scale, the above scenario naturally reproduces hierarchical fermion
mass spectra. We therefore assume that the anomalous charge of the singlet fields f and
f is q1,y1 respectively which is equivalent to measuring all charges in f charge
units.

In the present work we are interested in symmetric fermion mass matrices. To obtain
a symmetric structure we need to define proper constraints on the fermion charges under

Ž .the U 1 symmetry. Under the assignments of Table 2 the charges of the mass matricesX

are CU sq qu , C D sq qd and C E s ll qe . The conditions for symmetric massi j i j i j i j i j ji

matrices in the above notation take the form
q qu sq qu ,i j j i

q qd sq qd ,i j j i

ll qe s ll qe . 2Ž .j ii j

The requirement that the third generation has tree-level couplings imposes the con-
straints

q qu qh s0,3 3 2

q qd qh s0,3 3 1

ll qe qh s0. 3Ž .3 13

By demanding tree-level couplings for the third generation and the minimum number of
ŽHiggs doublets one for the up-quarks and another for the down-quarks and charged

.leptons we essentially seek solutions for the case of large tanb. In fact, this implies that
Ž .the top, bottom and t Yukawa couplings are equal up to order one coefficients at the

Ž .unification scale. Clearly, the difference between the top mass m and the bottom masst
Ž .m must arise entirely from a large Higgs vev ratio tanbsÕ Õ 41. Although web 2 1

restrict here the analysis only of the large tanb case, yet, there is enough freedom to
Ž .generate a variety of acceptable mass matrices. The case of small tanb;OO 1 can also
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Table2
Ž .Charge assignments for MSSM fields under the U 1 X

Field Charge

Q qi i
cD di i
cU ui i

L lli i
cE ei i

H h2 2

H h1 1

Ž .be worked out easily in a similar way, by modifying conditions 3 so that the b–t

Yukawa coupling appears at a higher order. In this case, the fermion mass structures
w xobtained are slightly modified 5 . They can be made consistent with the experimentally

observed fermion mass spectrum by a suitable choice of the order one coefficients
associated with each mass entry.

Ž . Ž .After imposing the conditions 2 , 3 the charges of the possible quark couplings to
the appropriate Higgs field take the form

2 q yq q yq q q yq q yqŽ . Ž . Ž .1 3 1 3 2 3 1 3
c cQU H Q D H2 1 q yq 2 q yq q yqŽ . Ž .C sC s . 4Ž .1 3 2 3 2 3� 0q yq q yq 0Ž . Ž .1 3 2 3

Similarly, for the charged leptons we have

2 ll y ll ll y ll q ll y ll ll y llŽ . Ž . Ž .1 3 1 3 2 3 1 3
cL E H1 ll y ll 2 ll y ll ll y llC s . 5Ž . Ž . Ž .1 3 2 3 2 3� 0ll y ll ll y ll 0Ž . Ž .1 3 2 3

We observe that the charges of the up- and down-quark entries are the same. This result
is obtained only due to the fact that we require symmetric textures and one-tree level
coupling for each one of the quark matrices. Further, the quark charge-entries depend
only on two combinations, q yq and q yq . This is also the case for the leptons,1 3 2 3

with the replacements q ™ ll . Anomaly cancellation conditions will give furtheri i
Ž .relations between q and ll charges, so if U 1 charges are somehow fixed in thei Xi

quark sector, then one ends up with predictions in the lepton matrices.
We proceed with the analysis of the quarks. At this stage, one can readily conclude

that in order to have acceptable quark masses we must have

n m
q yq s , q yq s where mqn/0, m ,ns"1,"2, . . . 6Ž .1 3 2 32 2

We do not write down a similar parametrization for the charged lepton entries since, as
we will see, due to the various conditions we have imposed we will be able to express
them in terms of the quark entries. We will discuss in detail the remaining constraints on
the quark and lepton entries in the subsequent section but first we need to deal with the

Ž .mixed anomalies associated with the MSSM and U 1 gauge groups.X
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It is well known that the MSSM is anomaly free. The introduction of an extra
Ž .anomalous U 1 group factor leads to anomalies which should be absorbed. As alreadyX

discussed, the Green–Schwarz anomaly cancellation mechanism may cancel the pure
Ž . Ž .U 1 anomaly and mixed U 1 -gravitational anomalies, however there are mixedX X

Ž Ž . Ž . Ž . .anomalies of the form A s G G U 1 where G s SU 3 ,SU 2 ,U 1 . In termsŽ .Ž .Xi i i i Y
Ž .of the U 1 charges these are written asX

1
A : q q u qd , 7Ž . Ž .Ý Ý3 i i i2

3 1 1
A : q q ll q h qh , 8Ž . Ž .Ý Ý2 i 1 2i2 2 2

1 1 4 1 1
A : q q d q u q ll q e q h qh . 9Ž . Ž .Ý Ý Ý Ý Ý1 i i i i 1 2i6 3 3 2 2

w xIt was pointed out in Ref. 4 that in a model where the anomalies are canceled
through the Green–Schwarz mechanism, the mixed anomalies with the standard model
gauge group are proportional to the corresponding Kac–Moody level,

A k3 3
s , 10Ž .

A k2 2

A k2 2
s . 11Ž .

A k1 1

2There are also mixed anomalies of the form A s U 1 U 1 which should beŽ . Ž .Ž .Y X0

zero:

A : q2 q d2 y2 u2 y ll 2 q e2 q h2 yh2 s0. 12Ž .Ž .Ý Ý Ý Ý Ý0 i i i i 2 1i

We should note here that in the calculation of anomalies we have only considered the
fields of the MSSM spectrum and a pair of singlets f,f which are necessary to break

Ž .the U 1 symmetry and create the non-renormalizable terms which fill in the fermionX
Žmass matrices. In string constructions, however, there are additional particles some of

. Ž .them carry fractional charges , which may also be charged under U 1 . Even in theX
Ž . Ž . Ž .case that these fields belong to non-trivial representations of SU 3 =SU 2 =U 1 Y

Ž .group they usually come in pairs with opposite U 1 charges so they do not contributeX

to the mixed anomalies.
Ž . Ž .The conditions 10 , 11 have rather remarkable implications on the determination of

the low energy parameters. Indeed, to confront with the standard unification scenario we
have to impose the conditions

32sin u M s , 13Ž . Ž .W U 8

k sk 14Ž .3 2

which lead to the constraints
A A 33 2

s s . 15Ž .
A A 51 1

To proceed further, we should combine the equations obtained from the anomaly
Ž .cancellation with the symmetry constraints 2 . These can be solved with respect to the

Ž .charges u ,u ,d ,d ,e and e while the constraints 3 can be solved with respect to1 2 1 2 1 2



( )G.K. Leontaris, J. RizosrNuclear Physics B 567 2000 32–6038

Ž .u ,d and e . Furthermore, we may solve the constraints 15 with respect to the charges3 3 3

q , ll , while treating as parameters the sums h , q , ll :3 q q3 q

h sh qh , q sq qq , ll s ll q ll . 16Ž .q 1 2 q 1 2 q 1 2

Ž .Then, in terms of 16 we obtain
1ll s y5h y18 q y ll , 17Ž .Ž .q q483 q

1q s y17h q6 q y ll . 18Ž .Ž .3 q q48 q

Ž .This parametrization considerably simplifies the analysis of the quadratic constraint 12 .
Ž .Indeed, substituting the above solutions into 12 we arrive at the equation

6h2 q5 11q q ll y4h h y6 ll q3q q y ll q4h s0, 19Ž .Ž . Ž . Ž .q q 2 q q q 2q q q

which can be solved easily. We find it convenient now to solve the above equation for
h , keeping as parameters the sums h , q , ll as before. We find two solutions2 q q q
depending on the value of h :q

Ž .Ø For h s2 q y2 q /0 we obtain the simple relationsq q 3
3 1 3ll s q s ll sq . 20Ž .3 q16 3 8q 3

Ž .Ø For h /2 q y2 q we obtain the solutionq q 3

y5 h2 qh q y29 q q24q q y2 qŽ . Ž .q q q 3 3 q 3
h s ,2 6 h y2 q q4qŽ .q q 3

17ll sq y8q y h ,q 3 q6q
7ll sy h y3q . 21Ž .q 363

The first solution is characterized by three parameters q ,q ,h or equivalently m,n,h1 2 2 2
Ž Ž ..see Eq. 6 . The second is a four-parameter solution that depends on m,n,q ,h and3 q

Ž .ll . As will become clear later see Section 3 , ll can be exchanged with an integer2 2

parameter k and h has to be integer too. Thus the first solution depends on two integerq

Table3
Ž . Ž Ž ..U 1 charge assignments for the case h s mq n Eq. 20X q

Field Generation

1 2 3

Ž .2 ny3m 2 m y3n 3 mq nQ y10 10
10

Ž .3m q8 n 8 m q3nc 3 mq nU y h y h y h2 2 210 10
10
Ž .7m q2 n 7nq2 mc 7 nq mD y q h y q h y q h2 2 210 10

10
Ž .15 k q23m q8 n 15k q7m y8 n 4 mq nL y y30 30

15
Ž .15 k q37m q22 n 15k y7m y22 nc 11 mq nE y q h y h y h2 2 230 30

15

Higgs

H mq ny h H h1 2 2 2
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Table4
Ž .U 1 charge assignments for the case h / mq n. The value of h is not an independent parameter but it isX q 2

7Ž . Ž .related to q ,h ,m,n through Eq. 21 . The integer k is defined as ks2 ll q6q y mq h see Section 33 q 3 q32

Field Generation

1 2 3
n mQ q q q q q3 3 32 2
n mcU y q y h y q y h y q y h3 2 3 2 3 22 2
n mcD y q y h q h y q y h q h y h q h y q3 q 2 3 q 2 q 2 32 2
ny k h m q k h hq q qL y3q y5 y3q y7 y3q y73 3 32 3 2 6 6
ny k h m q k h hq q qcE q3q y q h q3q q q h q h q3q3 2 3 2 2 32 3 2 6 6

Higgs

H h y h H h1 q 2 2 2

and one non-integer parameters while the second depends one three integers and one
non-integer ones. The detailed charge assignments for each solution are shown in Tables
3 and 4, respectively.

We wish to emphasize here that these are the most general solutions to the anomaly
cancellation conditions under the assumptions of symmetric mass matrices and tree-level
Yukawa couplings for the third generation with byt unification. Using the

Ž .parametrization 16 , we have succeeded in linearizing the quadratic equation constraint
and expressing the solutions in terms of a few parameters. The solutions above are
suggestive for a classification with respect to the sum h of the Higgs charges.q

At this point we find it useful to close this section with a remark on the necessity of
Ž .the U 1 symmetry of being anomalous. Indeed, one may wonder whether an anomaly

free abelian symmetry can comply with the above phenomenological requirements.
Ž . Ž .Actually one can easily derive the most general solution of the constraints 2 , 3

Ž .together with A sA sA sA s0 that gives also vanishing trace for U 1 and3 2 1 0 X
Ž .3vanishing U 1 anomaly. This solution is 2 q sd syu r2syll r3se r3sq ,X 3 3 3 3 qq

u sy3q r2yq , u sy5q r2qq ,d sq r2qq , d s3q r2yq , ll s1 q 2 2 q 2 2 q 2 1 q 2 1

y3q y ll , e s3q r2y ll , e s9q r2q ll , h syh s l sy3q r2. Unfortu-q 1 q 2 q 1 2 3 q2 2 2

nately this solution predicts two additional tree-level couplings, namely Q U H and2 1 2
Ž .Q U H which are not consistent with phenomenological requirements see Table 1 .1 2 2

Ž .Thus one is forced to search for an anomalous U 1 symmetry.

3. The derivation of the fermion mass matrices

In the subsequent analysis with regard to the derivation of the fermion mass matrices
and the investigation of baryon and lepton number violation, a crucial role is played by
the value of the parameter h 'h qh . Some first conclusions may be drawn byq 1 2

Ž . Ž .inspection of the forms of the charge matrices 4 , 5 , when they are written in terms of
the parameters m,n,h . Thus, the up and down quark mass matrices are independent ofq
the value of h , while, on the contrary, the structure of the charged lepton mass matrixq
depends decisively on h . It can be also easily checked that the baryon and leptonq
number violating operators are h -dependent. It is therefore convenient for our subse-q
quent analysis to distinguish three cases for the h value: we will first examine the caseq
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h s0 which means that the two Higgs doublets possess opposite charges. Next weq
consider h to be an integer and finally we comment on the non-integer values of h .q q

3.1. h s0q

Ž .Starting from this particular value h , we first find that one of the two solutions 20 ,q
Ž .21 does not lead to sensible results. Indeed, by a simple inspection we infer that

Ž .solution 20 would imply mqns0 and therefore, a tree-level mass for the 12 and 21
Ž . Ž .entries. Thus, there is only acceptable one solution for 19 , namely 21 which for

h s0 takes the formq

ll q ll s q qq y8q , ll sy3q , h syh sy2 q . 22Ž . Ž .1 2 3 3 2 1 31 2 3

We can easily calculate the charges which are given in Table 5 in terms of the four
free-parameters.

Using these charge assignments one finds that the quark- and lepton-charge matrices
take the form

mqn n
n

2 2
mqn m

c cQU H Q D H2 1 mC sC s , 23Ž .
2 2
n m� 00
2 2

mqn nyk° ¶
nyk

2 2
mqn mqkcL E H1C s , 24Ž .mqk

2 2
nyk mqk

0¢ ß
2 2

Ž .where m,n are given in 6 while all the additional dependence of the lepton matrix has
been absorbed in the parameter k defined as follows:

ks2 ll q6q ym . 25Ž .32

Let us now come to the parameters entering the quark and charged lepton mass
matrices. We first note that the only tree-level couplings entering the fermion mass

Ž . Ž .textures are those corresponding to the 33-entries of 23 and 24 , i.e. the third
generation mass terms for the up, down and lepton fields, i.e. Q t cH , Q bcH and3 2 3 1

L t cH . The remaining mass matrix entries are expected to be generated from non-re-3 1

normalizable terms formed by proper powers of the singlet fields frM , frM and1 1

frM , frM . The powers of non-renormalizable terms have to be such that the2 2
Ž . Ž .charges of the entries in the matrices 23 , 24 are cancelled out. The singlets are

divided by the mass parameters M , M which refer to some high energy scales. If the1 2

dominant source of these terms is from string compactification, then M sM 'M and1 2

there are only two expansion parameters which enter in the mass matrices, namely frM
and frM. It is also possible that additional vector-like Higgs pairs may acquire their
mass via spontaneous breaking after compactification. Then, a strong violation of the

Ž . w xSU 2 symmetry of the quark sector may occur, and as a result M /M 5 .R 1 2
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Table5
Ž .U 1 charge assignments for the case h s0X q

Field Generation

1 2 3
n mQ q q q q q3 3 32 2
n mcU q q q q q3 3 32 2
n mcD y3q y3q y3q3 3 32 2
ny k m q kL y3q y3q y3q3 3 32 2
ny k m q kcE q q q q q3 3 32 2

Higgs

H 2 q H y2 q1 3 2 3

Ž .We further point out here that in the case of an anomalous U 1 symmetry we should
necessarily take f/f. This is because the cancellation of the D-term requires these
values to differ from each other. In particular, the Green–Schwarz anomaly cancellation

w xmechanism generates a constant Fayet–Iliopoulos 16 contribution to the D-term of the
Ž .anomalous U 1 . This is proportional to the trace of the anomalous charge over allX

fields capable of obtaining non-zero vevs. To preserve supersymmetry the following
w xD-flatness condition should be satisfied 15,17 :

X < < 2Q f syj/0, 26Ž .Ý j j
fj

X Ž .where Q is the U 1 charge of the field f , while the sum extends over all possibleJ X j
Ž .singlet fields and the parameter j is proportional to the trace of the anomalous U 1 .X

Clearly, in the case of two singlets with opposite charges – as in our case – one should
have

2 2<² : < <² : <f y f syj . 27Ž .
Thus, in the construction of the quark and lepton mass matrices in the general case we
may define the following four parameters:

f f
´s , ´s , 28Ž .

M M1 1

f f
ls , ls . 29Ž .

M M2 2

According to our previous discussion, the parameters ´ and ´ should appear in the
up-quark mass matrix while the second set, i.e. l and l, in the down quark and charged
lepton mass matrices. Thus the possible mass terms should have one of the following
forms:

r ri j i jQ U H ´ , Q U H ´i j 2 i j 2

for the up quarks and
c s c si j i jQ D H ´ , Q D H ´ ,i j 1 i j 2

c p c pi j i jL E H ´ , L E H ´i j 1 i j 1
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for the down quarks and charged leptons. Here, r ,s and p are numbers whichi j i j i j

represent the necessary powers of the expansion parameters in order to cancel the charge
Ž . Ž .of the corresponding ij-entry in 23 and 24 . Clearly these numbers have to be

integers.
Ž .In the convenient parametrization 25 the charge entries depend only on the three

free parameters m,n,k. Every charge entry is scaled with the charges of the singlet fields
f,f. Thus, without loss of generality we may simply take the charge of the latter to be

Ž .q1 and y1 respectively. Under a certain choice of the U 1 charges of the variousX
Ž . Ž .fermion and Higgs fields, the entries of the charge matrices 23 and 24 can be either

Žpositive or negative. We exclude the case of charges leading to zeros in these entries
.since this would lead to an additional tree-level order entry in the mass matrix. Now, if

the charge of an entry is positive we may cancel this only by adding powers of the
Ž .singlet fields carrying negative U 1 charge. On the contrary, entries with negativeX

charge require powers of positively charged singlets. Therefore, in certain choices it is
possible that two expansion parameters may enter in the mass matrices, leading thus to
new structures. Note the fact that, there is no loss of predictability compared to previous

w xcases 5 where only one expansion parameter was used in the fermion mass textures.
Ž .Indeed, the two singlet vevs are related through Eq. 26 , while the parameter j in the

right-hand side of this equation is completely determined by the trace of the anomalous
Ž .symmetry, the value of the common gauge coupling at M and the string unificationU

w xscale itself 15,17 .
In order for a mass entry to be generated, the specific combination of the free

parameters m,n,k entering the charge entry has to be integer. Otherwise the correspond-
ing mass entry is zero since no power of singlet vevs with "1 charge could make the

Ž .relevant Yukawa coupling invariant under this U 1 . With the above remarks in mind,
we are ready now to proceed in the determination of the viable fermion mass textures.

Quarks
We proceed now with the determination of all possible structures of the quark matrix.

Although in this section we deal only with the case h s0, we will soon see that even inq
the most general case where h /0 the form of the quark mass matrices does notq

Ž .change as long as we impose the symmetric mass textures conditions on the U 1 -X

charges and the requirement of one tree-level coupling for each fermion matrix1. Thus,
since only the 33-entry is filled up by a renormalizable coupling, clearly as long as the
Ž .U 1 remains unbroken the two lighter generations remain massless. When the singletsX

f, f develop non-zero vevs along the D-flat direction, their magnitudes are of the order
² : ² :f ; f ;j , which is approximately one order lower than the unification scale.
Then the anomalous symmetry is broken and the remaining fermion mass matrix entries
are filled up with mass terms suppressed by powers of the expansion parameters. These

Ž .powers depend on the certain choice of U 1 charges.X

Let us now determine the possible viable cases for the parameters m,n which enter
the quark mass matrices. In order to have a non-zero value for the second generation

1 Ž .As a matter of fact, this requirement on the U 1 -charges only ensures that at least one entry admits aX

tree-level coupling. It does not exclude the appearance of more than one tree-level couplings. Such solutions
do appear and are excluded for phenomenological reasons.
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Ž .quarks it is evident from the structure of the charge matrix 23 that the parameter m has
to be an integer. Only in this case at least one of the entries 22, 23r32, may survive.
With similar reasoning, while taking also into consideration the necessity of the Cabbibo
mixing, we may also conclude that the parameter n has to be an integer too. No
constraint from mixing effects can be imposed in the case of leptons, however, due to
the fact that m,n are integers we have also to take k to be integer otherwise we would
end up with two massless charged lepton states. Therefore there are four possibilities

Ž . Ž .among which we distinguish three viable cases, namely i m,n even; ii m odd, n
Ž . Ž .even, iii m odd, n odd. The case m even, n odd does not lead to acceptable mixings.

We consider these cases separately and, further, we work out certain choices of m,n
pairs which lead to viable mass textures with reasonable values of the expansion
parameters. We note that due to our freedom to have two different expansion parameters
and to adjust order-one coefficients in the mass matrix entries, additional pairs of m,n
values are also possible. They imply different values for the expansion parameters but
do not lead to different textures thus they are not elaborated here.

( )Case i : n,m eÕen
i : We first start with positive n,m values. In this case all quark charge entries inA

Ž .23 are positive, so the lowest power of singlets needed to cancel this charge involves
ÕŽ Ž .only the singlet f to a proper power. Additional contributions involving pairs ff

.are always possible but relatively suppressed. Taking ns2m)0 we obtain a quark
mass structure similar to the texture T of Table 1. For example, for ms4,ns8 we5

get2

8 6 4´ ´ ´
6 4 2m s . 30Ž .´ ´ ´U � 04 2´ ´ 1

This matrix is not actually an exact texture-zero as the T case, however, one can5

observe that the entries replacing the zeros of texture T are highly suppressed here.5
Ž .Remarkably, this texture is also an outcome of the string derived flipped SU 5 model

w x18,19 .
The corresponding down quark matrix has the same form but in general involves a

different expansion parameter, namely l. This gives the freedom to adjust the two
parameters so that the correct hierarchy and Cabbibo mixing arise3. Thus, the matrix
takes the form

8 6 4l l l

6 4 2m s . 31Ž .l l lD � 04 2l l 1

We note here that the mass entries in the above textures are accurate up to order one
coefficients which are not calculable in this approach. As far as we know the calculation

2 The mass matrices are scaled by the appropriate Higgs vev.
3 Note, however, that the same expansion parameter l enters in the lepton sector, so additional constraints

will also come from the charged lepton mass eigenvalues.
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of the coefficients is only possible in string models. The remarkable fact, however, in
the present simple approach is that one does not need to introduce unnaturally small
Yukawa couplings to explain the huge ratios of mass eigenstates. The present procedure

Ž .tell us that the hierarchical pattern is just a simple consequence of the U 1 symmetry.X

i : Next, we give an example where both parameters enter in the structure of theB

quark mass matrices. Thus, taking one of the integers to be negative, we may obtain
textures with ´ and ´ powers in the matrices. For example, an appropriate choice is
nsy4m, where we obtain a structure which is very close to the texture T of Table 1.4

Ž .In particular, choosing ms4,nsy16, the lower 2=2 charge entries in 23 are
positive, while the rest are negative so we have the following structure of the up- and
down-quark mass matrices:

16 6 8 l16 l6 l8
´ ´ ´

6 4 2 6 4 2m s , m s . 32Ž .´ ´ ´ l l lU D� 0 � 08 2 8 2´ ´ 1 l l 1

i : We finally give the mass matrices for one more choice, which, as we will seeC
w xcoincide with the one presented in Ref. 5 . With our definitions of charges, this case

arises if we put ms2 and nsy8,

8 3 4 l8 l3 l4
´ ´ ´

3 2 3 2m s , m s . 33Ž .´ ´ ´ l l lU D� 0 � 04 4´ ´ 1 l l 1

Ž .Notice, however, the appearance of two expansion parameters in 33 compared to only
w xone used to appear in Ref. 5 .

ŽAbove, we have provided examples based on a different charge assignment m,n
.values which naturally give hierarchical patterns for the quark sector. A natural

question now arises as to which of these cases fits better the observed hierarchy and
mixing effects. There are mainly three sources of further constraints that would
definitely guide us to pick up one definite case. First, one needs an exact value of the
parameter j which determines the singlet Higgs vevs. Second, the order one coefficients
which are not calculable, may point to a certain choice. Finally, the structure of the
lepton mass matrix will provide further information on the parameters l,l. We proceed
now to the other two possibilities for m,n.

( )Case ii : m odd, n eÕen
This case assumes odd values for m and even for n which lead to an exact

texture-zero as in the case of Table 1. To obtain viable matrices, we may take either
ns2m or nsy2m. These choices lead to the same texture T but with different3

expansion parameters. Taking ms3,ns"6 we get

6 3 6 3´ 0 ´ ´ 0 ´
3 3m s and m s , 34Ž .0 ´ 0 0 ´ 0U U� 0 � 03 3´ 0 1 ´ 0 1

respectively. How do these zero entries arise? Bearing in mind that m was taken to be
Ž .odd and n even, the charge entries 11, 12, 21 and 23, 32 in the charge matrix of 23 are
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half-integers. Since the singlet charges are "1, it is not possible to generate contribu-
tions in these entries from non-renormalizable terms. These are exact texture-zero mass
matrices and their form was proposed purely from phenomenological analysis in Ref.
w x20 . As in the first case discussed above, the down-quark mass matrices of these two
cases are obtained with the replacements ´™l and ´™l, thus these are

6 3 6 3l 0 l l 0 l

3 3m s and m s . 35Ž .0 l 0 0 l 0D D � 0� 0 33 l 0 1l 0 1

We will work out this case further when we will discuss the corresponding lepton matrix
for total Higgs charge h /0.q

( )Case iii : n,m odd
We finally examine the case where both n,m are odd. Here we obtain mass matrices

similar to the up-quark texture T . We have the freedom to use several sets of m,n pairs.1

A suitable choice is msy3, ns11 which gives

11 4´ ´ 0
4 3m s . 36Ž .´ ´ 0U � 00 0 1

A slightly different matrix involving only one parameter arises for ns5 and ms3. It
leads to the same texture zero, however different powers of the expansion parameters
appear. One gets

5 4´ ´ 0
4 3m s . 37Ž .´ ´ 0U � 00 0 1

Ž .A general comment for the case iii is necessary here: due to the same structure of
the up- and down-quark mass matrices, the exact texture-zero mass matrices in this case

Ž .have small chance to reproduce the correct Kobayashi–Maskawa KM mixing. Indeed,
since the down-quark mass matrix has the same form with the up, the KM mixing of the
third generation with the other two – although experimentally is measured to be small –
cannot be generated due to the complete decoupling of the third generation. However, in
a realistic case, as in string model building, more than one pair of singlet fields acquire
non-zero vevs. Usually, some other singlets with different charge assignment form some
higher order Yukawa couplings with the fermions and generate small but nevertheless
important contributions to the zero entries of the fermion matrices. Another source of
induced small mixing arises from renormalization group effects. If charged lepton and

ŽDirac–neutrino Yukawa couplings are not flavour diagonal and as we will see, this is
.exactly what happens in the present case , then small calculable non-zero entries will

replace the zeros in the above m texture.U

Having completed the analysis of the quark textures, we now need to consider the
implications on the lepton mass matrix structure. Closing this subsection we simply note

Ž .the remarkable fact that, even with one U 1 anomalous symmetry and only one pair ofX

singlet fields one is able to reproduce four out of the five phenomenological textures of
Table 1.
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Leptons
The analysis of the quark mass matrices in the previous section, has put several

constraints on the values of m,n parameters. Note also that already the phenomenologi-
cal constraint which implies the successful relation m sm at the unification scale hast b

Ž .also been imposed on the U 1 charges. Thus, the only remaining freedom to constructX

the charged lepton mass matrices in the case h s0 is the value of the parameter k.q
Note further that there is no freedom to adjust the 12, 21 elements of the charge–lepton
matrix since they are fixed completely by the quark matrix. Bearing in mind that the
parameters m,n are integers, we can easily see that only the case of integer values
ks0,"1,"2, . . . can lead to acceptable lepton mass matrices. In the following, we
examine viable lepton textures with respect to the value of k for each of the three cases
in the quark sector discussed above.

Ž .i : As in the corresponding case for quarks, we derive here the lepton mass matrices
Ž .for three m,n sets and viable choices for k.

i : For ns2m)0, we may take for example ms4, ns8 and ks0 or ksy1, soA

we obtain

8 6 4 7 6l l l l l 0
6 4 2 6 3m s , or m s , 38Ž .l l lL L l l 0� 0� 04 2 0 0 1l l 1

8 4respectively. These correspond to the approximate hierarchies m :m :m fl :l :1 ore m t
7 3m :m :m fl :l :1. The first matrix predicts exactly the correct relation detm sdetme m t D L

w x21 while the second gives also a quite satisfactory result up to order one coefficients.
i : Let us now take nsy4m, with the additional restriction that mqk)0.B

Ž .Certainly, by inspection of the charge matrix 24 we conclude that the entries 22, 23, 32
have positive charges whilst all entries connected to the first generation obtain negative
ones. This means that to lowest order we can cancel the charge of the first with
l-powers and the charge of the second with powers of the expansion parameter l. Thus,
the following texture arises:

Ž .4 mqk 3m r2 Ž4 mqk .r2l l l

3m r2 mqk Žmqk .r2m s . 39Ž .l l lL � 0Ž4 mqk .r2 Žmqk .r2l l 1

Ž .Choosing now ms4 as in the corresponding quark case and ksy1 we arrive at a
texture-zero matrix of the form

l15 l6 0
6 3m s . 40Ž .L l l 0� 00 0 1

Ž .Comparing with the previous case 39 we see that we now have the possibility of
adjusting the value of the 22-entry independently from the other matrix elements.

12 4Indeed, recall that the down-quark mass hierarchy in this case is l :l :1, which implies
3r2 2 Ž .the hierarchical relation lfl to l depending on the order one coefficients . This

relation fits also well the charged-lepton mass hierarchy.
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i : Finally, we derive the lepton matrix which corresponds to the case i of the quarkC C

sector. For ms2, nsy8 and ks3 we obtain

l5 l3 0
3 1m s , 41Ž .l l 0L � 00 0 1

w xin accordance with the texture derived in 5 . We note also that we may have more
possibilities by choosing mqk-0, obtaining a different lepton structure but such cases
will not be elaborated here.

Ž . Žii : Here, as in the case of quark mass matrices, we take the cases ms3,ns6 the
.case ms3,nsy6 can be worked out similarly . Now we are free to choose the value

of k in order to obtain a natural charged-lepton mass hierarchy. Assuming k-values in
the range y3-k-6 we can write the lepton mass matrix in form

6yk

26ykl 0 l
1qk

m s . 42Ž .2L 3qk0 l l
6yk 1qk� 0

2 2
l l 1

An interesting texture arises for the ksy2. This gives a lepton matrix which has the
same structure with the quarks:

8 4l 0 l

m s . 43Ž .0 l 0L � 04l 0 1

8This matrix gives eigenvalues in the ratios yl :l to be compared with the mass
eigenstates m rm :m rm at the unification scale. We note however that this relation ise t m t

satisfied for a rather large value of the expansion parameter l. Further, for ksy1 we
obtain

7l 0 0
2m s , 44Ž .0 l lL � 0

0 l 1

7 2which gives the ratios yl :l for m rm :m rm . We will see soon that the matricese t m t

Ž .obtained for the case ii are phenomenologically more promising when we assume
h /0. We note here that this texture implies large mixing in the m–t sector and itq
could be distinguished from the first one, due to the different flavour violating processes
it implies. In particular, we should expect an enhancement of the t™mg branching
ratio compared to the first case.

Ž .iii : In this last case we choose ns11,msy3. We have observed that in the quark
sector there is no mixing between the two heavier generations. In contrast, in the case of
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charged leptons this mixing may arise from a suitable choice of the additional parameter
Ž .k. Thus, for the quark matrix 37 choosing ks1 we obtain

10 4 5l l l

4 2 2m s . 45Ž .l l lL � 05 2l l 1

3.2. h /0q

We come now to the most general case where the sum of the Higgs doublet charges
is different than zero. As explained in Section 2, there are two solutions of the anomaly
equations under the symmetry requirements and the tree-level constraints. The full
Ž .U 1 -charge assignment of the two solutions for the matter and Higgs fields are nowX

shown in Tables 3 and 4.
Ž .It is a welcome fact that the quark mass matrices as can be easily checked , do not

change at all under this generalization thus, our analysis concerning the up and down
quark textures remains intact. We therefore turn our attention to the case of the charged
lepton mass matrices. In this case we can easily see that only the entries connected with

Ž .the first generation in 24 receive additional contribution. The charge-lepton matrix in
the general case h /0 becomesq

mqnyh nykyh° ¶q q
nykyhq 2 2
mqnyh mqkc qL E H1C s 46Ž .mqk

2 2
nykyh mqkq

0¢ ß
2 2

7with the replacement now of a new value for ks2 ll q6q ymq h .3 q32

There is an additional contribution which equals the minus sum of the Higgs charge
Ž .yh in the entries 11,12r21 and 13r31 thus, in the general case the elements 12 andq
21 are no-longer equal to the corresponding ones of the quark matrix. Our notation here
might be confusing in the sense that there appear four different parameters in the lepton

Ž Ž ..case, namely m,n,k and h . In fact, as is clear from 5 , there are only two parametersq
ll y ll and ll y ll which enter in this structure; here they can be taken to be the1 3 2 3

combinations nqmyh and mqk. This is the price we have to pay in order to keepq
the parametrization already used, and transfer the constraints from the quark sector.

In the above parametrization we can easily see now that the case h /0 has someq
important implications on the lepton mass matrix structure. First, from our analysis in
the quark sector we observe that we are forced to take integer values for the parameters
m,n. We can easily see that a non-integer value of the total Higgs charge h would leadq
to a massless state. As a result we are forced to assume only integer values for both, k
and h parameters.q

Ž .Let us consider now the first solution 20 . As seen from Table 3 the sum of the
Higgs doublet charges is fixed h smqn and thus the elements 12 and 21 of the leptonq

Ž .matrix 46 vanish. This means that the associated couplings become of the order of the
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t mass and this texture leads to two heavy eigenstates. Thus we will not consider this
Ž .solution further and from this point we will refer only to Solution 21 when discussing

h /0.q
w xAnother important constraint arises from the relation detm sdetm 21 . Assum-D L

ing4 n)0 we have

ym nl l m-0, mqnsodddetm s 47Ž .D ½ mq n ymynl or l otherwise

for the quarks. Similarly for kqnyh )0 we haveq

ykym nykyhql l kqm-0, mqnyh soddqdetm s 48Ž .L ½ mq nyh ymynqhq ql or l otherwise

The eigenvalues of the lepton mass matrix can also be worked out. They have the form

< < < <h qkyn kqmq
l or l , l or l , 1. 49Ž . Ž . Ž .

Notice that the presence of h affects only the lightest eigenvalue.q
We wish now to give one more example where we can obtain a realistic texture-zero

matrix. We choose the values ms1,ns2 which correspond to quark matrices of case
type T as in ii. Taking ksy2 and h s9 we obtain3 q

2 5 3l 0 l l l 0
3m s , m s 50Ž .0 l 0 l l 0D L � 0� 0 0 0 1l 0 1

while m has the same texture-zero as m provided that we replace l™´ . The aboveU D

texture-zero charged lepton matrix is different from the m -matrix. It implies no mixingD

for the t lepton while it predicts the correct hierarchy, provided we impose the relation
2lfl .

We give a final example by taking ms3,ns6, h s12, h s1, ksy2 andq 1

q sy4. Then, we obtain the same texture-zero for both, down quark and lepton3

matrices:

6 3 4 2l 0 l l 0 l

3m s , m s . 51Ž .0 l 0 0 l 0D L � 0� 0 23 l 0 1l 0 1

4. Baryon and lepton number violating operators

In addition to the standard Yukawa couplings which provide with masses quarks and
leptons, the gauge symmetry of the MSSM allows also terms which violate baryon and

4 Similar relations are obtained for n-0 by interchanging ´ l´ .
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lepton number already at the tree-level. Suppressing generation indices, the terms
relevant to proton decay are written

lLLEc ql
XLQDc ql

XXU cDcDc . 52Ž .
There are also gauge invariant Higgs, and lepton-Higgs mixing terms of the form

mH H qm
XLH . 53Ž .1 2 2

Ž .If all terms 52 are allowed in the superpotential they lead to fast proton decay. In
particular, the combination of the terms LQDc and U cDcDc generates an effective
dimension-four operator via the diagram generated by exchanging the scalar component

c w xof the D superfield. Imposing the R-parity 22,23 multiplicative symmetry Rs
Ž .3 Bq2 SqL Ž .y1 under which matter fields quarks and leptons change sign while the
Higgs doublets transform to themselves, all dangerous terms change sign and are
eliminated from the superpotential.

Ž .R-parity prevents also the appearance of the second Higgs mixing term in 53 .
However, the usual m-term, i.e. the direct mixing between the two electroweak Higgs
fields is invariant under the R-symmetry. In the model under consideration this may lead

s rto a disaster, as this mixing can be generated by a term of the form f f H H where1 2

r,s are suitable powers matching the sum of the charge of the two Higgs doublets. With
y1² : ² :vevs f , f ;10 M – as required by the D-term cancellation condition and theU

Ž .fermion mass textures – a large power at least rqs)15 is needed to sufficiently
suppress the m-mass parameter and bring it down to the electroweak scale.

In addition to the tree-level couplings there are also higher order gauge invariant
terms leading to dangerous dimension-five operators which induce proton decay. The

w xones surviving R-parity are 24

li jk l li jk l
4 5 c c c cQ Q Q L , U U D E , 54Ž .i j k l i j k lM MU U

where the indices i, j,k,ls1,2,3 refer to the three generations. Although the induced
amplitudes of dimension-five operators are relatively suppressed compared to those

Ž .arising from the terms 52 , due to the fact that they arise as non-renormalizable
interactions, the baryon decay bounds on their Yukawa coupling constants are very
restrictive. In the general case one has to impose l -10y7 for operators involving light4

w xquarks while the constraints are less important for l 24 . If an expansion parameter5

e;0.23 is involved in the coupling, we should require a power e 9 for a coupling
involving only first and second generation fermions to comply with the experimental
bound. Couplings involving third generation fields suffer additional suppression from
mixing angles and the bounds are less restrictive. Therefore it is crucial to examine

Ž .whether the charge assignment of the fermion fields under the anomalous U 1 X

symmetry is also capable of eliminating these baryon and lepton number violating
operators.

We have classified all possible non-zero couplings involving the various generations
Ž . Ž .together with their U 1 charges and exhibit them in Table 10. The total U 1 chargeX X

of each operator is now expressed only in terms of the free parameters m,n,k and the
sum of the Higgs charges h sh qh .q 1 2

In the first column of this table we write the particular operator in terms of its family
indices while in the second column we present its charge. Since everything here is
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parametrized in terms of the charge of the singlet, we should simply check whether the
charge of a particular operator is integer or non-integer. We now distinguish two cases:

Ø A: h qh 'h '01 2 q
To analyse the effects of the anomalous abelian symmetry on these operators, let us
start with the case h sh qh s0. As seen in Table 10, the charges of theseq 1 2

operators depend only on the integer parameters m,n,k and they involve 1r2
fractions of these parameters. Therefore, we consider which of these operators
survive for various choices of m,n,k. We assume that the value of the parameter k is
odd. This choice of k fits perfectly with the findings in the lepton mass matrices.
ŽIndeed, in Section 3, most of the acceptable lepton mass textures where constructed

.choosing odd values for k. Clearly, the most favorable case is when both m and n
are even as it eliminates most of the operators involving the light generations. The
rest of the operators are needed to be suppressed with appropriate selection of m and
n and k. As it will become clear in the next section one can easily find charge

Ž .assignments see e.g. solution A of Table 11 that give acceptable fermion mass
textures and adequately suppress all these operators.

Ø B: h qh 'h /01 2 q
Now let us come to the most general case. It is interesting that the dimension-five
proton decay operators can also be expressed in terms of integer parameters, namely
m,n,k,h and they do not involve h . Actually the dimension-five operators of Tableq 2

Ž .10 are receiving additional charge, the first seven of the form QQQL obtain an
5 7y h additional charge while the remaining receive a contribution of y h . Theq q3 6

hqc c c ccharges of the operators of the type U U D E are obtained by adding to the3

charge of the QQQL operator in the same line.
5 7We can choose the Higgs charges so that the contributions h and h are neitherq q3 6

integers nor half-integers. Then, all operators are eliminated simultaneously.

w xAnother non-renormalizable operator allowed by R-parity is the following 26 :
l8

L H L H , 55Ž .Ž . ž /i jMU

where i, j refer to generations. This operator, which violates lepton number by two units,
may have interesting phenomenological consequences as it is capable of generating a
Majorana mass for the left-handed neutrino. A coupling l f1–10y2 would be of the8

right order for such a mass term. In Table 6 we present all relative operators and their

Table6
Ž .U 1 charges of the operators L L H H for the case h s0. Indices refer to generationsX i j 2 2 q

Ž .Operator U 1 chargeX

L H L H ny ky10q1 2 1 2 3
m q nL H L H y10q1 2 2 2 32
ny kL H L H y10q1 2 3 2 32

L H L H mq ky10q2 2 2 2 3
k q mL H L H y10q1 2 3 2 32

L H L H y10q3 2 3 2 3
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charges for the case h s0. When h /0 the relative charges can be calculated usingq q
Table 4. The role of this term in specific examples will be presented in the next section.

A more difficult problem however is related to the m-term. As is well known, there
must be a Higgs mixing via a term of the form mhh with m;m in order to preventW

Ž .the appearance of an unwanted axion. In the simple scenario of one U 1 symmetry and
the two singlet fields we discuss here, this is not easy. In general, if the charge
h sh qh is an integer, then the singlet fields f,f may couple to the combinationq 1 2

h y1qŽ .hh, giving rise to a m ‘mass’ parameter of the order frM f!! Since the vev ofU
² : y1f ;10 M one has to impose the condition h 015, otherwise the Higgs doubletsU q

w xreceive unacceptably large masses 25 .
There are also other possible ways of avoiding such a large mass term for the Higgs

w x w xdoublets. For example, one may introduce a Peccei–Quinn symmetry 27 to ban 28
simultaneously the Higgs mixing as well as the proton decay operators discussed above.
In our case, since the Higgs charges are basically unconstrained, it is possible to work
out cases where their sum is not an integer. Therefore, the Higgs term does not appear.
We note however, that solutions which eliminate completely the m-term are not
favourable; if a term is completely forbidden for symmetry reasons in the superpotential,
it is not obvious how it can appear in the Kahler potential. We think that the suppression¨
of the Higgs mixing coupling by an appropriate choice of the Higgs charges is a rather
natural solution. In Table 11 we give cases with field charges which lead to a large
m-term suppression and a viable set of Yukawa mass matrices.

We note that, even if we ignore the above problem of the Higgs mixing – assuming
the existence of another type of solution – and impose a half-integer value of h , weq

Table7
Ž . cU 1 charges of the R-parity violating couplings L Q D for the case h s0. The indices refer to theX i j k q

generations

Ž .Operator U 1 chargeX

3 ny kcL Q D y5 q1 1 1 32
m y kc cL Q D , L Q D nq y5 q1 1 2 1 2 1 32
kc cL Q D , L Q D ny y5 q1 1 3 1 3 1 32
ny kcL Q D mq y5 q1 2 2 32

m q ny kc cL Q D , L Q D y5 q1 2 3 1 3 2 32
ny kcL Q D y5 q1 3 3 32

k q mcL Q D nq y5 q2 1 1 32
k q nc cL Q D , L Q D mq y5 q2 1 2 2 2 1 32

k q m q nc cL Q D , L Q D y5 q2 1 3 2 3 1 32
k q3 mcL Q D y5 q2 2 2 32

kc cL Q D , L Q D mq y5 q2 2 3 2 3 2 32
k q mcL Q D y5 q2 3 3 32

cL Q D ny5 q3 1 1 3
m q nc cL Q D , L Q D y5 q3 1 2 3 2 1 32
nc cL Q D , L Q D y5 q3 1 3 3 3 1 32

cL Q D my5 q3 2 2 3
mc cL Q D , L Q D y5 q3 2 3 3 3 2 32

cL Q D y5 q3 3 3 3
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Table8
Ž . cU 1 charges of the R-parity violating couplings L L E for the case h s0. The indices refer to theX i j k q

generations

Ž .Operator U 1 chargeX

m y kcL L E nq y5 q1 2 1 32
nq kcL L E mq y5 q1 2 2 32

m q ncL L E y5 q1 2 3 32
cL L E ny ky5 q1 3 1 3

m q ncL L E y5 q1 3 2 32
ny kcL L E y5 q1 3 3 32
m q ncL L E y5 q2 3 1 32

cL L E kq my5 q2 3 2 3
k q mcL L E y5 q2 3 3 32

encounter another difficulty; we know from the analysis of the quark mass matrices that
m,n are integers while from the lower 2=2 charged-lepton mass matrix, we find that k
also has to be integer. Then, we infer that the non-integer values of h lead unavoidablyq
to a massless electron state. In a more complicated theory we may hope that radiative
effects or other weakly coupled singlets could generate a small entry adequate to provide
the electron with a mass.

We would like now to abandon the R-parity symmetry and investigate the possibility
of constructing a set of charges which give viable fermion mass textures with baryon
and lepton violation within the existing limits. In Tables 7, 8, 9 we present all dangerous
trilinear operators capable of inducing proton decay. In the second column we exhibit

Ž .their total charge under the U 1 anomalous symmetry. We have expressed the totalX
Žcharge in terms of the parameters m,n,k which parameterize all quark and charged

.lepton mass matrices and the charge of the third generation quark doublet q . Thus, in3

order to generate a gauge invariant baryon violating term we should be able to add a
r rŽ .singlet f or antisinglet f to the proper power r, f f to cancel the charge. For

r rŽ .example, if q qq q ll s"r, then the operator Q Q L f f cannot be avoided.i j i j kk
Ž .In this case, the Yukawa couplings of the terms 52 should be highly suppressed, in

particular those involving first generation quark and lepton states. According to our
natural assumption that the non-calculable coefficients should be of order one, we infer

Table9
Ž . c c cU 1 charges of the R-parity violating couplings U D D for the case h s0. The indices refer to theX i j k q

generations

Ž .Operator U 1 chargeX

mc c cU D D nq y5 q1 1 2 32
c c cU D D ny5 q1 1 3 3

m q nc c cU D D y5 q1 2 3 32
nc c cU D D mq y5 q2 1 2 32

m q nc c cU D D y5 q2 1 3 32
c c cU D D my5 q2 2 3 3

m q nc c cU D D y5 q3 1 2 32
nc c cU D D y5 q3 1 3 32
mc c cU D D y5 q3 2 3 32
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Table10
Dimension-five operators leading to proton decay are presented in the first and second column. The associated
charges for the case h s0 are presented in the third column. The symbol 6 marks the surviving operators forq
the allowed values of m and n assuming k is odd. When h /0, all QQQL operators receive an additionalq

5 7 c c c cŽ .charge h or h , thus for appropriate h values are forbidden. The D U U E receive similarq q q3 6

Ž .contributions. For details see Section 6

Ž .Operator U 1 charge m,n even m odd, n even n,m oddX

3nq m y kc c c cQ Q Q L D U U E 61 1 2 1 1 1 2 1 2
3ny kc c c cQ Q Q L D U U E 61 1 3 1 1 1 3 1 2

c c c cD U U E1 2 3 1
m y kc c c cQ Q Q L D U U E nq 6 61 2 3 1 2 1 3 1 2

c c c cD U U E3 1 2 1
kc c c cQ Q Q L D U U E mq ny2 1 2 1 2 1 2 1 2

ny kc c c cQ Q Q L D U U E mq 62 2 3 1 2 2 3 1 2
kc c c cQ Q Q L D U U E ny3 1 3 1 3 1 3 1 2

m q ny kc c c cQ Q Q L D U U E 63 2 3 1 3 2 3 1 2
kc c c cQ Q Q L D U U E nq mq1 1 2 2 1 1 2 2 2

k q mc c c cQ Q Q L D U U E nq 6 61 1 3 2 1 1 3 2 2
c c c cD U U E1 2 3 2

k q nc c c cQ Q Q L D U U E mq 61 2 3 2 2 1 3 2 2
c c c cD U U E3 1 2 2

nq3m q kc c c cQ Q Q L D U U E 62 1 2 2 2 1 2 2 2
3m q kc c c cQ Q Q L D U U E 6 62 2 3 2 2 2 3 2 2
m q k q nc c c cQ Q Q L D U U E 63 1 3 2 3 1 3 2 2

kc c c cQ Q Q L D U U E mq3 2 3 2 3 2 3 2 2
mc c c cQ Q Q L D U U E nq 61 1 2 3 1 1 2 3 2

c c c cQ Q Q L D U U E n 6 6 61 1 3 3 1 1 3 3
c c c cD U U E1 2 3 3

m q nc c c cQ Q Q L D U U E 6 61 2 3 3 2 1 3 3 2
c c c cD U U E3 1 2 3

nc c c cQ Q Q L D U U E mq 6 62 1 2 3 2 1 2 3 2
c c c cQ Q Q L D U U E m 6 6 62 2 3 3 2 2 3 3

nc c c cQ Q Q L D U U E 6 63 1 3 3 3 1 3 3 2
mc c c cQ Q Q L D U U E 63 2 3 3 3 2 3 3 2

Ž .that the U 1 symmetry should prevent the appearance of such terms at the renormaliz-X

able superpotential. These operators should appear at high orders so that their couplings
are suppressed by proper powers of the expansion parameter. In order to put appropriate

Ž .constraints on the U 1 -charges, we first need the experimental bounds on the relevantX

Yukawa couplings. The most severe bounds are imposed on the Yukawa couplings l
X
111

and l
X of this operator. In particular, from the absence of the exotic reaction of133

bb-decay we have l
X

-10y3 and from the bounds on the left-handed neutrino111

Majorana mass, l
X

-2=10y3. Other exotic decays imply bounds to various combina-133

tions of couplings, while more restrictive bounds arise for products of the form ll
X; a

Ž .recent analysis on the various Yukawa couplings predicted in U 1 models and a
w x5relevant discussion of the above operators can be found in 29 .

5 w xSee also Ref. 30 .
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Note also that, when R-parity is absent, additional dimension-five operators involving
Ž .Higgs multiplets are also dangerous when they are combined with the couplings 52

Žleading to proton decay via loop-graphs For a complete list of these operators see Ref.
w x. w x24 . In particular, operators of the form QQQH are dangerous in the presence of1 F

c w c c xLQD couplings while the operators QU E H are also dangerous in the presence of1 F

U cDcDc terms. The former, leads to a tree-level proton decay diagram via the Higgs vev
H and its coupling to the down quark QDcH , and similarly the second leads to an1 1

effective U cU cDcEc operator. Finally, one should avoid the simultaneous existence of
c c c w c ) x w c ) xthe term U D D with the lepton number violating operators QU L and QU L .D D

Ž .It is now straightforward to turn the above bounds to constraints on the U 1 charges.X

Since in our subsequent analysis we will present cases where all the tree-level operators
are either suppressed, or banned by the symmetry, we will not pursue this issue further.

5. A few typical solutions

We now pass to an investigation of possible solutions which are in accordance with
the phenomenological requirements discussed in the previous section. There are numer-

Ž .ous case of U 1 charge assignments which give textures consistent with the hierarchi-X

cal fermion mass pattern. Here, we present only few characteristic examples which
mainly fall into two categories: Those, which allow baryon and lepton number violating
operators and need additional underlying symmetries to evade them and, those which
strictly forbid any lepton and baryon violating operator.

Ø Solution A. It is a remarkable fact that one of the most promising texture-zero mass
matrices found in Section 3 arises from a simple generation independent charge
assignment. The first generation fermions are assigned with charge 4, the second with

Ž . Ž .2 and third with 0 see Table 11 . This yields 30 for the up quarks
8 6 4´ ´ ´
6 4 2m s , 56Ž .´ ´ ´U � 04 2´ ´ 1

and similarly for down quarks and leptons
8 6 4l l l

6 4 2m ;m s . 57Ž .l l lL D � 04 2l l 1
The above charge assignment, although it allows dimension-five operators, suffi-
ciently suppresses the dangerous ones. The suppression factors are

3233 2l ;l ,4

3133 3223 3232 4l ,l ,l ;l ,4 4 4

3231 3222 3132 1233 6l ,l ,l ,l ;l ,4 4 4 4

2231 3131 1232 1133 2123 8l ,l ,l ,l ,l ;l ,4 4 4 4 4

1231 1132 2122 1123 10l ,l ,l ,l ;l ,4 4 4 4

1131 2121 1122 12l ,l ,l ;l ,4 4 4

1121 14l ;l , 58Ž .4
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Table11
Ž .Some typical U 1 charge assignments consistent with anomaly cancellation and acceptable fermion massX

matrices

Solution A Solution B Solution C Solution D Solution E

Field Generation Field Generation Field Generation Field Generation Field Generation

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

9 5 1 7 5 2 1 5 9Q 4 2 0 Q 6 4 2 Q Q y Q y y y2 2 2 3 6 3 2 2 2
5 1 3 7 17 29 41c c c c cD 4 2 0 D y2 y4 y6 D y D 5 2 D y y y2 2 2 2 6 6 6
9 5 1 7 5 2 23 11 1c c c c cU 4 2 0 U 6 4 2 U U y U y2 2 2 3 6 3 6 6 6
5 1 3 7 55 19 31L 4 2 0 L y2 y4 y6 L y L 5 2 L y y y2 2 2 2 6 6 6
9 5 1 7 5 2 61 25 37c c c c cE 4 2 0 E 6 4 2 E E y E y y y2 2 2 3 6 3 6 6 6

Higgs Higgs Higgs Higgs Higgs

4 4 34 14H 0 H 0 H 4 H y4 H 1 H y1 H y H H H1 2 1 2 1 2 1 2 1 23 3 3 3

Singlets Singlets Singlets Singlets Singlets

f 1 f y1 f 1 f y1 f 1 f y1 f 1 f y1 f 1 f y1

i jk l Ž .and similarly for l , where the couplings refer to Eq. 54 .5

This solution has also the advantage of not suppressing the quartic couplings
L L H H . Actually they have the formi j 2 2

8 6 4
2 l l lmW

6 4 2L L H H ; . 59Ž .l l li j 2 2 MU � 04 2l l 1

Therefore, this simple charge assignment predicts also a hierarchical texture for the
left-handed neutrino Majorana mass. The mass scale is determined by the suppression
mass factor m2 M so there is a sufficient suppression without the use right-handedW U

neutrino fields and the see-saw mechanism. As in all other matrices, only the
third-generation diagonal coupling L L H 2 appears at the tree level.3 3 2

This solution does not suppress R-parity violating couplings so one has to assume
that R-parity is a good symmetry. It does not also suppress the m-term so one has to
assume the existence of another mechanism that deals with this problem.

Ø Solution B. Here we present another example which results in the same mass matrices
as in solution A, and with similar suppression of dimension-five operators. The

Ždifference here is that L L H H operators are also suppressed the strongeri j 2 2
12 .coupling is of the order l . Similar comments with solution A hold for the R-parity

violating couplings and the m term.

Ž .In the above two cases, we have used integer U 1 charges for fermions and HiggsX

fields. Going further, we present few more examples where now we introduce fractional
Ž .U 1 charge assignments.X

Ø Solution C. This solution gives mass matrices similar to solution A. The dimension-
Ž .five operators are suppressed according to 58 . The difference here is that all
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Ž . Ž .R-parity violating couplings in 52 , 53 vanish explicitly. However, the Majorana
neutrino mass operator survives and takes the form

3 1 12 l l lmW
1 1 3L L H H ; . 60Ž .l l li j 2 2 M � 0U 1 3 5l l l

Ø Solution D. The charges in this case appear also in Table 11. They yield up-quark
fermion mass textures of the form

6 3´ 0 ´
3m s 61Ž .0 ´ 0U � 03´ 0 1

and similarly for down quarks and leptons

6 3l 0 l

3m sm s . 62Ž .0 l 0D L � 03l 0 1

This solution completely eliminates all dimension-five proton decay as well as all
Ž .R-parity violating couplings 52 . L L H H operators are also suppressed. The onlyi j 2 2

additional mechanism one needs is for the suppression of the m term as the solution
belongs to the category h s0.q

Ø Solution E. The quark and lepton matrices are

8 6 4´ ´ ´
6 4 2m s , 63Ž .´ ´ ´U � 04 2´ ´ 1

and similarly for m with ´™l, while the charged leptons are given byD

l8 l2 l4

2 4 2m s . 64Ž .l l lL � 04 2l l 1

This solution forbids all dimension-five operators as well as baryon and lepton
Ž .number violating couplings 52 . One concludes that all additional dimension-five

operators are also suppressed whatever the charges of these operators. At the same
time it suppresses the Higgs mixing as the m-term appears now through the
non-renormalizable term

16
f

W ™ M H H , 65Ž .NR U 1 2ž /MU

therefore the Higgs doublets are protected from receiving an unacceptable large mass.
Surprisingly the operator L L H H is not suppressed; it gives a left-handedi j 2 2
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Majorana neutrino texture,

l9 l3 l5
2mW 3 3 1L L H H ; , 66Ž .l l li j 2 2 M � 0U 5 1 1l l l

which exhibits the phenomenologically interesting feature of a rather large mixing in
the n –n sector. The price one has to pay for all these welcome features is the ratherm t

w xexotic charges. This is a feature also pointed out in Refs. 3,7,8 .

6. Conclusions

In this work we have attempted to generate the hierarchical standard model fermion
Ž .mass spectrum by means of an anomalous abelian family symmetry U 1 and in theX

context of the minimal unification scenario. We have extended previous analyses by
Ž .considering the U 1 to be family dependent a possibility that naturally arises inX

superstring model building. A minimum number of fields – one singlet and its conjugate
Ž .– were used to break the anomalous U 1 symmetry at a high scale. We have assumedX

Ž .that the U 1 anomaly is cancelled by the string Green–Schwarz anomaly cancellationX
Ž .mechanism. We have imposed conditions on the U 1 -matter and Higgs charges byX

requiring symmetric mass matrices and tree-level couplings for the third generation. We
Ž .2 Ž . Ž .2 Ž . Ž .2 Ž .have demanded the mixed SU 3 U 1 , SU 2 U 1 and U 1 U 1 anomalies to beX X Y X

proportional to the Kac–Moody constants k sk s3k r5s1 as well as cancellation3 2 1
Ž .2 Ž . Ž .3of the U 1 U 1 mixed and U 1 anomalies. The general solution of the resultingY X X

equations has been determined and all possible textures of the fermion mass matrices
Ž .were classified in terms of the admissible values of the sum of the two U 1 -HiggsX

charges. The cases of zero and integer values of the Higgs sum charge where considered
while non-integer values, although possible, were not discussed since they lead to a
massless charged-lepton eigenstate and prevent the appearance of a m-term to all orders.

Ž .Using the freedom left by the anomaly conditions on the U 1 charges, four distinctX

phenomenologically acceptable texture-zero solutions for the fermion mass hierarchy
problem have been predicted. The mass hierarchy is determined from powers of

Ž .parameters defined as the dimensionless ratio of the singlet vevs over some high string
scale. The magnitude of the expansion parameters is constrained due to the D-term
cancellation mechanism which determines the singlet vevs in terms of the unification

Ž .scale and the common string coupling. We note that up- and down-quark mass
matrices are predicted to have the same form due to the initial assumptions that the
matrices are symmetric and the requirement that both top and bottom Yukawa couplings
appear at the tree-level. However, the predicted quark masses can be reconciled with the
low energy measured values due to the possible appearance of different expansion
parameters in the matrices and renormalization running effects. The success of the above
scenario might look more impressive if some of the simplifying assumptions were
relaxed. Nevertheless, we find it remarkable that even in this simple extension of the
minimal supersymmetric standard model one may predict to a good approximation the
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big mass gaps observed in the particle spectrum. It is tempting to extend the analysis by
relaxing some of the unnecessary assumptions and re-examine the above model.

Ž .A rather remarkable fact is that this simple U 1 anomalous symmetry with theX

constraints implied by the anomaly cancellation conditions allows fermion charge
assignments which can suppress, or in certain cases eliminate, all dangerous baryon and
lepton number violating operators. In the case that R-parity is a good symmetry we have
found solutions that can suppress the dangerous dimension-five proton decay operators
Ž .allowed by R-parity . We have also found solutions that do not need the introduction of
R-parity since there, all R-parity violating couplings are naturally suppressed.

We have further shown that these solutions may also suppress sufficiently the Higgs
Ž .doublets mixing parameter m-term and keep them massless down to the electroweak

scale. This latter possibility requires the introduction of a rather large charge for the sum
Ž .of the Higgs doublets which demand rather peculiar U 1 assignments for MSSMX

fields at least in the case that the singlet charge is unity. In the context of these solutions
we have also succeeded to find cases which provide the left-handed neutrino with
acceptable Majorana masses.

It is remarkable that most or all of the good features mentioned above can occur
simultaneously in a few simple solutions which we presented in this work.
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