
Volume 245, number 3, 4 PHYSICS LETTERS B 16 August 1990 

Nonabelian Aharonov-Bohm baryon decay catalysis 
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We propose a new mechanism for baryon decay based on the Aharonov-Bohm effect for nonabelian flux lines (e.g. cosmic 
strings). We discuss in particular the case of cosmic strings produced in a grand unified phase transition in which the gauge 
group SO(10) breaks down to SU(5)x Z 2. We comment on the implications for baryogenesis. 

1. Introduction 

Cosmic strings [ 1] are one-dimensional  topological 
defects produced during phase transitions in the early 
Universe. Such phase transitions, predicted by some 
grand unified models, occur at a temperature of the 
order M = 1016 GeV and produce strings of the right 

energy density to seed galaxy formation [2,3]. 
Gauge fields which mediate baryon number  violat- 

ing processes are excited in the core of the string 
(radius ~ M  1) and can catalyze baryon decay [4]. 
This effect has important cosmological consequences. 
In particular, a fraction of the primordial baryon to 
entropy ratio can be erased by cosmic strings [5]. 

However, interaction of baryons with the string 
core is not the only way to obtain baryon number  
violation. According to the well known Aharonov-  
Bohm effect [6], particles can scatter nontrivially off 
flux lines even though classically there should be no 
interaction. This is caused by quantum mechanical 
phase mixing of the components  of the wave function 
propagating on either side of the flux line. 

The situation is even more interesting if the flux 
carried by the string is nonabel ian.  In this case, the 
possibility of mixing among components of a particle 
multiplet arises. In particular, a beam of protons 
scattered by a SU(2) isospin flux line can be converted 
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to neutrons [7]. In a similar way, as we show here, 
a beam of baryons scattered by a G U T string can be 
converted into leptons if the flux has the appropriate 
orientation in group space. 

In section 2, we review the abelian Aharonov-  
Bohm (AB) effect and derive some formulas which 
we use later. In section 3, we consider the nonabel ian 

AB effect. We study the scattering of fermions by a 
general nonabel ian flux line and conclude that mixing 
of the components  of a particle multiplet can occur. 
A specific example - G U T  strings produced in the 
phase transition in which SO(10) breaks to SU(5) x Z2 
- is considered in section 4. The cross section is a 
typical AB cross section d ~ / d / 2  dl ~ O(1)k -1, where 
k is the momentum of the incoming baryon. Section 
5 contains a concluding discussion. 

2. The abelian Aharonov-Bohm effect 

Consider fermions of charge e scattered by an 
abelian vortex of flux a (in units of 2rr /e)  in the 
limit of vanishing thickness of the vortex. The gauge 

field has the form A0= 0, A = ~ [ ( a / e ) / p ] ,  where p 
and ~o are polar coordinates in the plane perpen- 
dicular to the vortex and e~ is the unit vector in the 
q~ direction. We will treat the gauge field as a classical 
background. 

The Dirac equation is 

i(21 +ieA')~b- m~b = 0. (2.1) 
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Solutions with fixed energy to may be expanded 
[6,8,9] in eigenstates of  angular momentum n +½ 

~b(x) = .=-~ a. \ABJa(.+l)(x) exp(iqQ] 

x exp(in~) exp(- iwt) ,  (2.2) 

where x = kp, k =  (to2_m2)t/2, v = n +a,  B = 
i k / ( w + m )  and A =sgn(v)  ~1 

To find the coefficients a, and the scattering ampli- 
tude f(~0), we match (2.2) at infinity to an incoming 
plane wave plus an outgoing cylindrical wave, 

[(-I)"( L!x) , , ]+f  .exp(ix).l 
~b(x) = ~  L \BJ,,+t(x) exptiq~)/ x/~ J 

x exp(inqQ exp(-i tot) ,  (2.3) 

where we have used the standard representation of  
a plane wave in terms of  Bessel functions 

exp(ix cos ~o) = ~ (-1)"J,,(x) exp(in~o). (2.4) 
n = - - o o  

The scattering amplitude f ( ¢ )  is given by 

c o  

f ( ~ )  = k -'/2 • f ,  exp(in~). (2.5) 
n = - c ~  

Matching (2.3) and (2.4) gives 

a,, = exp(i[ vlTr/2) 

f~ = (27r) ~/2 exp(- i~- /4) [exp(- i l  vl~-)-  ( -1)" ] .  

(2.6) 

Therefore (from the large argument scaling of  the 
Bessel functions), the effect of  the vortex is to convert 
the plane wave components ( -1 )"J , (x )  to 
exp(-ilulrr/2)Jl, l(x),  which corresponds to a phase 
shift 28, : 

exp(ix)-->exp(i26.) exp(ix), 2c5, = - r r a  sgn(r,). 

(2.7) 

ing and a nontrivial scattering amplitude 

f ( ~ )  = exp[-i(~0 - 7r)n~ ] exp(-i~o/2) exp(-37ri) 

sin c~- 
x ~ cos(~o/2) (2.8) 

where n~ is the largest integer smaller than a. Note 
that this effect is purely quantum mechanical. 

3. The nonabelian Aharonov-Bohm effect 

We now extend the previous analysis to nonabelian 
vortices with zero thickness. Consider a theory based 
on a symmetry group G with N '  generators Ta which 
admits nonabelian vortex solutions. The nonabelian 
gauge potential is 

^ O /  N O /  

Ao=0,  At=e,p.t - )~ TaCa~e~,t-M, (3.1) 
pa=~ p 

where Ca are constants and the sum runs over the 
generators of  the part of  G which is broken by the 
field configuration. 

The Dirac equation is (2.1), where A~, is given by 
(3.1) and the generators T~ are evaluated in the rep- 
resentation of  G in which the fermions lie. The trans- 
formation of  fermions and gauge fields under gauge 
transformations U(O) = e x p [ - i e T .  O(x)] is the stan- 
dard one. 

In some cases of  interest, M is a hermitean traceless 
n x n matrix, where n is the dimension of  the rep- 
resentation of  q,. Let us denote its eigenvectors by e i, 
i = 1 , . . . ,  n. Then, M is diagonalized by the unitary 
transformation Uq = e~, where ej is thej th  component  
of  e i. After diagonalization, the Dirac equation 
reduces to a set of  n decoupled abelian Dirac 
equations with flux values given by at = Ata, where 
At are the eigenvalues of  M. The price to pay for this 
simplification is a mixing of  the physical components 
of  the spinor multiplet ~. The basis in which the 
scattering problem is abelian is 

We conclude that the pure gauge field of the vortex 
causes a phase shift which has opposite signs for 
opposite angular momenta. This leads to phase mix- 

,t For a solution including a finite core see e,g. ref. [10]. 

~ = U, q6, (3.2) 

where Oj are the physical eigenstates. 
Applying the results of  the abelian example, we 

may obtain the outgoing spinors qj~ou, in the presence 
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of  the vortex. Let g'l,+ (and 0~._) denote the sum over 
modes with positive (and negative) v. From (2.7) we 
obtain 

I//~ °Ut(x) = exp(-i~rai)~bL+(x ) exp(ilrai)g,~,_(x), 
(3.3) 

and in terms of  the physical states 

O°Ut(x) = U~0~°Ut(x). (3.4) 

We can reexpress the above using the definitions 
(dropping the index i for convenience) 

q, = q,++ ~_, ~ = g ,+-  g~_. (3.5) 

Then, in matrix notation, (3.3) becomes 

g~°°t(x) = D(cos  ¢ra)g~(x) + D ( - i  sin ¢ra)~(x) ,  

(3.6) 

where D(y)  is the matrix 

Dij(y) = U*iyk Ukj = ( e~k)*yke~k. (3.7) 

Finally, it is easy to verify that for an incoming plane 
wave 

(3.8) 

~(x)  = 2 ( ~ )  1/2 exp( - iTr /4)  

x 6 ( ¢ -  7 r ) ( _ i B  e lxp( i¢) )exp( ix) ,  

and 

( 2 )  ~/2 
- -  exp(i~r/4) e x p [ - i n ~ ( ~  - ~r)] & x )  = ~ ~ x /  

1 
x exp(-icp/2)cos(~p/2) ( - i B  exp( i¢ ) )  exp(ix),  (3.9) 

where n~ is defined in section 2. 
Since D(y)  is in general a nondiagonal  matrix, we 

conclude that a nonabelian vortex can cause mixing 
among the components  of  a fermion muitiplet. From 
the form of ~, it follows that the corresponding scat- 
tering cross section is a typical AB cross section, i.e. 

do- 

dO dl 
- - - -  k - ' .  (3.10) 

4. Application to baryon decay catalysis 

We now apply the analysis of  the previous section 
to grand unified models with strings. Baryons and 
leptons then can lie in the same fermion representa- 
tion. I f  one of the generators of  the gauge group G 
broken during cosmic string formation connects bary- 
ons and leptons, then the AB phase mixing will lead 
to baryon decay. 

Consider for example G =  SO(10) breaking down 
to SU(5) x 7/2. The fermions lie in the 16 representa- 
tion of  SO(10). Symmetry breaking may occur in 
several stages. The final stage involves a multiplet of  
Higgs fields ~bl which transform according to the 126 
representation. This model leads to nonabelian cos- 
mic strings [11-14]. 

Strings arise in the following way: consider a circle 
C in physical space with origin O. If  ~b is in a ground 
state for all angles ~ on the circle, then the state at 

is related to the state at O by an SO(10) group 
element S(~) .  Strings form if S(~)  is an element of  
SO(10) corresponding to a symmetry which is broken 
when SO(10) breaks to SU(5)x7/2 and which, when 

runs from 0 to 2~r, connects the two disconnected 
copies of  SU(5) contained in the vacuum manifold 
of  SO(10) [14]. 

The general form of an SO(10) Lie algebra element 
in the spinor representation, the representation the 
fermions of  the standard model lie in, is given in ref. 
[15]. We pick a generator which corresponds to a 
broken symmetry and which connects baryons and 
leptons, in particular the u quark and the right- 
handed neutrino: S ( ~ ) =  exp( iM~) ,  with 

/ i° ° o/ ° ° M = ½  A 0 A =  0 0 . 
0 - A  0 0 

0 0 0 1 
(4.1) 

Indeed, S(~p) connects the two copies of  SU(5) con- 
tained in the vacuum manifold of  SO(10) as ¢ varies 
from 0 to 27r. Note, that in the above we have used 
the following ordering of  the 16 fermions of the spinor 
representation: 

F = (Ul, u2, u3, Ve, dt,  d2, d3, e- ,  

c o c + . . . .  v~), (4.2) d t , d 2 , d 3 , e  , - u l ,  - u2 ,  - u3 ,  

where the subscripts 1-3 denote the three colors. 
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The impor tant  fact about  (4.1) is that in all two- 
dimensional  subspaces which experience mixing, 
baryons and leptons are mixed. Thus, S ( ¢ )  leads to 
AB catalyzed baryon decay. 

Let us focus on a two-dimensional  subspace. 
Restricted to this subspace,  the matrix M (see section 

3) is 

It is then easy to determine the eigenvalues and 
eigenvectors and calculate the matrix D. If  the incom- 
ing state is [ ~ ( x ) ,  0] T, then from (3.6) 

becomes [17] 

do" 1 1 
= O ( 1 )  (5.1) 

dO dl k( T) T 

which for T close to the unification scale M 
approaches  the catalysis cross section of  ref. [5]. 
Hence, the fraction of  the pr imordial  baryon to 
entropy ratio which can be erased by AB induced 
catalysis is of  the same order  of  magnitude as that  
erased by "ord inary"  catalysis [5]. The conclusion 
from ref. [5] is that only if  coupling constants are 
large, this fraction is significant. 

/¢,,(x)\ 1 ( 0 ) 
~'(x) °ut= cos ~ra k 0 ,J +- i  sin zra ~,(x) . (4.4) 

For  a vortex appropr ia te ly  oriented in internal 
space, ~bl(x) and @l+~(x) can be a baryon and lepton 
respectively. Hence, AB phase mixing can convert 
directly baryons to leptons. The cross section for this 
process is a typical  AB cross section and hence much 
larger than the geometrical  one. Note that the physics 
is completely independent  of  the vortex core struc- 
ture, in contrast  to the process discussed in refs. 
[4,10]. 

5. Discussion 

The large AB cross section for baryon decay cataly- 
sis discussed in this paper  may lead to interesting 
cosmological  effects. First, there are possible con- 
straints on the number  densi ty of  string loops,  similar 
to the bounds  on the flux o f  magnetic monopoles  
[15] from the Ca l l an -Rubakov  effect. However,  in 
the case of  cosmic strings such bounds  must compete 
with the bound  on the number  density of  loops com- 
ing from the scaling solution [1]. 

Second, the enhanced catalysis cross section in this 
paper  may increase the rate at which strings can 
destroy a pr imordia l  baryon to entropy ratio. 
However,  most of  the destruction will occur at very 
early times [5], shortly after the strings are produced.  
At early times (high temperature) ,  the AB scattering 
cross section, like all other cross sections, is modified 
by finite temperature  effects [16]. The cross section 
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