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Abstract

We introduce a particular embedding of seven-dimensional self-duality membrane equations inC3 × R which breaksG2
invariance down toSU(3). The world-volume membrane instantons defineSU(3) special lagrangian submanifolds ofC3.
We discuss in detail solutions for spherical and toroidal topologies assuming factorization of time. We show that the extra
dimensions manifest themselves in the solutions through the appearance of a non-zero conserved charge which prevents the
collapse of the membrane. We find non-collapsing rotating membrane instantons which contract from infinite size to a finite
one and then they bounce to infinity in finite time. Their motion is periodic. These generalized complex Nahm equations, in the
axially symmetric case, lead to extensions of the continuous Toda equation to complex space.
 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Some years ago, we introduced the notion of the
self-duality for supermembrane in 4+ 1 dimensions
and in the light-cone gauge. The corresponding self-
duality (s-d) equations proved to be an integrable
system with an infinite number of conservation laws
and particular solutions were found [1,2] which were
collapsing configurations of membrane instantons to
point-like or string-like objects. Similar covariant self-
duality equations have been introduced before for
2 + 1 dimensions [3] and later generalized to 6+ 1
dimensions in [4].

E-mail address: george.leontaris@cern.ch (G.K. Leontaris).

These objects, represent world-volume instantons
of the supermembrane. In the light cone gauge, the
world-volume time and the target time are identical, so
these configurations are spacetime membrane instan-
tons and they provide quantum mechanical tunnelling
through the membrane self-interaction potential mov-
ing with velocities bigger than light. Thus, they can
travel infinite distances in finite time.

Their equations of motion, which are Nahm’s
type equations for the area-preserving diffeomorphism
group of the membrane, lead for axially symmetric
configurations to continuous Toda equations relating
thus the membrane instantons with the self-dual Ein-
stein metrics with isometries [5,6].

The basic ingredients for the study of covariant
membrane instantons in higher than 4+ 1 dimensions,
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were contained in the pioneering Letter of Ref [4],
however, this work was until recently overlooked.
The authors in [7] introduced higher-dimensional self-
duality equations for the light-cone membranes as
well as in the case of the quantized Poisson (i.e.,
Moyal) bracket. The detailed properties of the octo-
nionic light-cone membrane instantons where studied
in [8,9], where the invariance of the seven-dimensional
equations under the exceptional groupG2 was ex-
ploited. The invariance under this group has as a
consequence one remaining supersymmetry consistent
with the membrane background. In three dimensions
there are eight remaining supersymmetries [10].

In a parallel development, octonionic self-duality
for seven- and eight-dimensional gravity was pro-
posed [11,12] and explicit seven and eight gravita-
tional instantons which generalize four-dimensional
ones (satisfying first order equations) were found
[12,13]. These higher-dimensional gravitational in-
stantons where among the first few explicitly known
self-dual metrics with exceptional holonomiesG2
and Spin(7) which were also lifted in 10- and 11-
dimensional supergravity. Recently, exceptional
holonomy higher-dimensional instantons were studied
for their rôle in string and M-theory and an important
activity around this subject has been created [14].

In this Letter, we introduce the complexified self-
duality equations of the membrane in seven dimen-
sions and represent them as generalized Nahm equa-
tions. We show that the extra dimensions manifest
themselves in the solutions through the appearance of
an non-zero conserved charge which prevents the col-
lapse of the membrane. We integrate completely the
three-dimensional complex Nahm’s equations forS2

andT 2 topologies, assuming factorization of time. We
find periodic non-collapsing instantons. Starting from
infinite size they contract, with increasing angular ve-
locity, to a minimum size and then they bounce back
to infinity in finite time.

2. The self-duality membrane equations in seven
dimensions

Choosing fixed values for the 8th and 9th mem-
brane coordinates, the seven-dimensional self-duality

equations [4,7,8] become

(1)Ẋi = 1

2
Ψijk{Xj,Xk},

where Ψijk is the completely antisymmetric tensor
that defines the multiplications of octonions [15]. The
Gauss law results automatically by making use of the
Ψijk cyclic symmetry

(2){Ẋi,Xi} = 0.

The Euclidean equations of motion are obtained as
follows

(3)Ẍi = 1

2
Ψijk

({Ẋj ,Xk} + {Xj, Ẋk}
)
,

(4)= {
Xk, {Xi,Xk}

}
,

where use has been made of the identity

(5)ΨijkΨlmk = δilδjm − δimδjl + φijlm

and of the cyclic property of the symbolφijlm [15].
At this point we would like to make a general re-

mark on the nature of the motion described by (1).
These equations describe the time evolution of the
membrane instanton in flat spacetimes. If the coordi-
natesXi, (i = 1, . . . ,7) are periodic functions of the
membrane parametersσ1,2, then integrating both sides
of the equations we find that all membrane instantons
have their center of mass pinched in a fixed point of
space. This implies spontaneous symmetry breaking
of translational invariance. If some of the flat space
dimensions are compactified, then the center of mass
moves with the velocity determined by the cross prod-
ucts of the winding numbers of the membrane in the
compactified dimensions. The cross product is defined
through the tensorΨijk [9].

In what follows, we proceed to the complexification
of the self-duality equations. We embed the seven-
dimensional spaceR7 into C3 × R in a very specific
way which depends on the particular definition of the
octonionic structure constants used in Ref. [8] which
assume the following multiplication table [15]

(6)Ψijk =
{1 2 4 3 6 5 7

2 4 3 6 5 7 1
3 6 5 7 1 2 4

.

Thus, if we define

z1 = X1 + iX4, z2 = X2 + iX5,

z3 = X3 + iX6, a0 = X7
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then the self-duality equations become

(7)DtzI = 1

2
εIJK

{
z∗
J , z

∗
K

}
, Dta0 = ı

2

{
zI , z

∗
I

}
,

whereI, J,K take the values 1,2,3, whereasDt is the
‘covariant’ derivative

(8)Dt = ∂t − i{a0, }.
These strikingly simple equations of self-duality, break
theG2 invariance down toSU(3). TheSU(3) invari-
ance comes from the unique cross product existing in
C3 which is a remnant of the octonionic cross prod-
uct in seven dimensions. One consequence is that, the
three-dimensional world-volume manifolds described
by (7) areSU(3) special lagrangian sub-manifolds of
C3 [16].

In the next section, we will consider the factor-
ization of time and the restriction to three complex
dimensions of the above first order equations. Be-
fore that, we would like to observe that it is possible
to generalize the connection of the three-dimensional
self-duality equations with the continuous Toda equa-
tions [1,5,6]. This is possible if we consider axially
symmetric solutions of the above system. Indeed, the
axially symmetric Ansatz,

z1 = R(σ2, t)cosσ1, z2 = R(σ2, t)sinσ1,

(9)z3 = z(σ2, t),

where,R,z complex functions, implieṡa0 = 0 for all
times and thusa0 can be fixed to zero by an area
preserving transformation. For Eq. (7) we obtain

(10)Ṙ = R∗z∗
σ2
, ż = −R∗R∗

σ2

and the indexσ2 refers to the derivative with respect to
σ2. This system of equations has as integrability condi-
tion the following non-linear equation which extends
the continuous Toda equation to three complex dimen-
sions.

(11)
1

R∗ ∂
2
t R − 1

R∗2∂tR∂tR
∗ + 1

2
∂2
σ2
R2 = 0.

This equation maybe relevant for the higher-dimensio-
nal self-dual gravity. Setting in (11)R2 = eΨ we
obtain the form

(12)Ψ̈ + 1

2

(
Ψ̇ − Ψ̇ ∗)Ψ̇ + e− 1

2 (Ψ̇−Ψ̇ ∗)∂2
σ2
eΨ = 0.

In the real three-dimensional case [1], we haveR∗ =
R andz = z∗, while the continuous Toda equation for

Ψ = Ψ ∗ reads [1,5,6],

(13)∂2
t Ψ + ∂2

σ2
eψ = 0.

In the next section, among other things we find the
complete solution of the above (10) system or of the
generalized continuous Toda equation (11) restrict-
ing the functionsR,z so thatR(σ2, t) = sinσ2ζ(t),
z(σ2, t) = cosσ2ζ3(t).

3. Membrane instantons in three complex
dimensions

As we show below, it is possible to extend the
known three-dimensional instanton solutions into six
dimensions where, apart from the radial expansion of
the instanton, we observe rotational motion in all of
the three planes(X1,X4), (X2,X5), (X3,X6) of the
six-dimensional space (which we choose to call them
I, II, III complex planes).

We assume factorization of time which will lead to
a coherent motion of all the membrane points. These
solutions are analogous (but for Euclidean time) to
the real time solutions of second order equations of
motion for toroidal and spherical membranes recently
studied in [17]

(14)zi = ζi(t)fi(σ1, σ2),

wherefi are three complex functions on the surface.
First we observe that the Poisson bracket{zi, z∗

i } = 0,
if the functions fi, f

∗
i are functions of the same

combinationσ1, σ2. From the equation fora0 we find
ȧ0 = 0 and therefore by an appropriate area preserving
transformation we may fixa0 to be zero. So we are left
with the three complex Nahm’s equations forzi . We
shall examine in detail two topologies: spherical (S2)
and toroidal (T 2).

Up to now only three-dimensional solutions of
the self-duality equations are known [1]. In order to
factorize the time dependence we choose for the case
of S2 the three functionsfi to be

f1 = cosφ sinθ, f2 = sinφ sinθ,

(15)f3 = cosθ.

The three functions for the algebraSU(2) under
Poisson bracket satisfy

(16){fi, fj } = −εijkfk, i, j, k = 1,2,3.
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For the three complex functions of time, we find the
complex Euler equations1

(17)ζ̇i = −1

2
ε2
ijkζ

∗
j ζ

∗
k .

In the case ofT 2 we choose the following three
functions

(18)fi = eı 
ni ·
σ , i = 1,2,3,

(19)
ni = (ni1, ni2) ∈ Z2.

Now we observe that the factorization of time is
implemented for any three
ni ’s such that

(20)
n1 + 
n2 + 
n3 = 
0.
In this case, we obtain for the correspondingζi(t)

(21)ζ̇i = −n
1

2
ε2
ijkζ

∗
j ζ

∗
k ,

wheren = n11n22 − n12n21 ∈ Z.
In both cases (S2 and T 2) the equations for the

time evolution are essentially the same. TheT 2 case
is obtained from the equations ofS2 if we make the
replacementt → nt for n integer. Therefore we only
need to investigate Eq. (17) which in component form
is written

(22)

ζ̇1 = −ζ ∗
2 ζ

∗
3 , ζ̇2 = −ζ ∗

3 ζ
∗
1 , ζ̇3 = −ζ ∗

1 ζ
∗
2 .

There is an obvious symmetry of the above system

(23)ζk → eıqk ζk,

whereqk, k = 1,2,3 are real andq1 + q2 + q2 = 0.
This invariance leads to the conservation of the three
charges

(24)Qi = − ı

2

(
ζ̇iζ

∗
i − ζ̇ ∗

i ζi
)
, i = 1,2,3.

On the other hand, the equations of motion (22) imply
that all three chargesQi are equal to

(25)Qi ≡ Q = − ı

2

(
ζ1ζ2ζ3 − ζ ∗

1 ζ
∗
2 ζ

∗
3

)
.

There are two additional constants of motion in
analogy with the Euler equations for the rigid body,

(26)cij = |ζi |2 − |ζj |2,

1 For the seven-dimensional system in another context, see
also [19].

wherecij are constants. In polar coordinates

(27)ζk = rke
ıφk

we obtain

(28)Q = r1r2r3 sin(φ1 + φ2 + φ3),

(29)φ̇k = Q

r2
k

,

(30)cij = r2
i − r2

j .

Then, Eq. (22) reduce to

(31)ṙi = rj rk cosφ,

whereφ = φ1 + φ2 + φ3. For simplicity we define
s1 = r2

1. We further combine (31) with (28) to obtain
the following differential equation

(32)ṡ1 = −2
√
s1s2s3 −Q2.

After substitutions, the differential equation obtains a
unique form in the right-hand side for allsi which is

(33)ṡ2 = 4
[
s(s − a)(s − b)− Q2],

where s1 = s, s2 = s − a, s3 = s − b, wherea =
c12, b = c12 + c23.

If we define a new function of timeU(t) = s(t) −
a+b

3 , the differential equation becomes

(34)U̇2 = 4U3 − g2U − g3

which is recognized as the standard form of the Weier-
strass equation with solution the (doubly periodic)
Weierstrass functionU(t) =P(t;g2, g3), with

(35)g2 = 4

3

(
a2 + b2 − ab

)
,

(36)g3 = 4

27

(
2b3 + 2a3 − 3a2b − 3ab2) + 4Q2.

Before we proceed to the analysis of the solution,
we would like to point out that there is an isomorphism
between the membrane and the matrix model solutions
with factorization of time for the spherical and toroidal
topologies. This implies that the above solutions have
isomorphic matrix model instanton solutions similar
to those examined recently in Ref. [18].
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4. Analysis of the non-collapsing instanton
solutions

The equation of motion (33) for the membrane radii
(r2

1 ≡ s, r2
2 = s−a andr2

3 = s−b), is analogous to the
motion of a particle in a potentialV . This is indeed the
motion of any point of the Euclidean membrane:

(37)ṡ2 ≡ V (s,Q) = 4
[
s(s − a)(s − b)− Q2],

where a, b are positive constants. Without loss of
generality we may choosea > b > 0. The left-hand
side of Eq. (37) is always positive, thus the permitted
regions for the variables are such thatV (s,Q) is also
positive. These regions depend on the values ofQ.
There is a limiting position of the qubic curve when
Q2 = 0 ( V (s,0) ≡ V0(s)). This is the upper curve
shown in Fig. 1 and the three real roots ares1 = a,
s2 = b and s3 = 0. For all other values ofQ2 the
curve is below the limiting one and whenever there
are three real roots, they areb > s3 > 0 s2 < b, s1 > a,
respectively.V (s,Q) possesses extrema at the values

(38)smax/min = 1

3

(
a + b ∓

√
a2 + b2 − ab

)
.

There is a critical valueQ2 = Q2
c for which the

V (s,Q) has a double root which is thesmax. Qc is
determined as follows

(39)Q2
c = V0(smax).

Fig. 1. The ‘Potential’ for three characteristicQ-values: in all cases,
the allowed region is beyond the highest root to the infinity.

In this case we calculate the maximum root to be

(40)sc1 = 1

2

(
a + b + 2

√
a2 + b2 − ab

)
.

The physical region is this case is beyondsc1.
WhenQ2 > Q2

c there are two complex conjugate
roots (the maximum ofV is below the real axis) the
physical region iss > s1 wheres1 is the real root. The
three cases described above are presented in Fig. 1. In
what follows, we proceed in the detailed description of
the dynamics of the membrane instanton in the three
cases discussed above (Q = 0,Q �= 0,Q = Qc).

• WhenQ = 0 it is possible to redefine the time-
independent phases (29) to zero values and the self-
duality equation reduces to the ones of the three-
dimensional case [1]. Because of the conservation
laws we only need the equation fors = r2

1 which reads

(41)ṡ = −2
√
s(s − a)(s − b).

We distinguish the following cases [1]:
• a = b = 0. The solution is a spherical membrane

with the radius varied with time as

(42)r = r0

1+ r0(t − t0)
.

There is a critical valuetc = t0 − 1/r0 wherer → ∞,
whilst for t → ∞ the radius shrinks to zero.

• a = 0, b �= 0. The equation becomeṡs =
−2s

√
s − b and the solution obtained is

(43)r = r0
1+

√
b

r0
tan{√b (t − t0)}

1− r0√
b

tan{√b (t − t0)}
.

At tc = 1√
b

tan−1
√
b

r0
the membrane has an infinite

radius. On the contrary, whentin = − 1√
b

tan−1
√
b

r0
the

configuration collapses to a string.
• a > b > 0. This is the most general four-dimen-

sional case. The s-d equation reads

ṡ = −2
√
s(s − a)(s − b).

In order to write it in a more familiar form, we make
the transformationsx =

√
a
r

, k2 = b
a
< 1, with r > a

and, therefore,x < 1√
a
. Then, separating variables we

have

t = 1√
a

sinφ∫
0

dx√
(1− x2)(1− k2x2)

,
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(44)−π

2
< φ <

π

2
.

The right-hand side is the elliptic integral [20]F(φ, k),
and the radiusr is given

(45)r =
√
a

sn
√
a t

.

Here, we assumed as initial conditiont = 0 andr0 =
r(t = 0) = ∞. The positivity ofr restricts thet-range
in a half period of the ellipticsn. The real period is the
complete elliptic integral, i.e., when the upper limit of
(44) is equal to unity, sinφ = 1,

T

2
= 1√

a

1∫
0

dx√
(1− x2)(1− k2x2)

(46)= 1√
a
K

(
k2 = b

a

)
.

With the above initial conditions, att = 0 the volume
of the ellipsoidal membrane is infinite, whereas at time

t = T
4 reaches a minimum value withrmin =

√
a

sn
√
a T

4
and the membrane collapses to an elliptic disc.

It is worth mentioning that in three dimensions,
assuming simple factorization of time, we do not
find non-collapsing membranes. On the other hand
we find all possible collapsed configurations for the
membrane, that is, points, strings and discs.

• Now we consider the caseQ �= 0. This case
differentiates from theQ = 0 case because it exists
only in dimensions higher than three (see Eq. (29)).

As we shall see, a remarkable fact is that the
dynamics of the membrane in higher dimensions is
encoded in the higher-dimensional angular momen-
tum Q which, from the point of view of three dimen-
sions, it behaves like a charge.

In the case of spherical topology, there are three
different geometries, spherical, ellipsoidal with axial
symmetry, and anisotropic ellipsoidal ones. These
three cases correspond to the degeneracy of the roots
of the polynomial in the right-hand side of Eq. (33).

If the degeneracyg is g = 3, we have the spher-
ically symmetric membrane which from any initial
condition it approaches the radius equal to the largest
real root of the Eq. (33) in finite time and it goes back
to infinity.

If g = 2, we have the axially symmetric ellipsoid
which from an initial configuration it decreases its vol-
ume until a limiting one which is determined also by
the largest real root. The same also happens to the
anisotropic ellipsoidal membrane. The general solu-
tion in terms of elliptic Jacobi functions or Weierstrass
function of Eq. (34), can be found in a similar way
with the caseQ2 = 0 in Eq. (41)

(47)

ds√
s(s − a)(s − b)− Q2

= dx√
x(x − e13)(x − e23)

,

wherex = s − e3 andeij = ei − ej .
If the topology is toroidal, the radiir1,2,3 of the

torus T 3 inside which theT 2 toroidal membrane is
embedded, at any moment of time they are equal to√
s,

√
s − b,

√
s − a, respectively. We note that in this

case there are no non-degenerate solutions below four
dimensions.

In the following, we discuss theQ �= 0 spherical
case (a = b = 0). Integrating the equation we find the
solution in terms of the incomplete beta function [20]

(48)t = 1

6Q1/3 Beta

(
Q2

r6 ; 1

6
,

1

2

)
.

We assume here the following initial conditions: at
t = 0 the spherical membrane has infinite volume and
in finite time T = 1

6Q1/3 Beta(1
6,

1
2) contracts at the

minimum permitted radiusr0 = Q1/3 and goes back
to infinity. From the angular velocity Eq. (29), att = 0
or infinite radius, the angular velocity is zero and
contracting it develops at the limiting timeT angular
velocityωT = φ̇ = Q1/3.

The ellipsoidal cases follow similar pattern and we
parametrize the solution in terms of the Weierstrass
function [20]:

(49)s(t) =P(t;g2, g3) + a + b

3
,

whereg2,3 are functions ofa, b given by (35), (36)
above.

Due to the non-zero angular momentum the brane
obtains a minimum size given by the radii squared,s1,
s1 − a, s1 − b where as discussed in the beginning of
this section,s1 stands for the largest root ofV (s,Q)

(see Fig. 2). At this minimum size, there are limiting
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Fig. 2. The points show the equidistant time-evolution of the
coordinates of the ellipsoidal membrane (45) in the three planes
I = (X1,X4), I I = (X2,X5) and I I I = (X3,X6). All of them
reach a minimum size and go back to infinity.

angular velocities given by

(50)ω1 = Q

s1
, ω2 = Q

s1 − a
, ω3 = Q

s1 − b
.

In the solution (34) we assume initial conditions
s(0) = ∞ ands1 is given bys1 =P( T2 ;g2, g3)+ a+b

3 ,
whereT is the real period of the Weierstrass function.
In the special case ofQ = Qc, we have a simple
algebraic solution (similar to theQ = 0 case), and
s1 = sc1 with sc1 given by (40).

5. Conclusions

Breaking theG2 invariance of the octonionic self-
duality equations for the membrane in seven dimen-
sions down toSU(3), we found explicit solutions of
non-collapsing rotating membrane instantons which
they have periodic motion starting at some initial mo-
ment from infinite size, shrinking down to a finite one
in a half period and then bouncing back to infinity.
The rôle of these instantons for the quantum mechan-
ical vacuum of the membrane depends on the period
which is the inverse temperature in membrane plasma
of finite temperature. In the case of infinite period
(zero temperature) the membrane instantons collapse
to point-, string- and disc-like objects which repre-
sent the vacua of the quantum mechanical membrane.

Since up to now it is not known how to quantize the
supermembrane, we hope that the information we pro-
vided in this work is a step towards this direction.
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