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Non-perturbative effects generate a negative squared “mass” term for the Higgs fields, which, in a grand unified theory 

with Coleman-Weinberg type symmetry breaking, drives the transition from the symmetric high temperature phase to the 

true vacuum. This mechanism could be of wider interest. 

It is generally believed that at the early stages of the 
expansion of the universe, characterized by very high 
temperatures in the standard cosmological model, the 
broken symmetries of elementary particle interactions 
were intact [l] . The very attractive idea of grand uni- 

fication [2] , in which the SU(3) and SU(2) X U(1) 
gauge groups of the observed strong and electroweak 
interactions are unified in a larger gauge group G, re- 
quires that this gauge group G suffers successive spon- 
taneous symmetry breakdowns, via some Higgs fields, 
down to SU(3) X U(l),, . In the framework of an ex- 
panding universe, these breakdowns correspond to 
phase transitions, generally of first order [3] , which 
occur as the temperature decreases. 

Of particular interest is the case of a Coleman- 
Weinberg potential, in which the symmetry breaking 
occurs through radiative corrections [4]. As a conse- 
quence of a Coleman-Weinberg symmetry breaking 
for the GUT phase transition, the universe will super- 
cool below the grand unification scale, before the transi- 
tion from the symmetric high temperature state to the 
true vacuum is completed [5] . In this note we point 
out a mechanism different from the ordinary barrier 
penetration [6] by which the GUT phase transition 
will complete itself. 

For definiteness, let us consider the SU(5) grand 
unified theory [7] , though most of what will be dis- 
cussed will not depend on the details of the model 
under discussion. The one-loop effective potential for 
the SU(5) model in the Coleman-Weinberg mode is 

[51 

V(4) = (.5625/1024~~)g~@~ [ln(Q2/a2) - f 1, (1) 

where @2 = -5 tr (Q2), with Cp being the adjoint Higgs 
field and u the zero temperature minimum of the po- 

tential. At finite temperature the potential is altered 
by the addition of the term [8] 

VT(@) = (18T4/n2) 

X J dxx21n{l -exp[-(x2 t $g2@‘)“‘]} . (2) 

0 

However, for r#~ < T < CJ, this term is well approximated 
by an effective mass term 

VT(@) = 2 g*T*@* (3) 

This term has dramatic effects since it stabilizes the 
false vacuum 4 = 0. In fact, @ = 0 ceases to be a local 
minimum only at zero temperature. 

The tunnelling to the true vacuum now proceeds 
via bubble nucleation. The bubble nucleation rate per 
unit time per unit volume is approximately 

A exp(-S) , 

where S is the euclidean tunnelling action [6] corre- 

sponding to an O(3) symmetric solution, and A is a 
factor roughly proportional to T4 since T is the rele- 
vant scale of the problem. The tunnelling becomes 
appreciable when it is comparable to the rate of the 
expansion of the universe per unit time per unit 
volume, i.e., to p2/J4:, where M, is the Planck mass 
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and p is the energy density of the universe. In the pres- 
ent case, p stands for the energy density of the false 

vacuum (5625g4/2048m2)04. That is, we must have 

G@/P~) T4 exp(-S) - O(l) , (4) 

Since the relevant scale of the process is the temper- 
ature, the gauge coupling runs with the tempera- 
ture [9] . It is now known from previous works [6] 
that eq. (4) is not satisfied and the transition does not 

complete itself until we reach temperatures -1 GeV, 
which is well below the energies at which one can trust 

perturbation theory. 
As we approach lower temperatures, however, 

gauge field configurations play an important role in 
the development of the phase transition. One should 
examine the possibility that the origin of the potential 
becomes unstable due to gauge boson condensation. 

Gauge boson condensation has been considered in 

QCD [lo] where the colour singlet gluon condensate 
seems to be an important part of the correct vacuum. 
There the contribution of instantons to the singlet 
gluon condensate has been considered. 

Now, in the SU(5) theory, a non-zero vacuum ex- 
pectation value to operators made out of gauge boson 
fields is naturally supplied by SU(5) instanton configu- 
rations. In particular, the operator F$“FE” acquires 
an expectation value. This expectation value is of 
course temperature dependent. Periodic instantons 
can be constructed as a periodic superposition of zero 
temperature instantons. 

Considering instantons of an SU(2) subgroup em- 
bedded in SU(5), we write [9] 

A, = II?&(i xQ)a,n-’ ) 

F IJV = i nx- as”,, (i IQ) h+ s an-l (5) 

where XQ are the appropriate generators of SU(~), h, 
= (-i, A) and II is the ‘t Hooft potential 

II=]+ c P2 

13 (x -Zn)2 

irp2T 
=l+- sinh(2vT) 

; [cosh(2mT) - cos(2nTt)] ’ (6) 

with t, r being the position of the instanton and p its 
size. Perturbing around the instanton solution, we find 
that the vacuum expectation value of (Ftv)2 is 

((F$J2 ) = s dp D (P, 0 j- d4Q’a, ,(z , p));,t > (7) 

where D(p, T) is the instanton density. The above for- 
mula reduces to 

((F;rJ2) -N 32n2Ptist(T) , 03) 

with P&T) being the pressure of instantons [9] . 
This is, for the SU(5) theory, 

&t(T) = C, T4 r4n2/&&T)1 I’exp ]-8~2/&($“1 

(9) 
where 

c, N 7.5 x 1o-4 ) 

and 

8n2/g2(T) = +(T2 /&c5j) 

is the running coupling of the SU(5) theory [A,,(,) 

- 2 X lo6 GeV for the standard asymptotically free 
SU(5) theory] . So eq. (8) gives us an order of magni- 
tude estimate for the contribution of instantons to the 
vacuum expectation value (F2) * 1 . 

The important observation now is that, although 
not present in the lagrangian *’ , a gauge invariant 
effective coupling (F”,,)2tr Q2 of the Higgs fields to 
the gauge bosons is generated. Of course, at zero tem- 
perature no such dimensionful local coupling could 
be generated due to the absence of a mass parameter. 
At finite temperatures, however, the longitudinal de- 
grees of freedom develop non-perturbatively a mass 
M2 a g2Tz while the transverse gauge bosons remain 
massless. Diagramslike the one of fig. 1 contain 
contributions 

g4G2 J (EQ(X)*ea(Y)) 

%Y, 2 

x Dji(x -Y)“()u(x - z)DOO(Y - z, . 

These terms appear in the effective potential as 

*r (F2) has to be properly group-averaged over SU(2) sub- 

groups of SU(5). This is not going to change any order of 

magnitude estimates. 
*’ A quadratic term for the Higgs field could be also generat- 

ed non-perturbatively by the operator Ai”A”,” via the di- 

rect coupling g2A2Q2. However, A2 is a gauge dependent 
quantity. 
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--- : Screened Coulomb interactions 

Fig. 1. 

-(g2)2rj2T2 jirdt [ d3x (-e’(x, t).E’(O, 0)) 
0 ” 

x E jd3k ?xp(ik.x + 2imnTt) 

m=-CC [k2 t (2n17rT)~ t M2] 2 

+a, 
exp(ip*x t i2mnTt) 

IJI’ t (2mnT)2] 

= -(g2)2~2T” j= dr r j da i” dt 
0 0 

x (6eQ(r, t).e”(O,O)) 
cinh(2nrT) 

cosh(2nrT) - cos(27rtT) 

X ‘E exp(2ti?znTt)exp {-r[M2 t (2mnn2] li2} 

,n=--m [M2 t (2mnT)2] li2 

The last expression, being infra-red singular when the 
mass M goes to zero or equivalently when the temper- 
ature goes to zero, can be replaced by its most singu- 
lar term 

_(g2)2@2T2 - 
- M j drr]‘TdtGeE) 

0 0 

X 
sinh(2mT) 

cosh(2nrT) - cos(2nTt) 
exp(-rM) 

llgT 
N -g3d2T j drr ]lr dt(--E-E) 

0 0 

X 
sinh(2nrT) 

cosh(2nrT) - cos(2773) . 

Assuming now that the non-perturbative expecta- 
tion value will not vary much over a range 1 IT, we ob- 
tain 

1 Is 
-(g3G2/T2) !-e”)j dr r j” dt cos;;~;os t 

0 0 

N -(g3q52/T2) (F2) O(1). (10) 

Of course, the zero temperature limit is infra-red 

singular, A term like (10) has the right sign * 3 in 
order to destabilize the false vacuum # = 0 [see eqs. 

(1) and (3)l. 
The consequences of this term are easy to analyze. 

At high temperatures (A < T < MJ this term is neg- 
ligible and the transition proceeds through tunnelling 

very slowly. As we approach lower temperatures there 
will be some temperature at which this term will have 
enough strength to destabilize the origin. When this 
happens there is a very rapid transition to the broken 
phase. The adjustment of parameters at zero tempera- 
ture is of course such that the transition to SU(3) 
X W(2) X U(1) will be favoured over SU(4) X U(1). 

Since instantons are only one of different factors 
contributing to the gauge boson condensate, we can- 
not rely on the value of (F2) we have obtained or its 
temperature dependence. Hence although we can be 
pretty sure that the condensate will destabilize the 
potential, we can only get a rough estimate of the 
transition temperature from instantons. Thus, our 
naive estimate gives a critical temperature close to A, 
T-0(1)12. 

The emergence of instantons at low temperatures 
naturally destabilizes the wrong vacuum and causes a 
rapid transition to the broken phase. After that, in- 
stantons are suppressed by a factor exp(-($2)p2). 

In considering gauge boson condensates, amongst 
the attractive channels the singlet is the most attrac- 
tive one (MAC). However, the formation of non-sin- 
glet channels is also a possibility. In this respect there 

*3 (F*) is positive definite quantity in Minkowski space. 

285 



Volume 109B, number 4 PHYSICS LETTERS 25 February 1982 

seems to be a difference between QCD and other Note added. We want to point out that, with the 

SU(N) (N Z 5) theories. QCD remains unbroken and degree of supercooling suggested by the present work, 
confining the MAC criterion, although approximate, a very ambitious picture of the universe can emerge. 
seems to be correct. On the other hand, for pure SU(N) As,it has been first observed by Linde [ 161 in the 
(N Z 5) theories, Monte Carlo calculations in lattice 
gauge theories [ 1 l] indicate a different behaviour. 

Fermion condensation could also take place. This 
is known [ 121 to break the symmetry down to SU(4). 
There is no singlet in this case and the MAC corre- 

sponds to the condensate of the 10 of fermions ($; 
X E, jikl$kl). However, it seems to us energetically 
more favourable for the symmetry breaking to occur 
via a singlet than a non-singlet condensate. 

It is not a coincidence that in the Weinberg-Salam 
phase transition with a Coleman-Weinberg potential 
the supercooling is halted by the fermion condensate 
that breaks chiral symmetry at temperatures close to 
AQcD [ 131. The SU(2) instantons are of course then 
but their effect would be non-negligible only at tem- 
peratures much lower than AQcD. 

The non-perturbative generation of a Higgs mass 
with the wrong sign, by instantons, naturally leads to 
the speculation that the negative mass squared, put in 
by hand in the perturbative treatment of spontaneous 
symmetry breaking, might be dynamically generat- 
ed in just this way. 

It is by now rather evident that both in the case of 

the GUT and the SU(2) X U( 1) phase transition with 

a Coleman-Weinberg potential it is nonperturbative 
effects that stop the supercooling. Even in cases where 

the symmetry breaking occurs at tree level [ 141 , ex- 
tensive supercooling to low temperatures would make 
the gauge loop corrections and eventually non-pertur- 
bative effects important. Thus, in all cases the rich 
structure of gauge theories seems to prevent long 
drawn out phase transitions. In the light of all this, it 
seems rather questionable that the supercooling re- 
quired by Guth’s scenario [ 151 of the inflationary 
universe can be realized in gauge models. The tangle 
between the solution to the the horizon and flatness 
cosmological problems in the scenario seems acciden- 
tal and it is likely that they can be solved independent- 
ly without the need for supercooling. 

We wish to thank L. Abbott, R. Barbieri, C. Aragao 
de Carvalho, D.V. Nanopoulos and P. Sikivie for dis- 
cussions and helpful comments. 
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meantime, after the formation of a bubble, the field 

4 inside the bubble gradually grows from the value 
@’ determined by I’(@‘, T,.) = Ir(0, r,) to the value 

@ (Treh) - u, where Treh is the reheating temperature 

T reh - 0(1014 GeV). However, it approaches the 
value only after a period of time r - T; ‘. During this 
period of time the universe expands exponentially eH7 
times, where H = [~n(p/~~)]1/2 - lOlo GeV is the 
Hubble constant. The bubble at the moment of its 
creation has a typical size O(T;‘) - 10p20 cm, if 

Te - lo6 GeV, as it is suggested by our work. Then 
after the above discussed time period, it will have a 
size 0(10-20 eH7 cm) - lOlo cm, which is many 
orders of magnitude greater than the observable part 
of the universe -lo28 cm. Therefore, all the observable 
part of the universe is contained inside one bubble. 
With this picture, it is easily seen that the isotropy, 
the homogeneity-horizon and the flatness cosmologi- 
cal problems Barrow and Turner [ 171 can be resolved, 
as well as the primordial magnetic monopoles problem, 
simply because in this scenario no monopoles are 
created in the observable part of the universe. 
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