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Abstract

We study theO(αtαs + α2
t ) two-loop corrections to the minimization conditions of the MSS

effective potential, providing compact analytical formulae for the Higgs tadpoles. We connec
results with the renormalization group running of the MSSM parameters from the grand unifi
scale down to the weak scale, and discuss the corrections to the Higgs mixing parameteµ and
to the running CP-odd Higgs massmA in various scenarios of gravity-mediated SUSY breaki
We find that theO(αtαs) andO(α2

t ) contributions partially cancel each other in the minimizat
conditions. In comparison with the full one-loop corrections, theO(αtαs +α2

t ) two-loop corrections
significantly weaken the dependence of the parametersµ andmA on the renormalization scale
which the effective potential is minimized. The residual two-loop and higher-order correctionµ
andmA are estimated to be at most 1% in the considered scenarios.
 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

One of the most attractive features of the Minimal Supersymmetric extension o
Standard Model (MSSM) [1], is the fact that it provides a mechanism for brea
radiatively the electroweak gaugeSU(2)L × U(1)Y symmetry down toU(1)EM. It was
first shown [2] that a supersymmetry (SUSY) breaking term for the gluino can in
an effective potential which spontaneously breaks the electroweak symmetry. At the
time, a mechanism relying on the renormalization group evolution from a grand unific
E-mail addresses: dedes@ph.tum.de (A. Dedes), slavich@mppmu.mpg.de (P. Slavich).

0550-3213/03/$ – see front matter 2003 Elsevier Science B.V. All rights reserved.
doi:10.1016/S0550-3213(03)00173-1

http://www.elsevier.com/locate/npe


, at
imple

the
weak

nts to
mass
kawa
elds
metry

initial
aking

ark is
t with

f the
itically
puted;

wrong.
f the

ifact of
theory
ntial
ntum
lization

ns to

f

t

e
on the
SSM
in
been
334 A. Dedes, P. Slavich / Nuclear Physics B 657 (2003) 333–354

(GUT) scaleMGUT down to the weak scale was proposed [3]. In this framework
the scaleMGUT, the parameters entering the scalar potential of the MSSM obey s
boundary conditions dictated by the underlying theory of SUSY breaking, and
electroweak symmetry is unbroken. When the parameters are evolved down to the
scale by means of the MSSM renormalization group equations (RGE), which amou
resumming the leading logarithmic corrections to all orders, the soft SUSY-breaking
m2
H2

is driven towards negative values, due to corrections controlled by the top Yu
couplinght . This helps to destabilize the origin in field space, so that the Higgs fi
acquire non-vanishing vacuum expectation values (VEVs) and the electroweak sym
is spontaneously broken. Although the studies in Refs. [2,3] where differing on the
boundary conditions, the result was one: the radiative electroweak symmetry bre
(REWSB) takes place if the top Yukawa coupling is large, such that 60 GeV� mt �
200 GeV, with the upper bound coming from the requirement thatht remains in the
perturbative range up to the GUT scale. It could be a coincidence that the top qu
found at the Tevatron to have mass around 175 GeV, but certainly this is consisten
the REWSB mechanism in the MSSM.

In the RGE-improved potential of the MSSM employed at tree level, the VEVs o
Higgs fields, and the occurrence of spontaneous symmetry breaking itself, depend cr
on the renormalization scale at which the parameters entering the potential are com
an inappropriate choice of that scale can lead to results that are even qualitatively
In fact, the electroweak symmetry is either broken or unbroken, independently o
renormalization scale choice, and the critical behavior described above is just an art
the tree-level approximation. The correct way of determining the ground state of the
is to minimize the Coleman–Weinberg effective potential [4], i.e., the tree-level pote
plus a correction coming from the sum of all the one-loop diagrams with zero-mome
external lines. Since Refs. [5,6] this procedure has become standard in the renorma
group analyses of the MSSM (for early examples see Refs. [7,8]).

The effective potential is also a useful tool for computing the leading correctio
the MSSM Higgs masses, both at the one-loop [9] and the two-loop [10–14] level,1 in the
approximation of zero external momentum. The leading one-loop corrections areO(αt ),
i.e., they are controlled by the top Yukawa couplinght ≡ √

4παt . For stop masses o
O(1 TeV), such corrections increase by 40–60 GeV the massmh of the lightest Higgs
boson (which at tree level must be lighter thanmZ), allowing it to escape the direc
searches at LEP. Also, the leading two-loop corrections have sizeable effects: theO(αtαs)
corrections, controlled by the strong gauge couplinggs ≡ √

4παs , typically reducemh by
15–20 GeV, whereas theO(α2

t ) ones may increase it by up to 7–8 GeV.
Motivated by the relevance of theO(αtαs + α2

t ) two-loop corrections in the cas
of the Higgs masses, we study in this paper the effect of the same corrections
electroweak symmetry breaking conditions. The contributions to the two-loop M
effective potential that are relevant to theO(αt αs +α2

t ) corrections have been discussed
Refs. [10–12], and a complete computation of the two-loop effective potential has
1 Other two-loop computations of the MSSM Higgs masses have been performed in the renormalization
group [15] and diagrammatic [16] approaches.
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presented in Ref. [17]. However, practical studies of REWSB usually require ex
formulae for the Higgs tadpole diagrams, i.e., the first derivatives of the effective pot
with respect to the Higgs fields. Such formulae are presently available at the on
order [7], but they have not been presented so far at the two-loop order. Usin
techniques developed in Ref. [12], we compute in this paper explicit and compact ana
expressions for the two-loopO(αtαs + α2

t ) part of the tadpoles. As a byproduct fro
our O(αtαs) corrections we obtain also theO(αbαs) corrections, that are relevant f
large values of tanβ . Once we assume that the electroweak symmetry is indeed br
giving rise to the observed value of theZ boson mass, the corrections to the tadpo
translate intoO(αtαs + α2

t ) corrections to the values ofµ, the Higgs mass term in th
superpotential, andmA, the running mass of theA boson. We discuss the effect of our tw
loop corrections in the framework of gravity mediated SUSY breaking [18], also den
as minimal supergravity (mSUGRA), referring, in particular, to various “benchm
scenarios suggested at Snowmass [19]. We find that the inclusion of theO(αtαs + α2

t )

corrections significantly improves the renormalization scale dependence of the resu
that partial cancellations occur between theO(αtαs) corrections and theO(α2

t ) ones. Our
corrections are also required for consistency in theO(αtαs +α2

t ) two-loop computation o
the MSSM Higgs masses, if the input parameters are computed via renormalization
evolution from a set of high energy boundary conditions.

The paper is organized as follows: in Section 2 we recall the basic concepts of ra
electroweak symmetry breaking, and introduce some notation which will be used in th
of the paper; in Section 3 we describe the main features of ourO(αtαs + α2

t ) computation
of the two-loop tadpoles; in Section 4 we discuss the numerical effect of our correc
and we show how they improve the dependence ofµ andmA on the renormalization
scale at which the effective potential is minimized; Section 5 contains our conclu
In addition, we present in Appendix A some useful formulae for the integrals enterin
two-loop effective potential, and in Appendix B the explicit analytical formulae for
O(αtαs) part of the corrections. The formulae for theO(α2

t ) part are indeed rather lon
thus we make them available, upon request, in the form of a computer code.2

2. Radiative electroweak symmetry breaking

We start our discussion from the tree-level scalar potential of the MSSM, that r
keeping only the dependence on the neutral Higgs fieldsH 0

1 andH 0
2 :

V0 =Λ+m2
1

∣∣H 0
1

∣∣2 +m2
2

∣∣H 0
2

∣∣2 +m2
3

(
H 0

1H
0
2 + h.c.

)
(1)+ g2 + g′2

8

(∣∣H 0
1

∣∣2 − ∣∣H 0
2

∣∣2)2
,

where:Λ is a field-independent vacuum energy;m2
1 = m2

H1
+ µ2, m2

2 = m2
H2

+ µ2 (we

assumeµ to be real, neglecting all possible CP-violating phases);m2
H1

, m2
H2

andm2
3

2 E-mail address:slavich@mppmu.mpg.de.

mailto:slavich@mppmu.mpg.de
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are soft SUSY-breaking masses;g andg′ are theSU(2)L andU(1)Y gauge couplings
respectively. At the classical level, the mass parameters enteringV0 must satisfy the
following conditions:

(2)m2
1 +m2

2 � 2
∣∣m2

3

∣∣, m2
1m

2
2 �m4

3.

The first condition guarantees that the potential is bounded from below; the s
condition destabilizes the origin in field space, making sure that the neutral compo
of the Higgs fields acquire non-vanishing VEVs〈H 0

1 〉 ≡ v1/
√

2 and〈H 0
2 〉 ≡ v2/

√
2. It is

not restrictive to choosem2
3 real and negative,3 so thatv1 andv2 are real and positive, an

the neutral Higgs fields can be decomposed into their VEVs plus their CP-even and C
fluctuations asH 0

i = (vi + Si + iPi)/
√

2.
Since the parameters enteringV0 are taken as “running” ones (i.e., they vary with t

renormalization scale), also the validity of the conditions in Eq. (2) depends on the sc
well as the numerical values ofv1 andv2. As discussed in Ref. [6], the minimization of th
tree-level potential may lead to grossly inaccurate results, unless the renormalizatio
is chosen in such a way that the radiative corrections to the scalar potential are sm
obtain the correct results, one should rather minimize the effective potentialVeff, defined
as:

(3)Veff = V0 +�V,

where�V contains the radiative corrections to the scalar potentialV0. The minimization
conditions forVeff can be written as:

(4)
1

v1

∂Veff

∂S1

∣∣∣∣
min

=m2
H1

+µ2 + g2 + g′2

4

(
v2

1 − v2
2

) +m2
3
v2

v1
+Σ1 = 0,

(5)
1

v2

∂Veff

∂S2

∣∣∣∣
min

=m2
H2

+µ2 + g2 + g′2

4

(
v2

2 − v2
1

) +m2
3
v1

v2
+Σ2 = 0,

where the “tadpoles”Σ1 andΣ2 are defined as:

(6)Σi ≡ 1

vi

∂�V

∂Si

∣∣∣∣
min
.

In principle, a renormalization group study of the MSSM should start from some
scaleMGUT, where the input parameters have a simple structure dictated by the unde
theory of SUSY breaking, and the electroweak symmetry is unbroken. The paramet
then evolved, by means of appropriate renormalization group equations, down to
lower scale, where the electroweak symmetry breaking occurs and the VEVsv1 and
v2 can be obtained by solving Eqs. (4) and (5). A set of high-energy input param
is then acceptable if it leads to the correct value of the squared running mass f
Z boson,m2

Z = (g2 + g′2)(v2
1 + v2

2)/4. However, in most practical applications of t
renormalization group procedure, it is more convenient to assume thatthere is successfu
electroweak symmetry breaking, and trade two of the high-energy input parametersv1
3 Our conventions differ by a sign in the parametersµ andm2
3 with respect to those used in the second paper

of Ref. [1].
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andv2 (or, equivalently, forv2 ≡ v2
1 + v2

2 and tanβ ≡ v2/v1). Eqs. (4) and (5) can thus b
rephrased into the following conditions among the parameters at the weak scale:

(7)µ2 = −m
2
Z

2
+ m2

H1
+Σ1 − (m2

H2
+Σ2) tan2β

tan2β − 1
,

(8)m2
3 = −1

2
sin2β

(
m2
H1

+m2
H2

+ 2µ2 +Σ1 +Σ2
)
,

i.e., the terms proportional toΣ1 and Σ2 in the above equations can be viewed
the radiative corrections to the values ofµ2 andm2

3 obtained from the requirement o
successful electroweak symmetry breaking. We recall thatm2

3 is related to the square
running mass for theA boson throughm2

A = −2m2
3/sin2β . Notice also that the sign o

µ is not fixed by Eq. (7), and it must be supplemented as an additional input quan
the right side of Eq. (7) is such thatµ2 is negative, then our choice of input parameter
inconsistent, and the electroweak symmetry fails to be broken. We remark in passin
the choice of the input parameters is constrained by further requirements: it must l
a spectrum of physical masses for the MSSM superpartners and Higgs bosons com
with the present experimental lower bounds, and such that the lightest supersym
particle (LSP) is electrically neutral; it must satisfy phenomenological constraints co
from radiativeB-meson decays, muon anomalous magnetic moment and cosmol
relic density; finally, it must guarantee that the MSSM scalar potential is bounded
below and does not lead to charge and color breaking minima. However, a detailed
of the (theoretically and experimentally) allowed regions in the MSSM parameter
goes beyond the scope of this paper, and will not be pursued in the following.

The full one-loop corrections to the REWSB conditions have been extensively disc
in the literature [7] in the framework of the mSUGRA scenario. The dominant one
contributions toΣ1 andΣ2 come to a large extent from the top/stop (and, for la
tanβ , bottom/sbottom and tau/stau) diagrams. The contributions of the diagrams inv
charginos and neutralinos can also be sizeable and comparable to the top/stop
some regions of the parameter space, while the Higgs and gauge bosons and the
generations of (s)quarks and (s)leptons give only subdominant corrections.

In the following sections we provide explicit analytical formulae for the two-lo
top/stop contributions to the tadpolesΣ1 andΣ2, resulting intoO(αtαs + α2

t ) corrections
to µ2 and to the running massm2

A. In analogy with the case of the Higgs masses,
expect such corrections to be the leading ones at the two-loop level, giving rise to si
effects at least in some regions of the MSSM parameter space. In addition, most
codes that compute the MSSM mass spectrum from a set of unified parameters at th
MGUT, such asSuSpect [20], SoftSusy [21], SPheno [22] andFeynSSG [23], include a two-
loop O(αtαs + α2

t ) computation of the Higgs masses,4 but employ one-loop results fo
the tadpoles (see also Ref. [25] for a recent discussion). Sincem2

A enters the tree-leve
mass matrix of the CP-even Higgs bosons, theO(αtαs + α2

t ) corrections tom2
A should be

included in those codes for consistency.
4 Another widely used public code,Isajet 7.58 [24], relies on a one-loop effective potential computation of
the Higgs masses.
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3. Computation of the O(αtαs + α2
t ) corrections

We shall now describe our two-loop,O(αtαs +α2
t ) computation of the tadpolesΣ1 and

Σ2, involving the first derivatives of�V with respect to the CP-even parts of the neu
Higgs fields (see Eq. (6)). The computation is consistently performed by setting to z
the gauge couplings butgs and by keepinght as the only non-vanishing Yukawa coupli
(with a slight abuse of language, in the following we will refer to this approximation a
the gaugeless limit). In this limit, the tree-level (field-dependent) spectrum of the M
simplifies considerably: gauginos and Higgsinos do not mix; the charged and n
Higgsinos combine into Dirac spinors̃h0 and h̃± with degenerate massµ; the gaugino
masses coincide with the soft SUSY-breaking parametersMA (A= 1,2,3) (among them
only the gluino massmg̃ =M3 is relevant to our calculation); the only massive Stand
Model (SM) fermion is the top quark; all other fermions and gauge bosons have van
masses; besides the top squarks, the only sfermion with non-vanishing couplings
bottom squark̃bL; the lighter CP-even Higgs boson,h, is massless, and the same is t
for the Goldstone bosonsG andG±; all the remaining Higgs states,(H,A,H±), have
degenerate mass eigenvaluesm2

A. The tree-level mixing angle in the CP-even sector is
α = β − π/2.

To begin with, we address the renormalization of the effective potential. In
loop expansion, the correction to the effective potential can be decomposed as�V =
V1" + V2" + · · ·, where the ellipsis stand for higher loops. Using the Landau g
and dimensional reduction [26,27] ind = 4 − 2ε dimensions, and including for late
convenience also terms that vanish whenε → 0, the unrenormalized one-loop effecti
potential reads:

(9)

V1" = −1

64π2 StrM4
[

1

ε
+ 3

2
− ln

M2

Q2 + ε

(
7

4
− 3

2
ln

M2

Q2 + 1

2
ln2 M2

Q2 + π2

12

)]
,

whereM2 is the matrix of the field-dependent squared masses, and the supertra
generic functionf (M2) is defined as a sum over the eigenvaluesm2

i :

(10)Strf
(
M2) =

∑
i

(−1)2si (2si + 1)f
(
m2
i

)
,

wheresi is the spin of the corresponding particles. In Eq. (9),Q2 = 4πµ2e−γE , i.e., the
finite terms that are removed together with 1/ε in the modified subtraction schemes ha
been reabsorbed in the renormalization scale (the same convention will be adopte
following). In the gaugeless limit described above, only the top and stop contributio
V1" are relevant, giving rise toO(αt ) contributions toΣ1 andΣ2.

The Feynman diagrams that contribute to the two-loop effective potentialV2" and give

rise toO(αtαs) contributions toΣ1 andΣ2 are shown in Fig. 1, while the diagrams relevant
to theO(α2

t ) contributions are shown in Fig. 2. The corresponding analytical formulae
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Fig. 1. Feynman diagrams that contribute to the two-loop effective potential and affect theO(αt αs) corrections
to the electroweak symmetry breaking conditions. The diagrams relevant to theO(αbαs ) corrections can be
obtained with the replacementt → b.

Fig. 2. The classes of Feynman diagrams that contribute to the two-loop effective potential and aff
O(α2

t ) corrections to the electroweak symmetry breaking conditions [q = (t, b), ϕ = (H,h,G,A,H±,G±),
h̃= (h̃0, h̃±), q̃ = (t̃1, t̃2, b̃L)].

for V2" can be found, e.g., in the last paper of Ref. [11].5 These formulae involve two
basic integrals,I (m2

1,m
2
2,m

2
3) and J (m2

1,m
2
2), that have been evaluated with differe

5 The formulae of Ref. [11] are obtained for vanishing CP-odd fields. While requiring some modific

[12] for the computation of the CP-even Higgs boson masses in terms of the physicalmA , those formulae can be
used as they stand for the purposes of the present analysis.
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methods in Refs. [28,29]. Explicit expressions forI andJ in the formalism of Ref. [29]
are presented in Appendix A.

To carry out the renormalization ofVeff, at the two-loop order and in theDR scheme
[26,27], we start from the unrenormalized effective potential, written in terms of ge
bare parametersxi . Then, we expand the parameters asxi = xDR

i + δxi , whereδxi are
purely divergent quantities, so that all the poles in 1/ε and 1/ε2 are cancelled. After takin
the limit ε → 0, the non-vanishing part of the renormalized effective potential is:

(11)Veff = V0
(
xDR
i

) + V
(1)
1"

(
xDR
i

) + V
(1)
2" + ∂V

(ε)
1"

∂xi
δ1"xi,

whereV (1)1" andV (1)2" denote the finite parts of the one-loop and two-loop effective poten

respectively,V (ε)1" denotes the terms proportional toε in Eq. (9), andδ1"xi is the coefficient
of 1/ε in the one-loop part of the generic counterterm (notice that we need to com
explicitly only the one-loop counterterms for the top and stop masses). In Eq. (11),V0 and
V
(1)
1" are expressed in terms ofDR-renormalized parameters, while the renormalizatio

the parameters entering the two-loop part is irrelevant, amounting to a higher-orde
three-loop) effect. In summary, it is possible to define the renormalized two-loop effe
potential as:

(12)V̂2" = V
(1)
2" + ∂V

(ε)
1"

∂xi
δ1"xi .

We have checked that̂V2" corresponds to the finite part of the potential obtained
replacing the integralsI and J in V2" with the “subtracted” integralŝI and Ĵ , first
introduced in Ref. [28]. More precisely, this is true only up to terms that give a
contribution toΣ1 andΣ2, unless we include inVeff also diagrams that do not depe
on the Higgs fields (such as, e.g., the one-loop diagram involving gluinos and the tw
diagram involving gluinos and gluons).

Compact analytical formulae for the derivatives of the renormalized effective pot
in the gaugeless limit can be obtained with a procedure similar to that of Ref. [12]
relevant field-dependent quantities are the top massmt , the stop massesm2

t̃1
andm2

t̃2
, and

the stop mixing angleθt̃ (the top and stop phasesϕ and ϕ̃, introduced in [12] to take
into account the dependence on the CP-odd part of the Higgs fields, do not en
computation ofΣ1 andΣ2). At the minimum of the effective potential, the paramet
in the stop sector are related by:

(13)sin 2θt̃ =
2mt(At +µcotβ)

m2
t̃1

−m2
t̃2

,

whereAt is the soft SUSY-breaking trilinear coupling of the stops (notice that Eq.
defines our convention for the sign ofµ). We will use in the following the shortcut
c2θ ≡ cos 2θt̃ and s2θ ≡ sin2θt̃ . After a straightforward application of the chain rule f
the derivatives of the effective potential, we get:

(14)v2Σ =m µcotβs F,
1 1 t 2θ

(15)v2
2Σ2 =mtAts2θF + 2m2

t G.
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The functionsF andG are combinations of the derivatives of�V with respect to the
field-dependent parameters, computed at the minimum of the effective potential:

(16)F = ∂�V

∂m2
t̃1

− ∂�V

∂m2
t̃2

− 2c2θ

m2
t̃1

−m2
t̃2

∂�V

∂c2θ
,

(17)G= ∂�V

∂m2
t

+ ∂�V

∂m2
t̃1

+ ∂�V

∂m2
t̃2

.

The one-loop parts ofF andG, giving rise toO(αt ) contributions toΣ1 andΣ2, are easily
computed from the derivatives ofV (1)1" . In units ofNc/(16π2), whereNc = 3 is a color
factor, they read:

(18)F 1" =m2
t̃1

(
ln
m2
t̃1

Q2 − 1

)
−m2

t̃2

(
ln
m2
t̃2

Q2 − 1

)
,

(19)G1" =m2
t̃1

(
ln
m2
t̃1

Q2
− 1

)
+m2

t̃2

(
ln
m2
t̃2

Q2
− 1

)
− 2m2

t

(
ln
m2
t

Q2
− 1

)
.

Although a naive, brute-force computation of the derivatives of the renormalized two
potentialV̂2" presents no major conceptual difficulties, the number of terms involved b
up quickly, giving rise to very long and complicated analytical expressions. Howev
the spirit of Ref. [29], it is possible to obtain recursive relations for the derivatives o
integralI (m2

1,m
2
2,m

2
3) with respect to the internal masses (see Appendix A), that sim

considerably the results. In this way, we obtained compact analytical formulae for the
loop parts ofF andG, giving rise toO(αtαs + α2

t ) contributions toΣ1 andΣ2. As a non-
trivial check of the correctness of our computation, we have verified that the quantitiµ2

andm2
3 defined in Eqs. (7) and (8) obey the appropriate two-loop RGE [30], specializ

the gaugeless limit:

(20)
∂µ2

∂ lnQ2 = 3αt
4π

µ2 + αtαs

π2 µ2 − 9α2
t

16π2µ
2,

∂m2
3

∂ lnQ2 = 3αt
4π

(
m2

3

2
+Atµ

)
+ αtαs

π2

(
m2

3

2
+Atµ−mg̃µ

)

(21)− 9α2
t

16π2

(
m2

3

2
+ 2Atµ

)
.

We have also checked explicitly that, in the special supersymmetric limit in which a
soft-SUSY breaking parameters as well asµ are set to zero, such thatmt̃1 =mt̃2 =mt , the
two-loop parts ofF andG are indeed vanishing.
For illustrative purposes, we present in Appendix B the explicit formulae for the
O(αtαs) corrections, valid for arbitrary values of the relevant MSSM parameters. The
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corresponding formulae for theO(α2
t ) corrections are indeed rather long, thus we m

them available, upon request, in the form of a Fortran code.
The computation described above allows us to obtain also the two-loopO(αbαs)

corrections6 induced by the bottom/sbottom sector (hb ≡ √
4παb being the bottom Yukawa

coupling), that can be relevant for large values of tanβ . To this purpose, the substitution
t → b, v1 ↔ v2 (i.e., tanβ ↔ cotβ) andΣ1 ↔Σ2 must be performed in the correspondi
formulae for theO(αtαs) part of the corrections. The complications relative to the on-s
definition of the sbottom parameters, discussed in Ref. [13], do not arise in this case
we are working in theDR renormalization scheme. However, the tanβ-enhanced threshol
corrections [31] to the relation betweenhb and the bottom massmb must be resummed t
all orders [32] in a redefinition of the bottom Yukawa coupling (see, e.g., Ref. [13] fo
details).

4. Numerical results

In this section we discuss the numerical effect of ourO(αtαs+α2
t ) two-loop corrections

on the minimization conditions of the MSSM effective potential.
For definiteness, we work in the mSUGRA scenario, in which the MSSM Lagran

at the large scaleMGUT contains only five independent mass parameters: a com
soft SUSY-breaking scalar massm0, a common soft gaugino massm1/2, a common
soft trilinear termA0, the superpotential Higgs mixing parameterµ0 and its soft SUSY-
breaking counterpartB0 (the subscript “0” denotes the fact that the parameters
computed at the boundary scale). The soft Higgs mixing parameterB has the dimension
of a squared mass, and is defined in such a way that in the low-energy Higgs pote
Eq. (1) it coincides withm2

3 (to avoid confusion, we will refer toB as tom2
3 from now

on). As anticipated in Section 2, rather than providing input values for all the five
parameters at the GUT scale, we assume that the electroweak symmetry is succ
broken at the weak scale, and we tradeµ0 andm2

3(MGUT) for the weak scale inpu
parametersv and tanβ .

Before discussing our results, it is useful to describe in some detail the num
procedure for the renormalization group evolution of the MSSM parameters. We
by defining theSU(3)× SU(2)L × U(1)Y gauge couplings at the weak scale (which
identify with the poleZ boson mass,MZ = 91.187 GeV), from the running weak mixin
angleŝ2 = 0.2315, the electromagnetic couplingα̂EM = 1/127.9 and the strong couplin
αs = 0.119. The electroweak symmetry breaking parameter,v2 = v2

1 + v2
2, is defined in

terms the muon decay constant according to the relationv = (
√

2Gµ)−1/2 = 246.218 GeV,
and then translated to theDR scheme by means of the formulae of Ref. [12]. In addit
tanβ = v2/v1 is taken as an input parameter at the weak scale, allowing us to dete
6 In contrast, theO(α2
b

+ αtαb) corrections would require a dedicated computation.
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v1 and v2. The Yukawa couplings of the light SM fermions are obtained from
corresponding masses at the scaleQ = 2 GeV, and then evolved up toMZ by means
of the two-loop SM RGEs [33]. In the case of the bottom coupling, the tanβ-enhanced
threshold corrections [31,32] to the relation betweenhb andmb are included at the sca
MZ according to the formulae of Ref. [13]. Finally, the top Yukawa coupling is
defined at the scaleMZ through the relationht = √

2mt/v2, wheremt is the DR mass
for the top quark, obtained from the pole massMt = 174.3 GeV by means of the formula
of Ref. [12].

The evolution of the MSSM parameters from the weak scale to the GUT scale
back, is performed by means of the full one-loop MSSM RGEs. However, for consis
with our two-loopO(αtαs + α2

t ) analysis of the REWSB conditions, we supplem
the RGEs with the two-loop strong and top-Yukawa contributions as given in Ref.
We also make use of the two-loop RGEs in the Landau gauge for the VEVs, follo
Refs. [17,34]. As a first step, we evolve the gauge and Yukawa couplings from the
MZ up to the scale where theSU(2)L × U(1)Y gauge couplingsg1 andg2 meet, that we
identify with MGUT (we do not force the strong gauge couplingg3 to meetg1 andg2).
At this scale, which turns out to be of the order of 1016 GeV, we set the input bounda
conditions for the soft SUSY-breaking massesm0,m1/2 andA0. The values ofµ0 and
m2

3(MGUT), to be later determined from the REWSB conditions, are provisionally s
zero. At this point, we start an iterative procedure: first we run the MSSM param
from MGUT down to some scaleQmin, of the order of the weak scale, where the val
of µ2(Qmin) andm2

3(Qmin) are computed through Eqs. (7) and (8), with the sign oµ
supplied as an extra input parameter. Then we run all the parameters, includingµ and
m2

3, down to the scaleMZ , which we regard as the end point of the RGE evolution
this scale, we compute the threshold corrections to the top and bottom Yukawa cou
using the newly obtained values of the relevant MSSM parameters. Finally, we run
parameters back to the scaleMGUT, where the resulting values forµ andm2

3 are taken as
new guesses for the corresponding boundary conditions. We iterate the procedu
convergence is reached, i.e., the values ofµ2(Qmin) andm2

3(Qmin) obtained from the
RGE evolution ofµ0 andm2

3(MGUT) coincide with those obtained from the minimizati
conditions (7) and (8). If, however,µ2 turns out to be negative, then our choice of in
parameters is inconsistent (i.e., it does not lead to successful REWSB) and m
discarded.

In order to discuss the effect of ourO(αtαs +α2
t ) corrections to the REWSB condition

we show in Figs. 3–7 the values of|µ(MZ)| andmA(MZ), the latter obtained throug
m2
A(MZ)= −2m2

3(MZ)/sin2β , as functions of the minimization scaleQmin. Stability of
the results with respect to moderate changes inQmin (which should anyway lie in the wea
range, i.e., betweenMZ and a few TeV) indicates that the higher-order corrections
included in the computation ofµ andmA are small and can be safely neglected. We
see that in general the inclusion of ourO(αtαs + α2

t ) corrections significantly improve
the scale-dependence of the results.

In the choice of the input parameters, we refer to the so-called Snowmass Point

which represent typical “benchmark” scenarios that are commonly investigated in the
phenomenological analyses of the mSUGRA parameter space. In particular, Figs. 3–6
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Fig. 3. TheDR parameters|µ(MZ)| (upper plot) andmA(MZ) (lower plot) as a function of the scaleQmin at
which the minimization conditions of the effective potential are imposed. The input parameters of the mS
scenario are chosen as in the Snowmass Point SPS1a [19]. The meaning of the different curves is sho
caption and explained in the text. The mass of the top quark is taken to be 174.3 GeV.

correspond to:

SPS1a: m0 = 100 GeV, m1/2 = 250 GeV, A0 = −100 GeV,
tanβ = 10, µ < 0,

SPS3: m0 = 90 GeV, m1/2 = 400 GeV, A0 = 0,
tanβ = 10, µ < 0,

SPS4: m0 = 400 GeV, m1/2 = 300 GeV, A0 = 0,
tanβ = 50, µ < 0,

SPS5: m0 = 150 GeV, m1/2 = 300 GeV, A0 = −1 TeV,
tanβ = 5, µ < 0,

respectively. Notice that our convention for the sign ofµ differs from the one in Ref. [19]

where a discussion on the characteristics of the various scenarios can be found. A further
scenario, denoted as “Focus point” (SPS2) and characterized by a common scalar mass,
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Fig. 4. Same as Fig. 3 for the Snowmass Point SPS3.

m0 = 1450 GeV, much larger than the common fermion mass,m1/2 = 300 GeV, has also
been suggested in Ref. [19]. However, we found that in this scenario the resultsµ
andmA, including the qualitative effect of the various corrections and the occurren
REWSB itself, depend dramatically on very small adjustments of the input value for th
pole mass (e.g.,|µ(MZ)| varies roughly between 400 and 100 GeV ifMt is varied between
174.3 and 175 GeV). The extreme sensitivity of the SPS2 scenario on the input top m
already been discussed in Ref. [25]. Since this scenario appears to lead to unstable
we will not consider it further in this work. However, in order to investigate the situa
in which the common scalar mass is considerably larger than the common fermion
we show in Fig. 7 a scenario withm0 = 1 TeV andm1/2 = 300 GeV (the other paramete
being chosen asA0 = 0, tanβ = 10 andµ < 0). We have checked that this “Largem0”
scenario is not unreasonably sensitive to small variations in the input top mass.

In all the plots of Figs. 3–7 the minimization scale varies in the rangeMZ < Qmin <
2Q∗, whereQ∗ ≡ (m2
0 + 4m2

1/2)
1/2 is a scale roughly comparable with the squark masses.

The dotted curves in the upper and lower panels of each figure represent|µ(MZ)| and
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Fig. 5. Same as Fig. 3 for the Snowmass Point SPS4.

mA(MZ), respectively, as obtained by including in the minimization conditions only
one-loopO(αt ) top/stop contributions toΣ1 andΣ2; the dashed lines include instead t
full one-loop computation ofΣ1 andΣ2; the dot-dashed lines include in addition the tw
loopO(αtαs) contributions; finally, the solid lines include our full two-loop result, i.e.,
O(αtαs + α2

t ) contributions toΣ1 andΣ2. In Fig. 5, corresponding to the “large tanβ”
(SPS4) scenario with tanβ = 50, we show also the effect of theO(αbαs) corrections,
obtained from theO(αt αs) ones as described at the end of the previous section. The
dot-dashed lines in Fig. 5 include theO(αtαs + αbαs) contributions, while the solid line
represent the fullO(αtαs + αbαs + α2

t ) result. The effect of theO(αbαs) corrections is
indeed negligible in the other SPS scenarios, where tanβ takes on more moderate value
In any case we include theO(αbαs) corrections in all the scenarios we investigate here

We see from Figs. 3–7 that the inclusion of the two-loopO(αtαs + α2
t ) corrections

improves the dependence of|µ(MZ)| andmA(MZ) on the minimization scale with respe

to the full one-loop result. The effect is particularly manifest in the case ofµ, where, in
all the scenarios, the two-loop corrected result appears to depend only very weakly (within
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Fig. 6. Same as Fig. 3 for the Snowmass Point SPS5.

3 GeV at most) onQmin, while the one-loop result tends to decrease for both small
largeQmin. In the case ofmA, the improvement is less striking: although the two-lo
corrected result has in general a better scale dependence than its one-loop coun
especially for increasing values ofQmin, a small residual scale dependence is visible
most plots whenQmin gets close toMZ . In any scenario the residual uncertainty onmA
is never larger than 10 GeV (the latter case occurring in the “large tanβ” scenario, where
mA(MZ) is around 1200 GeV) and might be due to the corrections that we negle
our two-loop computation of the tadpoles, i.e., those controlled by the electroweak
couplings and, for large tanβ , those ofO(α2

b + αtαb). From the small residual sca
dependence visible in Figs. 3–7, we estimate that the effect of the neglected two-lo
higher-order corrections on the parametersµ andmA should be at most of 1%.

Other interesting observations can be drawn from Figs. 3–7: first of all, at the one
level, the inclusion of the top/stop contributions only is in general not a good approxim

of the full result (this has been already observed, e.g., in Ref. [35]). Moreover, at the
two-loop level, a significant compensation occurs between theO(αt αs) and theO(α2

t )
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Fig. 7. Same as Fig. 3 for the “Largem0” mSUGRA point proposed in Section 4.

contributions to the tadpoles, thus including only the former may lead to rather inac
predictions (as shown by the dot-dashed curves). This partial cancellation betwe
O(αtαs) andO(α2

t ) corrections is similar to the one occurring in the case of the H
masses [10–12]. Finally, it is worth noticing that in the “large tanβ” scenario of Fig. 5
the inclusion of theO(αbαs) corrections to the tadpoles has a sizeable effect on
minimization scale dependence ofmA(MZ) (see the difference between the dot-das
and dot-dot-dashed curves), while it does not affect significantly that of|µ(MZ)|.

It is clear from the above discussion that the numerical effect on|µ(MZ)| and
mA(MZ) of the two-loop corrections toΣ1 andΣ2 depends critically on the choice o
the minimization scale. In all the plots we find a range of values ofQmin, usually in the
vicinity of Q∗, for which the one- and two-loop curves are close to each other, imp
that the effect of theO(αtαs + α2

t ) corrections is small. On the other hand, for values

Qmin far from this optimal choice, the omission of the two-loop corrections can lead to
an error of several (possibly, tenths of ) GeV, especially in the case ofµ. Thus, the proper
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inclusion theO(αtαs + α2
t ) two-loop tadpole corrections on the top of the full one-lo

ones allows us to obtain more precise and reliable results forµ andmA, i.e., results tha
do not depend on a preconceived choice of the minimization scale for the MSSM eff
potential.

5. Conclusions

In this work we presented explicit and general results for theO(αt αs + α2
t ) two-loop

corrections to the minimization conditions of the MSSM effective potential, which tran
into corrections to theDR-renormalized parametersµ andmA. We discussed the numeric
impact of our corrections in some representative scenarios of gravity-mediated
breaking, and we found that the inclusion of theO(αtαs + α2

t ) corrections significantly
improves the renormalization scale dependence of the results. Due to partial cance
between theO(αtαs) and O(α2

t ) corrections, including only the former may lead
inaccurate results. Our corrections are also required for consistency in theO(αtαs + α2

t )

two-loop computations of the MSSM Higgs masses, if the parameters entering th
level Higgs mass matrix are computed via renormalization group evolution from a
high energy boundary conditions.

A complete study of the electroweak symmetry breaking at the two-loop level w
require also the knowledge of the corrections that are neglected in our gaugeles
among which the most relevant are controlled by the bottom Yukawa coupling an
electroweak gauge couplings. Concerning the corrections controlled byαb, they can be
numerically non-negligible only for large values of tanβ . As discussed at the end
Section 3, the formulae for theO(αbαs) corrections can be obtained by performi
simple substitutions in theirO(αtαs) counterparts. On the other hand, theO(α2

b + αtαb)

corrections, which in some cases might be as relevant as theO(αbαs) ones, cannot b
obtained in a straightforward way from the presently computed corrections and
require further work.

In Ref. [17] a complete two-loop computation of the MSSM effective potentia
presented, including also the terms controlled by the electroweak gauge coupling
are neglected in our analysis. The inclusion of such terms improves further the
dependence of the parametersµ andmA, that in Ref. [17] are determined through
numerical minimization of the effective potential. However, the explicit analytical form
for the two-loop tadpolesΣ1 andΣ2, which are usually needed for practical applicatio
would be quite involved in the general case, and have not been presented so far.

In conclusion, our work should lead to a more precise and reliable determination
MSSM parameters at the weak scale, once the boundary conditions are provided a
larger scale according to the underlying theory of SUSY breaking. The fact that, amo
many attractive features, the MSSM provides a natural mechanism for breaking radi
the electroweak symmetry, with the heavy top quark mass nicely falling in the req
range,7 seems to indicate the MSSM as the most viable theory for physics at the
7 As an example, we find that in the “typical” mSUGRA (SPS1a) scenario the acceptable range for the top
quark mass is 80 GeV<Mt < 215 GeV.
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scale. However, only the forthcoming experimental results from the Tevatron and the
will tell us if this is indeed the case.

Acknowledgements

We thank G. Degrassi, S.P. Martin, W. Porod, K. Tamvakis, F. Zwirner and espe
M. Drees for useful comments and discussions. A.D. also thanks J.R. Espinos
R.J. Zhang for discussions in the early stages of the project. This work was partially c
out at the Physics Department of the University of Bonn, and it was partially supp
by the European Programmes HPRN-CT-2000-00148 (Across the Energy Frontie
HPRN-CT-2000-00149 (Collider Physics).

Appendix A. Two-loop integrals

We give here explicit expressions for the momentum integrals that appear in the
loop part of the effective potential. The basic integrals ind = 4− 2ε dimensions are:

(A.1)
1

(16π2)2
J (x, y)≡ −µ

2(4−d)

(2π)2d

∫ ∫
ddp ddq

[p2 − x][q2 − y] ,

(A.2)
1

(16π2)2
I (x, y, z)≡ µ2(4−d)

(2π)2d

∫ ∫
ddp ddq

[p2 − x][q2 − y][(p− q)2 − z] .

Following Ref. [29], the functionsJ (x, y) andI (x, y, z) defined in Eqs. (A.1) and (A.2
are:

(A.3)

J (x, y)= xy

ε2 − xy

ε

(
lnx + lny − 2

) − xy

[
2lnx + 2lny − 1

2
ln2xy −

(
3+ π2

6

)]
,

(A.4)

I (x, y, z)= −x + y + z

2ε2 + 1

ε

[
x lnx + y lny + z ln z− 3

2
(x + y + z)

]

+ 1

2

(
x lny ln z+ y lnx ln z+ z lnx lny

) − x + y + z

2

(
7+ π2/6

)
− 1

2

(
x lnx + y lny + z ln z

)(
lnx + lny + ln z− 6

)
− ∆(x,y, z)

2z
Φ(x, y, z).

In the above formulae,lnx stands for ln(x/Q2), whereQ2 = 4πµ2e−γE is the renormal-
ization scale (γE is the Euler constant). The functions∆ andΦ are, respectively:

(A.5)∆(x,y, z)= x2 + y2 + z2 − 2(xy + xz+ yz),

1
[ ( ) π2]
(A.6)Φ(x,y, z)=
λ

2 lnx+ lnx− − lnu lnv − 2 Li2(x+)+ Li2(x−) +
3

,



x)

ith

e
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where Li2(z)= − ∫ z
0 dt[ln(1− t)/t] is the dilogarithm function and the auxiliary (comple

variables are:

u= x

z
, v = y

z
, λ=

√
(1− u− v)2 − 4uv,

(A.7)x± = 1

2

[
1± (u− v)− λ

]
.

The definition (A.6) is valid for the casex/z < 1 andy/z < 1. The other branches ofΦ
can be obtained using the symmetry properties:

(A.8)Φ(x,y, z)=Φ(y,x, z), xΦ(x, y, z)= zΦ(z, y, x).

Finally, the following recursive relation for the derivatives ofΦ proved very useful8 for
obtaining compact analytical results:

∆(x,y, z)
∂Φ(x, y, z)

∂x

(A.9)= (y + z− x)Φ(x, y, z)+ z

x

[
(y − z) ln

z

y
+ x

(
ln
x

y
+ ln

x

z

)]
.

The derivatives ofΦ with respect toy andz can be obtained from the above equation w
the help of the symmetry properties of Eq. (A.8).

Appendix B. Explicit formulae for the O(αtαs) corrections

We present here explicit expressions for the two-loop part of the functionsF andG,
giving rise toO(αtαs) corrections toΣ1 andΣ2. These formulae are valid when th
parameters entering the one-loop parts ofF andG are expressed in theDR scheme and
computed at the renormalization scaleQ. In units ofg2

s CFNc/(16π2)2, whereCF = 4/3
andNc = 3 are color factors,F 2" andG2" read:

F 2" = 4mg̃mt
s2θ

(
1+ 4c2

2θ

) −
[
2
(
m2
t̃1

−m2
t̃2

) + 4mg̃mt
s2θ

]
ln
m2
g̃

Q2 ln
m2
t

Q2

− 2
(
4− s2

2θ

)(
m2
t̃1

−m2
t̃2

) +
4m2

t̃1
m2
t̃2

− s2
2θ (m

2
t̃1

+m2
t̃2
)2

m2
t̃1

−m2
t̃2

ln
m2
t̃1

Q2 ln
m2
t̃2

Q2

+
{[

4
(
m2
g̃ +m2

t + 2m2
t̃1

) − s2
2θ

(
3m2

t̃1
+m2

t̃2

) −
16c2

2θmg̃mtm
2
t̃1

s2θ (m
2
t̃1

−m2
t̃2
)

− 4s2θmg̃mt

]
ln
m2
t̃1

Q2
8 We thank G. Degrassi for explanations on how to derive Eq. (A.9).
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+
m2
t̃1

m2
t̃1

−m2
t̃2

[
s2
2θ

(
m2
t̃1

+m2
t̃2

) − 2
(
2m2

t̃1
−m2

t̃2

)]
ln2

m2
t̃1

Q2

+ 2

[
m2
t̃1

−m2
g̃ −m2

t +mg̃mt s2θ +
2c2

2θmg̃mtm
2
t̃1

s2θ (m
2
t̃1

−m2
t̃2
)

]
ln
m2
g̃
m2
t

Q4
ln
m2
t̃1

Q2

+
4mg̃mtc2

2θ (m
2
t −m2

g̃
)

s2θ (m
2
t̃1

−m2
t̃2
)

ln
m2
t

m2
g̃

ln
m2
t̃1

Q2

+
[4m2

g̃
m2
t + 2∆(m2

g̃
,m2

t ,m
2
t̃1
)

m2
t̃1

− 2mg̃mts2θ

m2
t̃1

(
m2
g̃ +m2

t −m2
t̃1

)

+
4c2

2θmg̃mt∆(m
2
g̃
,m2

t ,m
2
t̃1
)

s2θm
2
t̃1
(m2

t̃1
−m2

t̃2
)

]
Φ

(
m2
g̃,m

2
t ,m

2
t̃1

)

(B.1)− (
m2
t̃1

↔m2
t̃2
, s2θ → −s2θ

)}
,

G2" = 5mg̃s2θ
mt

(
m2
t̃1

−m2
t̃2

) − 10
(
m2
t̃1

+m2
t̃2

− 2m2
t

) − 4m2
g̃

+ 12m2
t

(
ln2 m

2
t

Q2 − 2 ln
m2
t

Q2

)
+

[
4m2

g̃ − mg̃s2θ

mt

(
m2
t̃1

−m2
t̃2

)]
ln
m2
g̃

Q2 ln
m2
t

Q2

+ s2
2θ

(
m2
t̃1

+m2
t̃2

)
ln
m2
t̃1

Q2
ln
m2
t̃2

Q2

+
{[

4
(
m2
g̃ +m2

t + 2m2
t̃1

) + s2
2θ

(
m2
t̃1

−m2
t̃2

) − 4mg̃s2θ
mt

(
m2
t +m2

t̃1

)]
ln
m2
t̃1

Q2

+
[
mg̃s2θ

mt

(
5m2

t −m2
g̃ +m2

t̃1

) − 2
(
m2
g̃ + 2m2

t

)]
ln
m2
t

Q2 ln
m2
t̃1

Q2

+
[
mg̃s2θ

mt

(
m2
g̃ −m2

t +m2
t̃1

) − 2m2
g̃

]
ln
m2
g̃

Q2
ln
m2
t̃1

Q2

− (
2+ s2

2θ

)
m2
t̃1

ln2
m2
t̃1

Q2 +
[
2
m2
g̃

m2
t̃1

(
m2
g̃ +m2

t −m2
t̃1

− 2mg̃mts2θ
)

+ mg̃s2θ

mtm
2
t̃1

∆
(
m2
g̃,m

2
t ,m

2
t̃1

)]
Φ

(
m2
g̃,m

2
t ,m

2
t̃1

)

(B.2)+ (
m2
t̃1

↔m2
t̃2
, s2θ → −s2θ

)}
.

The functions∆(x,y, z) andΦ(x,y, z) appearing inF 2" andG2" are defined in Eqs. (A.5)
and (A.6). The parameters2θ is defined in Eq. (13).
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