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Abstract

We study theO («ras + oztz) two-loop corrections to the minimization conditions of the MSSM
effective potential, providing compact analytical formulae for the Higgs tadpoles. We connect these
results with the renormalization group running of the MSSM parameters from the grand unification
scale down to the weak scale, and discuss the corrections to the Higgs mixing paranasier
to the running CP-odd Higgs mass, in various scenarios of gravity-mediated SUSY breaking.
We find that theD(a;a;) and (’)(atz) contributions partially cancel each other in the minimization
conditions. In comparison with the full one-loop corrections,the; o +a,2) two-loop corrections
significantly weaken the dependence of the parametemadm 4 on the renormalization scale at
which the effective potential is minimized. The residual two-loop and higher-order correctipns to
andm 4 are estimated to be at most 1% in the considered scenarios.

0 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

One of the most attractive features of the Minimal Supersymmetric extension of the
Standard Model (MSSM) [1], is the fact that it provides a mechanism for breaking
radiatively the electroweak gaug®)(2); x U(1)y symmetry down taU (1)gm. It was
first shown [2] that a supersymmetry (SUSY) breaking term for the gluino can induce
an effective potential which spontaneously breaks the electroweak symmetry. At the same
time, a mechanism relying on the renormalization group evolution from a grand unification
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(GUT) scale Mgyt down to the weak scale was proposed [3]. In this framework, at
the scaleMgyT, the parameters entering the scalar potential of the MSSM obey simple
boundary conditions dictated by the underlying theory of SUSY breaking, and the
electroweak symmetry is unbroken. When the parameters are evolved down to the weak
scale by means of the MSSM renormalization group equations (RGE), which amounts to
resumming the leading logarithmic corrections to all orders, the soft SUSY-breaking mass
m%lz is driven towards negative values, due to corrections controlled by the top Yukawa
coupling ;. This helps to destabilize the origin in field space, so that the Higgs fields
acquire non-vanishing vacuum expectation values (VEVs) and the electroweak symmetry
is spontaneously broken. Although the studies in Refs. [2,3] where differing on the initial
boundary conditions, the result was one: the radiative electroweak symmetry breaking
(REWSB) takes place if the top Yukawa coupling is large, such that 60 GeV <

200 GeV, with the upper bound coming from the requirement thatemains in the
perturbative range up to the GUT scale. It could be a coincidence that the top quark is
found at the Tevatron to have mass around 175 GeV, but certainly this is consistent with
the REWSB mechanism in the MSSM.

In the RGE-improved potential of the MSSM employed at tree level, the VEVs of the
Higgs fields, and the occurrence of spontaneous symmetry breaking itself, depend critically
on the renormalization scale at which the parameters entering the potential are computed;
an inappropriate choice of that scale can lead to results that are even qualitatively wrong.
In fact, the electroweak symmetry is either broken or unbroken, independently of the
renormalization scale choice, and the critical behavior described above is just an artifact of
the tree-level approximation. The correct way of determining the ground state of the theory
is to minimize the Coleman—Weinberg effective potential [4], i.e., the tree-level potential
plus a correction coming from the sum of all the one-loop diagrams with zero-momentum
external lines. Since Refs. [5,6] this procedure has become standard in the renormalization
group analyses of the MSSM (for early examples see Refs. [7,8]).

The effective potential is also a useful tool for computing the leading corrections to
the MSSM Higgs masses, both at the one-loop [9] and the two-loop [10-14Tavéhe
approximation of zero external momentum. The leading one-loop correctiod3(arg,

i.e., they are controlled by the top Yukawa couplibg= /4w a,. For stop masses of
O(1 TeV), such corrections increase by 40-60 GeV the masof the lightest Higgs
boson (which at tree level must be lighter thauy), allowing it to escape the direct
searches at LEP. Also, the leading two-loop corrections have sizeable effectXothg)
corrections, controlled by the strong gauge coupling +/4ray, typically reducen;, by
15-20 GeV, whereas th@(«?) ones may increase it by up to 7-8 GeV.

Motivated by the relevance of th@(o;ay + a,z) two-loop corrections in the case
of the Higgs masses, we study in this paper the effect of the same corrections on the
electroweak symmetry breaking conditions. The contributions to the two-loop MSSM
effective potential that are relevant to tvéa; o5 + a,z) corrections have been discussed in
Refs. [10-12], and a complete computation of the two-loop effective potential has been

1 Other two-loop computations of the MSSM Higgs masses have been performed in the renormalization
group [15] and diagrammatic [16] approaches.
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presented in Ref. [17]. However, practical studies of REWSB usually require explicit
formulae for the Higgs tadpole diagrams, i.e., the first derivatives of the effective potential
with respect to the Higgs fields. Such formulae are presently available at the one-loop
order [7], but they have not been presented so far at the two-loop order. Using the
techniques developed in Ref. [12], we compute in this paper explicit and compact analytical
expressions for the two-loo@ (v, a5 + atz) part of the tadpoles. As a byproduct from

our O(a;ay) corrections we obtain also th@(«pay) corrections, that are relevant for
large values of taf. Once we assume that the electroweak symmetry is indeed broken,
giving rise to the observed value of th® boson mass, the corrections to the tadpoles
translate intoO (oo + atz) corrections to the values ¢f, the Higgs mass term in the
superpotential, ana 4, the running mass of thé boson. We discuss the effect of our two-
loop corrections in the framework of gravity mediated SUSY breaking [18], also denoted
as minimal supergravity (nNSUGRA), referring, in particular, to various “benchmark”
scenarios suggested at Snowmass [19]. We find that the inclusion d(the:; + atz)
corrections significantly improves the renormalization scale dependence of the results, and
that partial cancellations occur between ey, «;) corrections and thé?(atz) ones. Our
corrections are also required for consistency indte; o, + a,z) two-loop computation of

the MSSM Higgs masses, if the input parameters are computed via renormalization group
evolution from a set of high energy boundary conditions.

The paper is organized as follows: in Section 2 we recall the basic concepts of radiative
electroweak symmetry breaking, and introduce some notation which will be used in the rest
of the paper; in Section 3 we describe the main features ofguro; + atz) computation
of the two-loop tadpoles; in Section 4 we discuss the numerical effect of our corrections,
and we show how they improve the dependence.aindm on the renormalization
scale at which the effective potential is minimized; Section 5 contains our conclusions.
In addition, we present in Appendix A some useful formulae for the integrals entering the
two-loop effective potential, and in Appendix B the explicit analytical formulae for the
O(a;a5) part of the corrections. The formulae for tl‘]}{atz) part are indeed rather long,
thus we make them available, upon request, in the form of a computefcode.

2. Radiative electroweak symmetry breaking

We start our discussion from the tree-level scalar potential of the MSSM, that reads,
keeping only the dependence on the neutral Higgs fiHlfiandHf:

2 2
Vo= A+ m3|H|" + m3|HD|" + m3(HPHY + h.c.)
2 12
g8 t+8 02 012\2
t—3 (|HL|" = |H3[7) (1)
where: 4 is a field-independent vacuum energy; = m%, + u?, m3 = m%, + u? (we
assumey to be real, neglecting all possible CP-violating phasesy;, m%,, and m3

2 E-mail addressslavich@mppmu.mpg.de
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are soft SUSY-breaking masses;and g’ are theSU(2); and U (1)y gauge couplings,
respectively. At the classical level, the mass parameters ent&gngust satisfy the
following conditions:

ml + m2 2|m3| m%m% < mg (2)

The first condition guarantees that the potential is bounded from below; the second
condition destabilizes the origin in field space, making sure that the neutral components
of the Higgs fields acquire non-vanishing VEVE?) = v1/+/2 and(HY) = v2/+/2. Itis

not restrictive to choose% real and negativéso thatv1 andv; are real and positive, and

the neutral Higgs fields can be decomposed into their VEVs plus their CP-even and CP-odd
fluctuations asi? = (v; + S; +i P:)/+/2.

Since the parameters enteriig are taken as “running” ones (i.e., they vary with the
renormalization scale), also the validity of the conditions in Eq. (2) depends on the scale, as
well as the numerical values of andv,. As discussed in Ref. [6], the minimization of the
tree-level potential may lead to grossly inaccurate results, unless the renormalization scale
is chosen in such a way that the radiative corrections to the scalar potential are small. To
obtain the correct results, one should rather minimize the effective potégtiatiefined
as:

Vet = Vo+ AV, 3)

whereAV contains the radiative corrections to the scalar potefyallhe minimization
conditions forVeg can be written as:

1 9 Vert 2 . 82+g?
- = -~ >1=0, 4
v 981 | My T 1+ (vi— )+m3 + 1 (4)
1 9 Vert 2 . 82+g?
- = -~ > =0, 5
v2 352 |min M+ 4 (v2 )+m3 + 2 ©®)
where the “tadpolesX’; and X» are defined as:
10AV
=L . ©)
Vi 3Si |min

In principle, a renormalization group study of the MSSM should start from some large
scaleMguT, where the input parameters have a simple structure dictated by the underlying
theory of SUSY breaking, and the electroweak symmetry is unbroken. The parameters are
then evolved, by means of appropriate renormalization group equations, down to some
lower scale, where the electroweak symmetry breaking occurs and the VEYad

v2 can be obtained by solving Eqgs. (4) and (5). A set of high-energy input parameters
is then acceptable if it leads to the correct value of the squared running mass for the
Z boson,m? = (g% + g'?)(v? + v3)/4. However, in most practical applications of the
renormalization group procedure, it is more convenient to assuméhtnats successful
electroweak symmetry breaking, and trade two of the high-energy input parameters for

3 Our conventions differ by a sign in the parametﬂrandmg with respect to those used in the second paper
of Ref. [1].
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andv; (or, equivalently, fon? = v2 + v3 and targ = v2/v1). Egs. (4) and (5) can thus be
rephrased into the following conditions among the parameters at the weak scale:
mé, + T1— (m3, + o) tarf g

2__"z
wet tar § — 1 ’ @

1 .
mé = —Esm2,8(m%,1 +m§12 +2u? 4+ X1+ ), (8)

i.e., the terms proportional t&'1 and X> in the above equations can be viewed as
the radiative corrections to the values of andm3 obtained from the requirement of
successful electroweak symmetry breaking. We recall ﬁk}%ats related to the squared
running mass for thel boson throughn? = —2m§/ sin 28. Notice also that the sign of

w is not fixed by Eq. (7), and it must be supplemented as an additional input quantity. If
the right side of Eq. (7) is such thaf is negative, then our choice of input parameters is
inconsistent, and the electroweak symmetry fails to be broken. We remark in passing that
the choice of the input parameters is constrained by further requirements: it must lead to
a spectrum of physical masses for the MSSM superpartners and Higgs bosons compatible
with the present experimental lower bounds, and such that the lightest supersymmetric
particle (LSP) is electrically neutral; it must satisfy phenomenological constraints coming
from radiative B-meson decays, muon anomalous magnetic moment and cosmological
relic density; finally, it must guarantee that the MSSM scalar potential is bounded from
below and does not lead to charge and color breaking minima. However, a detailed study
of the (theoretically and experimentally) allowed regions in the MSSM parameter space
goes beyond the scope of this paper, and will not be pursued in the following.

The full one-loop corrections to the REWSB conditions have been extensively discussed
in the literature [7] in the framework of the mSUGRA scenario. The dominant one-loop
contributions toX; and ¥, come to a large extent from the top/stop (and, for large
tang, bottom/sbottom and tau/stau) diagrams. The contributions of the diagrams involving
charginos and neutralinos can also be sizeable and comparable to the top/stop ones in
some regions of the parameter space, while the Higgs and gauge bosons and the first two
generations of (s)quarks and (s)leptons give only subdominant corrections.

In the following sections we provide explicit analytical formulae for the two-loop
top/stop contributions to the tadpol&s and X5, resulting intoO (o, a5 + a,z) corrections
to ©? and to the running masai. In analogy with the case of the Higgs masses, we
expect such corrections to be the leading ones at the two-loop level, giving rise to sizeable
effects at least in some regions of the MSSM parameter space. In addition, most public
codes that compute the MSSM mass spectrum from a set of unified parameters at the scale
MguT, such assuSpect [20], SoftSusy [21], SPheno [22] andFeynSSG [23], include a two-
loop O(asas + atz) computation of the Higgs masségut employ one-loop results for
the tadpoles (see also Ref. [25] for a recent discussion). Ssiaicenters the tree-level
mass matrix of the CP-even Higgs bosons,fhe; a5 + atz) corrections tcm% should be
included in those codes for consistency.

4 Another widely used public codésajet 7.58 [24], relies on a one-loop effective potential computation of
the Higgs masses.
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3. Computation of the O(a;as + utz) corrections

We shall now describe our two-loo@,(«; o + a,z) computation of the tadpoles; and
X2, involving the first derivatives oAV with respect to the CP-even parts of the neutral
Higgs fields (see Eq. (6)). The computation is consistently performed by setting to zero all
the gauge couplings byt and by keeping; as the only non-vanishing Yukawa coupling
(with a slight abuse of language, in the following we will refer to this approximation as to
the gaugeless limit). In this limit, the tree-level (field-dependent) spectrum of the MSSM
simplifies considerably: gauginos and Higgsinos do not mix; the charged and neutral
Higgsinos combine into Dirac spinofé andh* with degenerate mags; the gaugino
masses coincide with the soft SUSY-breaking paramétergsA = 1, 2, 3) (among them,
only the gluino mass:; = M3 is relevant to our calculation); the only massive Standard
Model (SM) fermion is the top quark; all other fermions and gauge bosons have vanishing
masses; besides the top squarks, the only sfermion with non-vanishing couplings is the
bottom squarlé; ; the lighter CP-even Higgs bosoh, is massless, and the same is true
for the Goldstone bosons and G*; all the remaining Higgs statesH, A, H*), have
degenerate mass eigenvalmaj:~ The tree-level mixing angle in the CP-even sector is just
a=p8—mn/2.

To begin with, we address the renormalization of the effective potential. In the
loop expansion, the correction to the effective potential can be decompostdt as
Vie + V¢ + -+, where the ellipsis stand for higher loops. Using the Landau gauge
and dimensional reduction [26,27] ith = 4 — 2¢ dimensions, and including for later
convenience also terms that vanish whken> 0, the unrenormalized one-loop effective
potential reads:

-1 1 3 M2 (7T 3 M2 1 ,M%2 n?
Vi ——StMA =42 cinZ e —Sin om2 )|,
U= a2 rM[e+2 nQ2+E<4 >Nz t3a" Q2+12>}

9

where M? is the matrix of the field-dependent squared masses, and the supertrace of a
generic functionf (M?) is defined as a sum over the eigenvalmés

Strf(M?) =) (-1 25 + 1) f (m?). (10)

wheres; is the spin of the corresponding particles. In Eq. @%,= 47 u2e~7E, i.e., the
finite terms that are removed together withe In the modified subtraction schemes have
been reabsorbed in the renormalization scale (the same convention will be adopted in the
following). In the gaugeless limit described above, only the top and stop contributions to
V¢ are relevant, giving rise t®(«;) contributions toX; and X».

The Feynman diagrams that contribute to the two-loop effective potantiand give
rise toO(a; ;) contributions ta¥; andX» are shown in Fig. 1, while the diagrams relevant
to the (’)(atz) contributions are shown in Fig. 2. The corresponding analytical formulae
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Fig. 1. Feynman diagrams that contribute to the two-loop effective potential and affe€tithes) corrections
to the electroweak symmetry breaking conditions. The diagrams relevant 10 (thgy,) corrections can be
obtained with the replacement- b.
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Fig. 2. The classes of Feynman diagrams that contribute to the two-loop effective potential and affect the
O(a,z) corrections to the electroweak symmetry breaking conditigns: (¢, b), ¢ = (H, h, G, A, HE, G¥),
h= 0, h*), § = (i1, 12, bp)]

for Vo, can be found, e.g., in the last paper of Ref. [1These formulae involve two
basic integrals/ (m2, m3, m3) and J(m2, m3), that have been evaluated with different

5 The formulae of Ref. [11] are obtained for vanishing CP-odd fields. While requiting some modifications
[12] for the computation of the CP-even Higgs boson masses in terms of the phygictiose formulae can be
used as they stand for the purposes of the present analysis.
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methods in Refs. [28,29]. Explicit expressions foand J in the formalism of Ref. [29]
are presented in Appendix A.

To carry out the renormalization dfe, at the two-loop order and in tH@R scheme
[26,27], we start from the unrenormalized effective potential, written in terms of generic

bare parameters;. Then, we expand the parametersxas= xlﬁ + 8x;, whereéx; are

purely divergent quantities, so that all the poles ia &nd 1< are cancelled. After taking
the limit e — 0, the non-vanishing part of the renormalized effective potential is:

(e)
aV.
Veit = Vo(xPR) + VP (xPR) + VP + 3—;?31‘%“ (11)
l

whereV(l) andel) denote the finite parts of the one-loop and two-loop effective potential,

respectlvelyvle) denotes the terms proportionaktin Eq. (9), ands¢x; is the coefficient
of 1/¢ in the one-loop part of the generic counterterm (notice that we need to compute
explicitly only the one-loop counterterms for the top and stop masses). In EqVgldnd
Vl(,zl) are expressed in terms DR-renormalized parameters, while the renormalization of
the parameters entering the two-loop part is irrelevant, amounting to a higher-order (i.e.,
three-loop) effect. In summary, it is possible to define the renormalized two-loop effective
potential as:
(€)
Voo = VP + Wi sue, (12)
3)61‘

We have checked thats, corresponds to the finite part of the potential obtained by
replacing the integralg and J in Vo, with the “subtracted” integralsf and J, first
introduced in Ref. [28]. More precisely, this is true only up to terms that give a null
contribution toX; and X, unless we include iVess also diagrams that do not depend
on the Higgs fields (such as, e.g., the one-loop diagram involving gluinos and the two-loop
diagram involving gluinos and gluons).

Compact analytical formulae for the derivatives of the renormalized effective potential
in the gaugeless limit can be obtained with a procedure similar to that of Ref. [12]. The
relevant field-dependent quantities are the top masshe stop massc—:mz1 andm2 and

the stop mixing angl#; (the top and stop phasgsand ¢, introduced in [12] to take

into account the dependence on the CP-odd part of the Higgs fields, do not enter the
computation of¥; and X). At the minimum of the effective potential, the parameters

in the stop sector are related by:

2m; (A, + pu cotB)
where A; is the soft SUSY-breaking trilinear coupling of the stops (notice that Eq. (13)
defines our convention for the sign @f). We will use in the following the shortcuts
c29 = €C0S ; andsyy = sin ;. After a straightforward application of the chain rule for

the derivatives of the effective potential, we get:

sin29; =

(13)

V2T = mucotsyF, (14)
v%Z'z:mtAtsz@F ~|—2mt2G. (15)
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The functionsF and G are combinations of the derivatives ofV with respect to the
field-dependent parameters, computed at the minimum of the effective potential:

dAV  0AV 2cp9  0AV

F= — — , 16
am?2 am2  m? —m2 dc (16)
n 7] n 7]

_0AV AV AV

am?  am2  am?’
n 7]

(17)

The one-loop parts of andG, giving rise toO(«;) contributions to¥; and X', are easily

computed from the derivatives O’fl(j). In units och/(167r2), whereN,. = 3 is a color
factor, they read:

2 2

FY¥ — 2 (In Mo 1) — m? (In My _ 1) (18)
n 02 iy 02
1 m2 m2 ) 2
G =m; (In Q2 >~|—m (In Q2 ) 2m; (In 02 1) (29)

Although a naive, brute-force computation of the derivatives of the renormalized two-loop
potentialf/}g presents no major conceptual difficulties, the number of terms involved blows
up quickly, giving rise to very long and complicated analytical expressions. However, in
the spirit of Ref. [29], it is possible to obtain recursive relations for the derivatives of the
integrall (m2, m3, m3) with respect to the internal masses (see Appendix A), that simplify
considerably the results. In this way, we obtained compact analytical formulae for the two-
loop parts ofF andG, giving rise toO (a;a; + af) contributions toX1 and X». As a non-
trivial check of the correctness of our computation, we have verified that the quapfities
andmg defined in Egs. (7) and (8) obey the appropriate two-loop RGE [30], specialized to
the gaugeless limit:

ap? 3o 5 s o 90(,2 2

_ S _ , 20
ono2 a4 T 2 T 1e2t (20)
am% 30[; Ol Uy m%
Sn0? ~ ar 7“"* e\ A

9q? 2

160;2 (— + 2Atu> (21)

We have also checked explicitly that, in the special supersymmetric limit in which all the
soft-SUSY breaking parameters as weljaare set to zero, such that, = m;, =m,, the
two-loop parts ofF andG are indeed vanishing.

For illustrative purposes, we present in Appendix B the explicit formulae for the
O(a;a5) corrections, valid for arbitrary values of the relevant MSSM parameters. The
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corresponding formulae for tf@(atz) corrections are indeed rather long, thus we make
them available, upon request, in the form of a Fortran code.

The computation described above allows us to obtain also the twod@pc;)
correction§induced by the bottom/sbottom sectby, & /4w a, being the bottom Yukawa
coupling), that can be relevant for large values ofgafio this purpose, the substitutions
t — b, v1 < v2 (i.e., tans < cotB) and X1 <> X» must be performed in the corresponding
formulae for theD (o, «5) part of the corrections. The complications relative to the on-shell
definition of the sbottom parameters, discussed in Ref. [13], do not arise in this case since
we are working in th®R renormalization scheme. However, the faanhanced threshold
corrections [31] to the relation betweép and the bottom mass, must be resummed to
all orders [32] in a redefinition of the bottom Yukawa coupling (see, e.g., Ref. [13] for the
details).

4. Numerical results

In this section we discuss the numerical effect of O, o +at2) two-loop corrections
on the minimization conditions of the MSSM effective potential.

For definiteness, we work in the mSUGRA scenario, in which the MSSM Lagrangian
at the large scalédgyt contains only five independent mass parameters: a common
soft SUSY-breaking scalar massp, a common soft gaugino mass;,, a common
soft trilinear termAog, the superpotential Higgs mixing parametey and its soft SUSY-
breaking counterparBg (the subscript “0” denotes the fact that the parameters are
computed at the boundary scale). The soft Higgs mixing paranBebers the dimensions
of a squared mass, and is defined in such a way that in the low-energy Higgs potential of
Eqg. (1) it coincides Witl‘m% (to avoid confusion, we will refer tB as tOm% from now
on). As anticipated in Section 2, rather than providing input values for all the five mass
parameters at the GUT scale, we assume that the electroweak symmetry is successfully
broken at the weak scale, and we trade and m%(MGUT) for the weak scale input
parameters and targ.

Before discussing our results, it is useful to describe in some detail the numerical
procedure for the renormalization group evolution of the MSSM parameters. We start
by defining theSU(3) x SU(2); x U(1)y gauge couplings at the weak scale (which we
identify with the poleZ boson massy/; = 91.187 GeV), from the running weak mixing
angles? = 0.2315, the electromagnetic couplifgy = 1/127.9 and the strong coupling
as = 0.119. The electroweak symmetry breaking parametet: vf + v%, is defined in
terms the muon decay constant according to the relatiori/2 G,L)*l/2 =246218 GeV,
and then translated to tH@R scheme by means of the formulae of Ref. [12]. In addition,
tang = vp/v1 is taken as an input parameter at the weak scale, allowing us to determine

6 In contrast, the{?(af + arap) corrections would require a dedicated computation.
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v1 and vo. The Yukawa couplings of the light SM fermions are obtained from the
corresponding masses at the sc@le= 2 GeV, and then evolved up t; by means

of the two-loop SM RGEs [33]. In the case of the bottom coupling, thgdtanhanced
threshold corrections [31,32] to the relation betwégrandm, are included at the scale
Mz according to the formulae of Ref. [13]. Finally, the top Yukawa coupling is also
defined at the scal#f, through the relatioth, = v/2m; /v, wherem, is the DR mass

for the top quark, obtained from the pole mags= 1743 GeV by means of the formulae
of Ref. [12].

The evolution of the MSSM parameters from the weak scale to the GUT scale, and
back, is performed by means of the full one-loop MSSM RGEs. However, for consistency
with our two-loop O(o;ay + atz) analysis of the REWSB conditions, we supplement
the RGEs with the two-loop strong and top-Yukawa contributions as given in Ref. [30].
We also make use of the two-loop RGEs in the Landau gauge for the VEVs, following
Refs. [17,34]. As a first step, we evolve the gauge and Yukawa couplings from the scale
Mz up to the scale where tH&J(2); x U(1)y gauge couplingg: andg, meet, that we
identify with Mgyt (we do not force the strong gauge coupligggto meetg; and g»).

At this scale, which turns out to be of the order of4GeV, we set the input boundary
conditions for the soft SUSY-breaking masseg, m1/> and Ag. The values ofuo and
m%(MGUT), to be later determined from the REWSB conditions, are provisionally set to
zero. At this point, we start an iterative procedure: first we run the MSSM parameters
from Mgyt down to some scal®min, of the order of the weak scale, where the values

of 1?(Qmin) and m%(Qmin) are computed through Eqgs. (7) and (8), with the sign.of
supplied as an extra input parameter. Then we run all the parameters, including

m% down to the scaléf, which we regard as the end point of the RGE evolution. At
this scale, we compute the threshold corrections to the top and bottom Yukawa couplings,
using the newly obtained values of the relevant MSSM parameters. Finally, we run all the
parameters back to the scalsyt, where the resulting values for andmg are taken as

new guesses for the corresponding boundary conditions. We iterate the procedure until
convergence is reached, i.e., the valueséfQmin) and m%(Qmin) obtained from the

RGE evolution ofug andmg(MGUT) coincide with those obtained from the minimization
conditions (7) and (8). If, however? turns out to be negative, then our choice of input
parameters is inconsistent (i.e., it does not lead to successful REWSB) and must be
discarded.

In order to discuss the effect of oG oo +a,2) corrections to the REWSB conditions,
we show in Figs. 3—7 the values i (Mz)| andm4(Mz), the latter obtained through
m?(Mz) = —2m%(Mz)/sin 28, as functions of the minimization sca@min. Stability of
the results with respect to moderate change3j, (which should anyway lie in the weak
range, i.e., betweem; and a few TeV) indicates that the higher-order corrections not
included in the computation gf andm 4 are small and can be safely neglected. We will
see that in general the inclusion of oo, a5 + oztz) corrections significantly improves
the scale-dependence of the results.

In the choice of the input parameters, we refer to the so-called Snowmass Points [19],
which represent typical “benchmark” scenarios that are commonly investigated in the
phenomenological analyses of the mSUGRA parameter space. In particular, Figs. 3—-6
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“Typical’”” mSUGRA point
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Fig. 3. TheDR parametersu.(Mz)| (upper plot) andn 4 (M) (lower plot) as a function of the scal@min at

which the minimization conditions of the effective potential are imposed. The input parameters of the mSUGRA
scenario are chosen as in the Snowmass Point SPS1a [19]. The meaning of the different curves is shown in the
caption and explained in the text. The mass of the top quark is taken to be 174.3 GeV.

correspond to:
SPSla mp=100 GeV

tang = 10,
SPS3  mg=90GeV,
tang = 10,
SPS4  mo=400 GeV,
tang = 50,
SPS5 mo=150 GeV,
tang =5,

mi/2 = 250 Ge\,
w <0,
mi/2 = 400 Ge\,
<0,
mi/2 = 300 GeV,
w <0,
mi/2 = 300 Ge\,
w <0,

Ao=—100 GeV,

Ag=0,

Ao=-1TeV,

respectively. Notice that our convention for the sigruadiffers from the one in Ref. [19],
where a discussion on the characteristics of the various scenarios can be found. A further
scenario, denoted as “Focus point” (SPS2) and characterized by a common scalar mass,
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‘‘Coannihilation’”” mSUGRA point
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Fig. 4. Same as Fig. 3 for the Snowmass Point SPS3.

mo = 1450 GeV, much larger than the common fermion mass, = 300 GeV, has also
been suggested in Ref. [19]. However, we found that in this scenario the resufis for
andm 4, including the qualitative effect of the various corrections and the occurrence of
REWSB itself, depend dramatically on very small adjustments of the input value for the top
pole mass (e.glu(M7z)| varies roughly between 400 and 100 GeW/f is varied between
174.3and 175 GeV). The extreme sensitivity of the SPS2 scenario on the inputtop mass has
already been discussed in Ref. [25]. Since this scenario appears to lead to unstable results,
we will not consider it further in this work. However, in order to investigate the situation
in which the common scalar mass is considerably larger than the common fermion mass,
we show in Fig. 7 a scenario withg = 1 TeV andmj,, = 300 GeV (the other parameters
being chosen ady = 0,tang = 10 andu < 0). We have checked that this “Largey”
scenario is not unreasonably sensitive to small variations in the input top mass.

In all the plots of Figs. 3—7 the minimization scale varies in the ralfge< Qmin <
20,, whereQ, = (m3+ 4m%/2)1/2 is a scale roughly comparable with the squark masses.
The dotted curves in the upper and lower panels of each figure repiesafit)| and
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‘‘Large tanf3”” mSUGRA point
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Fig. 5. Same as Fig. 3 for the Snowmass Point SPS4.

ma(Myz), respectively, as obtained by including in the minimization conditions only the
one-loopO(«a;) top/stop contributions t&'1 and X»; the dashed lines include instead the
full one-loop computation of’1 and X»; the dot-dashed lines include in addition the two-
loop O(a;ay) contributions; finally, the solid lines include our full two-loop result, i.e., the
O(oay + a,z) contributions toX; and X». In Fig. 5, corresponding to the “large tah
(SPS4) scenario with tah= 50, we show also the effect of th@(«,a;) corrections,
obtained from the)(«; ;) ones as described at the end of the previous section. The dot-
dot-dashed lines in Fig. 5 include tki& ;o5 + apa) contributions, while the solid lines
represent the fulD (o, a5 + apos + oe,z) result. The effect of th&(apa;) corrections is
indeed negligible in the other SPS scenarios, wherg takes on more moderate values.
In any case we include th@(wp ) corrections in all the scenarios we investigate here.

We see from Figs. 3-7 that the inclusion of the two-ldBf; o, + oe,z) corrections
improves the dependence|pf(Mz)| andm 4 (Mz) on the minimization scale with respect
to the full one-loop result. The effect is particularly manifest in the case,afhere, in
all the scenarios, the two-loop corrected result appears to depend only very weakly (within
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*‘Light Stop”> mSUGRA point
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Fig. 6. Same as Fig. 3 for the Snowmass Point SPS5.

3 GeV at most) oD min, While the one-loop result tends to decrease for both small and
large Omin- In the case ofn,4, the improvement is less striking: although the two-loop
corrected result has in general a better scale dependence than its one-loop counterpart,
especially for increasing values @fmin, a small residual scale dependence is visible in
most plots whermDmin gets close taz. In any scenario the residual uncertaintyan

is never larger than 10 GeV (the latter case occurring in the “largg"taoenario, where
ma(Myz) is around 1200 GeV) and might be due to the corrections that we neglect in
our two-loop computation of the tadpoles, i.e., those controlled by the electroweak gauge
couplings and, for large tah those ofO(a,f + a;ap). From the small residual scale
dependence visible in Figs. 3—7, we estimate that the effect of the neglected two-loop and
higher-order corrections on the paramegemndm 4 should be at most of 1%.

Other interesting observations can be drawn from Figs. 3—7: first of all, at the one-loop
level, the inclusion of the top/stop contributions only is in general not a good approximation
of the full result (this has been already observed, e.g., in Ref. [35]). Moreover, at the
two-loop level, a significant compensation occurs betweentg «;) and the(’)(atz)
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“Large m;”” mSUGRA point
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Fig. 7. Same as Fig. 3 for the “Largey” mSUGRA point proposed in Section 4.

contributions to the tadpoles, thus including only the former may lead to rather inaccurate
predictions (as shown by the dot-dashed curves). This partial cancellation between the
O(oza) and O(atz) corrections is similar to the one occurring in the case of the Higgs
masses [10-12]. Finally, it is worth noticing that in the “large garscenario of Fig. 5
the inclusion of theO(apay) corrections to the tadpoles has a sizeable effect on the
minimization scale dependence mfy (M) (see the difference between the dot-dashed
and dot-dot-dashed curves), while it does not affect significantly thiat@f2)|.

It is clear from the above discussion that the numerical effect|otM,)| and
ma(Mz) of the two-loop corrections t&1 and X» depends critically on the choice of
the minimization scale. In all the plots we find a range of value®gf,, usually in the
vicinity of Q., for which the one- and two-loop curves are close to each other, implying
that the effect of theé) (a;ay + atz) corrections is small. On the other hand, for values of
Omin far from this optimal choice, the omission of the two-loop corrections can lead to
an error of several (possibly, tenths of ) GeV, especially in the cage ©hus, the proper
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inclusion theO(a; o, + a,z) two-loop tadpole corrections on the top of the full one-loop
ones allows us to obtain more precise and reliable resultg f@ndm g4, i.e., results that

do not depend on a preconceived choice of the minimization scale for the MSSM effective
potential.

5. Conclusions

In this work we presented explicit and general results for@te; o, + atz) two-loop
corrections to the minimization conditions of the MSSM effective potential, which translate
into corrections to th®R-renormalized parameteusandm 4. We discussed the numerical
impact of our corrections in some representative scenarios of gravity-mediated SUSY
breaking, and we found that the inclusion of o, o + atz) corrections significantly
improves the renormalization scale dependence of the results. Due to partial cancellations
between theO(«;ay) and O(a,z) corrections, including only the former may lead to
inaccurate results. Our corrections are also required for consistency @(the; + atz)
two-loop computations of the MSSM Higgs masses, if the parameters entering the tree-
level Higgs mass matrix are computed via renormalization group evolution from a set of
high energy boundary conditions.

A complete study of the electroweak symmetry breaking at the two-loop level would
require also the knowledge of the corrections that are neglected in our gaugeless limit,
among which the most relevant are controlled by the bottom Yukawa coupling and the
electroweak gauge couplings. Concerning the corrections controlleg bihey can be
numerically non-negligible only for large values of {#anAs discussed at the end of
Section 3, the formulae for th&(«pay) corrections can be obtained by performing
simple substitutions in thei® (o, «5) counterparts. On the other hand, tﬁeag + o)
corrections, which in some cases might be as relevant a®thgw;) ones, cannot be
obtained in a straightforward way from the presently computed corrections and would
require further work.

In Ref. [17] a complete two-loop computation of the MSSM effective potential is
presented, including also the terms controlled by the electroweak gauge couplings that
are neglected in our analysis. The inclusion of such terms improves further the scale
dependence of the parametersand m 4, that in Ref. [17] are determined through a
numerical minimization of the effective potential. However, the explicit analytical formulae
for the two-loop tadpoles’; and X», which are usually needed for practical applications,
would be quite involved in the general case, and have not been presented so far.

In conclusion, our work should lead to a more precise and reliable determination of the
MSSM parameters at the weak scale, once the boundary conditions are provided at some
larger scale according to the underlying theory of SUSY breaking. The fact that, among its
many attractive features, the MSSM provides a natural mechanism for breaking radiatively
the electroweak symmetry, with the heavy top quark mass nicely falling in the required
range! seems to indicate the MSSM as the most viable theory for physics at the weak

7 As an example, we find that in the “typical” mMSUGRA (SPS1a) scenario the acceptable range for the top
guark mass is 80 Ge¥ M; < 215 GeV.
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scale. However, only the forthcoming experimental results from the Tevatron and the LHC
will tell us if this is indeed the case.
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Appendix A. Two-loop integrals

We give here explicit expressions for the momentum integrals that appear in the two-
loop part of the effective potential. The basic integrald s 4 — 2¢ dimensions are:

2(4 d) ddpdd
(16wz>2]( )= <2n>2d / / [p2—xllg2—yI’ A1)
2(4 d) ddpdd
71 , Y, . A.2
T6r22! = // (72— xlla? — yl(p — )% 2] (A-2)

Following Ref. [29], the functiond (x, y) and I (x, y, z) defined in Egs. (A.1) and (A.2)
are:

_ _ _1_ 2
J(x,y):%_ﬂ(lnx—i—lny—Z)—xy|:2|nx~|—2|ny—§|n2xy—<3+%>i|,
€ €
(A.3)
x+y+z 1f — = = _3
I(X,y,Z)=—%+E[xlnx—}-ylny—}-zlnz—E(x+y+z):|
1, - o o
+E(xlnylnz+y|nx|nz+z|nx|ny)—#(74—7#/6)
1, — _ _ _ _ _
—E(xlnx+y|ny+z|nz)(|nx+|ny+|nz—6)
Ax,y,2)
—Tdb(x,y,z). (A.4)

In the above formuladn x stands for Iiix/ Q?), where Q2 = 47 u2e~ '€ is the renormal-
ization scale ¢e is the Euler constant). The functiomsand® are, respectively:

A(x,y,2) =x% 4 y? 4 2% = 2(xy + x2 + y2), (A.5)

2
D(x,y,7)= 1[2|nx+lnx_ Inulnv—2(Li2(x+)~|—Li2(x_))—|—%], (A.6)
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where Lp(z) = — fg det[In(1—1)/¢] is the dilogarithm function and the auxiliary (complex)
variables are:

u=-, v:X, A=+ (1 —u—v)2—4uv,
z

xizg[li(u—v)—)\]. (A7)

The definition (A.6) is valid for the case/z < 1 andy/z < 1. The other branches df
can be obtained using the symmetry properties:

D(x,y,2) =P(y,x,2), x®(x,y,2) =2P(z, y,x). (A.8)

Finally, the following recursive relation for the derivatives®fproved very usefdlfor
obtaining compact analytical results:

A(x,y,z)w
=0+z—-x)P(x,y,2)+ E|:(y —2) In< —l—x(lnf +In f>:| (A.9)
X y y Z

The derivatives ofp with respect toy andz can be obtained from the above equation with
the help of the symmetry properties of Eq. (A.8).

Appendix B. Explicit formulaefor the O(esets) corrections

We present here explicit expressions for the two-loop part of the funcfioand G,
giving rise to O(a,as) corrections toX; and X». These formulae are valid when the
parameters entering the one-loop partsfoind G are expressed in tHeR scheme and
computed at the renormalization scade In units of g?Cr N../(1672)2, whereCr = 4/3
andN, = 3 are color factorsF% andG? read:

2
4m~mt 4m~mt m= m2
F% = =52 (1+44c%) — | 2(m2 —m2) + —5— |In—SIn—L
520 1 2 520 0 0
4 2m?_52( 2+m?)2 m2  m?
20\ f 2 t
—2(4—s2)(m? —m?) + —1 2 1 2 _In—%In—2
( 29)( 11 ),‘2) m2 — m?2 Q2 QZ
11 1)
2 . 2
16626mgm,mt~l

2 2
520(7”;1 - mfz)
- 4sz9mg,m,:| In ?

8 We thank G. Degrassi for explanations on how to derive Eq. (A.9).
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2 2
mx= m=
51 2 2 2 2 2 2 1
+ v — [sze(mfl -I-mt~2) 2(2mt~1 mfz)] In 02
1 12
2 . 2 2,2 2
+2|:m2 —m2 —m%+ mam,s0 + Zczgmgmszl :| MM [ %
7 g t g
B mm? w2y " " g2
1 2
2
4mg,m,c§€(mt2 — mg) mt2 <
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The functionsA(x, y, z) and® (x, y, z) appearing inF?¢ andG?* are defined in Egs. (A.5)
and (A.6). The parametey, is defined in Eqg. (13).
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