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We propose a class of supergravity models coupled to matter in which the scales of supersymmetry breaking and of 
weak gauge symmetry breaking are both fixed by dimensional transmutation, not put in by hand. The models have a 
flat potential with zero cosmological constant belbre the evaluation of weak radiative corrections which determine 
m3. 2, m w = exp[-O(l)]at ]  mp : a t = O(a). These models are consistent with all particle physics and cosmological con- 
straints for top quark masses in the range 30 GeV < rn t < 100 GeV. 

The gauge hierarchy problem [1] has two aspects: 
the fixing o f m  w ~ O(10 -17 )mt  ,, and keeping it there 
despite the destabilizing influence of  radiative correc- 
tions. Supersymmetry (SUSY) [2] provides a solution 
[3] to the second, technical aspect o f  this problem, 
since no-renormalization theorems [4] ensure that the 
gauge hierarchy is stable against radiative corrections. 
However, SUSY does not by itself explain the origin 
o f  the weak interaction scale. Conventional phenom- 
enology does of  course require that the mass splittings 
between observable particles and their spartners in- 
duced by local SUSY breaking must be above about 
20 GeV, and the stability of  the gauge hierarchy re- 
quires that the induced SUSY breaking splittings be 
less than about I TeV. In most models*X the weak 
gauge symmetry breaking scale and/or  the local SUSY 
breaking scale are put in by hand. This is clearly unsat- 
isfactory, and one would like both scales to be deter- 
mined dynamically.  One scenario [6,7] for the dynam- 
ical determination of  the weak gauge symmetry break- 
ing scale is dimensional t ransmutation ~ la C o l e m a n -  
Weinberg [8]. This can be implemented in a spontane- 

~l For recent reviews see ref. [5]. 
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ously broken supergravity [9] model, yielding a dy- 
namicaUy determined weak scale which is a pr ior i  un- 
related to the scale o f  local SUSY breaking. However, 
in previous incarnations [6,7] o f  this scenario the 
local SUSY breaking scale was still put  in by hand. 

In this paper we propose a new realization of  the 
dimensional transmutation scenario in which b o t h  the 
weak gauge symmetry breaking and  the local SUSY 
breaking scales are fixed dynamically. We work in the 
context  o f  a class [I0]  o f N  = I supergravity models 
whose potential  is absolutely fiat, with zero cosmolo- 
gical constant and an undetermined scale o flocal SUSY 
breaking at the tree level *~. We use this as a hidden 
sector [9] coupled to the simplest possible observable 
sector which is the minimal SUSY standard model with 
no additional chiral superfields. When the t quark is 
heavy enough, non-gravitational radiative corrections 
in this model drive [11,12] the (mass) 2 o f  one o f  the 

*2 We do not consider gravitational radiative corrections to 
this flat potential, but regard it as an effective potential 
after all such effects are taken into account [ 11 ]. It may 
well be that the tree-level flatness of a least some of these 
[10] potentials is in any case preserved by gravitational 
radiative corrections, as we discuss in a moment. 
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Higgs fields negative, triggering spontaneous weak 
gauge symmetry breaking at some scale of  order 

a o  = e x p [ -  O(1)/~t] mp :oq =-g2ft/4rr = O(~) .  (1) 

The Higgs and other scalar masses are all proportional 
to the gravitino mass, which is free to be determined 
dynamically in these models [ 10] with a flat potential. 
The gravitino mass must be non-zero for weak gauge 
symmetry breaking to occur, but on the other hand it 
cannot be larger than the dimensional transmutation 
scale at which the effective Higgs (mass) 2 becomes 
negative. We in fact find 

m3/2 = O(1) X m w = O(1) X Qo,  (2) 

with the exact ratios being model-dependent as we 
shall see later in this paper. Thus we have a class of  
models in which the weak gauge and SUSY breaking 
scale are interrelated and dynamically determined (1), 
(2) to be hierarchically small. 

We assume the existence of  a hidden sector z whose 
K/ihler potential ~ has the general form [10]: 

q = - }  log[ f  (z) +)"l(z*)]  2 (3) 

This yields a flat vanishing scalar potential 

V = 9 exp( ]  ~ )  ~ z  1 OzOz. e x p ( - ~  ~ ) ,  

and an arbitrary scale of  local SUSY breaking at the 
tree level 

m3/2 = exp(~ (~) = If(z) +ft(z*)l-3/2.  (4) 

All such theories with one hidden complex field z are 
in fact equivalent up to field redefinitions: z ~ f ( z ) ,  
and their kinetic terms possess an SU(1,1) symmetry 
[10]. This SU(1,1) symmetry is sufficient to guarantee 
a flat potential. Thus if the SU(1,1) symmetry were 
preserved by gravitational radiative corrections it would 
make a fiat potential technically "natural".  Our hidden 
sector is in fact identical with the scalar sector in an 
N = 4 extended supergravity theory [13], suggesting 
an intriguing link between our phenomenological use 
of  simple supergravity and a more fundamental role 
for extended supergravity. It is natural to add this 
SU(1,1) symmetry to the list of  desirable features 
which might be extracted from eventual superunifica- 
tion in a fundamental N = 8 extended supergravity 
theory: local SU(8) ~ SU(5)? [14], N = 8 SUSY 
broken to N = 1 SUSY at rap? [15], and now [16,17] 
global E7(7) ~ SU(1,1)? 

We combine [10,16,17] with ~(z )  an observable 
sector y i which has canonical kinetic terms and a cubic 
superpotential h (y i) that could simply be that of  the 
SUSY standard model: 

g~vi) -- ~ h f y )  + h~O,;). (5) 

The observable and hidden sectors should be com- 
bined in such a way that avoids Yukawa couplings 
which vary with m3/2. This is done in ref. [ 17]. The 
potential for the matter fields becomes at the tree 
level 

V(yi ,y  i ) = ~ i~g/~yi + m3/2Y 7 [2 
i 

I + (A - 3)[g(v i) + g÷(YT)] ÷ ~ DaD~ , (6) 

where g(yi) is the rescaled superpotential. In a simple 
case [10] the parameter A = 3, but other values are 
possible [17]. The gravitino mass scale is as yet unde- 
termined. The matter fields y could be invariant with 
respect to the conjectured SU(1,1) symmetry.  This 
means that a non-trivial [9] kinetic termfab(Z,y)GaG b 
for the gauge fields G a can only depend on the matter 
fields y:  only lab (z, y) = lab (Y) is allowed by SU(1,1). 
This would suggest that ~ = mq/m3/2 ... O, though a 
non-zero but presumably small value of ~ could be 
generated either by GUT y fields in Jab, or by radiative 
corrections. 

Focussing on the neutral Higgs fields in the SUSY 
standard model: H 1 "-" m d , s , b , e , t a , r  and H 2 '-' m u,c,t 
we get the potential [ 18] 

x 2 12 V ( H 1 , H 2 ) = ~ ( g 2 + g ' 2 ) ( I H 1  - I H 2 1 2 )  

+ m21Hx [2 + m~lH212 - 2m2Re(H~H2) (7) 

at the tree level. We recall that the SUSY breaking 
mass parameters m 2, which are proportional to m23/2, 
are subject to radiative corrections which can be sum- 
med using the renormalization group [19], and can 
trigger weak gauge symmetry breaking if m t is large 
enough [6,7,11,12,19]. If we adopt the minimal sub- 
traction renorrnalization prescription then the one- 
loop radiative corrections 6 V(H1, H2; Q) to the basic 
potential V(H l , H 2 ; Q ) ( 7 )  take the form 

6 V(I'I1, l-I2; Q) 

_ 1 ~ ( _ a ) 2 J ( z j  + 1)m 4 [ln(m2/Q2) _ 23_] . 
64rr2 J (8) 
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Weak gauge symmetry breaking takes place when m 2 

+ m2 2 > 2m 2 and 

2 2 <rn43 rnl m 2 

in which case 

(0)H 1 ]0) = 2-1/2v cos 0, 

where 

(9) 

(0 IH210) = 2-1/2o sin 0 ,  

fl0) 

u 2 = - 8 ( m  2 cos20 - m22 sin2O)/(g 2 + g '2)cos 20,  

cos220 = [(m 2 +m22) 2 - 4 m 4 ] / ( m  2 + m ] )  2.  (11) 

The minimum value of  V(111, H2; Q) is 

Vmin(m3/2; Q) = [_ 1/2(g22 + g,2)] 

X [(rn 2 - m22) - (ml  2 +m22)icos 20]] 2, (12) 

where we have note explicitly that Vmi n depends on 
the value of  the local SUSY breaking parameter m 3/2 
which sets the overall scale for the mi, and on the re- 
normalization scale Q. What choice of  Q makes the ex- 
pression (1 2) the best approximation to the absolute 
minimum of  the potential? We see from eqs. (8), (1 0) 
and (1 1) that there is some choice o f Q  = O(m3/2) for 
which the one-loop radiative correction 6 V (8) vanishes. 
We therefore evaluate (12) with the m i renormalized 
at this Q = O(m3/2) , and see that Vmi n depends on 
m3/2 both explicitly (since the my are proportional 
to m2/2 at the tree level) but also implicitly through 
the logarithmic renormalization group variation of  the 
m 2. Let us write 

t - ln(m]121Q2), (13) 

where Q0 is the scale, determined by dimensional 
transmutation, at which the gauge symmetry breaking 
condition (9) is first satisfied. Then Vmi n takes the 
general form 

Vmm(t ) = e2tF( t ) ,  (14) 

where F(t) is a smooth and well-behaved function 
which vanishes for some value of  t = O(1)[m 3/2 
= O(Q0) ]. The prefactor e 2t vanishes when t ~ - ~  
(m3/2 ~ 0) and F(t) is negative (12) for intermediate 
values o f t .  I f  we now minimize Vmin(t ) (14) with 
respect to t, we fred 

F ' +  2 F =  0.  (15) 

i 

..../ 

~ ,  120 . 

/ Renormallzafion .scale 

-atlo=O(1) 

I 

ratio=OH) ~ ~ 

m3/2 

I t 

Fig. 1. Sketch of the variation of SUSY-breaking mass param- 
eters m~ with the renormalization scall Q. The Higgs (mass) 2 
m~ = 0 at a scale Qo, which determines the dynamically pre- 
ferred value of m312, as seen in the bottom half of the figure. 

The renormalization group tells us that F '  = O(a),  so 
the leading order version of  the condition (15) is just 
F = O(a).  This means that the absolute minimum of  
the potential is obtained when t is close to zero, i.e. 

m312 = O(Oo) ,  (16) 

as illustrated in fig. 1. Thus the scale m s -=-(m 3/2mp)1/2 
of  local SUSY breaking is dynamically determined in 
terms of  the dimensional transmutation scale (16). 

More analysis is needed for the evaluation of  the 
numerical ratio between m3/2 and Qo (1 6). One sim- 
plifying feature is the observation that since F(t) = 

the minimum, then v 2 = O(m32/2) and hence O(~) at 

H field-dependent contributions to the particle masses 
included in the radiative corrections (8) can be neglected 
in leading order in a. Here we just present results for 
the idealized limit in which the gaugino mass m 9 = 
~m3/2 ~ 0 and alsom 3 ~ 0. In this case the gauge sym- 
metry breaking condition (9) becomes 

rn22 < 0 ,  (9 ' )  

while 

<OIH II0>-~ O, 

((0 IH210))2 -+ - 4 m  2/e7 + g ' 2 )  = 102 (10') 
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and 

_ 2 m  4 / / ~ 2  Vmin(m3/2, Q) = 2 k~2 + g , 2 ) .  (12') 

The relevant dimensional transmutation scale Qo is 
now the scale at which m2(Qo) = 0. The previous anal- 
ysis tells us that the absolute minimum of  the potential 
occurs in the neighbourhood of  this zero. Therefore 
we can approximate 

m2(Q 2) ~ Cm2]2ol ln(QZ/Q2), (17a) 

where C is a constant [7] of  order unity: 

2 C = (3147r)(~t/c 0 [(m23 + mZu3)/rn 3/2 + A2 ] + . . . .  (17b) 

where c~ t --g~fft/4rr is the t quark Yukawa coupling, 
rn~3 and m~. 3 are the SUSY breaking mass parameters 
for the third-generation left-handed quark doublet and 
right-handed charge + 2]3 quark respectively, with 
these and A all evaluated at the renormalization scale 
Qo" Substituting eq. (17) into (10') we see that 

02 = [8C/(g2 +g,2--)l m~/2 ~ ln(Q2/Q2) 

x 202 = 2cos2Owm2/2otln(Q2/Q2 ) (18) m 2  = 4g2 

and likewise m 2, m~ = O(a)m2/2. Therefore, as al- 
ready remarked~, the H-dependent terms in eq. (8) can 
be neglected when we work to leading order in a. Us- 
ing the results ofref .  [7] we deduce that when ~, m 2 
= 0 and m~ = O(a)  (17a): 

m 2 = m 2 = m~ = m 2 = m 2 = m 2 , 
01,2,3 ~ 1,2,3 Ul,2 ql,2 3/2 

m2 ~ 2 u3 = 2rn3/2 ' 
o 2 2 m~3 = ~m3/2 , (19) 

and we compute that 6 V (8) vanishes for Q: 

ln(m2/2/a2) = (3 + ~ ~--~ln 3 - 1-~7 In 2) + O(a)  

1.537. (20) 

Using this value of Q in eq. (17a), the expression (12')  
for the minimum of the potential becomes 

Vmin(t ) ~ - e2t(t - 1.537)2. (14') 

The condition (15) for the minimization with respect 
to rn3/2 becomes 

t = 0.537. (15') 

We are therefore able to relate rn3/2 directly to the di- 

mensional transmutation scale: 

m2/2 = Q2 X e 0"537 , (21) 

while eq. (18) relates m w to m 3/2. We therefore know 
what the dimensional transmutation scale must be in 
this model: 

QO = mw {2Tr/3 [1 + A2(Q0) ] cos20wat31/2 

× e x p ( -  0.268).  (22) 

It is easy to determine in a given model what value of  
the t quark Yukawa coupling c~ t will give the right value 
o f Q  0. We assume for definiteness that the SUSY stan- 
dard model is embedded in a GUT at some large scale 
m x .  Then there is a simple analytic expression [7] for 
at(Qo ) in the limiting case ~ = rnq/rn3/2 -+ O, m 3 ~ 0: 

~t(Qo) = {r2(Qo)/[1 + 6r2(Qo) ] } 

16 -I- 
X [ - j - a 3 ( a o  ) 3o~2(Q0 ) + - ~ a l ( Q o ) ]  

x { I -. [ax/a3(Qo)116/9 [ax /a2(Qo)  ] -2 

× [axial  (Qo)] -13/99 )-1 , (23a) 

where ifA = 3 initially [10] 

3 r 2 ( a o ) { l  + {3/[1 + 6 r 2 ( a o ) ] ) 2 ) =  1, (23b) 

and a X is the gauge coupling strenght at the grand uni- 
fication scale, which yields 

rn t ~ 110 GeV. (24) 

To see more explicitly the way in which dimensional 
transmutation determines Qo and hence the weak in- 
teraction scale via (22), we note that in the limit m 2 
- ~ 0 , ~ - ~ 0 :  

Q0 = m x e x p [ -  2zr/36t(l +.~2) + ...] , (25a) 

where at  and Aare  values o f a  t and A at some inter- 
mediate scale Q: Q0 < ~) < rex-  The form (25a) paral- 
lels the corresponding relation between AQC D and 
m x in a SUSY GUT: 

AQC D = m x e x p ( -  27rsin20w/3aem + ... ) .  (25b) 

We see from (25) that fo rA = 0 (2 )  and sin20w = 
0(0 .2)  it is no accident that Q0 and AQC D are similar 
in magnitude i fm  t ~ mw.  

Fig. 2 illustrates the values o f m  t forA = 3 and gen- 
2 eral non-zero values of  ~ and rh 4 --m'~/2m3/2. (Radi- 
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Fig. 2. Values of m t (in GeV) for gener',d values of rh 4 .=- m]/ 
2m~i2 and ~ = m~/m3.:~. There is no solution with m t > 20 
GeV in the shaded region, while our present vacuum is unstable 
in the cosmic hole region to the right of the broken line. 

ative corrections in a GUT are able to generate m 3 = 
O(m3/2). ) The shaded region in the top right of  fig. 2 
corresponds to unacceptably small values o f m  t < 20 
GeV, while to the right o f  the broken line the desired 
SU(2)L X U(1) y ~ U(l)cm minimum is not the lowest, 
and tunneling into a lower minimum is possible [20]. 
This is not necessarily catastrophic [6], since the tunnel- 
ling time may be very long. We have evaluated the action 
in the thin-wall approximation for tunnelling into the 
{0Ff 10) 4 :0  vacuum, and find it is always larger than 
60. The persistence of  our present vacuum to the ripe 
old age o f  101° years requires an action above 400. 
However, it has been observed [21] in a similar model 
that the thin-wall approximation underestimates the 
true action by a factor O(10) when the true action 

400. Therefore we suspect that all values of  ~ and 
t/l 4 a re  acceptable from this cosmological point o f  
view, though one might feel queasy in the cosmic hole 
region where our present vacuum is mortal. Fig. 3 
shows which regions o f  the ~, rh 4 plane are allowed by 
other phenomenological constraints, notably the ab- 
sence o f  any charged super~ymmetric particle with 
mass < 20 GeV denoted by P, the requirement [22] 
that the lightest neutral sparticle ×0 be lighter than 
the lightest charged one X -+, and the requirement [22, 
23] that the present cosmological density of  this lightest 
neutral sparticle be less than 2 × 10 -29 gm/cc, denoted 
by C. The requirement C excludes regions of  small I~1 
(m~ ~ 0), small tit 4 (mfi ~ 0) and a band in tile centre 
left of  tile figure where there is another light neutral 
sparticle (see graphs (b), (d) in refs. [22, 24]).  The re- 
quirement P excludes may regions where different 

PC 

...... 60 fieV 
0 . . . . . . . . . . . . .  90 5ev 
-I.0 -06 -0.2 0 0.2 06 10 

lig. 3. Contours ofm t as in lig. 2, with the shaded domain 
indicating values o f ~  4 and ~ disallowed because of the ab- 
sence of a charged sparticle with mass less than 20 GeV (P), 
and/or because of an excessive cosmological density of the 
tightest neutral sparticle (C). 

charged sparticles become too light. The requirement 
mxO < mx± is almost automatic once P and C are sat- 
isfied. We see three allowed domains in fig. 3. The re- 
gions at large If I are disfavoured by our previous argu- 
ment that SU (1,1) favours small ~, while the right-hand 
region also has an unstable vacuum. We therefore prefer 
the thin central region of  fig. 3, in which 33 GeV < 
m t < 103 GeV, and table I lists the complete sparti- 
cle spectrum for representative values o f  I~1 and m 2 
corresponding to m t ~ 33, 60 and 90 GeV. "Zen" de- 
cays [24, 25] of  the W +- into pairs of  light gaugino/ 
higgsino mixtures ×+- + ×0 are allowed in all the pre- 
ferred region of  fig. 3, while W*- ~ ~± + ~ decays [26] 
are always kinematically impossible. Near the top of  
the preferred region in fig. 3 there is a neutral Higgs 
boson light enough to be detected in T decays [7] : 
we predict such a light Higgs i fm t < 0 (40)  GeV. 
There is also a domain near the bot tom o f  the preferred 
region where the lighter stop squark is lighter than 
the t quark: rnTz < rn t [27]. 

There is less freedom in this class of  models than 
in the traditional [6,7,11 ] models with gauge symmetry 
breaking driven by a heavy t quark. In our class o f  
models small values o f f  = m~/rn3/2 are preferred, and 
the scale o f  m3/2 is closely related to mw. It is possible 
to avoid A = 3 [10] in more complicated models [17]. 
The observant reader will have noticed that, having 
started with a zero cosmological constant, radiative 
corrections have now regenerated A = O(am4/2). We 
expect that a shift in the cosmological constant 6A 
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Table 1 
Characteristic mass spectra (in GeV). 

PHYSICS LETTERS 26 January 1984 

rn t 33 60 90 
m3/2 72 132 225 
(th 4,/~) (0.9, -0.084) (0.8, -0.195) (0.4, -0.13) 

sleptons ~ 73 134 228 
~-c 73 133 228 

~" 71 130 221 

squarks ~', c" 72 142 232 
d,~' 75 146 239 
~c, ~'c 73 142 233 
~c,~'c 74 144 235 

~'l, t~ 41,100 93, 175 73,278 
~, ~c 73, 74 136,144 209,235 

higgses H ± 156 236 291 

tl ° 4.6,134,163 15,221,239 46,290,280 

gauginos/ ×o 3.2, 61,66,132 14, 39,106, 164 16, 33, 98,152 
shiggses ×± 51,121 27, 154 25,139 

15 65 74 

= O(am412) would yield a shift in the gravitino (mass) 2 
2 -  

6m3/2 = This would be negligible by 
comparison with m~/2 itself and hence have negligible 
impact on the scenario described in this paper. 

These are the first models where neither the SUSY 
breaking scale nor the weak gauge symmetry breaking 
scale is put in by hand, but both are determined by ra- 
diative corrections. Thus these are "no-scale" SUSY 
standard models with all light mass parameters provided 
by dimensional transmutation. Clearly it would be in- 
teresting challenge to construct an analogous "no-scale" 
SUSY GUT where m X is related to mp in some way. 
This is probably not very difficult so we regard this 
SUSY standard model as an existence proof for theo- 
ries of all the elementary particle interactions whose 
only intrinsic scale is the Planck mass. 

We would like to thank C. Kounnas for useful dis- 
cussions. 
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