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Abstract 

In this work we study the recently introduced octonionic duality for membranes. Restricting 
the self-duality equations to seven space dimensions, we provide various forms for them which 
exhibit the symmetries of the octonionic and quaternionic structure. These forms may prove to 
be useful for the question of the integrability of this system. Introducing a consistent quadratic 
Poisson algebra of functions on the membrane we are able to factorize the time dependence of the 
self-duality equations. We report further the general linear embeddings of the three-dimensional 
system into the seven-dimensional system using the invariance of the self-duality equations under 
the exceptional group G2. (~) 1998 Elsevier Science B.V. 

1. Introduction 

M theory is the leading candidate for the unification of  all superstring theories in 

their perturbative and non-perturbative sector. This theory contains N = 1, eleven- 

dimensional  supergravity and at least a sector of  supermembranes and their magnetic 

duals the superfive branes [ 1,2]. These extended objects exist as solitons of  eleven- 

dimensional  supergravity and they are distinguished from fundamental superbranes as 

solitonic superbranes [ 3 ]. 

Most  o f  the recent work on compactifications of  M theory is concentrated on a unified 

"proof" of  various non-perturbative dualit ies of  superstring theories connecting their 

strong and weak coupling sectors - or small with large volumes - of  the compactifying 
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manifolds [ 1,2]. There is a line of attack from the point of view of the 1 l-d superbranes 

which either uses double-dimensional reduction to connect with type IIA or heterotic 
superstrings, or using purely classical world-volume dualities of the superbranes which 
appears miraculously to explain non-perturbative phenomena (dualities of superstring 
theories) [4]. 

From the point of view of superstring theories, supermembranes in non-compact 
eleven dimensions correspond to the strong coupling regime of the superstrings [ 1 ]. 

Many basic questions concerning supermembrane theories have not been answered. 
A top priority is the derivation of the eleven-dimensional supergravity theory as a low 

energy effective action of the supermembrane. To do this one needs to understand 
the quantum mechanics of the supermembrane, that is define a sensible perturbation 

theory. This is an extremely hard problem for two reasons. First, the moduli space of 
three-dimensional Remannian metrics is largely unknown and a representative theory of 
the three-dimensional diffeomorphism group or (in the light-cone gauge) of the area 
preserving the diffeomorphism group of the supermembrane is lacking. Second, unlike 
the string where in the light-cone gauge the theory becomes an infinite set of' free 

transverse oscillators, in the supermembrane case the light-cone gauge does not fully 
solve the constraints and there is no coupling constant in the interaction term. 

Fortunately, the Hamiltonian in the light-cone gauge is of Yang-Mills (YM) type 
with the gauge group the area preserving diffeomorphisms of the membrane [5-7].  

Another issue is the following. During the compactification from eleven dimensions to 
ten, one is freezing an infinite number of string degrees of freedom of the supermembrane 
and considering only the Kaluza-Klein dilatonic modes which are supposed to be the 
infinite tower of superstring solitons which completes the duality picture. It may be 

possible that taking into account in a controllable way the interaction of the remaining 
string excitations of the supermembrane, one could define a perturbation theory 118]. 
Recently, an old mode regularization of the supermembrane through S U ( N )  matrix 

super YM mechanics has been re-incarnated as a possible candidate model for M 

theory [9] 
Another possible approach for defining a perturbative expansion for the eleven- 

dimensional supermembrane is to study various compactifications of the l l-d super- 
gravity where the classical supermembrane has very simple dynamics (it can even be 
static-stretched) and then study the quantum excitations of the supermembrane around 
these classical solutions. In this way one hopes to obtain a classical state which could 
be used as a quantum vacuum state for the membrane. One test would be to lind in 
the excitation spectrum of the supermembrane the 11-d supergravity multiplet around 

the classical background. The problem is that one has to preserve in one way or an- 
other the N = 1, 11-d sypersymmetry during these compactifications [3,4]. Following 
past work on the compactification of 11-d supergravity on the seven sphere [10] there 
is recent activity on octonionic solitons for strings and supermembranes [11]. In this 
work, specific background field configurations of the compactified supergravity on the 
seven sphere are considered as various fiber bundles which are coupled through their 
singularities to supermembrane sources. 



E.G. Floratos, G.K. Leontaris/Nuclear Physics B 512 (1998) 445-459 447 

In this work, we want to move in a different direction which exploits some aspects of 
the non-perturbative structure of the supermembrane vacuum in fiat space time, studying 
classical Euclidean time equations which describe quantum tunneling processes between 
classical configurations of the supermembrane which could be considered as vacua of 
different topological sectors. Although there is an extensive article [3], where essen- 

tially the background field equations are solved, as far as we know the question of 
the Euclidean membrane as an extended object connecting different topological sectors 

has not been addressed except in Refs. [ 12-14]. The topological charge and the Bogo- 
mol'nyi bound known from supersymmetric YM theory can be extended to Euclidean 
supermembranes in (4 + 1) [12,13] and, as has been shown recently, in (8 + 1) di- 

mensions [ 14]. In Section 2 we recall the main results of the reports ] 12,13] where 
the self-dual bosonic membrane in (2 + 1) and (4 + 1) dimensions was introduced. In 
Section 3, the generalization reported in Ref. [ 14] in (8 + 1 ) dimensions is described 
in a compact form and possible factorizations of the time dependence are discussed. 

In Section 4, the same equations in octonionic and quartenionic representations are 
introduced which exhibit specific properties of the self-duality equations. Finally, in 
Section 5 the general formulation for embedding the three-dimensional solutions into 
seven dimensions is described and the constraint equations are derived. Some examples 

of specific embeddings of the (4 ÷ 1 )-dimensional system into (8 + 1 ) dimensions are 

also analysed. 

2. SU(N) Yang-Mills and membranes 

To start, we recall that it has been known for some time that the supermembrane 

Hamiltonian in the light-cone gauge is a very close relative of Yang-Mills (YM) 

theories in the gauge A0 = 0 and in one space dimension less [5,6]. To describe 
this relationship in more detail, we restrict our discussion to the bosonic part of the 
Hamiltonian of the supermembrane in the light-cone gauge and to spherical topology 
for the membrane [6,15,13]. In Ref. [15], using results of Ref. [5], it was pointed 
out that, in the large-N limit, SU(N) YM theories have, at the classical level, a simple 
geometrical structure with the SU(N) matrix potentials Au(X) replaced by c-number 
functions of two additional coordinates, 0 and ~b, of an internal sphere S ~ at every space- 
time point, while the SU(N) symmetry is replaced by the infinite-dimensional algebra of 
area-preserving diffeomorphisms of the sphere S 2 called SDiff ($2). The SU(N) fields 
(N x N matrices) 

A ~ ( X ) = A ~ ( X ) t  ~, t " E S U ( N ) , a = I , 2  . . . . .  N 2 - 1 , / x = 0 , 1  . . . .  d - 1  (1) 

in the large-N limit become c-number functions of an internal sphere S 2 

A~(X,O,~b) = Z l., A u (X)Ytm(O, ck), 
1=1 m=--l 

(2) 
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where Ylm (0, ~b) are the spherical harmonics on S 2. The local gauge transformations 

8A u=c~uoJ+[Au,w],  w = w ~ t  ", 3) 

and 

6F~,~ = [Fu~,w], I4) 

F~ = 8uA ,, - O~A u + [ A~,Av], I5) 

are replaced by 

~3A~,CX, O,~) = OuoJCX, O,q~ ) + {A, ,w},  (6) 

8F,~,,(X,O, ck) = {Vu, ,w }, iV) 

where 

Fp,, ( X, O, q~) = oua, - ova# 4- (a  u, au) ,  t 8) 

and the Poisson bracket on S z is defined as 

Of Og Og Of 
{ f ' g } -  a4,acosO a bacos0" /9) 

So that the commutators are replaced by Poisson brackets according to 

lim N[Au, A~] = {Au, Av). 10) 
N~c¢o 

Then the YM action in the large-N limit becomes [ 15] 

l / l  
16~.g a d ~  ddXFu~(X,O,~b)F"~(X,O,d)), 11) 

$2 

where 

g =  lim gu N ~  N3/2" 12) 

This large-N limit of SU(N) YM theories was found by making use of the relation 
between the SU(N = 2 s4-1 ) algebra in a particular basis (up to spin s SU(2) tensor N× 
N matrices) and SDiff (S 2) in the basis of the spherical harmonics Ytm(O, d?). In present- 
day language, this SDiff (S 2) YM theory corresponds to the effective theory of infinite 

number, N --~ oo, d - 1-dimensional Dirichlet branes [ 16,17]. Similar considerations 
hold for membranes of different topologies, torus, double torus, etc. [18]. Here, we 
note that the recently proposed matrix theory, which is claimed to be the long sought 
|brmulation of M theory, is nothing but the SU(N) supersymmetric YM mechanics 
which was used as a consistent truncation of the supermembrane [5,6,19]. 

The large-N limit is a very specific one which depends on the appropriate basis of 
SU(N) generators convenient for the topology of the membrane and it has nothing to 
do, at least in a direct way, with the planar approximation of YM theories. Also, it is 
different from the large-N limit used in matrix theory. 
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In the case of spherical membranes the SDiff (S 2) YM theory describes the dynamics 
of an infinite number of  D0-branes forming a topological two sphere. In the light-cone 

gauge the transverse coordinates Xi (i = 1 . . . . .  9) of the l l -d  bosonic part of the 
supermembrane satisfy the following equations 

Xi = { X k , { X k , X i } } ,  i , k =  l . . . .  9, (13) 

where summation over repeated indices is implied. The corresponding Gauss law, which 
is the generator of the SDiff(S 2) group, is given by the constraint 

{Xi ,  )~i} = 0. (14) 

In Ref. [ 12] Euclidean bosonic membranes in three-dimensional target space have been 
introduced, defining the topological charge density to be 

I abc ," vi v j w k  
f~( X )  -~ --~: J-ijkAaAbAc , (15) 

3! 

where a, b, c run from 1 to 3 and i, j, k from 1 to d space time dimensions, 

X~t : 3(, X i (16)  

and (j,z,3 are the world-volume coordinates. The self-duality equations are defined as 

p~ : ± 1 _abc .c vJ vk 
~-~e Ji jkAbAc . (17) 

Here, P f  are the canonical momenta 

p~ = T 6_~(Oet[  X~Xib] )1/2. (18) 

The self-duality equations for the case d = 3 and f~ik = eijk were shown to satisfy both 
the constraints and the equations of motion. Solutions were given for the case of sphere 

and torus. In Ref. [ 13 ] 3-d Euclidean self-duality equations in the light-cone gauge (that 
is 4 + 1-dimensional target space) for the bosonic part of the supermembrane could be 
written in analogy with the 3-d Nahm equations of self-dual BPS YM monopoles. In the 
light-cone gauge this means that one had to fix six of the nine transverse coordinates to 
be constants. This constraint solves the second-order Eqs. (13) for the six coordinates. 

Then the self-duality equations are 

.~'i 1 = 7eijk{Xi, Xt,}, i , j  = 1,2,3. (19) 

The self-duality equations solve automatically the second-order Euclidean time equations 
as well as the Gauss law due to the Jacobi identity for e and its well-known properties. 
The above system has a Lax pair and an infinite number of conservation laws [ 13]. In 
order to see this, first we rewrite Eqs. (19) in the form 

X+ = i { X 3 ,  X + } ,  X -  = i { X 3 , X - } ,  ~(3 = ½i{X+,X_},  (20) 

where 

X:~ = Xl 4- iX2. (21 ) 
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There exists a linear system corresponding to Eq. (20): 

t~ = Lx3+ax_~t,  ~ = L ( 1 / a ) x , - x 3 ~ ,  (22) 

where the differential operators Lf are defined as 

Lf ~ i  ~qSOcos0 0cos0  " 

The compatibility condition of Eq. (22) is 

[cgt -- Lxs+.~x_,cgt - L ( l / a ) x , _ x s  ] = 0, (24) 

from which, comparing the two sides for the coefficients of the powers l / a ,  a °, a I of the 

spectral parameter A, we find Eq. (20). From the linear system (22) using the inverse 
scattering method one could, in principle, construct all solutions of the self-duality 
equations. 

Specific solutions could be obtained due to the existence of an SU(2) subalgebra 
of SDiff (S  2) which happens to be its only finite-dimensional subalgebra. Using this 

SU(2) subalgebra, for spherically symmetric solutions it can be shown that the system 
reduces to the Toda SU(2) equations. Another method for finding solutions of the 

integrable system (20) has been proposed in Ref. [20], where the system is linearized 
by considering the target space variables as world-volume variables and vice versa. 
More recently, there have been discussions of the same issue by other authors [ 14,21 ]. 

In Ref. [22] the connection with self-dual Einstein equations has been discussed. Before 
closing this section we would like to note that the Euclidean membrane configurations 
which are solutions of the self-duality equations are expected to interpolate between 

classical vacuum configurations of the membrane that is, points or strings. Also, the 
case of the membrane is the first in the series of extended objects where there is a 
gauge principle to define the interactions and the possibility arises for topology change 
through gauge interactions. The case of the string has an ad hoc interaction which is 
not enforced uniquely by any gauge principle. Moreover, the classical vacua of string 

are points. [ 12] 

3. The octonionic structure of the self-duality equations 

An obvious way to generalize duality for super p-branes is to use Poincar6 duality. For 
the fundamental supermembranes, in particular, this has been done by Duff et al. [23] 
and has been exploited to prove various conjectures of string-string, string-membrane 
and membrane-membrane dualities [24-26].  Another type of duality has recently been 
investigated [ 14,27] which is based on the existence of the last real division algebra, 
the octonionic or Cayley algebra [28]. The work of Ref. [ 14] is based on the similarity 
between the supermembrane and the super YM theories referred to previously and 
the work on eight-dimensional YM instantons many years ago [29]. Another way of 
considering the work of Ref. [ 14] is as an extension of the quaternionic case [ 13] using 
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the possibility of defining a cross product of two vectors in eight dimensions through 
the multiplication rule of octonions. 

In this section we restrict the self-duality equations of Ref. [ 14] to seven dimensions 
by choosing fixed values for eight and nine membrane coordinates. Then, the self-duality 
equations [ 14] become 

)(,i = l ltt ijk { X j ,  Xk }, (25) 

where ~i/k is the completely antisymmetric tensor which defines the multiplications of 
octonions [28]. The Gauss law results automatically by making use of the qZijk cyclic 
symmetry 

{Xi,  X i}  = 0. (26) 

The Euclidean equations of motion are obtained as 

Xi = l~ i j k  ({Xj, Xk}  -~- {X j ,  Xk}) (27) 

= {xk ,  {x i ,  (28) 

where use has been made of the identity 

"~(/k'~l,nk = 8il•jm -- ¢~im~jl + q~ijlm , (29) 

and of the cyclic property of dpijtm [ 28 ]. 
As in the case of the 3-d system we may try to factorize the time dependence. We 

assume the following factorization 

Xi = Zij(  t) f j ( ~ ) .  (30) 

Then, from Eq. (25) we obtain 

Zimf . ,  ' = 7qzijkZjtZkn{ft ,  i n } .  (31) 

We observe that if we make the ansatz for the 7 × 7 matrix 

Zim ( t )  q:,,t, = ~ Ok Z jt ( t )  Zk,  ( t ) ,  ( 32)  

then the equation 

lq: f i  = 7 ( / k ( f j , f k }  (33) 

is automatically satisfied, while at the same time we have succeeded in disentangling 
the time dependence from the self-duality equation. Therefore, the problem is reduced 
to finding solutions for f i ( s  c) and Zkl equations separately. 

Another equivalent form of the previous equation for the matrices Z 0 is 

20 1 = "~:ikl~'jrnnZkmZln • (34) 

In the case of diagonal matrices ~ j  = 6 i j R j ( t ) ,  we have 
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1 2 Ri = -g t P i k  I R k  Rt. ( 35 ) 

We now make some observations about the symmetries of  Eqs. (25) and (33).  If  Xi is 

a solution of  Eq. (25) then for every matrix R of  the group G2, which is a subgroup of  

SO(7) ,  then 

Y, = RiiXi (36) 

is automatically a solution of  the same equation because the elements of  G2 preserve 

the structure constants ~/jk. In components 

t t~i jk  Rkz = l f f  imn Rmj Rnt. ( 37 ) 

The above relation shows how to define G2 group elements starting from two orthonormal 

seven-vectors. The equation is obviously covariant under SDiff (S2)  transformations. 

One can define combined G2 and SDiff ($2) transformations to obtain S 0 ( 3 )  spherically 

symmetric solutions since SO(3) can be realized as a subalgebra of  SDiff ($2).  
We note that, in principle, it is possible to look for non-linear symmetries of  the 

self-duality equations generalizing Eq. (36) 

Y~ = .fi( x ) ,  (38) 

where f i ( X )  must satisfy the equation 

F Ofk Ofn._L Of,  (39) 
i)k ~ = ~im, oX j oxl" 

In the following we examine the self-consistency of  Eq. (33).  Multiplying by ~il,,, 

we obtain 

1 ~ i m f i  = { f l ,  fro} + 7dPlmjk{f], f k } .  (40) 

Then, since the Poisson brackets satisfy the Jacobi identity, the above equation is con- 

strained to satisfy the identity 

~ fbijkz f t = g~ ijm { f m, f k } + cyclic perm. of  ( i jk  ) . (41) 

This system of  equations is exactly the same as Eq. (33). 
Another check for the self-consistency of  f i  equations can be found as follows. Define 

the tensors 

• . u 4~ij , x i i k t (u )  = A'Jkt + ~ kt (42) 

" 1 [ ~ i  ,~J i J " = - 6t8 k) and &'./kt --- dpijkt. Then, Eq. (33) can be written as where A'J~,t ~.,~k~l 

~i ik fk  = xiJtm (2) { f t ,  fro}. (43) 

Using now the algebra of  the XiJkl(U) t e n s o r s  discussed in detail in Appendix A we can 

prove that both the identities 

gtijkXJkh, , ( --  1 ) = 0 (44) 
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and 

xiJ mn( -- 1 ) X mn kt ( 2 )  = 0 

hold, and this terminates the second consistency check. 

453 

(45) 

4. Octonionic and quaternionic formulation of the self-duality equations 

The octonionic or Cayley algebra is the appropriate structure to organize the seven 

self-duality equations [28,29].  The octonionic units oi satisfy the algebra 

oioj  = - S i j  + ~ijkOk,  (46) 

where i = 1 . . . . .  7 are the seven octonionic imaginary units with the property 

{Oi, O j }  = --26ij .  (47) 

We choose the multiplication table [28] 

1 2 4 3 6 5 7  

Iltij k = 2 4 3 6 5 7 1 (48) 
3 6 5 7 1 2 4 .  

In terms of  these units an octonion can be written as 

7 

XO00 "[- Z XiOi' (49) X 

i=1 

with o0 the identity element. The conjugate is 

7 

XO00 -- Z XiOi" ( 5 0 )  

i=1 

The octonions over the real numbers can also be defined as pairs of  quaternions 

X = ( x l , x 2 ) ,  (51) 

where xl = x~o-~, x2 = x~o-~, and the indices /z run from 0 to 3, while x ° 1,2 are real 
numbers and x~, 2, i = 1,2, 3, are imaginary numbers. Finally, 0-0 is the Identity 2 × 2 
matrix and o'i are the three standard Pauli matrices 

( ~  1 )  ( 0  o i  ) (10 0 1 )  o-1 = 0 ' 0-2 = i , 0-3 = _ . (52) 

I f  q = (ql ,  q2) and r = ( r l ,  r2) are two octonions, the multiplication law is defined as 

q • r ~ (ql ,  q2) * ( r l ,  r2) = ( q l r l  - 72r2, rzql  -q- q2rl ), (53) 
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where ql = qO + q~ri  and ell = qO _ q~ri .  One can also define a conjugate operation for 

an octonion as 

g l -  ( q l , q 2 )  = ( g l l , - q 2 ) ,  (54) 

and we obtain the possibi l i ty  of  defining the norm and the scalar product q and r 

qc7 = (qlcT1 + q2qz, O) (55)  

3 
= Z ( X ~  x2 Jr- X~2) ,  ( 5 6 )  

#---0 

(qlr) = ½( q~ + glr). (57) 

In terms of  the above formalism, the self-duality equations can be written as 

= ½ { x , x } ,  (58) 

where now X = Xioi with i = 1 , . . . , 7  and the Poisson bracket for two octonions is 

defined as 

OX OF OX o r  
{X, Y} - O~ 1 0 ~  2 o~:2 O(l" (59)  

Using now Eq. (51)  and the multiplication rule (53)  we can write Eq. (58)  as 

Jc I ---- I ( { X I , X l }  "1- {.~2,X2}),  ( 6 0 )  

22 = - { x 2 , x , }  = {x2 ,2 ,} ,  (61)  

where xl = x{*o-** and x2 = x~*o- u. Defining the octonionic units 

o0 = ( 1 , 0 ) ,  Ol = ( i o ' 1 , 0 ) ,  02 = ( i o ' 2 , 0 ) ,  03 = ( - - i o ' 3 , 0 ) ,  

04 = (0, 1), o5 = (0, icr3), 06 = (0, io-2), o7 = (0, io ' l ) ,  (62)  

we can easily check that the chosen multiplication table for the octonions (48) is 

satisfied and the seven coordinates Xi are now grouped as (Xl ° = 0):  

X{ = iXl , iX2, iX3, (63)  

Y~ = X4, iXT, iX6, iX5 (64)  

and 

xl = X1 + iX2 - X 3  J , ( 6 5 )  

( X4 + iXs X6 + iX7 ) 
x2 = - ( X 6  - iX7) X4 - iX5 " (66) 

The organization in Eqs. (65)  and (66) of  the seven Xi components obtained from 

the quaternionic formulation will prove very useful for identifying specific classes of  

solutions, as we will see in the next section. 
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5. Embeddings of the three-dimensional system 

455 

An obvious observation is that any three-dimensional solution is also a solution of 
the seven-dimensional system discussed here. However, there are various ways to embed 

a three-dimensional solution in a seven-dimensional system. In this section we discuss 

solutions of the self-duality equations where the coordinates Xi are linear functions of 
the SU(2) basis of functions on the sphere, which are the components of the unit vector 
in three dimensions written in spherical coordinates [ 13] 

{e, , ,eb} = --eabcec. (67) 

Thus, our ansatz is 

Xi(~:I, ~:2, t) = A~Z(t)ea(~l, ~c2), (68)  

and implies a generalised form of Nahm's equations 

A~'= I b c  - 7 q~qk Aj  A keabc, (69) 

where a, b, c take the values 1,2,3. This ansatz contains all the embeddings of the 

three-dimensional system with SU(2) symmetry which can be written explicitly as a G2 
rotation Rij of a seven-vector with the first three non-zero components 

A a = RijB'], (70) 

where B.~ is defined through the three-dimensional SU(2) solution 

B a = (T~,T~,T~,O,O,O,O).  (71) 

Here, the matrix T~, a, b = l, 2, 3, satisfies the three-dimensional Nahm equations. 
Let us now present some simple cases. The grouping of coordinates in relations (65) 

and (66) suggests the writing of the self-duality equations in terms of the complex 

coordinates X+ = Xl ± iX2, Y+ = X4 5:iX5 and Z+ = X6 4- iXT. In terms of the latter the 
system can be written as 

)(+ = i( (X3 ,X+ } + {Y+, Z_}) ,  

I;'+ = i({Y+, X3} + {X+, Z+}),  

Z+ = i({X3, Z+} + {X_,Y+}), 

)(3 = i ½ ( { X + , X _ }  + {Z+, Z_} - {V+, Y_}). 

(72) 

(73) 

(74) 

(75) 

We can easily obtain some simple solutions of the system in five or seven dimensions. 
In five dimensions, in particular, we set X+ = iY_ and Z+ = 0. Then we find that the 
system is reduced in the three-dimensional case [ 13] with the identifications 

X+ ~ A ± / x / 2 ,  X3 ~ A3. (76) 
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Another solution which embeds every solution of the three-dimensional case in seven 

dimensions can be obtained by the identifications X+ = Z+ = iY_. This solution is 

reduced to that of the three-dimensional one [13] with the following rescaling 

X+ --+ A + / v / 3 ,  X3 -~ a3. (77) 

An explicit construction shows that the two solutions are connected with the orthogonal 

transformation 1~:7) = O1~:3), where the matrix (.9 is 

/ a O O - b  0 b a 

O a O  0 - b  a - b  

0 0 1  0 0 0 0 

(9=  0 a 0 0 - b - a  b , (78) 
a 0 0 - b  0 - b - a  
a 0 0  2b 0 0 0 
0 a 0  0 2b 0 0 

where a = l /v/3,  b = l /x/6,  (~:31 = (X1,X2,X3,0, O,O,O) and 1(7) is the seven- 
dimensional vector. 

We conclude this work by summarizing our results. The relation of the octonionic 

algebra with quaternions gives a useful formulation of the self-duality equations which 
extends in a natural way the three-dimensional system and the corresponding generalized 
Nahm's equations for SDiffS2. By introducing in place of SU(2) algebra of functions 

on the sphere, a quadratic algebra of seven functions with G2 symmetry, we succeeded 
in factorizing the time dependence in a simple way which may facilitate the study 
of solutions of the self-duality equations. Although the general system of self-duality 
equations in seven dimensions does not seem to have a Lax pair, at least in a direct 
way, due to the non-associativity of the octonionic algebra, it may happen that there is 
a generalization of the zero-curvature condition under which this system is integrable. 
In the case of three dimensions the restriction of the solutions to the SU(2) subalgebra 

of functions on the spherical membrane reduces the problem to the study of Nahm's 
SU(2) equations. In the same way, in seven dimensions the introduction of the quadratic 

algebra of functions on the sphere reduces the problem to the generalization of Nahm's 
equations with similar scaling properties with respect to time. This gives indications that 

the specific system may be relevant for the study of the monopole-type of configurations 

of membranes. 
The relevance of the self-duality membrane equations in seven dimensions for the 

spectrum of instantons of the eleven-dimensional supermembrane is an open problem as 
well as the number of supersymmetries surviving these solutions. 
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Appendix A 

In this appendix we derive the properties of the tensors x i J u ( u )  used in Section 3 to 

make consistency checks of our ansatz. Consider the generalized matrices "piJkt(u, v) 

~ ( i  k l(  H , U) = tlA(J kl @ V ~)iJkl (A.1) 
4 " 

Using the properties 

AU kl Amn U = Amnkl , (A.2) 

~ i j  .~kmn = l , ~ i j  ) ( A . 3 )  mnV" kl 8(AiJkl "}'- 4 ~" kl ' 

AiJ ~td~Um, , = fbiJm, ,, (A.4) 

we derive the following multiplication rule 

p i J  kl ( Ul , V 1 ) p i J  kl ( U2, U2) = 723(] kl ( U3, V3), (A.5) 

where 

Vl V2 
//3 = /'/1 U2 q- - - ,  

2 

U1 U2 
V3 -= Ul V2 -t- U2U1 "~ - -  

2 

We observe that this is a group structure which can be realized as a subgroup of the 

general linear group in two dimensions through the matrices 

G ( u , v )  = ( u v / 2  
v u + v / 2  J " (A.6) 

For the existence of the inverse, one should restrict the parameters u and v inside the 

angular regions 

v = u, (A.7) 

v = -2u .  (A.8) 

For the case of u = 1, we restrict ourselves to 79iJkt(1,v) - xiJkl(V) matrices. Using 
the above, we find the multiplication law 

1( 
x i J k l ( t l ) x m n i j ( V  ) = 1 + --~ A'Ju + -~ u + v + T dpO~t 

1 + mn X u ( w ) ,  (A.9) 
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where 

W-- 
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u + v + u v / 2  

1 + u v / 2  
(A.IO) 

From the properties of qtijk, we find 

lI~ijk g]klm(U ) ..~ ( 1 + U)~itm, (A. I  1) 

so tor u = - 1 ,  the x J k ( u )  antisymmetric matrices satisfy the constraint for the G2 
algebra 

q~ijk XJktm ( -- 1 ) = O. ( A.  12) 

Finally, we observe the following interesting projective properties for the end points 
of the group parameter u 

XiJm,~(u)xmnkl(2) = (1 + u)XiJk t (2 ) ,  (A .13 )  

X"l , , ,n (u)Xmnkl ( -1)  = 1 - ~ x iJk l ( - -1) .  (A.  14) 
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