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1. Introduction

Supersymmetric (SUSY) theories are the best motivated extensions of the Standard Model

(SM) of the electroweak and strong interactions. They provide an elegant way to stabilize

the huge hierarchy between the Grand Unification (GUT) and the Fermi scale, and predict

a variety of new matter states (sparticles) creating a natural framework to cancel the

quadratic divergences of the radiative corrections to the Higgs boson mass. One can classify

these models by the mechanism for communicating SUSY breaking from a hidden sector

to the observable sector. Possibilities include gravity mediated SUSY breaking (SUGRA)

[1], gauge mediated SUSY breaking, [2] and anomaly mediated SUSY breaking [3].

The so-called minimal supergravity (mSUGRA) model has traditionally been the most

popular choice for phenomenological SUSY analyses. In mSUGRA, it is assumed that its
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most economical low energy realization, the so called Minimal Supersymmetric Standard

Model (MSSM) [4], is valid from the weak scale all the way up to the GUT scale MX ≃
2×1016 GeV, where this choice is usually taken due to apparent gauge coupling unification.

In the MSSM one assumes a minimal gauge group, i.e. SU(3)C × SU(2)L × U(1)Y, and a

minimal particle content, i.e. three generations of fermions (no right handed neutrinos

included) and their spin zero partners as well as two Higgs doublet superfields to break

the electroweak symmetry. In order to explicitly break supersymmetry while preventing

the reappearance of quadratic divergences, a collection of soft terms [5] is added to the

Lagrangian: mass terms for the gauginos (m1/2), mass terms for the scalar fermions (m0),

mass and bilinear terms for the Higgs bosons (B0), and trilinear couplings (A0) between

sfermions and Higgs bosons. In the general case, that is if one allows for intergenerational

mixing and complex phases, the soft SUSY breaking terms will introduce a huge number

of unknown parameters. This feature makes any phenomenological analysis in the general

MSSM a daunting task. In this context, severe phenomenological constraints are imposed

on the parameter space by flavor changing neutral currents (FCNC) and CP violation [6]

as well as unphysical vacuua.

To reduce the number of free parameters, one needs an explanation of how super-

symmetry is broken. In mSUGRA, supersymmetry is spontaneously broken via a hidden

sector field vacuum expectation value (VEV), and the SUSY breaking is communicated to

the visible sector via gravitational interactions. For a flat Kähler metric Gj
i and common

gauge kinetic functions fAB, this leads to universal values for m0, m1/2 and A0, B0 at

the GUT scale MX . This assumption of universality in the scalar sector leads to the phe-

nomenologically required suppression of flavor violating processes that are supersymmetric

in origin. However, there is no known physical principle which gives rise to the desired

form of Gj
i and fAB; indeed, for general forms of Gj

i and fAB, non-universal masses are

expected. Hence, the universality assumption is regarded as being entirely motivated by

the phenomenological need for suppression of flavor violating processes in the MSSM.

In recent years the branes, which are typical in models with extra dimensions [7], have

been found to fit naturally with the idea of breaking supersymmetry via a hidden sector.

The basic five-dimensional setup of brane world models [8] is that of four-dimensional hy-

persurfaces (branes) hosting familiar gauge and matter fields, which are embedded in a

higher dimensional ambient space, the bulk, populated by gravitational and gauge-neutral

fields. The bulk degrees of freedom couple to the fields living on branes through various

types of interactions, but the effects of SUSY-breaking will be communicated gravitation-

ally to the observable world through the five-dimensional interior bulk. This scenario

thereby places the question of SUSY-breaking in an entirely new geometric context.

Brane world SUSY breaking generally gives rise to tree-level soft scalar masses for

visible sector squark and slepton fields. These masses are generally not universal. Without

additional assumptions about flavor, these non-universal scalar mass matrices are not nec-

essarily aligned with the quark and lepton mass matrices, and dangerous sflavor violation

can occur. A model to overcome this flavor problem has been recently proposed. The

authors of Ref. [9] have suggested a gravity mediated SUSY breaking in 5D spacetime with

two 4D branes B1 and B2 separated in the extra dimension. The SUSY breaking effects
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from the hidden sectors localized on the branes are transmitted through gravitational cou-

plings both to the visible sector fields located on the same brane and to bulk gauginos.

Thus, if the SUSY breaking scales are m1 and m2 at two separated branes B1 and B2

respectively, the localized chiral multiplets at B1 (B2) could get soft SUSY breaking effects

of order m1 (m2). Assuming that the SUSY breaking scales at B1 and B2 are m1 (∼ 10–20

TeV) > m2 (∼ 1 TeV), the superpartners of the first two generations can be easily made

sufficiently heavy to overcome the SUSY flavor problem by locating them on B1. In order

to keep the radiative corrections to the Higgs masses under control, the third family must

reside on B2. The two Higgs multiplets should reside in the bulk, so that the first two

and the third generations of the quarks and leptons can couple to them at B1 and B2,

respectively.

Beyond the SUSY flavor requirements, an additional constraint on mSUGRA param-

eters can be obtained by demanding that the global minimum of the scalar potential is

indeed the minimum that leads to appropriate electroweak symmetry breaking [10]. From

a theoretical point of view, the plethora of new scalar fields which are introduced in MSSM

may lead to many possible directions in field space where field configurations could be

developed deeper than the standard minimum. The generic situation [11, 12, 13, 14, 15] is

that the scalar potential can receive negative contributions from quadratic or cubic term in

the supersymmetry breaking Lagrangian if the usually dominated quartic D and F terms

are suppressed. A systematic classification of all possible dangerous directions in the scalar

field space that can potentially lead to undesirable minima has been done by the authors

of Ref. [12]. These directions have been categorized either as field directions that are un-

bounded from below (UFB) or as directions that lead to charge or color breaking minima

(CCB).

The purpose of this work is to extend and complement the work done on this sub-

ject by analyzing the impacts the one loop radiative corrections have on these unphysical

configurations for the models described above. Yet, the effective potential in which the

vacuum structure is encoded, is a poorly known object beyond the tree-level approxima-

tion. One reason for this is the dependence of its loop corrections upon the very many

different mass scales present in these models, so that a renormalization group analysis

becomes rather tricky. In general, when one deals with a system possessing a large mass

scale QM , compared with the scale Qµ at which one discusses physics, large logarithms

such as ln(QM/Qµ) always appear which affect the convergence of the loop expansion. In

this situation, one considers resuming the perturbation series by using the renormalization

group equation (RGE). Nonetheless, in many realistic applications one often has to deal

with an additional mass scale Qm with the hierarchy Qµ ≪ Qm ≪ QM . For instance,

one can regard Qµ, Qm, QM as the weak, supersymmetry-breaking and unification scales

respectively. When we study such a system, we face the problem of multimass scales [16]:

There appear several types of logarithms ln(QM/Qµ) and ln(Qm/Qµ), while we are able

to sum up just a single logarithm by means of the RGE.

In the present work, trying to circumvent this problem, a generalized improving pro-

cedure based on Refs [17, 18] is applied to the relevant effective potential. The main idea

of the method is to make use of the decoupling theorem [19] combined with a conveniently
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chosen renormalization scale Q∗ for each field configuration. By this procedure, it is made

possible to treat essentially a single log factor at any renormalization scale, since all the

heavy particles (heavier than that scale) decouple and all the light particles (lighter than

that scale) yield more or less the same log factors.

The rest of this paper is organized as follows. After setting our notation and conven-

tions in Sec. 2, an estimation of the physical vacuum is attempted in various effective low

energy SUSY models in Sec. 3. Next, section 4 describes briefly the most dangerous direc-

tions that could lead to unphysical situations and Sec. 5 is an outline of our calculational

scheme. In Sec. 6 we give a brief summary of our results and section 7 summarizes our

conclusions. Finally, detailed formulae for the various mass matrix elements involved in

one loop expressions of the effective potential are presented in Appendices.

2. The Physical Set-up

Let us briefly review some of the basic ingredients required for our analysis. A globally

supersymmetric and SU(3)C ⊗ SU(2)L ⊗U(1)Y gauge invariant Lagrangian with minimal

content can be constructed from the usual R-symmetry conserving superpotential1

W = YeL̂
jÊcĤi

1ǫij + YdQ̂
jaD̂c

aĤi
1ǫij + YuQ̂

jaÛ c
aĤi

2ǫij + µĤi
1Ĥj

2ǫij (2.1)

where Q̂T = (û d̂), Û c, D̂c are the Quark Superfields, L̂T = (ν̂ ℓ̂), Êc are the Lepton

Superfields and ĤT
1 = (Ĥ1 ĥ1), ĤT

2 = (ĥ2 Ĥ2) are the Higgs Superfields. Generally the

Yukawa matrices Yu, Yd, Ye and the parameter µ are complex.

In order to explicitly break supersymmetry as required by experiment, while keeping

quadratic divergences suppressed, a collection of soft terms is added to the Lagrangian.

These include: mass terms for all scalar fermions and gauginos, bilinear terms for the

Higgs bosons and trilinear interactions between sfermions and Higgses. Consequently, the

most general soft SUSY breaking Lagrangian with real mass terms in this minimal scheme

is2

LSOFT = −1

2
M1(B̃B̃) − 1

2
M2(W̃ΓW̃Γ) − 1

2
M3(G̃RG̃R)

−m2
H1

|H1|2 −m2
H2

|H2|2 −m2
Q̃
|Q̃|2 −m2

D̃c |D̃c|2 −m2
Ũc |Ũ c|2

−m2
L̃
|L̃|2 −m2

Ẽc|Ẽc|2 − (heL̃
jẼcHi

1ǫij + hdQ̃
jaD̃c

aHi
1ǫij

+huQ̃
jaŨ c

aHi
2ǫij + H.c.) − (BµHi

1Hj
2ǫij + H.c.) (2.2)

Here H1, H2 are the ordinary Higgs boson doublets, Q̃, D̃c, Ũ c, L̃, Ẽc are the squark-

slepton scalar fields and h ≡ Y A, where A is a 3×3 matrix containing the “soft” trilinear

scalar couplings. All extra soft parameters except masses are generally complex.

Altogether one would then need more than 100 real parameters to describe SUSY

breaking in full generality. Clearly, some simplifying assumptions are necessary if we want

to make comprehensive scans in parameter space. Specifically, we shall work with real

1i, j are SU(2) indices, a is a color index (family indices are suppressed). Also ǫ12 = +1.
2B̃, W̃ , G̃ stand for gauginos (Weyl spinors) and Γ, R are SU(2), SU(3) group indices respectively.
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and diagonal Yukawa couplings where all non-zero entries are positive. Also µ, B and

all trilinear soft couplings A are assumed to be real. In our analysis we shall also keep

Yukawas and trilinear soft couplings from light families, since their contributions to the

one-loop effective potential (our main objective) are not always negligible for an arbitrary

field configuration. For clarity reasons, we simplify the notation using Y 1
u = Yu, Y

3
u =

Yt, Y
1
e = Ye, Y

3
d = Yb and similarly for the trilinear couplings.

A dramatic decrease of the unknown parameters arises when the minimal model just

presented is embedded into various supergravity scenarios. The simplest case of the MSSM

results from coupling with N = 1 Supergravity. This leads to the following “universal”

scenario at a very large scale MX ≃ 2×1016 GeV with: (1) Common gaugino mass : m1/2,

(2) Common scalar mass : m0, (3) Common trilinear scalar coupling : A0. This reduces the

number of free parameters describing SUSY breaking to just four : The gaugino mass m1/2,

the scalar mass m0, the trilinear and bilinear soft breaking parameters A0 and B, which

is conventionally trade with the Higgs VEV ratio tanβ = 〈H0
2 〉/〈H0

1 〉. We also assume

unification of the gauge couplings at the scale MX , while no specific relation is assumed

for the Yukawa couplings there.

However, more complicated alternatives also exist which give definite predictions for

scalar, gaugino masses and soft trilinear terms appearing in Eq. (2.2). As we have men-

tioned in the introduction, one such possibility is the recently proposed 5D supergravity

model of Ref. [9]. In this model the chiral matter content resides on two 4D branes sepa-

rated in the extra dimension. Higgs bosons as well as gravity and gauge multiplets reside in

the bulk. It is then shown that the SUSY breaking effects from the hidden sectors localized

on the branes are transmitted to the visible sector fields located on the same brane and

bulk gauginos through gravitational couplings. Trying to overcome the SUSY flavor prob-

lem, two SUSY breaking scales m1,m2 are introduced at the separated branes B1 and B2,

respectively. Then the localized chiral multiplets at B1(B2) could get soft SUSY breaking

effects of order m1(m2). Assuming that the first two generations reside at B1 and the third

one is at B2, the following non universal soft terms are derived

m2
0,i =

8m2
1

9
(δi1 + δi2) +

8m2
2

9
δi3 (2.3)

A0,i =
4m1

3
(δi1 + δi2) +

4m2

3
δi3 (2.4)

where i runs on three generations. Mass terms for the gauginos can be generated at tree

level in a D = 5 off-shell SUGRA formalism [20]. If SUSY is spontaneously broken at

brane B1, heavy gaugino masses given by m1/2 ≃ m1 (M∗/MP ), where M∗ is a 5D SUGRA

fundamental scale and MP is the reduced 4D Planck scale, could give rise to large radiative

corrections to the Higgs mass and spoil the naturalness solution. However, a not so “large”

extra dimension, for example of the order of L−1 ∼ 1016 GeV (or M∗ ≃ 10L−1 ∼ 1017 GeV)

suppresses the gaugino masses to 1 TeV scale. Note that the cutoff scale Λc introduced to

obtain an effective 4D theory from the 5D one, is of the order of the extra dimension. Hence,

the effective theory below Λc ∼ MX resembles the familiar gravity mediated scenario of

MSSM.
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In order to discuss the physical implications of these models at low-energies, we have

to determine the evolution of the various “couplings” at experimentally accessible energies.

For that reason, we use two loop RGEs with all thresholds of the various particles included

[21, 22].

3. Estimating the physical vacuum at low energies

Regardless of the physical scenarios describing physics at high energies, low energy world

could be best described by a softly broken supersymmetric theory. In such a framework,

the elegant ideas of supersymmetry, unification and radiative symmetry breaking coexist.

The minimal supersymmetric extension of standard model (MSSM) incorporates all the

above. Because of its minimal content and the radiatively induced symmetry breaking, it

is the most predictive of analogous theories. Let us denote by φ the scalar field collection of

MSSM. Since MSSM is expected to be a stable theory, its full effective potential Vfull (scale

independent) must have a global minimum (physical vacuum). At the physical vacuum, the

only scalar fields that should acquire non-trivial expectation values (VEV) would be the

neutral Higgs components. Simply speaking, the VEV configuration there should read:3
(

〈H0
1 〉, 〈H0

2 〉; 0
)

.

We know that MSSM depends on a minimal set of free parameters (A0, m0, m1/2,

tan β). On general grounds one expects that, for some values of them, Vfull might be

unbounded from below (UFB) (no physical vacuum). For others, a global minimum may

exist where additional scalar fields acquire non-trivial VEVs breaking in this way at least

one of the other gauge symmetries (U(1), SU(3)), a fact that clear contradicts experiment.

How should we protect the theory from cases like that? The most straightforward way is

direct minimization of Vfull for each “point” (A0,m0,m1/2, tan β) and exclusion of the cases

that give non-physical results.

Let us employ this procedure for a physically stable “point” where only SU(2) is

broken. To compute the VEVs we group the scalar fields into two subsets: φ = {H0
i ;χk}

where i = 1, 2 and k runs on the rest scalars. Applying the stationary conditions we get:

∂Vfull (H
0
1 ,H

0
2 ;0)

∂H0
i

∣

∣

∣

∣

(〈H0
1 〉,〈H0

2 〉)
= 0 and

∂Vfull (〈H0
1 〉, 〈H0

2 〉;χ)

∂χk

∣

∣

∣

∣

χ=0
= 0 (3.1)

From a more practical point of view, one must construct an approximation of these abstract

conjectures using loop expansion [23]. Indeed, at one-loop level the effective potential [24]

becomes scale dependent and we can write

Vfull ≈ V1−loop(H0
1 ,H

0
2 ,χ;Q) ≡ Ω

′

+ V (0) + V (1) (3.2)

where Q is the renormalization scale and Ω
′

is a field independent quantity [25] that should

be added to preserve scale invariance at one-loop level. On the other hand, V (0) and V (1)

are the classical and one-loop corrections to the scalar potential respectively.

3Since Vfull is SU(2) symmetric, we can choose either 〈H0
1 〉 or 〈H0

2 〉 to be a real non-trivial number.

Then the reality of the other should arise from the minimization conditions.
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Since V (0) is at least a second degree polynomial in χk, its first derivatives with respect

to χk vanish at physical vacuum and the 1-loop approximation to Eq. (3.1) will become

∂V1−loop(H0
1 ,H

0
2 ,0;Q)

∂H0
i

∣

∣

∣

∣

(〈H0
1 〉,〈H0

2 〉)
≈ 0 and

∂V (1)(〈H0
1 〉, 〈H0

2 〉,χ;Q)

∂χk

∣

∣

∣

∣

∣

χ=0

≈ 0 (3.3)

In order to proceed further, we consider the “reduced” function V1−loop(H0
1 ,H

0
2 ,0;Q) and

expand around the exact one-loop solution (v1, v2), 〈H0
1 〉 = υ1 + δυ1, 〈H0

2 〉 = υ2 + δυ2

where δυi are of higher-loop order. We get

∂V1−loop(H0
1 ,H

0
2 ,0;Q)

∂H0
i

∣

∣

∣

∣

(υ1,υ2)

= 0 (3.4)

Solving this system of equations, we get the one-loop approximation of the so called physical

vacuum. As an example, we will present the well known expressions for the physical vacuum

at tree level. The associated “reduced” function is

V (0)(H0
1 ,H

0
2 ,0;Q) = m2

1|H0
1 |2 +m2

2|H0
2 |2 + 2m2

3(H
0
1H

0
2 ) +

g2 + g2
2

8
(|H0

1 |2 − |H0
2 |2)2 (3.5)

and its value at the minimum is [13]

V
(0)
ph = −

[

m2
1 −m2

2 + (m2
1 +m2

2) cos 2β
]2

2(g2 + g2
2)

(3.6)

where tan β stands for the VEV’s ratio at tree level.

We stress here that the “reduced” function V1−loop(H0
1 ,H

0
2 ,0;Q) appearing in (3.4) can

be used solely as far as the computation of υ1, υ2 is concerned. It is completely unsuitable

for drawing any conclusions about the kind of Vfull ’s stationary points. Nevertheless, these

“reduced” functions can help us to study more general cases. Practically, one selects a

“direction” in the field space4 whose “reduced” function collects the deepest values of Vfull ,

at the approximation level we work, and excludes its trace from the model’s parameter

space whenever it leads to a non-physical picture.

4. Classification of dangerous directions in a nutshell

Scalar potential in SUSY models receives contributions from three sources: D-terms, F -

terms and soft-breaking terms. D-terms provide a quartic contribution V ∼ λφ4 with

λ ≥ 0. The special case λ = 0 can only occur along special directions in field space known

as “D-flat directions”. Along such a flat direction the quartic potential takes the form

V ∼ (φ2
1 − φ2

2)
2 → 0 as |φ1| → |φ2|, which may render |φi| running off to infinity. Whether

or not this occurs, will depend on the magnitude of the other contributions (F -terms, soft

terms).

F -terms, in turn, due to their supersymmetric nature contribute quadratic, cubic, and

quartic terms to the potential. This does not mean, however, that the minimum of the

4Of course, now all the scalar fields are allowed to participate
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potential lies at the origin. Rather, it means that directions in field space with non-zero

quartic F contributions will be well-behaved far away from the origin. Still, there will be a

subset of the D-flat directions which are also F -flat and whose behavior will be completely

controlled by soft-breaking terms.

The soft mass contributions, on the other hand, are problematic, as they can have

either sign. Because they contribute to only the quadratic and cubic pieces of V , one can

analyze their structure most readily along flat directions in which the quartic pieces all

vanish. Then, one finds two distinct types of problems which may arise: potentials that

are unbounded from below (UFB), or potentials which break charge and/or color (CCB) at

their minima. Following Ref. [12, 13], we will present a tree level based classification of the

various dangerous directions in various low energy supersymmetric models with universal

or non-universal soft terms.

4.1 UFB cookbook

In order to present the most dangerous of the UFB directions, it is useful to notice some

general properties:5 Soft trilinear scalar terms AY F̃HF̃ c cannot influence dramatically a

UFB direction, since for large enough values of the fields the relevant F -terms dominate.

The only negative contributions in V (0) that can affect a UFB direction are:6 m2
2|H2|2,

−2|m2
3||H1H2|. Since these terms are quadratic, along a UFB direction all the quartic

positive terms coming from F - and D-terms must be vanishing or kept under control.

• UFB-1 The first possibility is to play with just H1,H2. This is the ordinary example of

a UFB direction found in the neutral Higgs potential along the direction |H1| = |H2|. As

with all UFB potentials, there is no quartic contribution to the potential along this direction

(a cubic piece is also absent here). In the present framework, since we are mainly interested

in the effect of one-loop corrections, we will also allow the charged Higgs components to

participate. This is calculationally tractable only for this case contrary to the subsequent

ones. Our choice for the “reduced” function will be7

VUFB−1 = V (0)(H1, h1,H2, h2) + V (1)(H1, h1,H2, h2), (4.1)

V (0) = m2
1

(

|H1|2 + |h1|2
)

+m2
2

(

|H2|2 + |h2|2
)

+ 2m2
3 (H1H2 − h1h2)

+
g2
2

2
|H1h2 + h1H2|2 +

g2 + g2
2

8

(

|H1|2 + |h1|2 − |H2|2 − |h2|2
)2

(4.2)

and V (1) necessary ingredients are presented in Appendix C.

• UFB-3 One other possibility is to take H1 = 0, H2 6= 0. We shall try to control

the term |µH2|2 by introducing some squarks or sleptons. Notice that a nontrivial Ũ c
ra

(specific r, a) will produce dominant F -terms, so it must be excluded. Using the fact that

Q̃T ≡ ( ũ d̃ ) and L̃T ≡ ( ν̃ ℓ̃ ), the remaining F -terms are

|Y r
u ũ

a
rH2|2 +

∣

∣

∣
Y r

e ν̃rẼ
c
r + Y r

d ũ
a
rD̃

c
ra

∣

∣

∣

2
+
∣

∣

∣
µH2 + Y r

e ℓ̃rẼ
c
r + Y r

d d̃
a
rD̃

c
ra

∣

∣

∣

2

5In what follows H0
1,2 = H1,2, H−

1 = h1, H+
2 = h2. In addition r, s, t stands for family indices and i, j; a

are SU(2); SU(3) indices respectively.
6Throughout, we use the convention m2

3 = µB < 0.
7With no harm of generality, we will assume real fields.

– 8 –



If we impose ũa
r = 0, then the non-trivial terms will become

|Y r
e ν̃rẼ

c
r |2 +

∣

∣

∣µH2 + Y r
e ℓ̃rẼ

c
r + Y r

d d̃
a
rD̃

c
ra

∣

∣

∣

2

Further suppression can be achieved in two ways:

a) Ẽc
r = 0, and D̃c

ra 6= 0 and d̃a
r 6= 0 for a specific value of r, a.

In this case we do not eliminate quartic terms, but we try to neutralize their effect

using additional scalars. It is not difficult to see that the strongest constraint arise

for r = 3 (a whatever). An intuitive argument in favor of this is considering the

soft squark contribution m2
D̃c |D̃c|2 to V (0). As we approach lower values of V (0), the

relevant quartic F -term deactivation leads to |D̃c|2 → |µH2|/Yd. So, sbottom gives

the less positive contribution. Control of D-terms also necessitates the presence of

some slepton doublet provided that it does not introduce additional F -terms. H1 or

charged Higgs h1, h2 cannot play this role due to non-trivial quartic terms. Thus,

the simplest choice which gives a minimal positive soft contribution and suppresses

the quartic D-term |H2ℓ̃r|2 is L̃T
r ≡ ( ν̃r 0 ) 6= 0 for some specific r. Our “reduced”

function will then be

VUFB−3a = V (0)(H2, d̃3, D̃
c
3, ν̃3) + V (1)(H2, d̃3, D̃

c
3, ν̃3), (a = 1) (4.3)

V (0) = (m2
2 − µ2)|H2|2 +m2

L̃3
|ν̃3|2 +m2

Q̃3
|d̃3|2 +m2

D̃c
3

|D̃c
3|2

+
∣

∣

∣
µH2 + Ybd̃3D̃

c
3

∣

∣

∣

2
+
g2

8

(

|ν̃3|2 −
1

3
|d̃3|2 −

2

3
|D̃c

3|2 − |H2|2
)2

+
g2
2

8

(

|ν̃3|2 − |d̃3|2 − |H2|2
)2

+
g2
3

6

(

|d̃3|2 − |D̃c
3|2
)2
. (4.4)

b) D̃c
ra = 0, and ℓ̃r 6= 0 and ν̃r = 0 and Ẽc

r 6= 0 for some specific r.

Similarly as in the case (a), the strongest constraint comes for r = 3. Further control

of D-terms requires a slepton doublet from another family (h2 is inappropriate since

it introduces quartic terms). So we take L̃T
s ≡ ( ν̃s 0 ) 6= 0 and Ẽc

s = 0 for some

specific s 6= r. Choosing s = 2, we get the following “reduced” function

VUFB−3b = V (0)(H2, ℓ̃3, Ẽ
c
3, ν̃2) + V (1)(H2, ℓ̃3, Ẽ

c
3, ν̃2), (4.5)

V (0) = (m2
2 − µ2)|H2|2 +m2

L̃3
|ℓ̃3|2 +m2

L̃2
|ν̃2|2 +m2

Ẽc
3

|Ẽc
3|2

+
∣

∣

∣µH2 + Yτ ℓ̃3Ẽ
c
3

∣

∣

∣

2
+
g2

8

(

|ν̃2|2 + |ℓ̃3|2 − 2|Ẽc
3|2 − |H2|2

)2

+
g2
2

8

(

|ν̃2|2 − |ℓ̃3|2 − |H2|2
)2

(4.6)

while V (1) pieces are shown in Appendix D.
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4.2 CCB cookbook

CCB most readily occurs along directions which are D-flat, though not necessarily F -

flat (the φ4 contributions to the potential are suppressed by Yukawas). In order to gain

intuition about CCB, let us present some general comments: The most dangerous CCB

directions involve only one particular trilinear coupling of one generation. Two or more

trilinear couplings with different values of Y can not interfere constructively in the same

region of field space to deepen the potential. The CCB directions we explore are not F -flat,

so the most restrictive are those with the smallest non-vanishing F -terms. Since they are

proportional to the respective Yukawa coupling, we expect cases with the lightest Y to be

more restrictive. The most dangerous CCB directions are:

• CCB-Ea Our goal here is to keep only the “light” Ae trilinear coupling. For that

reason we assume H1 6= 0, Ẽc
r 6= 0, L̃T

r = ( ν̃r ℓ̃r ) 6= 0 (for some specific r). The relevant

F -terms are

|Y r
e ν̃rẼ

c
r |2 + |Y r

e ℓ̃rẼ
c
r |2 + |µH1|2 + |Y r

e H1Ẽ
c
r |2 + |Y r

e ℓ̃rH1|2

Obviously further suppression is possible so we choose ν̃r = 0 (the case ℓ̃r = 0 kills the

Ae trilinear term) and introduce some squarks (sleptons will add a new A) to control the

pure Higgs F -term. We can take Q̃aT
s = ( ũa

s d̃
a
s ) 6= 0, and Ũ c

sa 6= 0 (for some specific s, a).

Then the relevant F -term becomes

∣

∣

∣µH1 − Y s
u ũ

a
s Ũ

c
sa

∣

∣

∣

2
+ |Y s

u d̃
a
s Ũ

c
sa|2

and the minimal choice is for d̃a
s = 0. Using a similar intuitive argument as in UFB case, we

conclude that Yt gives the smaller positive F -term. Choosing r = 1 (lighter Yukawa), s = 3,

a = 1 makes further control of D-terms unnecessary. Putting altogether, the “reduced”

function becomes

VCCB−Ea = V (0)(H1, ℓ̃1, Ẽ
c
1, ũ3, Ũ

c
3) + V (1)(H1, ℓ̃1, Ẽ

c
1, ũ3, Ũ

c
3 ), (4.7)

V (0) = (m2
1 − µ2)|H1|2 +m2

Ẽc
1

|Ẽc
1|2 +m2

L̃1
|ℓ̃1|2 +m2

Q̃3
|ũ3|2 +m2

Ũc
3

|Ũ c
3 |2

+ 2YeAeℓ̃1Ẽ
c
1H1 +

∣

∣

∣
µH1 − Ytũ3Ũ

c
3

∣

∣

∣

2
+ |Yeℓ̃1Ẽ

c
1|2 + |YeẼ

c
1H1|2 + |Yeℓ̃1H1|2

+
g2

8

(

|ℓ̃1|2 − 2|Ẽc
1|2 −

1

3
|ũ3|2 +

4

3
|Ũ c

3 |2 + |H1|2
)2

+
g2
2

8

(

|ℓ̃1|2 − |ũ3|2 − |H1|2
)2

+
g2
3

6

(

|ũ3|2 − |Ũ c
3 |2
)2
. (4.8)

• CCB-Eb The other way to keep Ae is by two Higgses H1 6= 0,H2 6= 0. Now one should

allow the same sleptons Ẽc
r 6= 0, L̃T

r = ( ν̃r ℓ̃r ) 6= 0 (for some specific r). However, here we

cannot use squarks or sleptons to compensate the H1 F -term, because this will introduce

an additional trilinear coupling. The relevant F -terms will be

|Y r
e ν̃rẼ

c
r |2 +

∣

∣

∣Y r
e ℓ̃rẼ

c
r + µH2

∣

∣

∣

2
+ |µH1|2 + |Y r

e Ẽ
c
rH1|2 + |Y r

e ℓ̃rH1|2.
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By taking ν̃r = 0, we ensure minimal F -terms without killing the trilinear contribution.

In the lighter case (r = 1), further control of D-terms is not necessary, so our “reduced”

function will be

VCCB−Eb = V (0)(H1,H2, ℓ̃1, Ẽ
c
1) + V (1)(H1,H2, ℓ̃1, Ẽ

c
1), (4.9)

V (0) = m2
1|H1|2 +m2

2|H2|2 +m2
L̃1
|ℓ̃1|2 +m2

Ẽc
1

|Ẽc
1|2 + 2m2

3H1H2

+ 2Yeℓ̃1Ẽ
c
1(µH2 +AeH1) + |Yeℓ̃1Ẽ

c
1|2 + |YeẼ

c
1H1|2 + |Yeℓ̃1H1|2

+
g2

8

(

|H1|2 + |ℓ̃1|2 − 2|Ẽc
1|2 − |H2|2

)2
+
g2
2

8

(

|H2|2 + |ℓ̃1|2 − |H1|2
)2

(4.10)

Expressions of V (1) are presented in Appendix E.

5. Calculational Scheme

Let us now describe the method used to probe the dangerous directions just presented. As

is well known, one-loop effective potential depends on the eigenvalues of the tree level mass

matrices. To be more accurate, these corrections are derived under the assumption that

the potential is resting at a tree level minimum (eigenvalues of ∂ijV
(0) positive). However,

in a UFB case we need to define the one-loop corrections away from a classical minimum.

Hence several eigenvalues of the scalar mass matrix may be negative leading to a complex

valued function. These contributions are a signal that the sum of one-particle irreducible

diagrams V1PI does not give the effective potential. Formally, in a case like that we must

use the convex envelope of V1PI, which in the vicinity of a classical minimum matches the

usual loop expansion. Trying to estimate the one loop corrections despite non-convexity of

the effective potential, we adopt a moderate approach, namely V (1) everywhere is given by

the real part of the ordinary one-loop expressions [26, 27]. Thus, in a mass-independent

renormalization scheme (DR) [28] V (1) is given by (Q̃ = Qe3/4)

V (1) = k
∑

p
(M2

p 6=0)

V
(p)
1 with V

(p)
1 =

(−1)2Sp

4
(2Sp + 1)Cp NpM

4
p (φ) ln

|M2
p (φ)|
Q̃2

(5.1)

where k = (16π2)−1. Mp stands for the tree level mass eigenvalue of the pth particle, Np

is the number of its helicity states and the associated spin, color degrees of freedom are

denoted by Sp, Cp respectively. It is evident from (5.1) that in the case of a single mass

scale a judicious choice of the renormalization scale (Q2 = M2(φ)) eliminates all large logs.

However, in the case of many different mass scales any renormalization scale will leave

large logs remnants behind, so that we need higher loop corrections in the loop expansion

to trust the results.

The heart of the problem lies in the renormalization scheme we use (DR). For a mass

independent scheme the decoupling of various mass states is not automatic and has to

be incorporated. Hiding all heavy particle loop contributions in a redefinition of some

lower energy parameters, we secure that all masses smaller than a given scale (decoupling
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scale) behave as massless, while larger masses decouple and never generate problems in

perturbation theory. Below a decoupling scale the theory is an effective field theory with

new RGEs, while threshold effects take care of the matching between both theories at the

boundary scale.

A simple way to realize this scenario is to treat the thresholds as steps in the particle

content of the RGE β-functions [22]. Usually one integrates the RGEs from a superlarge

scale MX to any desirable value of Q. As we come down from MX , as long as we are at

scales larger than the heaviest particle threshold, we include contributions from all particles

in the model. When we cross the heaviest particle threshold, we switch to a new effective

field theory with the heaviest particle integrated out and of course a new β. For field

configurations in the low energy regime (. 300 GeV), the condition to determine the exact

point of decoupling is simply Q̃2 = |m2(Q)|, where m2(Q) is the running soft parameter

corresponding to the particle.8 Obviously, the step functions in RGEs will have the form

θm = θ(Q̃2−|m2(Q)|). Alternatively, for all other field configurations, the decoupling points

are fixed by Q̃2 = |M2(φ;Q)|, whereM2 is the field dependent mass eigenvalue of a particle.

Analogously, the step functions in RGEs will now become θM = θ(Q̃2−|M2(φ;Q)|), where

φ are in principle all the relevant fields along the dangerous direction under consideration.

Additionally, knowing that the minimum of V (0) lies at a non trivial field configuration, a

suitable generalization of vacuum subtraction in Eq. (3.2) is given (at one-loop order) by

[25]

−Ω
′

= V (0)(〈H1〉, 〈H2〉;0) + V (1)(〈H1〉, 〈H2〉,0;Q) (5.2)

Finally, we also replace the potential (5.1) by [17]

V (1) = k
∑

i

V
(1)
i θi where θi ≡ θ

(

Q̃2 − |M2
i (φ;Q)|

)

(5.3)

One other issue is that of choosing the renormalization point. Following [18], we use

a prescription that preserves the hierarchy (|V (0)| & |V (1)|) and has a continuous field

dependence

Q̃∗ = 10ω(x)
√

Φ · Φ, Φ · Φ =
∑

i

φ2
i (5.4)

where x = log(
√

Φ ·Φ/Λ) (Λ = 1 GeV makes the log argument dimensionless), φi are the

scalar fields involved in the dangerous direction under consideration and our ansatz for

ω(x) is given in Appendix F.

We stress here that not only the effective potential in Eq. (5.3), but also the β functions

in RGEs do depend on the same step functions

dξ

d lnQ
= βξ

(

θi(Q̃
2 − |M2

i (φ;Q)|)
)

(5.5)

Formally, we can integrate these implicitly field dependent RGEs to the appropriate renor-

malization scale Q̃∗ and then construct the required effective potential. However, from

a practical point of view using all the relevant scalar fields involved in Eq. (5.5) requires

8We use the factor e3/4 for compatibility with Eq. (5.1).
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excessive computational time. The computation of the field dependent mass eigenvalues

M2
i (φ;Q) is very complicated due to higher dimensional mass matrices and has to be re-

peated for each integration step taken internally by our numerical integrator. A possible

way out is to restrict ourselves to the neutral Higgs subset of φ’s solely in Eq. (5.5). In that

case the mass eigenvalues are trivially given by solving algebraic equations, but the most

important is that the computational time is reduced by several times. We stress here that

this kind of approximation is applied only to the β functions in RGEs (Eq. (5.5)) and not

to the effective potential (Eq.(5.3)) otherwise loop expansion is in danger. We have also

checked the results of the two alternatives just described for some representative points of

the parameter space and found no significant difference. So, finally in our investigation we

have adopted the second way which is the quickest.

To complete the picture, one also needs some “boundary scale” Qhigh where the starting

values of the running parameters (couplings, fields) should be provided for the evolution at

Q∗. Notice that now, due to field dependent thresholds in β functions, the RGE evolution

for Q < Qhigh depends on the field point we are. A convenient choice for Qhigh , besides

the unification scale, is an intermediate scale higher than the largest field dependent mass

eigenvalue at the current field point. Valid choices for Qhigh are Qhigh & 2.12φ∞, where φ∞
stands for the upper bound order of magnitude of the allowed values for the scalar fields

[18]. Besides, we also need to know the values of the running parameters and fields there.

For the fields the most plausible option is to take φ(Qhigh) = φ0 where φ0, is the field point

we examine. Since Qhigh is above all thresholds, the required values for the couplings there

should not depend on the background fields and a reasonable choice is

λα(Qhigh ;φ0) = λα(Qhigh ; 〈H1〉, 〈H2〉,0) (5.6)

where the RHS is obtained by running [22] the couplings from their known values at

MZ when the potential is resting at its physical vacuum. Evolving this set of values

{φ0, λα(Qhigh ; 〈H0
1 〉, 〈H0

2 〉,0)} from Qhigh to Q∗ using field dependent thresholds, the ef-

fective potential at the current field point can be constructed.

Minimization of the effective potential is performed numerically. Since analytic expres-

sions for the derivatives are not available, we resort to methods that require only function

evaluations. One such very efficient method is the downhill Simplex method [29]. A sim-

plex (or polytope) in n dimensional Euclidean space is a construct with n + 1 vertices

defining a volume element. For instance, in two dimensions the simplex is a triangle, in

three dimensions is a tetrahedron and so on. Using a population of n+ 1 points (simplex

vertices), the algorithm brings the simplex in the area of a minimum and adapts it to

the local geometry. The initial Simplex may be constructed from the current point (first

vertex) by taking a single step along each of the n dimensions.

6. Results

Using the procedure outlined above and Merlin package [30], we explored regions of MSSM

parameter space for unphysical vacuua. We begin our discussion for the allowed parameter

space in the (m0,m1/2) plane. We fix tanβ to be 2 or 10, and take A0 = 0. Our search
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Figure 1: Exclusion plots in the m0 vs m1/2 plane for the UFB-3b direction

was performed in the range (0, 500) GeV for both axis and the grid was scanned with 25

GeV resolution. In Fig. 1 the shaded regions to the left of the solid line display points
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Figure 2: Exclusion plots in the m0 vs A0 plane for the UFB-3b direction
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Figure 3: Exclusion plots in the m0 vs m1/2 plane with the additional constraint A0 = −m1/2 for

the UFB-3b direction

where UFB-3b escapes were discovered. These parameter values with m0 smaller than

m1/2 indicate that much of the mSUGRA parameter space associated with light sleptons

is ruled out. It is also worth noting that higher values of tan β weaken these constraints.

Although Fig. 1 is plotted for A0 = 0, a similar excluded region results for other

choices of the A0 parameter. An analogous plot in Fig. 2 displays the effect of variation in

the trilinear A0 parameter in combination with m0 for fixed m1/2 at 200 GeV. Again, as

usual, we fixed tanβ to be 2 or 10. Performing a numerical minimization along the UFB-

3b direction, unphysical configurations were found only for initial values taken from the

shaded regions. Similarly, we find out that the vacuum constraints disfavor light slepton

cases.

We have also examined a more general non-universal case coming from string models,

which encompasses the special case where supersymmetry is broken in the dilaton sector.

In the latter case one is led to GUT scale soft terms related by m1/2 = −A0 =
√

3m0.

However, in our examination we treat m0 as a free parameter. We performed scans in the

(m0,m1/2) plane with the usual values for tanβ (2 or 10). Numerical minimization showed

that for small m0 much of the parameter space is excluded by the UFB-3b constraint, as

shown in Fig. 3. Furthermore, it is easy to see that the so-called dilaton dominated scenario

corresponds to a straight line located entirely inside the forbidden region.

A similar scan in the parameter space of the MSSM has also been performed along

the dangerous direction CCB-Eb. We considered again the three different regions depicted

in Figs 1-3. Using the simplex minimization procedure and the one-loop expressions in
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Appendix E, we found no dangerous CCB minima. Tree level constraints described in

Appendix B have also considered, as the numerical procedure scanned various field con-

figurations and found that they are not violated for fields |φ| ∼ Ae/Ye ∼ 103/10−5 GeV

∼ 108 GeV. In great measure this is due to the large and positive contribution to the

potential of the soft masses and especially m2
1. Let us stress here that our renormalization

scale choice depends on the field point we are. If at some field point φ0 the renormal-

ization scale Q∗
0 = Q∗(φ0) does reverse the inequality of a tree level constraint, then the

tree level potential constructed from “soft” parameters at the specific scale Q∗
0 will be

deeper than the physical vacuum for fields |φd| ∼ Ae(Q
∗
0)/Ye(Q

∗
0). In other words, tree

level constraints signal an unphysical situation only if they are violated for fields of the

order ∼ Ae(Q
∗)/Ye(Q

∗).
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Figure 4: Exclusion plots for the m1 vs m2 plane in a brane world model.

We next focus our attention on the non-universal brane model and perform a scan for

unphysical vacuua. In that case, due to non-universality, sparticles may generate too large

flavor-changing (FC) effects but the specific brane model offers a mechanism for suppressing

these dangerous processes. In this scenario, pushing the SUSY breaking scale at the first

brane high enough (m1 ≃ 10 − 20 TeV), the masses of the first and second generations

scalars will become sufficiently heavy to avoid the flavor problem. On the other hand,

introducing a second SUSY breaking scale (m2) attached to the second brane constrains

the heavy scalars to be not much heavier than 1 TeV or so to preserve the gauge hierarchy.

We have performed scans in the (m1,m2) plane for the values described above. Our results

for tan β = 2, 10 are shown in Fig. 4, where one can also see the regions excluded by

phenomenological constraints9 or/and by unphysical vacuua driven radiatively by negative

scalar mass eigenvalues. Note that in the case tan β = 10, µ > 0 the parameter space is

strongly restricted allowing only a very small “window” for phenomenology.

9By this we mean either no electroweak breaking or no mass for the gluino or violation of the experimental

bounds for superpartners masses

– 16 –



Unfortunately, an analytical treatment of these issues is tedious and leads to very

unwieldy expressions [31]. Relaxing our preciseness requirements, we can intuitively realize

the strength of a dangerous direction by resorting to the familiar tree level expressions.

Constraints based on tree level logic have been thoroughly studied in the past [12, 13, 15]

and our intention here is not to reproduce these analyses, but merely to use them as an

alternative confirmation since our renormalized effective potential respects perturbation

series hierarchy. Indeed, as one can see in Appendix A, the global minimum of Eq. (4.2)

(UFB-1 case) is not deeper than the physical vacuum, a fact that has been also numerically

justified at one-loop level.

One way to test reliability of the effective potential is by checking scale invariance

[27, 31, 32]. In our case the chosen scale10 can not vary arbitrarily, since this endangers

convergence of loop expansion. For very large values of scale θ steps in V (1) allow all

heavy masses and loop corrections become huge. We have tried several scale prescriptions

(various ω choices) and found that only the location of a UFB-3b escape is sensitive to

scale variations. We believe that this sensitivity is due to cancellations that take place

along a UFB-3b escape and higher loop effects. Since our expressions are only one-loop

scale invariant, the higher loop difference is amplified by these cancellations and appears

as a small “rotation” of the escape trajectory. The important point is that the physical

picture remains unchanged: whatever ω(x) one chooses (within perturbativity constraints)

cannot render an unstable potential stable and vice versa.

In the present work we mainly focus on an explicit treatment of the effect one loop

radiative corrections may have on various UFB and CCB dangerous directions in super-

gravity models. Due to the intrinsic complexity of this subject, as well as the theoretical

problem of multiple mass scales these issues have not been straightly touched upon in the

past. Here for the first time, implementing a sophisticated threshold technique [17, 18]

outlined in Sec. 5, we were able both to overcome the multiscale problem and deal ex-

plicitly with the radiative corrections. We believe that this is a more complete approach

leading to more reliable results and corresponding plots. Practically, our improved results

are in broad agreement with previous investigations [13, 15]. However, a more detailed

comparison is highly non-trivial due to the variety of methods implemented by the various

authors.

7. Conclusions

Minimal SUGRA scenarios provide a well motivated and phenomenologically viable frame-

work of how weak scale supersymmetry might occur. Unfortunately, one has to pay the

price of introducing extra degrees of freedom and new parameters leading to the appear-

ance of new sources of flavor changing and CP violating processes, large number of new

parameters and complicated scalar sector of the theory. On the other hand, the way low

energy is related to the fundamental theory may shed some light to the solution of these

problems.

10Note that our renormalization point is field dependent rendering Ω′ in Eq. (5.2) a non trivial subtraction
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In this paper, trying to constrain the parameter space of some mSUGRA models as

described in introduction, we follow a strategy of finding regions in the general scalar field

configuration space which have inferior values than the physical vacuum. The argument is

that, if this configuration is not a minimum, an unbounded from below direction or a global

minimum with charge and/or color broken surely exists somewhere and the associated point

in parameter space should be excluded from consideration.

We have analyzed the relevant potentials employing the full one-loop radiative cor-

rections in the calculation. Because of the various mass scales present in these models,

renormalization group improvement of the potential has ambiguities and should be care-

fully treated. Implementing the decoupling theorem in a manner proposed by the authors

of Ref. [17, 18], we treat the various particle thresholds as steps in the β-functions as well

as in the one loop corrections of the scalar potential. We stress here the role played by

the renormalization scale choice, as given in Sec. 5. It should be wisely chosen in order to

eliminate heavy particles whose participation puts in danger the convergence of the loop

expansion (i.e. |V (1)| . |V (0)|).
Employing the framework just stated and using numerical minimization procedure, we

have performed an analysis of how the most dangerous directions put restrictions on the

whole parameter space of the various models described. In both the MSSM case and the

brane world scenario considered, these constraints turn out to be very strong, producing

important bounds not only on the value of A (soft trilinear coupling), but also on the values

of m1/2 (gaugino masses) and m0 (scalar masses). Our analysis is summarized in Figs 1-4.

As a general trend, the smaller the value of m0 the more restrictive the constraints become.

Finally, we note that the more or less strict constraints derived here from non-standard

vacuua are avoided if we adopt the idea [33] that we may indeed exist in a false vacuum

and the tunneling rate from our present vacuum to a non-standard one might be small

relative to the age of the universe. However, it is difficult to realize the circumstances

under which the idea that we may live in a false, metastable vacuum could be reconciled

with the existence of a small positive dark energy in the universe, either in the form of a

constant vacuum energy/cosmological constant or in the form of a new scalar quintessence

field, as the recent discoveries suggest [34].
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A. Analytic treatment of UFB-1 at tree level

In this appendix we compute the global minimum of the tree level effective potential along

the UFB-1 direction. Assuming for simplicity real fields, the solution is based on the new

– 18 –



“polar” variables (R1, R2, ϕ, θ) where

H1 = R1 cosϕ h1 = R1 sinϕ H2 = R2 cos θ h2 = R2 sin θ (A.1)

Of course R1 > 0, R2 > 0 for an invertible transformation, thus the trivial case should be

examined separately. If we take both or at least one R trivial, we also find a trivial value

for the potential extremum which is clearly above the physical vacuum shown in Eq. (3.6).

Hence it is sufficient to minimize the function

V (0) = m2
1R

2
1+m

2
2R

2
2+2m2

3R1R2 cos(ϕ+θ)+
g2
2

2
R2

1R
2
2 sin2(ϕ+θ)+

g2 + g2
2

8
(R2

1−R2
2)

2 (A.2)

Solution of the minimization conditions leads to the following cases:

(I) R1R2 cos(ϕ+ θ) = 2m2
3/g

2
2 , ∂R1

V (0) = 0 and ∂R2
V (0) = 0 with R1, R2 6= 0

Solving with respect to R1, R2 we get R2
1 = (m2

2 − m2
1)/g

2 − (m2
1 + m2

2)/g
2
2 , and

R2
2 = (m2

1 −m2
2)/g

2 − (m2
1 +m2

2)/g
2
2 . However, stability along R1 = ±R2, θ = φ = 0

direction dictates positiveness of the m2
1 + m2

2 combination (m2
1 + m2

2 > 2|m2
3|) so

one of R2
1, R

2
2 will be negative. Thus, no stationary solution exists or the potential is

unbounded from below.

(II) sin(ϕ+ θ) = 0, ∂R1
V (0) = 0 and ∂R2

V (0) = 0 with R1, R2 6= 0

In our conventions we always have m2
3 < 0, so smaller values for V (0) are obtained

for cos(ϕ+ θ) > 0. So we should take here cos(ϕ+ θ) = 1 (i.e. θ = −ϕ). The rest of

the extremum conditions will become

m2
1R1 +m2

3R2 + ĝ2R1(R
2
1 −R2

2) = 0

m2
2R2 +m2

3R1 − ĝ2R2(R
2
1 −R2

2) = 0
(A.3)

where ĝ2 = (g2 + g2
2)/4. Solutions for the above system are well known [35]. If we

define t = R2/R1 (obviously t = 1 does not satisfy Eq. (A.3)), the solution in the

ordinary case of radiative SU(2) breaking (m2
1 +m2

2 ± 2m2
3 > 0, m2

1 > m2
2, m

2
1m

2
2 −

m4
3 < 0) is:

t =
−m2

1 −m2
2 −

√

(m2
1 +m2

2 + 2m2
3)(m

2
1 +m2

2 − 2m2
3)

2m2
3

R1 =

√

m2
1 −m2

2t
2

ĝ2(t4 − 1)
(A.4)

and the global minimum configuration is:










H1

H2

h1

h2











min

=











R1 cosϕ

tR1 cosϕ

R1 sinϕ

−tR1 sinϕ











ϕ arbitrary. (A.5)

It is trivial to show that the value at the minimum for this configuration coincides

with the physical vacuum one of Eq. (3.6).
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B. Tree level constraints for CCB-Eb direction

Following closely the notation of [11, 12], we express all fields in Eq. (4.10) in terms of |H1|,
so that |ℓ̃1| = α|H1|, |Ẽc

1| = β|H1|, |H2| = γ|H1|. Since the trilinear terms of our example

have small coupling (|Ye|2 ≪ 1), D-terms should be suppressed. This implies that α = β

and α2 + γ2 = 1. To proceed further, two cases should be examined:

• sign(Ae) = −sign(B) with m2
3 = µB, α =

√

1 − γ2 and 0 < |γ| < 1.

Then, all three trilinear terms can be made negative simultaneously and the tree level

potential becomes

V
(0)
CCB−Eb = |Ye|2α4F (α)|H1|4 − 2YeÂα

2|H1|3 + m̂2|H1|2 (B.1)

where F (α) = 1+2/α2, Â = |Ae|+|µ|γ and m̂2 = m2
1+(m2

L̃1
+m2

Ẽc
1

)α2+m2
2γ

2−2|m2
3|γ.

Differentiating with respect to |H1| for fixed values of γ, we find besides the trivial

extremum the following local minimum for Eq. (B.1)

|H1|ext =
3Â

4Yeα2F (α)



1 +

√

1 − 8m̂2F (α)

9Â2



 (B.2)

Note that the typical vevs are of order |Ae|/Ye. The corresponding value of the

potential is

Vext = −1

2
α2|H1|2ext

[

YeÂ|H1|ext −
m̂2

α2

]

(B.3)

and the constraint to avoid a deeper configuration than the physical vacuum Eq. (3.6)

of the theory reads Â2 ≤ Fm̂2 i.e.

(|Ae| + |µ|γ)2 ≤
(

1 +
2

α2

)

(

m2
1 + (m2

L̃1
+m2

Ẽc
1

)α2 +m2
2γ

2 − 2|m2
3|γ
)

(B.4)

• sign(Ae) = sign(B) with α =
√

1 − γ2 and 0 < |γ| < 1.

Similarly the relevant constraints are

(|Ae| − |µ|γ)2 ≤
(

1 +
2

α2

)

(

m2
1 + (m2

L̃1
+m2

Ẽc
1

)α2 +m2
2γ

2 − 2|m2
3|γ
)

(B.5)

(|Ae| + |µ|γ)2 ≤
(

1 +
2

α2

)

(

m2
1 + (m2

L̃1
+m2

Ẽc
1

)α2 +m2
2γ

2 + 2|m2
3|γ
)

(B.6)

C. Field dependent mass matrix elements for UFB-1

We cite here all the necessary mass matrix elements used in the definition of the one loop

effective potential. Let ψr, r = 1, 2, 3 stands for a Yukawa (Y ) or a trilinear soft coupling

(A). The following notation is used throughout ψr
u ≡ (ψu, ψc, ψt) and ψr

d ≡ (ψd, ψs, ψb).
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• Gauge Bosons (Ω = C = 1)

LV =
1

2

(

W+
µ W−

µ Aµ Zµ

)

[M2
V ]











W−
µ

W+
µ

Aµ

Zµ











, [M2
V ] =











V1 0 V2 V3

0 V1 V
∗
2 V ∗

3

V ∗
2 V2 V4 V5

V ∗
3 V3 V5 V6











V1 =
g2
2

2

(

|H1|2 + |H2|2 + |h1|2 + |h2|2
)

V2 = −eg2√
2

(H∗
1h1 −H2h

∗
2)

V3 =
eg√
2

(H∗
1h1 −H2h

∗
2) V4 = 2e2

(

|h1|2 + |h2|2
)

V5 = −gg2
g2 − g2

2

g2 + g2
2

(

|h1|2 + |h2|2
)

V6 =
g2 + g2

2

2

[

|H1|2 + |H2|2 +

(

g2 − g2
2

g2 + g2
2

)2
(

|h1|2 + |h2|2
)

]

where e = gg2/
√

g2 + g2
2 .

• Leptons (Ω = C = 1)

M2
e = |Ye|2(|H1|2 + |h1|2) M2

µ = |Yµ|2(|H1|2 + |h1|2) M2
τ = |Yτ |2(|H1|2 + |h1|2)

• Quarks (Ω = 2, C = 3)

LL = −
3
∑

r,a=1

(uc
ra d

c
ra) [MQ]r

(

ua
r

da
r

)

where [MQ]r =

(

−Y r
uH2 Y r

u h2

−Y r
d h1 Y r

d H1

)

The necessary eigenvalues should be computed from MQM†
Q.

• Higgsinos (Ω = C = 1)

LH̃ = −1

2
χT [MH̃ ]χ where χT =

(

H̃0
1 H̃

−
1 H̃+

2 H̃0
2 B̃ W̃+ W̃− W̃ (3)

)

and

[MH̃ ] =

(

S1 S
∗
2

S†
2 S4

)

with S1 =











0 0 0 −µ
0 0 µ 0

0 µ 0 0

−µ 0 0 0











,

S2 =













g√
2
H1 0 −g2h1 − g2√

2
H1

g√
2
h1 −g2H1 0 g2√

2
h1

− g√
2
h2 0 −g2H2 − g2√

2
h2

− g√
2
H2 −g2h2 0 g2√

2
H2













, S4 =











M1 0 0 0

0 0 M2 0

0 M2 0 0

0 0 0 M2











.
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• Sleptons (L̃T ≡ ( ν̃ ℓ̃ ) Ω = 2, C = 1)

LL̃ = −
3
∑

r=1

(

ν̃r ℓ̃r Ẽ
c∗
r

)

[M2
L̃
]r







ν̃∗r
ℓ̃∗r
Ẽc

r






where [M2

L̃
]r =







Br
1 Br

2 Ar
1

Br∗
2 Br

3 Ar
2

Ar∗
1 Ar∗

2 Ar
3






.

We give below the relevant entries

Ar
1 = Y r

e (µh∗2 −Ar
eh1) Ar

2 = Y r
e (µH∗

2 +Ar
eH1)

Ar
3 = m2

Ẽc
r
+ |Y r

e |2
(

|H1|2 + |h1|2
)

− g2

2

(

|H1|2 + |h1|2 − |H2|2 − |h2|2
)

Br
1 = m2

L̃r
+ |Y r

e h1|2 +
g2 + g2

2

4

(

|H1|2 − |H2|2
)

+
g2 − g2

2

4

(

|h1|2 − |h2|2
)

Br
2 =

(

g2
2

2
− |Y r

e |2
)

H∗
1h1 +

g2
2

2
H2h

∗
2

Br
3 = m2

L̃r
+ |Y r

e H1|2 +
g2 − g2

2

4

(

|H1|2 − |H2|2
)

+
g2 + g2

2

4

(

|h1|2 − |h2|2
)

• Squarks (Q̃T ≡ ( ũ d̃ ) Ω = 2, C = 3)

LQ̃ = −
3
∑

a,r=1

(

ũa
r d̃

a
r Ũ

c∗
ra D̃

c∗
ra

)

[M2
Q̃

]r











ũa∗
r

d̃a∗
r

Ũ c
ra

D̃c
ra











where [M2
Q̃
]r =











Λr
1 Λr

2 Kr
5 Kr

7

Λr∗
2 Λr

3 Kr
6 Kr

8

Kr∗
5 Kr∗

6 Kr
1 Kr

2

Kr∗
7 Kr∗

8 Kr∗
2 Kr

3











where

Λr
1 = m2

Q̃r
+ |Y r

uH2|2 + |Y r
d h1|2 −G− (|H1|2 − |H2|2

)

−G+
(

|h1|2 − |h2|2
)

Λr
2 =

(

g2
2

2
− |Y r

d |2
)

H∗
1h1 +

(

g2
2

2
− |Y r

u |2
)

H2h
∗
2

Λr
3 = m2

Q̃r
+ |Y r

d H1|2 + |Y r
u h2|2 −G+

(

|H1|2 − |H2|2
)

−G− (|h1|2 − |h2|2
)

Kr
1 = m2

Ũc
r

+ |Y r
u |2
(

|H2|2 + |h2|2
)

+
g2

3

(

|H1|2 + |h1|2 − |H2|2 − |h2|2
)

Kr
2 = Y r

u Y
r
d (H1h

∗
2 +H∗

2h1)

Kr
3 = m2

D̃c
r
+ |Y r

d |2
(

|H1|2 + |h1|2
)

− g2

6

(

|H1|2 + |h1|2 − |H2|2 − |h2|2
)

and by definition G+ = (g2 + 3g2
2)/12 G− = (g2 − 3g2

2)/12. Besides

Kr
5 = −Y r

u (µH∗
1 +Ar

uH2) Kr
6 = −Y r

u (µh∗1 −Ar
uh2)

Kr
7 = Y r

d (µh∗2 −Ar
dh1) Kr

8 = Y r
d (µH∗

2 +Ar
dH1)

• Higgs (Ω = 1, C = 1)

LH = −1

2
φT [M2

H ]φ∗ where [M2
H ] =

(

T1 T
†
2

T2 T
∗
1

)

– 22 –



with

T1 =











R1 R2 R4 R5

R∗
2 R3 R6 R7

R∗
4 R

∗
6 R8 R9

R∗
5 R

∗
7 R

∗
9 R10











, T2 =











Q1 Q2 Q4 Q5

Q2 Q3 Q6 Q7

Q4 Q6 Q8 Q9

Q5 Q7 Q9 Q10











and φT =
(

ϕT ϕT∗) , ϕT =
(

H0
1 H

−
1 H+

2 H0
2

)

. Additionally

R1 = m2
1 +

g2 + g2
2

4

(

2|H1|2 + |h1|2 − |H2|2 − |h2|2
)

+
g2
2

2
|h2|2

R2 =
g2 + g2

2

4
H∗

1h1 +
g2
2

2
H2h

∗
2

R3 = m2
1 +

g2 + g2
2

4

(

|H1|2 + 2|h1|2 − |H2|2 − |h2|2
)

+
g2
2

2
|H2|2

R4 =
g2
2

2
H2h

∗
1 −

g2 − g2
2

4
H∗

1h2 R5 = −g
2 + g2

2

4
H∗

1H2

R6 = −g
2 + g2

2

4
h∗1h2 R7 = −g

2 − g2
2

4
H2h

∗
1 +

g2
2

2
H∗

1h2

R8 = m2
2 +

g2 + g2
2

4

(

|H2|2 + 2|h2|2 − |H1|2 − |h1|2
)

+
g2
2

2
|H1|2

R9 =
g2
2

2
H∗

1h1 +
g2 + g2

2

4
H2h

∗
2

R10 = m2
2 +

g2 + g2
2

4

(

2|H2|2 + |h2|2 − |H1|2 − |h1|2
)

+
g2
2

2
|h1|2

and the matrix element for T2 are

Q1 =
g2 + g2

2

4
(H1)

2 Q2 =
g2 + g2

2

4
H1h1

Q3 =
g2 + g2

2

4
(h1)

2 Q4 = −g
2 − g2

2

4
H1h2

Q5 = m2
3 −

g2 + g2
2

4
H1H2 +

g2
2

2
h1h2 Q6 = −m2

3 −
g2 + g2

2

4
h1h2 +

g2
2

2
H1H2

Q7 = −g
2 − g2

2

4
H2h1 Q8 =

g2 + g2
2

4
(h2)

2

Q9 =
g2 + g2

2

4
H2h2 Q10 =

g2 + g2
2

4
(H2)

2

D. Field dependent mass matrix elements for UFB-3b

Here we present the mass matrix elements needed in the one loop effective potential

expression. We use the same notation as in Appendix C.

• Gauge Bosons (ΩW± = 2, ΩA,Z = 1, C = 1)

LV = M2
W±W

+
µ W

−µ +
1

2
(Aµ Zµ) [M2

(A,Z)]

(

Aµ

Zµ

)

, [M2
(A,Z)] =

(

V2 V3

V3 V4

)

– 23 –



M2
W± =

g2
2

2

(

|H2|2 + |ν̃2|2 + |ℓ̃3|2
)

V2 = 2e2
(

|ℓ̃3|2 + |Ẽc
3|2
)

V3 = gg2

[

|ℓ̃3|2 − 2 sin2 θW

(

|Ẽc
3|2 + |ℓ̃3|2

)]

V4 =
g2 + g2

2

2

[

|H2|2 + |ν̃2|2 + (1 − 2 sin2 θW )2|ℓ̃3|2 + 4 sin4 θW |Ẽc
3|2
]

where e = gg2/
√

g2 + g2
2 and sin θW = e/g2.

• Quarks (Ω = 2, C = 3)

M2
u = |YuH2|2 M2

c = |YcH2|2 M2
t = |YtH2|2

• Leptons - Higgsinos (Ω = 1, C = 1)

L(L,H̃) = −1

2
ψT

1 [Mf
1 ]ψ1 −

1

2
ψT

2 [Mf
2 ]ψ2

where ψT
1 =

(

νµ τ τ
c H̃0

2 H̃
0
1 B̃ W̃ (3)

)

and ψT
2 =

(

ντ µ µ
c H̃+

2 H̃−
1 W̃+ W̃−

)

. Besides

[Mf
1 ] =



























0 0 0 0 0 g√
2
ν̃∗2 − g2√

2
ν̃∗2

0 0 0 0 Yτ Ẽ
c
3

g√
2
ℓ̃∗3

g2√
2
ℓ̃∗3

0 0 0 0 Yτ ℓ̃3 −
√

2gẼc∗
3 0

0 0 0 0 µ − g√
2
H∗

2
g2√
2
H∗

2

0 Yτ Ẽ
c
3 Yτ ℓ̃3 µ 0 0 0

g√
2
ν̃∗2

g√
2
ℓ̃∗3 −

√
2gẼc∗

3 − g√
2
H∗

2 0 −M1 0

− g2√
2
ν̃∗2

g2√
2
ℓ̃∗3 0 g2√

2
H∗

2 0 0 −M2



























[Mf
2 ] =

























0 0 0 0 −Yτ Ẽ
c
3 0 −g2ℓ̃∗3

0 0 0 0 0 −g2ν̃∗2 0

0 0 0 0 −Yµν̃2 0 0

0 0 0 0 −µ 0 −g2H∗
2

−Yτ Ẽ
c
3 0 −Yµν̃2 −µ 0 0 0

0 −g2ν̃∗2 0 0 0 0 −M2

−g2ℓ̃∗3 0 0 −g2H∗
2 0 −M2 0

























• Squarks (Q̃T ≡ ( ũ d̃ ), Ω = 2, C = 3)

LQ̃ = −
3
∑

r,a=1

(

Ũ c
ra ũ

a∗
r

)

[M2
1 ]

(

Ũ c∗
ra

ũa
r

)

−
3
∑

r,a=1

(

D̃c
ra d̃

a∗
r

)

[M2
2 ]

(

D̃c∗
ra

d̃a
r

)

where [M2
1 ] =

(

Kr
1 Kr

4

Kr∗
4 Λr

1

)

and [M2
2 ] =

(

Kr
2 Kr

5

Kr∗
5 Λr

2

)

. The relevant quantities are

Kr
1 = m2

Ũc
r

+ |Y r
uH2|2 −

g2

3

(

2|Ẽc
3|2 + |H2|2 − |ν̃2|2 − |ℓ̃3|2

)

Kr
4 = −Y r

uA
r
uH2

Λr
1 = m2

Q̃r
+ |Y r

uH2|2 +
g2

6

(

|Ẽc
3|2 − |ℓ̃3|2

)

+
g2 − 3g2

2

12

(

|H2|2 + |ℓ̃3|2 − |ν̃2|2
)
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Kr
2 = m2

D̃c
r
+
g2

6

(

2|Ẽc
3|2 + |H2|2 − |ν̃2|2 − |ℓ̃3|2

)

Kr
5 = Y r

d (µH∗
2 + Yτ ℓ̃

∗
3Ẽ

c∗
3 )

Λr
2 = m2

Q̃r
+
g2

6

(

|Ẽc
3|2 − |ℓ̃3|2

)

+
g2 + 3g2

2

12

(

|H2|2 + |ℓ̃3|2 − |ν̃2|2
)

• Sleptons - Higgses (L̃T ≡ ( ν̃ ℓ̃ ))

L(L̃,H) = −M2|ν̃1|2 −
(

Ẽc
1 ℓ̃

∗
1

)

[M2
s1

]

(

Ẽc∗
1

ℓ̃1

)

− χT [M2
s2

]χ∗ − 1

2
φT [M2

s3
]φ∗

where χT =
(

H+
2 Ẽc

2 ν̃3 H
−∗
1 ℓ̃∗2

)

and φT =
(

ξT ξT∗) , ξT =
(

H0
1 H

0
2 Ẽ

c
3 ν̃2 ℓ̃3

)

.

M2 = m2
L̃1

+
g2

2

(

|ℓ̃3|2 − |Ẽc
3|2
)

+
g2 + g2

2

4

(

|ν̃2|2 − |ℓ̃3|2 − |H2|2
)

(Ω = 2, C = 1).

On the other hand [M2
s1

] =

(

A1 A2

A∗
2 A3

)

(Ω = 2, C = 1) with

A1 = m2
Ẽc

1

+
g2

2

(

2|Ẽc
3|2 + |H2|2 − |ν̃2|2 − |ℓ̃3|2

)

A2 = Ye(µH
∗
2 + Yτ ℓ̃

∗
3Ẽ

c∗
3 )

A3 = m2
L̃1

+
g2

2

(

|ℓ̃3|2 − |Ẽc
3|2
)

+
g2 − g2

2

4

(

|ν̃2|2 − |ℓ̃3|2 − |H2|2
)

.

Similarly [M2
s2

] =















B1 B2 B3 −m2
3 B4

B∗
2 B5 B6 B7 B8

B∗
3 B∗

6 B9 B10 B11

−m2
3 B

∗
7 B

∗
10 B12 0

B∗
4 B∗

8 B
∗
11 0 B13















(Ω = 2, C = 1) with

B1 = m2
2 +

g2

2

(

|Ẽc
3|2 − |ν̃2|2

)

+
g2 + g2

2

4

(

|ν̃2|2 + |H2|2 − |ℓ̃3|2
)

B2 = µYµν̃
∗
2 B3 = µYτ Ẽ

c∗
3 +

g2
2

2
H∗

2 ℓ̃3 B4 =
g2
2

2
ν̃∗2H

∗
2

B5 = m2
Ẽc

2

+ |Yµν̃2|2 +
g2

2

(

2|Ẽc
3|2 + |H2|2 − |ν̃2|2 − |ℓ̃3|2

)

B6 = YµYτ ν̃2Ẽ
c∗
3 B7 = −YµAµν̃2 B8 = Yµ(µH∗

2 + Yτ ℓ̃
∗
3Ẽ

c∗
3 )

B9 = m2
L̃3

+

(

|Yτ |2 −
g2

2

)

|Ẽc
3|2 +

g2 + g2
2

4

(

|ν̃2|2 + |ℓ̃3|2 − |H2|2
)

B10 = −YτAτ Ẽ
c
3 B11 =

g2
2

2
ν̃∗2 ℓ̃

∗
3

B12 = m2
1 + |Yµν̃2|2 + |Yτ Ẽ

c
3|2 +

g2

2

(

|ℓ̃3|2 − |Ẽc
3|2
)

+
g2 − g2

2

4

(

|ν̃2|2 − |ℓ̃3|2 − |H2|2
)

B13 = m2
L̃2

+
g2 + g2

2

4

(

|ν̃2|2 + |ℓ̃3|2 + |H2|2
)

− g2

2

(

|H2|2 + |Ẽc
3|2
)
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and [M2
s3

] =

(

D1 D
†
2

D2 D
∗
1

)

(Ω = C = 1) with

D1 =















R1 0 0 0 0

0 R2 R3 R4 R5

0 R∗
3 R6 R7 R8

0 R∗
4 R

∗
7 R9 R10

0 R∗
5 R

∗
8 R

∗
10 R11















, D2 =















0 m2
3 Q1 0 Q2

m2
3 Q3 Q4 Q5 Q6

Q1 Q4 Q7 Q8 Q9

0 Q5 Q8 Q10 Q11

Q2 Q6 Q9 Q11 Q12















R1 = m2
1 + |Yτ |2

(

|Ẽc
3|2 + |ℓ̃3|2

)

+
g2

2

(

|ℓ̃3|2 − |Ẽc
3|2
)

+
g2 + g2

2

4

(

|ν̃2|2 − |ℓ̃3|2 − |H2|2
)

R2 = m2
2 +

g2

2

(

|Ẽc
3|2 − |ℓ̃3|2

)

+
g2 + g2

2

4

(

2|H2|2 + |ℓ̃3|2 − |ν̃2|2
)

R3 = µYτ ℓ̃
∗
3 +

g2

2
H∗

2 Ẽ
c
3 R4 = −g

2 + g2
2

4
H∗

2 ν̃2 R5 = µYτ Ẽ
c∗
3 − g2 − g2

2

4
H∗

2 ℓ̃3

R6 = m2
Ẽc

3

+ |Yτ ℓ̃3|2 +
g2

2

(

4|Ẽc
3|2 + |H2|2 − |ν̃2|2 − |ℓ̃3|2

)

R7 = −g
2

2
Ẽc∗

3 ν̃2 R8 =

(

|Yτ |2 −
g2

2

)

Ẽc∗
3 ℓ̃3

R9 = m2
L̃2

+
g2

2

(

|ℓ̃3|2 − |Ẽc
3|2
)

+
g2 + g2

2

4

(

2|ν̃2|2 − |ℓ̃3|2 − |H2|2
)

R10 =
g2 − g2

2

4
ν̃∗2 ℓ̃3

R11 = m2
L̃3

+ |Yτ Ẽ
c
3|2 +

g2

2

(

2|ℓ̃3|2 − |Ẽc
3|2
)

+
g2 − g2

2

4

(

|ν̃2|2 − 2|ℓ̃3|2 − |H2|2
)

while the corresponding elements for D2 are

Q1 = YτAτ ℓ̃
∗
3 Q2 = YτAτ Ẽ

c∗
3 Q3 =

g2 + g2
2

4
(H2)

2

Q4 =
g2

2
H2Ẽ

c
3 Q5 = −g

2 + g2
2

4
H2ν̃2 Q6 = −g

2 − g2
2

4
ℓ̃3H2

Q7 = (gẼc
3)

2 Q8 = −g
2

2
Ẽc

3ν̃2

Q9 = µYτH2 +

(

|Yτ |2 −
g2

2

)

ℓ̃3Ẽ
c
3 Q10 =

g2 + g2
2

4
(ν̃2)

2

Q11 =
g2 − g2

2

4
ν̃2ℓ̃3 Q12 =

g2 + g2
2

4
(ℓ̃3)

2

E. Field dependent mass matrix elements for CCB-Eb

Using the notation of Appendix C, the mass matrix elements needed in the one loop

effective potential expression are
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• Gauge Bosons (ΩW± = 2, ΩA,Z = 1, C = 1)

LV = M2
W±W

+
µ W

−µ +
1

2
(Aµ Zµ) [M2

0 ]

(

Aµ

Zµ

)

, [M2
0 ] =

(

V2 V3

V3 V4

)

M2
W± =

g2
2

2

(

|H1|2 + |H2|2 + |ℓ̃1|2
)

V2 = 2e2
(

|ℓ̃1|2 + |Ẽc
1|2
)

V3 = gg2

[

|ℓ̃1|2 − 2 sin2 θW

(

|ℓ̃1|2 + |Ẽc
1|2
)]

V4 =
g2 + g2

2

2

[

|H1|2 + |H2|2 + (1 − 2 sin2 θW )2|ℓ̃1|2 + 4 sin4 θW |Ẽc
1|2
]

where e = gg2/
√

g2 + g2
2 and sin θW = e/g2.

• Quarks (Ω = 2, C = 3)

M2
u = |YuH2|2 M2

c = |YcH2|2 M2
t = |YtH2|2

M2
d = |YdH1|2 M2

s = |YsH1|2 M2
b = |YbH1|2

• Heavy Leptons (Ω = 2, C = 1)

M2
µ = |YµH1|2 M2

τ = |YτH1|2

• Light Leptons - Higgsinos (Ω = 1, C = 1)

L2 = −1

2
ψT

1 [Mf
1 ]ψ1 −

1

2
ψT

2 [Mf
2 ]ψ2

where ψT
1 =

(

e ec H̃0
1 H̃

0
2 B̃ W̃ (3)

)

and ψT
2 =

(

νe H̃
−
1 H̃+

2 W̃+ W̃−
)

. Also

[Mf
1 ] =























0 YeH1 YeẼ
c
1 0 g√

2
ℓ̃∗1

g2√
2
ℓ̃∗1

YeH1 0 Yeℓ̃1 0 −
√

2gẼc∗
1 0

YeẼ
c
1 Yeℓ̃1 0 µ g√

2
H∗

1 − g2√
2
H∗

1

0 0 µ 0 − g√
2
H∗

2
g2√
2
H∗

2
g√
2
ℓ̃∗1 −

√
2gẼc∗

1
g√
2
H∗

1 − g√
2
H∗

2 −M1 0
g2√
2
ℓ̃∗1 0 − g2√

2
H∗

1
g2√
2
H∗

2 0 −M2























[Mf
2 ] =















0 −YeẼ
c
1 0 0 −g2ℓ̃∗1

−YeẼ
c
1 0 −µ −g2H∗

1 0

0 −µ 0 0 −g2H∗
2

0 −g2H∗
1 0 0 −M2

−g2ℓ̃∗1 0 −g2H∗
2 −M2 0















• Squarks (Q̃T ≡ ( ũ d̃ ), Ω = 2, C = 3)

LQ̃ = −
3
∑

r,a=1

(

Ũ c
ra ũ

a∗
r

)

[M2
1 ]

(

Ũ c∗
ra

ũa
r

)

−
3
∑

r,a=1

(

D̃c
ra d̃

a∗
r

)

[M2
2 ]

(

D̃c∗
ra

d̃a
r

)
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where [M2
1 ] =

(

Γr
1 Γr

2

Γr∗
2 Γr

3

)

and [M2
2 ] =

(

∆r
1 ∆r

2

∆r∗
2 ∆r

3

)

. The relevant quantities are

Γr
1 = m2

Ũc
r

+ |Y r
uH2|2 −

g2

3

(

2|Ẽc
1|2 + |H2|2 − |H1|2 − |ℓ̃1|2

)

Γr
2 = −Y r

u (µH∗
1 +Ar

uH2)

Γr
3 = m2

Q̃r
+ |Y r

uH2|2 +
g2

6

(

|Ẽc
1|2 − |ℓ̃1|2

)

+
g2 − 3g2

2

12

(

|H2|2 + |ℓ̃1|2 − |H1|2
)

∆r
1 = m2

D̃c
r
+ |Y r

d H1|2 +
g2

6

(

2|Ẽc
1|2 + |H2|2 − |H1|2 − |ℓ̃1|2

)

∆r
2 = Y r

d (µH∗
2 +Ar

dH1 + Yeℓ̃
∗
1Ẽ

c∗
1 )

∆r
3 = m2

Q̃r
+ |Y r

d H1|2 +
g2

6

(

|Ẽc
1|2 − |ℓ̃1|2

)

+
g2 + 3g2

2

12

(

|H2|2 + |ℓ̃1|2 − |H1|2
)

• Sleptons - Higgses (L̃T ≡ ( ν̃ ℓ̃ ))

L(L̃,H) = −ξ2|ν̃2|2 − ξ3|ν̃3|2 −
(

Ẽc
2 ℓ̃

∗
2

)

[M2
s2

]

(

Ẽc∗
2

ℓ̃2

)

−
(

Ẽc
3 ℓ̃

∗
3

)

[M2
s3

]

(

Ẽc∗
3

ℓ̃3

)

− χT [M2
c ]χ∗ − 1

2
φT [M2

n]φ∗

where χT =
(

H−
1 H+∗

2 ν̃∗1
)

and φT =
(

ϕT ϕ†) , ϕT =
(

H0
1 H

0
2 Ẽ

c
1 ℓ̃1

)

.

For p = 2, 3 using a compact notation we have

ξp = m2
L̃p

+
g2

2

(

|ℓ̃1|2 − |Ẽc
1|2
)

+
g2 + g2

2

4

(

|H1|2 − |H2|2 − |ℓ̃1|2
)

(Ω = 2, C = 1)

On the other hand [M2
s2

] =

(

Z1 Z2

Z∗
2 Z3

)

(Ω = 2, C = 1) with

Z1 = m2
Ẽc

2

+ |YµH1|2 +
g2

2

(

|H2|2 + 2|Ẽc
1|2 − |ℓ̃1|2 − |H1|2

)

Z2 = Yµ(µH∗
2 +AµH1 + Yeℓ̃

∗
1Ẽ

c∗
1 )

Z3 = m2
L̃2

+ |YµH1|2 +
g2

2

(

|ℓ̃1|2 − |Ẽc
1|2
)

+
g2 − g2

2

4

(

|H1|2 − |H2|2 − |ℓ̃1|2
)

.

and [M2
s3

] =

(

K1 K2

K∗
2 K3

)

(Ω = 2, C = 1) with

K1 = m2
Ẽc

3

+ |YτH1|2 +
g2

2

(

|H2|2 + 2|Ẽc
1|2 − |ℓ̃1|2 − |H1|2

)

K2 = Yτ (µH
∗
2 +AτH1 + Yeℓ̃

∗
1Ẽ

c∗
1 )

K3 = m2
L̃3

+ |YτH1|2 +
g2

2

(

|ℓ̃1|2 − |Ẽc
1|2
)

+
g2 − g2

2

4

(

|H1|2 − |H2|2 − |ℓ̃1|2
)

.
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Similarly [M2
c ] =







B1 B2 B3

B∗
2 B4 B5

B∗
3 B

∗
5 B6






(Ω = 2, C = 1) with

B1 = m2
1 + |YeẼ

c
1|2 +

g2 + g2
2

4

(

|H1|2 + |H2|2 + |ℓ̃1|2
)

− g2

2

(

|Ẽc
1|2 + |H2|2

)

B2 = −m2
3 +

g2
2

2
H∗

1H
∗
2 B3 = −Ye(YeH

∗
1 ℓ̃

∗
1 +AeẼ

c
1) +

g2
2

2
H∗

1 ℓ̃
∗
1

B4 = m2
2 +

g2

2

(

|Ẽc
1|2 − |H1|2

)

+
g2 + g2

2

4

(

|H1|2 + |H2|2 − |ℓ̃1|2
)

B5 = µYeẼ
c
1 +

g2
2

2
H2ℓ̃

∗
1

B6 = m2
L̃1

+

(

|Ye|2 −
g2

2

)

|Ẽc
1|2 +

g2 + g2
2

4

(

|ℓ̃1|2 + |H1|2 − |H2|2
)

and [M2
n] =

(

S1 S
†
2

S2 S
∗
1

)

(Ω = C = 1) with

S1 =











Θ1 Θ2 Θ3 Θ4

Θ∗
2 Θ5 Θ6 Θ7

Θ∗
3 Θ∗

6 Θ8 Θ9

Θ∗
4 Θ∗

7 Θ∗
9 Θ10











, S2 =











Λ1 Λ2 Λ3 Λ4

Λ2 Λ5 Λ6 Λ7

Λ3 Λ6 Λ8 Λ9

Λ4 Λ7 Λ9 Λ10











Θ1 = m2
1 + |Ye|2

(

|Ẽc
1|2 + |ℓ̃1|2

)

+
g2

2

(

|ℓ̃1|2 − |Ẽc
1|2
)

+
g2 + g2

2

4

(

2|H1|2 − |H2|2 − |ℓ̃1|2
)

Θ2 = −g
2 + g2

2

4
H∗

1H2 Θ3 =

(

|Ye|2 −
g2

2

)

H∗
1 Ẽ

c
1 Θ4 =

(

|Ye|2 +
g2 − g2

2

4

)

H∗
1 ℓ̃1

Θ5 = m2
2 +

g2

2

(

|Ẽc
1|2 − |ℓ̃1|2

)

+
g2 + g2

2

4

(

|ℓ̃1|2 + 2|H2|2 − |H1|2
)

Θ6 = µYeℓ̃
∗
1 +

g2

2
H∗

2 Ẽ
c
1 Θ7 = µYeẼ

c∗
1 − g2 − g2

2

4
H∗

2 ℓ̃1

Θ8 = m2
Ẽc

1

+ |Ye|2
(

|H1|2 + |ℓ̃1|2
)

+
g2

2

(

4|Ẽc
1|2 + |H2|2 − |H1|2 − |ℓ̃1|2

)

Θ9 =

(

|Ye|2 −
g2

2

)

ℓ̃1Ẽ
c∗
1

Θ10 = m2
L̃1

+ |Ye|2
(

|H1|2 + |Ẽc
1|2
)

+
g2

2

(

2|ℓ̃1|2 − |Ẽc
1|2
)

+
g2 − g2

2

4

(

|H1|2 − |H2|2 − 2|ℓ̃1|2
)

while the corresponding elements for S2 are

Λ1 =
g2 + g2

2

4
(H1)

2 Λ2 = m2
3 −

g2 + g2
2

4
H1H2

Λ3 =

(

|Ye|2 −
g2

2

)

H1Ẽ
c
1 + YeAeℓ̃

∗
1

Λ4 = Ye

(

YeH1ℓ̃1 +AeẼ
c∗
1

)

+
g2 − g2

2

4
H1ℓ̃1
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Λ5 =
g2 + g2

2

4
(H2)

2 Λ6 =
g2

2
H2Ẽ

c
1

Λ7 = −g
2 − g2

2

4
H2ℓ̃1 Λ8 = (gẼc

1)
2

Λ9 = Ye (µH2 +AeH
∗
1 ) +

(

|Ye|2 −
g2

2

)

ℓ̃1Ẽ
c
1 Λ10 =

g2 + g2
2

4
(ℓ̃1)

2

F. Expressions for ω(x)

We present below expressions of ω(x) used in the definition of the renormalization

scale Q∗ given in Eq. (5.4) for the various cases we have considered

• UFB-1

ω(x) =































































A11(A12 + x)(A13 + x)(A14 + x) , x ≤ 2.8

A21(A22 + x)(A23 + x)(A24 + x) , 2.8 < x ≤ 3.0

A31(A32 + x)(A33 + x)(A34 + x) , 3.0 < x ≤ 4.0

A41(A42 + x)(A43 +A44x+ x2) , 4.0 < x ≤ 5.0

A51(A52 + x)(A53 +A54x+ x2) , 5.0 < x ≤ 6.0

A61(A62 + x)(A63 +A64x+ x2) , 6.0 < x ≤ 7.0

A71(A72 + x)(A73 +A74x+ x2) , 7.0 < x ≤ 8.0

A81(A82 + x)(A83 +A84x+ x2) , 8.0 < x ≤ 9.0

A91(A92 + x)(A93 +A94x+ x2) , 9.0 < x

(F.1)

where

A =

































−8.22877 −3.07458 −2.70973 −2.3097

1.40049 −3.96386 −3.51934 −2.71471

0.86922 −4.78838 −3.43647 −2.70523

−0.390767 −3.5568 30.1795 −10.8231

0.0938483 −8.08594 24.5516 −9.49597

−0.184626 −4.67762 48.0765 −13.5349

0.344656 −9.61596 42.2498 −12.8772

−0.193997 −6.81241 102.729 −19.8646

0.0313323 −14.349 63.3896 −14.651

































(F.2)

• UFB-3b

ω(x) =































































U11(U12 + x)(U13 + x)(U14 + x) , x ≤ 2.8

U21(U22 + x)(U23 + x)(U24 + x) , 2.8 < x ≤ 3.0

U31(U32 + x)(U33 + x)(U34 + x) , 3.0 < x ≤ 4.0

U41(U42 + x)(U43 + U44x+ x2) , 4.0 < x ≤ 5.0

U51(U52 + x)(U53 + U54x+ x2) , 5.0 < x ≤ 6.0

U61(U62 + x)(U63 + U64x+ x2) , 6.0 < x ≤ 7.0

U71(U72 + x)(U73 + U74x+ x2) , 7.0 < x ≤ 8.0

U81(U82 + x)(U83 + U84x+ x2) , 8.0 < x ≤ 9.0

U91(U92 + x)(U93 + U94x+ x2) , 9.0 < x

(F.3)
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where

U =

































−4.35862 −3.11259 −2.8 −2.26302

−0.900195 −3.30931 −2.8 −1.20425

0.685746 −5.00903 −3.39062 −2.81418

−0.292473 −3.53026 28.8914 −10.313

0.184148 −8.25836 19.5607 −8.57881

−0.144118 −4.62537 61.7438 −14.8604

0.192324 −10.2975 37.4871 −11.8372

−0.125179 −6.15239 114.679 −20.7135

0.00839312 −18.1679 59.3748 −10.8321

































(F.4)

• CCB-Eb

ω(x) =































































C11(C12 + x)(C13 + x)(C14 + x) , x ≤ 2.8

C21(C22 + x)(C23 + C24x+ x2) , 2.8 < x ≤ 3.0

C31(C32 + x)(C33 + x)(C34 + x) , 3.0 < x ≤ 4.0

C41(C42 + x)(C43 + C44x+ x2) , 4.0 < x ≤ 5.0

C51(C52 + x)(C53 + C54x+ x2) , 5.0 < x ≤ 6.0

C61(C62 + x)(C63 + C64x+ x2) , 6.0 < x ≤ 7.0

C71(C72 + x)(C73 + C74x+ x2) , 7.0 < x ≤ 8.0

C81(C82 + x)(C83 + C84x+ x2) , 8.0 < x ≤ 9.0

C91(C92 + x)(C93 + C94x+ x2) , 9.0 < x

(F.5)

where

C =

































−8.31888 −3.07077 −2.70937 −2.31018

1.9263 −2.71468 12.4319 −7.02268

0.581498 −5.27073 −3.4845 −2.68738

−0.0667458 −3.55197 53.9364 −13.3041

−0.0145147 −3.39174 127.123 −20.1434

−0.0751954 −3.95696 65.0836 −15.1115

0.0152963 −19.2871 39.5677 −11.2084

0.11401 −11.7758 46.3403 −13.0956

−0.0713367 −6.7888 150.536 −23.613

































(F.6)
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