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Abstract 

We study a general field theory of a scalar field coupled to gravitation through a quadratic Gauss-Bonnet term ~:(~b) R~B. 
We show that, under mild assumptions about the function ~:(~b), the classical solutions in a spatially flat FRW background 
include singularity-free solutions. 

Recently it was found that the loop corrected su- 
perstring effective action in a FRW background in 
the presence of the dilaton and modulus fields admits 
a particularly interesting class of singularity-free so- 
lutions with flat initial asymptotics [ 1 ]. Singularity- 
free solutions have been considered by other authors 
as well [2,3] and their existence, although linked to 
the presence of quadratic curvature terms, depends on 
the form of the gravitational coupling to scalar fields. 
The purpose of this letter is to study the existence of 
singularity- free solutions and formulate the necessary 
conditions that should be imposed on the quadratic 
gravitational coupling. Although motivated by the con- 
crete case of  the superstring the analysis at hand is 
quite general and is carried out in an effective field 
theory framework that allows a possible alternative, at 
present non-existing, quantum gravitational underly- 
ing theory. 

1 Research supported by EEC contract Ref. B/SCI*-915053. 
2 Laboratoire Propre du Centre National de la Recherche Scien- 
tifique UPR A.0014. 

Consider a scalar field coupled quadratically to 
gravity through the Langrange density 

L = ½R + ½(D~b) 2 - 18~:(~b)R2~ (1) 

where R2B = (R~,~a) 2 _ 4 ( R ~ )  2 + R 2 is the stan- 
dard Gauss-Bonnet integrand.The function ((~b) is a 
general smooth function of the scalar field which will 
be further constrained shortly. 8 is just a coupling pa- 
rameter. Note that we have chosen a Gauss-Bonnet 
quadratic coupling in accordance with general unitar- 
ity arguments as well as the concrete superstring case 
[4]. In a standard RWF background metric gu~ = 
( 1, -e2°'60) we obtain the classical equations of  mo- 
tion 

~b" + 36) 6 + 36('(~b) 6)2(o/' + 6) 2) = 0 (2) 

36)2 _ ½q~2 _ 36~:,(~b)66)3 = 0 (3) 

In terms of x = q~ and z = 6) considered as functions 
of ~b, Eq. (3) can be solved as an algebraic equation 
and give 
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x = zt- 8¢z ± x/6 ÷ 

while (2) becomes 

dz  Z 2 ( A / B  ) 
z t  ---- d'-¢ = -  x 

where 

A -- 16Z 4 + 16Z2X 2 + -~X 4 --  8t~"Z2X4 

B -- 16Z 4 - ~-Z2X 2 ÷ 2-~x4 
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] " " 2 (4) z , , , ( ~ ) ( 1 - ~ 8 ~ :  z ) 

(5) 

(8)  

(6) 

(7) 

Let us assume now that ~:(¢) is a smooth function 
that possesses one minimum at some point ¢0. For 
example ~: could be ¢2,  ¢4 ... . .  

We shall show that under the assumption that ~:(¢) 
grows faster than ¢2 at ¢ -* ± c ~  the system of  equa- 
tions of  motion (2) ,  (3) ,  admits non-singular solu- 
tions for the case 8 > 0. Let us outline here the ba- 
sic steps o f  our proof. We first show that all singu- 
larities occur at Izl ~ c~. Expanding asymptotically 
our equations at this region and analyzing the various 
possibilities we show that only one singular solution 
exists to ,-~ log t, ¢ -,, Cs q - t 2 / ( 8 ~ ' ( ¢ s ) ) .  Then we 
show that the points z = 0 or x = 0 cannot be con- 
tinuously approached for finite ¢ and thus every so- 
lution is characterized by a definite sign of  z and x. 
Choosing z > 0 (expanding universe) and x > 0 we 
show that the singularity point Cs is related to the ~: 
minimum ¢0, and we always have Cs > ¢0, for 8 > 
0. Furthermore, we show that a singular solution in- 
volves only points ¢ > Cs and thus any solution that 
includes a point ¢ < ~ is non-singular. Since such a 
point can be always found this is an existence proof 
of  the singularity free solutions. Finally, in order to 
make the results of  our analysis concrete, we present 
the numerical solutions of  the case ~: = ¢2 /2 ,  8 = 1. 

A "singular solution" is one for which [zl ~ c~ 
or I¢1 ~ ~ at some finite time. Note that we could 
have z ~ c~ for ¢ ~ c~ and still have a singularity 
at a finite time. We shall restrict the coupling function 
~:(¢) to increase at least as fast as ¢2 at infinity. Then, 
we can show that x ( ¢ )  cannot have a singularity while 
z is maintained at a finite value. In order to prove it we 
first solve Eq. (4) for large x and obtain x ~ - 3 6 ~ ' z  3. 
Obviously x has a singularity while z is finite, only 
if 6 ~ ' ( ¢ )  has one. Since ~:(¢) is supposed to be a 
smooth function this can occur only at ¢ ~ ±c~.  
Next, we go to Eq. (5) which takes the form 

We can proceed considering three separate cases. 
Namely 8sd'z 2 >> O(1) ,  o¢ z ~ O(1)  and 
8g"z  2 << O(1)  while always 8~'z  2 >> O(1) .  Solv- 
ing (8) in the first case leads to the contradiction 
x ,,~ (8~ : ' ) - ]  --~ 0. The second case can be treated 
by setting 8g"z  2 -- b and getting from (8) the so- 
lution z "~ ¢ ~ ( l - - x ) ,  X ~ '  ¢ ~ - - ~ ,  8 ~  r~ ¢ I + K  for 
¢ --~ ±c~  with K - (1 + 2 ) - 1 .  In order to have 
the assumed behavior of  z,x and 6s ¢ we have to con- 
strain 1 < r < 3. Solving in terms of  time we obtain 

¢ ,-~ (t  + ...)~--~- ~. Thus, the point ¢ --* :t:c~ is not 
approached at a finite time and we do not have a 
true singularity in this case. Finally, in the last case 

" 2 ~ 1 8~: Z << O(1)  the Eq. (8) becomes z "~ 

which is satisfied by z23~ ' ,-, 2 ¢  for ¢ ---* ±c~.  
Ex~pressing (8) solely in terms of  z gives z 2 ,,- ¢ ,  
8~ ,,~ const, which contradicts our assumptions. 

Let us now proceed by deriving the asymptotic form 
of the singular solutions. We can start from Eq. (4) 
and solve it around the singular point Cs for which 
Z(¢s )  ---* c~. Three different possibilities arise in 
principle for z near the singularity, namely 8~'z  2 ,., 
O(1) ,  t~:'z 2 << O(1)  and 8~: z 2 >> O(1) .  They can 
be analyzed as follows: 

3 ~-2 1) 6~'z  2 ,,, O(1) .  In this case we set ~8~: ~ = a 

near ¢s and obtain from (4) x = hz with a = 3 a 2" 
Eq. (5) gives 

' 5,P ,P8 i '  z 2 ) 
Z__ = - - ( 1  ÷ ,~2 ÷ 36 (9) 

a2 ~ )  z A ( 1 -  T +  

I 

or ~ = _ a .  For 8~"z  2 = b ~ O(1)  we get z ~, 

exp (--~B) which is singular at ¢ ~ q-cx~ and leads to 

8~' ~ b e x p ( -  2A-L~ ~ in contradiction to our assump- AB j 
tions for the behavior ofs~(¢) at infinity. For 8 ¢ ' z  2 >> 

O(1)  we get the solution z -2 ,-, ~ a '  + c which re- 
A 2 

quires c = 0 and ~ - 3 = 9(1 - 5- + ~64)/2A3" The 
last relation is impossible since there are no real so- 
lutions for A. Finally, the case 6 ¢ ' z  2 << O(1)  is just 
like the first case. 

2) 8¢~z 2 << O(1) .  In this case from Eq. (4) we 
obtain x N +zx/~.  Eq. (5) becomes 



z ,,~ q:3(1 o~ z 
z 2 ) / v ' 6  
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(10) 

I f  8~"z 2 = b ,,~ O ( 1 )  we obtain z " exp(q:~/~(  1 - 

b ) ~b) which corresponds to a singularity only for ~b 
v f  

4-oo. This implies B~:" ~ exp(±2V~23-(1- b)~b) 

which is not in agreement with our assumptions for 
~:(&c~). Similarly for the case 8sd'z 2 << O(1) .  Fi- 

nally, if 8~"z  2 >> O(1) ,  (10)  gives z -2 ~ ±V/~8~ :' 

which is incompatible with 81~'z 2 << O(1) .  
3)8sdz 2 >> O(1) .  In this case we get two different 

solutions for x, namely x_ ~ - 3 8 s  d z 3 and x+ ,~ ~-~z" 

For x -- x_ ,  neccessarilly Ixl >> Izl and Eq. (5) 
becomes 

t t  2 

1 (1 - 6 ~  z ) 

Z ~ 3 8 ~ ' Z  (11) 

3 " 2 which is equivalent to (38sdz2) '  ,.~ 1 + T68~: z • 
" 2 3 t _ 2  I f  8s ~ Z = b ,~ O(1 )  we obtain ~ 8 ~  
3b (1 + T6)~b + ... which implies that the singularity 

appears for infinite ~b. Then, we get 8s c' ~ ~b3b/(2+~ ) 
and z 2 ~ ~b( t -~) /O+~ ), with b < ~ in order to 

have I z I -'~ oo. The constraint b < 5 leads to a func- 
tion 8~: that does not increase at infinity as fast as 
~b 2, in contradiction to our assumptions. I f  6~"z 2 << 
O(1) ,  we obtain 38r-'z 2 ~ ,,~ ~b which also requires 

~ 4-c~. Then, we are led to B~"qb/8~ ~ << O(1)  
which is not acceptable. Finally, for 8~ ' z  2 >> O(1)  
we get from (11) z "-~ ( 8 ~ : ) - ~  which is not consis- 
tent with z28~ :' >> 1 at z ---* o0. Thus, the case o f x _  
is impossible. 

For x = x+ ,-~ ~ we must have Ix~z[ << 1. Then, 

Eq. (5) becomes 

8 ,~.¢: t t 

Z ~ --~t~: Z3(1 Z 6 ( t ~ , ) 4 ,  (12) 

I f  8 ~ " / z 6 ( t ~ ' )  4 ~ (  O(1) ,  we obtain 

z2 ,,~ 1 
8~( ~ )  - 8~( (bs) (13) 

which is a singular solution at some finite point ~bs. 
I f  8 ~ " / ( 8 ~ ' ) *  >> z 6, we can get from Eq. (12) z 4 ,-~ 
_ 2 / ( ( 8 ~ :  )2 + ...), which is impossible as z --* cx~. 
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The only remaining case ~ ,-~ O(z  6) can be stud- (8~')4 
ied by putting 8~:" = bz6(¢~') 4, Then, from (12) we 
get z -2 ~ (1 - ~ ) ( c + B ~ ( ~ b ) ) .  Solving for 8~:' we 
also get 

b i 2 (Ss ~ ) -  ,-, const. + 
(1 - ~ ) 3 ( c  + 8~ ) '  

which is equivalent to 

b(8~'Z2) 2 
,w l .  

(l-M) 
This is however, for any non-zero b, contradictory to 
our assumptions. 

Thus, assuming that ~r(ff) is a smooth function that 
grows as fast as ~b 2 at both infinities ~b ~ +c~,  we 
have found only one singular solution. Near the sin- 
gular point ~bs (~:'(~bs) # 0 )  it behaves as 

z '-, (8~:(~b) - 8~(~bs))-½ (14a) 

2 
x ,,, 8~'(fb)~z (14b) 

In terms of  the time,(14) becomes 

t 2 
~b ,~ ~bs -4- ~ (15a) 

to ,,~ In t (15b) 

where we have shifted the time variable so that the 
singular point ~bs corresponds to t--0. Note that while 
z ---+ c~, x goes to zero as long as 8~:'(~bs) # 0. 

The limit x ---+ 0 of  the system (2) ,  (3) deserves 
some more attention. Indeed, as can be seen in Eq. 
(4) ,  when x ~ 0 for finite ~b the only possibility for z 
is to go to zero too while x ,-~ -4-vr6z. Substituting the 

Eq. (5) ,  we obtain z ' / z  ,,, 7:V/~ or last relation in 

z '~ exp :F V/~b which does not go to zero for finite ~b 

in contradiction with our hypothesis. Inversely, when 
z ~ 0 for finite ~b the only possibility read off  from 
Eq. (4) is x :,, -l-v~z. Again, substituting that in 
Eq. (5) we reach the same contradiction. The only 
conclusion we can draw is that the points x = 0 or z = 
0 cannot be reached analytically. Therefore, the signs 
o f  x and z must be independently conserved. Then, 
the following statement is true for the singular solution 
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we found: Every connected piece of  the solution will 
be characterized by a fixed sign for each of  x and z. 
We have assumed single-valuedness of  z (~b). I f  in a 
connected piece o f  the solution z (~b) were not single- 
valued then at a non-singular point ~bl we would have 

= 0 at zl = z (~bl). This is equivalent to x B / A z  ] = dz 
0 and it can happen only when either x ~ 0 or A 
oo in contradiction to Zl < c~. 

Consider now a singular solution with the singular- 
ity occurring at a point ~bs. Each connected piece of  
the solution will be characterized by a given sign of  x 
and z. Take the piece with x > 0, z > 0. Then, 

2 
x = x _  ~ - -  (16) 

z t ~ '  

implies that 3~:' > 0 and therefore, if 8 > O, 

where ~b0 is the minimum of  sC(~b). Because of  z '  '-, 
- ½  z 38~:' < 0 and the single-valuedness of  z we come 
to the conclusion that these solutions cover at best the 
full quarter-plane z > 0, ~b > ~b0 but they do not 
contain any points of  the z > 0, ~b < ~b0 region. We 
are now in a position to state the following"theorem" : 

For 8 > O, any solution containing a po in t  qb* < 

(bo such that  x (  fb* ) > O, z ( $* ) > 0 must  be a non- 
s ingular  solution. 

Since the solution is controlled by one first order 
differential equation, namely (5) ,  while (4) is just 
a soluble algebraic equation, it depends only on z, x 
at some initial point and we can always satisfy the 
requirements o f  the theorem starting with values z* > 
0, x* > 0 at some initial point ~b* < ~b0. 

The existence o f  the non-singular solution depends 
crucially on the fact that the singular solutions do not 
cross over to the ~b < ~b0 region. Notice that if we 
keep x > 0, z > 0 and chose 8 < 0 equation (16) 

I 
demands ~bs < ~b0. Then, since z < 0 still,the whole 
upper plane is filled with singular solutions and there 
are no singularity-free solution in this case. This be- 
havior is in agreement with the violation of  the en- 
ergy conditions required by singularity theorems [ 5 ] 
which cannot occur in the 8 < 0 case since in this 
case p + p and p + 3p are positive definite. 

In order to make our analysis concrete we have also 
studied numerically the case ~:(~b) = ~b2/2, 8 = 1. 
The phase diagram for z = z(~b) > 0 and x > 0 is 

31+ ~t i , 
z , , 

2. I I I 

a 

Fig. 1. The phase space diagram z(~b) for the case se(~b) = ~$2 
d~ = 1 and z > O, x > O. The dashed lines correspond to singular 
solutions and the continuous lines to non-singular ones. Arrows 
indicate the direction of the time. 

presented in Fig. 1. As expected the singular solutions 
can occur only for ~bs > ~b0 = 0 and points with ~b < 
~b0 = 0 belong to non-singular solutions. It can also be 
shown that in this specific case the non-singular solu- 
tions interpolate between a DeSitter space universe at 
the remote past (t  ~ - o c )  and a slowly expanding 
one at the future (t  ~ - o o ) .  

The general behavior of  the non-singular solutions 
at late times (t  ~ c~), assuming an expanding uni- 
verse (z  > 0),  is that of  slow expansion, while the be- 
havior at early times (t  --~ - c ~ )  depends crucially on 
the particular choice of  ~:(~b). In the case of  the loop 
corrected superstring effective action [ 1 ] which has 
served as a motivation for the present investigation 3 
we obtain at early times a flat-space. In contrast, in the 
case ~:(~b) = ½~b 2, analyzed above, we have obtained 
DeSitter space. 
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