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Abstract

Starting out from the most general, gauge invariant and renormalisable scalar potential of the R-parity violating MSSM and
performing a calculable rotation to the scalar fields we arrive at a basis where the sneutrino VEVs are zero. The advantage of
our rotation is that, in addition, we obtain diagonal soft supersymmetry breaking sneutrino masses and all potential parameters
and VEVs real, proving that the MSSM scalar potential does not exhibit spontaneous or explicit CP-violation at tree level.
The model has five CP-even and four CP-odd physical neutral scalars, with at least one CP-even scalar lighfier thi@an
parametrise the neutral scalar sector in a way that resembles the parametrisation of the R-parity conserving MSSM, analyse its
mass spectrum, the coupling to the gauge sector and the stability of the potential.

0 2005 Elsevier B.V. All rights reserved.

1. Introduction

That none of the terms in the Standard Model (SM) violate lepton nutfibeis not due to an imposed sym-
metry, but merely reflects the fact that all such combinations of SM fields are ruled out by consideration of gauge
invariance and renormalisabilif¥]. For supersymmetric extensions of the SM this is no longer true. In the Minimal
Supersymmetric Standard Model (MSSI2], lepton number violating terms (and baryon num@Ry violating
terms) appear naturally, giving rise to tree-level processes, proton decay for example, which are already strongly
constrained by experiment. Either, bounds can be set on Lagrangian parameters, or a further discrete symmetry
can be imposed on the Lagrangian, such that these processes are absent. The discrete symmetry most commonl
imposed is known as R-paritiRp) [3,4]. Under R-parity the particles of the Standard Model including the scalar
Higgs fields are even, while all their superpartners are odd. Imposing this symmetry has a number of effects.
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Firstly, any interaction terms which violate lepton number or baryon number will not appear. Secondly, the decay
of the lightest supersymmetric particle (LSP) into SM particles would viakatethe LSP is therefore stable. The
sheutrino vacuum expectation values (VEVS) are zero; without extending the MSSM field content, spontaneous
generation ofR p violating terms is phenomenologically discoun{éi

If Rp conservation is notimposed, fields with differgtt mix [6—12]. In particular, the neutrinos will mix with
the neutralinos and the sneutrinos will mix with the neutral scalar Higgs fields; all five complex neutral scalar fields
can acquire vacuum expectation values. Minimising this ten parameter potential in general is not straightforward,
it is more convenient to simplify the system by choosing an appropriate basis in the neutral scalar sector. As one
of the Higgs doublets carries the same quantum numbers as the lepton doublets (apart from the non-conserve
lepton number), it is convenient to introduce the notatign= (H1, L;) whereH; andL; are the chiral superfields
containing one Higgs doublet and the leptons, respectively O, ...,3 andi =1, ..., 3). Furthermore, starting
from the interaction basis, we are free to rotate the fields and choose the direction corresponding to that of the
“Higgs” field. Assuming that the system defining the five complex vacuum expectation values of the fields was
solved, four complex VEV3, would define a direction in the four-dimension@, L;) space. One can then
choose the basis vector which defines the Higgs fields to point in the direction defined by the vacuum expectation
values. We refer to this basis, in which the “sneutrino” (as we call the fields perpendicular to the “Higgs” field)
VEVs are zero, as the vanishing sneutrino VEV b§8-15] This basis has the virtue of simplifying the mass
matrices and vertices of the theory and thus is better suited for calculations.

Basis independent parameterisations can be chosen which explicitly show the amount of physical lepton numbet
violation [16—18] Values for physical observables such as sneutrino masses and mass splitting between CP-ever
and CP-odd sneutrinos have been derived in the literature in terms of these combinations but usually under some
approximations (for example the number of generations or CP-conservation). We find this procedure in general
complicated for practical applications and we shall not adopt it here.

Instead, we present in the next section a calculable procedure for framing the most general MSSM scalar poten-
tial in the vanishing sneutrino VEV basis. An advantage of our procedure is to obtain a diagonal “slepton” mass
matrix, two real hon-zero vacuum expectation values and real parameters of the neutral scalar potential in the ro-
tated basis. The latter proves that the neutral scalar sector of the most general R-parity violating MSSM exhibits
neither spontaneous nor explicit CP-violation in agreement ji&h In Section3, the tree-level masses and mix-
ing of the neutral scalar sector is investigated. Using the Courant—Fischer theorem for the interlaced eigenvalues
we prove that there is always at least one neutral scalar which is lighter thZrghege boson. We present approx-
imate formulae which relate the Higgs masses, mixing and Higgs-gauge boson vertices of the R-parity conserving
(RPC) case with the R-parity violating (RPV) one. In Sectothe positiveness of the scalar mass matrices and
stability of the vacuum is discussed.

2. Basischoicein the neutral scalar sector

In this section we develop a procedure connecting a general neutral scalar basis with the vanishing sneutrinc
VEV basis, the latter being more convenient for practical applications. The most general, renormalisable, gauge
invariant superpotential that contains the minimal content of fields, is given by

1 - _ _ 1 -
W= eab[éxaﬂkcgcglsk + M L8 Q% Dy — 1o L4 HY + (Yu)ij QFF Hé’ij} + Eexyzx;;kaD/y.D;,
(2.1)
where Q%*, D¥, UF, £¢, E;, H{, Hy are the chiral superfield particle content= 1,2, 3 is a generation index,
x =123 anda =1, 2 areSJ(3) andU(2) gauge indices, respectively. The simple form(®fl) results when
combining the chiral doublet superfields with common hypercha&r —% into £ _o 3= (H{,L{_1 53) la

is the generalised dimensionfutparameter, and,g, A&jk, kg;k, (Yy)i; are Yukawa matrices with,, andey,,
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being the totally anti-symmetric tensors, withp = €123 = +1. Then the five neutral scalar fields,,, hg from

the SU(2) doublets o = (P14, ;)" and Ho = (b3, h9)7, form the most general neutral scalar potential of the
MSSM,

Vneutral= (%) s V1o P18 + Mgl gV o g + Hyiahy hg +mby,h3*h — bubrahy — by v} ho*

1 e - 12
+ 5(82 +g3)[hh5 — Vo ira]’, (2.2)
where general complex parametérs an hermitian matrixm%)aﬁ and m%,z all arise from the supersymmetry

breaking sector of the theory. The last term(#2) originates from theD-term contributions of the superfields
Ly, Hy. Defining

(MZ) g = (m%) o + miirp.  and m3=md, + g pa, (2.3)

one can rewrite the potential {2.2)in a compact form as
B 1 s ~ 12

Vneutrai= (M%) 770 1 +m3h3*hg — (bavrahy +H.c) + é(g2 + g5)[h3*h3 — ¥} o PLa]” (2.4)
In order to go to the vanishing sneutrino VEV basis, we redefine the “Higgs-sneutrino” fields

Vig = Uaﬂ 172/3» (25)
whereU is a 4x 4 unitary matrix

U = Vdiag(e'%)Z, (2.6)

being composed of three other matrices which we define b&lawitary andZ real orthogonal. The potential in
the primed basis becomes,

/ ~/% ~ x 1 * 7k
Voeurai= 27 (M)Z],5 5755 + m3h3hY = (020G + Hee] + 5 (62 + 83) (h3°h3 — 57 77,)°,
2.7)
where
(M2) = diagle )V (MZ)V diagle'?), b7 =b"V diagle'?). (2.8)

The unitary matrixV, is chosen such theﬂ/\?l’éz) is real and diagonal—the hat) is used to denote a diagonal

matrix. The phaseg, are chosen such thaf, is real and positive [they are equal to the phase&®b¥);]. The
minimisation conditions for the scalar fields are now derived, to obtain conditions for the vacuum expectation
values,

A% N . 1 ko~ )~
—| = [ZT(M’[:Z)Z]aﬂv’Lﬁ (B'Z)uh* — = (g% + 85) (h*h — 0507, ) Vg [yae = O-
al)Loz vac 4
v bZ ~/* 1 hO*hO ~/>k ~/ hO =0 29
= m3h3 — (b'2)a iy 4(8 +g5)(h3 751y ) M2l e = 0. (2.9)
hz vac
where “vac” indicates that the fields have to be replaced by their VEVs,
~/ Vy 0 Uy
V)= —, ho) = —. 2.10
( La> «/é < 2> \/i ( )

TheU (1)y symmetry of the unbroken Lagrangian was used to set the phagemfero, however, at this stage all
other vacuum expectation values will be treated as complex variables. By combinin@ B§s(2.10)we obtain

. 1
(27 (M2)Z], 506 — B'Z)qvi — é(g2 +83) (vZ — v3vy)va =0, (2.11)
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1
m%vu — (b'2)qv) + g(gz + g%) (v,f — v;v,,)vu =0. (2.12)

In a general basis, it is difficult to solve the above system with respect to the VEVs without making some approx-
imations, for example assuming small “sneutrino” VENt4]. In order to simplify calculations we would like to

find a basis where the “sneutrino” VEVs vanish,= v2 = vz = 0. In other words, we are seeking an orthogonal
matrix Z, such that the following equation,

N 1 v2 — v
T 12 ’ 2"u 0 _
(2" (M5)Z] ,gv0 = (W' Z)avs — SMZ TR v0d0x =0, (2.13)

holds. If the above system is satisfied, then a solution with zero “sneutrino” VEVs exists. The other solutions, with
non-vanishing “sneutrino” VEVs will be discussed later. In Ef13)

1
2 2, 22, .2
M7z = 1(8 +83) (v, + v5)- (2.14)
is the Z-gauge boson mass squared. It is obvious that whenO, vg is real. It is now useful to define
tang = 2. (2.15)
Vo
To determineZ, multiplying (2.13)by Z,,, summing overr and solving forZo, yields,
b/ tan
Za0=—3 ’2 g 1 ,32 tar? f—1° (2.16)
M Do = 2M7i0pp77

For given set of model paramete®,o depends only on taf which we can now fix by solving the orthonormality
condition,

3 3
b/2tar?
> Za0Zao= Y — = P =1 (2.17)
= 0 [(M D) aq — SMZETE Y2
a=0 a=0 £l 2V Zar g+1

This equation can be easily be solved numerically for any given set of model parameters.
It is worth noting that wherb; = 0 and using notation more typical for this casg= m%z, (M}:Z)oo = mi
Eq.(2.17)reduces to one of the standard RPC MSSM equations for the Higgs VEVs:

masvg = vy |:m2 - é(g2 +g2) (v2 - vﬁ)i| (2.18)
For some parameter choices [E2.17)may admit multiple solutions for tgfy Each of the possible tghspecify

a different basis, and each of these bases has one solution of the minimisation conditions with vanishing “sneutrino”

VEVSs. The subtlety highlighted earlier is the following: all possible solutions of the minimisation conditions can

be found in each basis, so, in general, each basis contains a number of extrema equal to the number of possibl

solutions for tarB. Hence, a solution with; = 0 in one basis, is a solution witly # 0 in another basis. The

important point to note is that by considering all possible values ¢f tand selecting the value which corresponds

to the deepest minima for the solution with vanishing sneutrino VEVSs, all the solutions will have been accounted

for, and the vanishing sneutrino VEV basis will have been determined correctly. The value of the potential at the

vacuum, in terms of taf is given by

M} (tafp—1)\?
V(tanﬂ)__Z(g2-|-g§) <tan?ﬁ+1> . (2.19)

The obvious conclusion from the equation above is that the deepest minimum of the potential is given by the
solution for targ or cotg which is greatest.
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Knowing tang, one should fi>m§ using Egs(2.12), (2.14)—(2.16(again in the analogy with RPC MSSM where
m2 is usually given in terms af/ 4, tanB). Namely

cot 1M2 tarf g —1
27 2tark g+ 1’

In this waymg is chosen to give the correct value of theboson mass.

Only the first column of th& matrix, Z,9, is defined by Eq(2.16) The remaining elements & must still be
determined. Having fixed the first column of the matrix, the other three columns can be chosen to be orthogonal to
the first column and to each other. This leaves us witl®@B) invariant subspace, such that the maHiis given

by

m3 = Zaob, (2.20)

1 0
z_o<0 X3x3>’ (2.21)

where

Zoo —\Z%,+ Z5,+ Z3, 0 0
ZlO Z00Z10 _ V Z%OJ'_ZgO 0
o= V230t 250123 v 225+ 255+23 (2.22)

Z20 Z00Z20 Z10Z20 ___Z30
\/ 235+ Z55+ 23 \/ Zio+ ZgO\/ ZEot+Z55+ 23 \/ 25+ 23,
Z30 Z00Z30 Z10Z30 Z20
\/Z§0+Z§O+Z?3:O \/Z§O+Z§O\/Z%O+Z§O+Z§O \/Z§o+Z§o

andX is an, as yet, undetermined-33 orthogonal matrix determined by three angles. This remaining freedom
can be used to diagonaliga’ (M’L?)Z],» 7, i.e. the (real symmetric) “sneutrino” part of tHe (M’E?)Z matrix, with

entries(ll?lg)i. We have now accomplished our aim of finding the matri¢eand Z which, after inserting into
potential of Eq(2.7) and dropping the primes, reduce the scalar potential to the form

ok~ - 1 ok~
Vneutrai= (M) 577 1 +m3h3*hg — [ Buvrahy +H.c] + é(g2 + 83) (h3*h3 — 5F , VLa)” (2.23)

where

(ME)QﬁE[ZT(/\;l/L?)Z] and By = (0'2)q, (2.24)

af
with (M/E?) andd’ given by Eq(2.8). In this basis the matrik/l% adopts a particularly simple form

(M? (2.25)

) (Botanﬂ —iMZ2cosB B;tanp )
af = ’

B;tang (Mé)iaij
where there is no sum overin the down-right part of the matrix. Notice that we did not only succeed to self

consistently go to a basis where the sneutrino VEVs are zero, but also we managed to have the sneutrino masses
(Mf)i diagonal and all the parameters of the scalar potential ifZEg3)real.

As a byproduct of our procedure, we denote here that the potential (2 2§)exhibits neither spontaneous nor
explicit CP-violation at the tree level. The latter is in agreement with the results of éfollowing a different
method. Of course, the parametggs of the superpotential and the soft supersymmetry breaking couplings stay in
general complex. The result that the neutral scalar potential is CP invariant can also be seen directly feof) Eq.

By forming the complex basiév;,, hg*) the first line of the potential can be rewritten as a matrix; a rotation
can then be performed such that the matrix is real and diagonal. After the rotation, the second line, being the
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contribution fromD-terms, contains complex parameters in general, but the rotation matrix can be chosen such
that these phases are set to zero.

A question arises when we include high order corrections to the potential. Then the vanishing “sheutrino”
VEVs will be shifted to non-zero values by tadpoles originating, for example, fron£ h® contribution in the
superpotentia(2.1). The “sneutrino” VEVs maybe set back to zero by a renormalisation condition such that a
counterterm for these VEVSs set their one particle irreducible (1PI) tadpole corrections to zero.

To conclude, it is worth making a remark about the sigBef As is clear from the form of Eq¢$2.24), (2.8),

(2.16) if (./\A/l/éz)aa - %M% Igﬁ ﬁjri > O for all «, Bg is always positive in the vanishing sneutrino VEV basis.

3. Parametrising the neutral scalar mass matrices

The neutral scalar sector of the R-parity violating MSSM is in general very complicated. This is due to the
fact that the scalars mix through the lepton number violating terms proportioisa) ME and unless all of these
parameters and VEVs are real one has a 10 matrix to consider. However, for any given set of model parameters,
one can always perform the basis change described in the previous section and arrive to the potential defined b
Eq. (2.23) with only real parameters. Consequently, the physical neutral scalars are, at the tree level, exact CP-
eigenstates. This implies that the neutral scalar mass matrix decouples intxt&vanatrices, one for the CP-odd
particles and one for CP-even. In the same manner as in the R-parity conserving MSSM, once quantum correction:s
are considered, the CP invariance will generically be brgRéh

Ultimately, one would like to parametrise the scalar sector resulting from the poten{R®) with as few
parameters as possible in order to make contact with phenomenology. These parameters in the case of the R-paril
conserving MSSM are: the physical mass of the CP-odd Higgs boson

2 2B

A7 sin2g’
and tar3. An advantage of the form of potential in E¢8.23)—(2.25)s that, M4 and tarB can still be used for
parameterising the general Higgs sector in the R-parity violating MSJBﬁ/Ijs the mass of the lightest CP-odd
Higgs boson in the R-parity conserving MSSM; as such, it is used here as a paranieisaused to denote the
physical tree-level mass of the lightest CP-odd Higgs in the R-parity violating MSSM (the convention adopted is
that masses in the RPC case, parameters in this model, are denateddoyl the masses in the RPV model are
denoted byn).

(3.1)

3.1. CP-even neutral scalar masses and couplings

The Lagrangian after spontaneous gauge symmetry breaking contains the terms

2
Rehg
£>—(Rehd Rebo Rei)MéEyen (ReiL()) . (3.2)
Relej
As such, the scalar CP-even Higgs squared mass matrix becomes
cog BM2 +si? BMZ  —3sin28(M3 + M2)  —B;

MEyen= | —3sin28(M3 + M2) siP M2 +codpMZ Bjtang |, (3.3)
—B; B; tanﬂ Ml.28,-j
where
A 1
M7= (M?), + > cos BMZ, (3.4)
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are in fact the sneutrino physical masses of the RPC case. It is important here to notice that the tepzeft 2
sub-matrix is identical to the RPC case, for which the Higgs masses are given by

M2, = %(M% + M2 £ /(M2 + M2)? — aM2 M3 co$ 28 ). (3.5)
and will be used as parameters in the RPV model.

The matrix(3.3) always has one eigenvalue which is smaller th’d@. This may be proved as follows: one first
observes that the upper left2 submatrix o0f(3.3), call it A, has at least one eigenvalue smaller than or equal to
M%. Then using the Courant—Fischer theolf@i] of the linear matrix algebra one proves that, for one flavour, the
eigenvalues of the 8 3 matrix M2, g, are interlaced with those of. This means that the matrif(Z, g, with
i =1 has at least one eigenvalue smaller or equal Mén Repeating this procedure twice, proves our statement.
Furthermore, it is interesting to notice that in the region wheregtgn1, the eigenvectofsing, cosg, 0,0, 0)”
corresponds to the eigenvalue with mass approximaw@yNotice that this is the same eigenvector as in the RPC
case which corresponds to the Higgs boson which couples almost maximallyZeghege boson.

Lepton flavour violating processes have not been observed as yet and therefore, bearing in mind cancellations,
the parameterB; tang have to be much smaller than me‘, Miz). To get arough estimate, consider the dominant
contribution from neutral scalars and neutralinos in the @2,

aew B%tarfp
16m m3
with m = max(M 4, M;) andB ~ O(B;). This shows that

<1leV, (3.6)

nt,, ~

Bitanf 1.2x 1073
2 N

With this approximation, it is not hard to find a matg which rotates the fields into the mass basis, such that

~0.1%. (3.7)

Zi MEyenZr = diadmio, m5o. (m2),]. (3.8)

with mio being the lightest neutral scalar mass and

__cogf—a)cosuB; sin(B—a) sina B

1 J
COSx Sina cosﬁ(Mj?—M,f) + cosﬁ(MJ?—M,%)
~ i cogf—a) sinaB; sin(f—a) cosa B
Ip= sino cos cosp D T cospZ ) | (3.9)
cospP!"B;  cospP! B, 5
cogS—a) sin(B—a) tj

where there is no sum oveland(Mf, M2, M?) are defined ir{3.4), (3.5). In addition,

and PMH — M} c0S 26 — Miiy (3.10)
T coRB(M2 — MPY(M? — M? ) '
H h i h,H

M2 + M2
M5 — M;

tan2x =tan28

(the common convention is to choose® < 7/2 and—nr/2 < @ < 0). The mass eigenstates of the RPV model
are therefore given by

cospP/'B; ~
—————— | Rey;,
cogB — o)

cosB P B;
# Reb;;,
sin(B — «)

h° ~ cosa Reh3 — sina Redzo + (

HO ~ sina Reh% + cosx Revy g+ (
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. (_codp—a)cosaB, sin(ﬁ—a)BjSinotBj)R 42
(V)i ( COS,B(MJZ _ Mf) COS,B(]W]2 - MIZ{) €ng
<cos(ﬂ —a)sinaB;  sin(8 —a) cosu B;
cosp(M?— M?) ' cosB(M? — M%)

> Rebyo+ Reiy;, (3.11)

with corresponding masses,

M2cof28 — M2 O, B2 B*
2 2 Z h
"o = Mi = 22 o M2—1M2+0<M60034 > (3.12)
(Mj; — Mj))cos B i M; h p
M2co228 — M2 S, B2 B*
2 2 Z H i
~ M + +0 ’ 3.13
MO T (M2 M2y o p = ME— M, <M6c0&4ﬁ> 519
. B? M? — M2 cos 28 B4
2 2 i i Z
2y~ (M2), + +0 ~ 3.14
(5. )i = (M3); + Gogp (M} — M2(M3 + M2) + M3 M2 cof 26] (M600§ﬂ> 324

The above expressions, are useful in relating the masses of the neutral scalars in the RPC and RPV case in the val
approximationB tang < min(M?2, Ml.z). They are presented here for the first time except the mg8slid)which
agrees with Ref[15]. We note here that these formulae are not valid if some of the diagonal entries in the mass
matrix are closely degenerated—in such case even spadirms lead to the strong mixing of respective fields.
However in many types of calculations (e.g. various loop calculations) one can still formally use such expansion—
in the final result one often gets expressions of the tﬁ%ﬁ% which have a well defined and correct limit
also for degenerate masses, even if the expansion used Iin the intermediate steps was, in principle, wrong.

It is interesting to note that the rotation mattixdefined in(2.6), although explicitly calculated in this Letter,
does not appear to all the neutral scalar vertices. For example, the vertices of the CP-even neutral scalars with th
gauge bosons read &s,
1 ga2Myz

L =—
VVH 2 C0SsH,,

. 1 .
(COSBZR2s + SINBZR1,)Z* Z, H? + EgzMW(cosﬁZRzy + sm,BZRls)Wﬂ‘Wl;HSO,
(3.15)
whereH? | . are the Higgs boson fields?, HO, (9,)1, (V4)2, (V4)3, respectively. Fron@3.9)andLyy i above,

.....

itis easy to see that the light Higgs boson coupling to the vector basbasZ, W), is proportional to sifB — «)
as in the RPC caseln fact, the coupling sum rule,

5

D 8ovuo=8%ve: (3.16)
s=1

valid in the RPC case for= 1, 2, persists also here, Wh@@VHso are the couplings appearing(@®.15)andgyvg
the corresponding coupling appearing in the Standard Model.

3.2. CP-odd neutral scalar masses and couplings

For the CP-odd case one finds,

Im h3
ED—(Imh(ZJ Imvro ImﬁL[)M%DD(ImDL0>, (3.17)
Imf)Lj

1 Note that the matriZ defined in(2.21)has nothing to do with neithétg nor Z 4 defined in this section.
2 We follow the conventions of Ref23].



A. Dedes et al. / Physics Letters B 627 (2005) 161-173 169

where the CP-odd mass matrix reads,
cod BM2 +EsiP M2 3sin28(M2 — EM2) B;

M3pp=| isin28(M%—£M2%) si?BM3 +&cod ML Bjtang |, (3.18)
B; B;tang Mi28ij
andé¢ is the gauge fixing parameter Ry gauge. In fact, by using an orthogonal rotation
sing —cosg O
V= ( cos s 0) , (3.19)
0 0 1

we can always project out the would-be Goldstone mode, of the CP-odd scalar matrix and thus

EMZ 0 0
Bj

ViMepVv=| 0 M;: 5 (3.20)
0 ooy MPOy

Under the approximation of small bilinear RPV couplings [see(B()], a solution is determined for the matrix
Z 4 which rotates the fields into the mass basis, such that

ZgM%DDZA =diaqmzco,mi0, (m%_)i], (321)
sing cosp M?IijMﬁ
J
Zs=~ | —cosp sinB Sgta;ﬁ , (3.22)
i~ A
_ B S
cosp(M?—M?2) 1

with the mass eigenstates given by

0~ i 2 ~
G- ~singImhg—cosfimiyo,

B.
A%~ cosBImhd +singImig g+ ————— Im¥iy;,
ﬂ 0 18 LO COS/3(M12 — M‘i) Li
- B; >  Bjtang - -
(o) ~ mlmho—i— m|vao+|m VLi, (3.23)
J i
with corresponding masses,
3 2 4
1 B! B
2 2 i
~ M5 — @ , 3.24
Ma=Ha co§ﬂ;Mi2—M§+ <M6cos4ﬁ> (329
B? B*
2 2 i
). >MF — @ . 3.25
(n5.); = M, (M3 — M?)cog B * (M6cos4ﬂ> (3:25)
The coupling of theZ-gauge boson to the CP-even and CP-odd neutral scalar fields is given by
. 3
—igy
Lzna= 52| (o = Pao)u| Y Zr@rasZacianp — Zr1sZaty | |24 HOAS, (3.26)
ZCW § r 0 P

where the four momem;azso, ng are incoming and the field$gzlm5 correspond t@®, A%, (v_)1, (5_)2, (V_)3,

respectively. One may check that the couplifig- G — 1° derived from(3.26)is proportional to st — ) as it
should be.
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4. Positiveness and stability of the scalar potential
4.1. Positiveness

In general, one should inspect whether all physical masses in the CP-odd and CP-even sector are positive. Fo
that, all diagonal square subdeterminants of mass matrices should be positive. One can easily check that both CF
odd and CP-even mass matrice$3rB), (3.18)respectively, lead, in the rotated basis, to the same set of conditions,

1 S, B2
2 e 2 ]
M?>0 withi=1,2,3 and MPmX;V}. (4.1)

i=

Using the form ofM/f in (3.1), the last equation can be rewritten in the form
2
B;

3
Bo>tang )  —5.
i=1 Mi

Excluding some very singular mass configurations, the above conditions are rather trivially fulfilled if one takes
into account the bound of E@R.7).

(4.2)

4.2. Stability

The question of whether the potential is stable, i.e. bounded from below, is far more complicated. In most
cases the quartic-)term dominates and there is no problem. The only exception being when the fields follow
the direction|h2|2 = Z?:o [v2i|2. In such a case, one should check whether the remaining part of the potential is
positive along this direction.

DenotingR = ,/Z?zo ME andhg = Re™'?, whereg is a free phase, and using E@®.20), (2.25), (3.4)one
can write down the scalar potential along this direction in the vanishing snueutrino VEV basis as

Bo ., . oy~ —x - I -
Vheutral= ,71)201)110 + [Mlz + Bo COtﬂ] l)zil)L,’ + B; tang (UZOVU + VLOVz,‘) — B, (VLothS + HC)
sing cosp
=5, Qi, — (BT Re™™ +H.c), (4.3)
where the real symmetric matrQ is
M2 B;tanp >

= . 4.4
Q <Bj tang  [M? + Bocotpls;, (4.4)

Finding the stability conditions for the potent{dl 3)is difficult, it depends on nine real variables (4 moduli and five
phases of the fields). To simplify the problem, we perform one more field rotation to the basis in which the matrix
Q is diagonal. This can be done, in general, by numerical routines (routines where already used in calculating
the vanishing sneutrino VEV basis, and therefore, finding the stability conditions for the general scalar potential
always has to involve some numerical analysis). We thus define the rRafrix— Pv., as

PTQP = diag(Xo, X1, X2, X3). (4.5)

In fact, Q is real, so we can choos$tto be real orthogonal. Also, we dendig = B, Pyg. Obviously, the rotation
P preserves the value & = |h8|.
The potential becomes:

3

Vheutral= Z[XOZHJL(I'Z - DotR(‘jLae_i(ﬁ + H-C-)], (46)
a=0
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where Xg has to be positive, otherwise fgr= 0 along the direction;; = Imv; o = 0 the potentialVheytrai=
|Redrol?[Xo — Dosign(Red;o)] falls to —oo at least for one direction along the Re) axis. In fact the condition
on X, is X, > 2|Dgy|. Thus our first conclusion is that the matfxhas to be positively defined. One can write
down appropriate conditions in the same manner as for the scalar mass matrices; comparing {itt), Bccan
be observed that this condition is automatically fulfilled if relat{dril) holds.

With X, positive, one can write down the potential as:

Vheutral= Z vX VL ﬁ l¢ RZZ . (4-7)
a=0

To further simplify the problem, denofg o = uqe! @), whereu, > 0 are field moduli ang, are free phases.
Then

2 23: Uy Da i P 2 XS: D2
Vheutral= R Xog— — —=€'"| — e (4.8)
a=0 R Xa a=0 Xa

whereR = \/Z?:o |9; 12 = \/Z?:o“iz- Phaseg, can be adjusted independently:gf. The worst case from the

point of view of potential stability, the smallest first term inside the parenthesis, occubg &t = | D, |. Denot-
ing furthere, = uy /R, 0< €4 < 1, one can reduce our initial problem to the question whether the function

3 2 3
gle) ="V Xuew - z Da =3 (Xoek = 2000 k). (4.9)

a=0
depending now on four real positive parameters, is hon-negative on the unit @ﬁgg&rg =1. In general such
problem can be solved numerically using the method of Lagrange multipliers{;FerXo — Dg, the minimum
occurs for

| Dy |
= s 4.10
€ X, + A ( )

where can be found numerically as a root of the following equation:

3

2
> Dy 4 (4.11)
= Xa + 1)?

For smallerX;, the minimum is realised fot; = O for one or more values afand requires analysis of various
special cases. Having found the correct minimum, to prove the stability of the potential one needs to show that the
functiong at the minimum is non-negative.

As shown in Eq(3.7), B; terms and thus alsp; terms are usually very small. In this case one can set approx-
imate, sufficient conditions for the stability of the potential, without resorting to solvind4&tj1) numerically.

DenoteD = Y2 ; D? and Xmin = Min(X1, X2, X3). Then, using the inequalitp;¢; < \/Zle Df\/Z?Zl e? =

D,/1— €&, one has

g(€a) > Xo€d + Xmin(1— €3) + (X; — Xmin)e? — 2| Doléo — 2D/ 1 — €3. (4.12)

Terms(X; — Xmm)e,? are always non-negative. The worst case being when the wggtep, ¢3) is along the min-
imal X; axis, where these terms vanish. Other terms are rotation invariant in the 3-dimensionakspaces),
so Eq.(4.12)is equivalent to finding parameteks, Xmin, Do, D for which the expressiofd.13) depending on
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just one real variable, is positive:

g (eg) :Xoeg—i-Xmin(l—eg) —2|Doleg — 2D\/1— €2 > 0. (4.13)
Analysis of(4.13)is further simplified by one more approximation, justified for sniall
g/ (€0) = Xo€3 + Xmin(1 — €5) — 2| Doleo — 2D. (4.14)

The rhs of Eq.(4.14)is now trivial. Following approximate conditions for the stability of the potential can be
summarised as follows:

Xmin range Stability requires
Xmin = Xo— Do Xo = 2|Dol + 2D
0 < Xmin < Xo— Do (X0 — Xmin)(Xmin — 2D) > D}

Both conditions are sufficient, but not minimal—we have made some approximations and there may be para-
meters which do not fall into either of the categories above, and yet still give a stable potential. For example, if
Xo= X1= X2 = X3= X, one can easily derive the exact necessary and sufficient condition for potential stability

asX > 2,/D§ + D2, less strict tharX > 2(| Dg| + | D|) which would be given by the table above.
For complementary work the reader is referred to [R2].

5. Conclusions

In this Letter we present a procedure for calculating the rotation matrix which brings the neutral scalar fields of
the general R-parity violating MSSM onto the vanishing sneutrino VEV basis where they devetsp VEVS,
with n being the number of flavour generations. In doing so, we have made no assumption about the complexity
of the parameters. We consider the case: ef 3 generations, but our approach immediately applies to other
cases, apart from obvious modifications of the fornZ ahatrix defined in(2.21) (2.22) As a byproduct of basis
change, we prove that the tree level MSSM potential does not exhibit any form of CP-violation, neither explicit
nor spontaneous. Consequently, the neutral scalar fields can be divided into CP-even and CP-odd sectors with th
5 x 5 neutral scalar squared mass matrices, taking a very simple form with only small RPV masses sitting on their
off diagonal elements. We can thus expand along small RPV masses and find analytic approximate formulae which
relate the RPC and the RPV neutral scalar masses. Furthermore we also find, that in general there is always &
least one neutral scalar field with mass lighter th&anwhich couples maximally to th&-gauge boson in the case
of large targ and largeM 4. Our procedure for finding the rotation mattikhas been codédand is numerically
stable.

In the end, we are aiming to construct the most general MSSM quantum field theory structure resorting neither
to R-parity violation nor to other approximations. This will be useful for examining the phenomenology of the
MSSM as a whole. The convenient choice of the basis for the neutral sector found in this Letter is a first step
towards this direction.
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