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Abstract

Starting out from the most general, gauge invariant and renormalisable scalar potential of the R-parity violating MS
performing a calculable rotation to the scalar fields we arrive at a basis where the sneutrino VEVs are zero. The adv
our rotation is that, in addition, we obtain diagonal soft supersymmetry breaking sneutrino masses and all potential pa
and VEVs real, proving that the MSSM scalar potential does not exhibit spontaneous or explicit CP-violation at tre
The model has five CP-even and four CP-odd physical neutral scalars, with at least one CP-even scalar lighter thanMZ . We
parametrise the neutral scalar sector in a way that resembles the parametrisation of the R-parity conserving MSSM, a
mass spectrum, the coupling to the gauge sector and the stability of the potential.
 2005 Elsevier B.V. All rights reserved.

1. Introduction

That none of the terms in the Standard Model (SM) violate lepton number(L) is not due to an imposed sym
metry, but merely reflects the fact that all such combinations of SM fields are ruled out by consideration o
invariance and renormalisability[1]. For supersymmetric extensions of the SM this is no longer true. In the Min
Supersymmetric Standard Model (MSSM)[2], lepton number violating terms (and baryon number(B) violating
terms) appear naturally, giving rise to tree-level processes, proton decay for example, which are already
constrained by experiment. Either, bounds can be set on Lagrangian parameters, or a further discrete s
can be imposed on the Lagrangian, such that these processes are absent. The discrete symmetry most
imposed is known as R-parity(RP ) [3,4]. Under R-parity the particles of the Standard Model including the sc
Higgs fields are even, while all their superpartners are odd. Imposing this symmetry has a number of
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Firstly, any interaction terms which violate lepton number or baryon number will not appear. Secondly, the
of the lightest supersymmetric particle (LSP) into SM particles would violateRP ; the LSP is therefore stable. Th
sneutrino vacuum expectation values (VEVs) are zero; without extending the MSSM field content, spon
generation ofRP violating terms is phenomenologically discounted[5].

If RP conservation is not imposed, fields with differentRP mix [6–12]. In particular, the neutrinos will mix with
the neutralinos and the sneutrinos will mix with the neutral scalar Higgs fields; all five complex neutral scala
can acquire vacuum expectation values. Minimising this ten parameter potential in general is not straight
it is more convenient to simplify the system by choosing an appropriate basis in the neutral scalar sector
of the Higgs doublets carries the same quantum numbers as the lepton doublets (apart from the non-c
lepton number), it is convenient to introduce the notationLα = (H1,Li) whereH1 andLi are the chiral superfield
containing one Higgs doublet and the leptons, respectively (α = 0, . . . ,3 andi = 1, . . . ,3). Furthermore, startin
from the interaction basis, we are free to rotate the fields and choose the direction corresponding to th
“Higgs” field. Assuming that the system defining the five complex vacuum expectation values of the fiel
solved, four complex VEVsvα would define a direction in the four-dimensional(H1,Li) space. One can the
choose the basis vector which defines the Higgs fields to point in the direction defined by the vacuum exp
values. We refer to this basis, in which the “sneutrino” (as we call the fields perpendicular to the “Higgs
VEVs are zero, as the vanishing sneutrino VEV basis[13–15]. This basis has the virtue of simplifying the ma
matrices and vertices of the theory and thus is better suited for calculations.

Basis independent parameterisations can be chosen which explicitly show the amount of physical lepton
violation [16–18]. Values for physical observables such as sneutrino masses and mass splitting between
and CP-odd sneutrinos have been derived in the literature in terms of these combinations but usually un
approximations (for example the number of generations or CP-conservation). We find this procedure in
complicated for practical applications and we shall not adopt it here.

Instead, we present in the next section a calculable procedure for framing the most general MSSM scal
tial in the vanishing sneutrino VEV basis. An advantage of our procedure is to obtain a diagonal “slepton
matrix, two real non-zero vacuum expectation values and real parameters of the neutral scalar potential
tated basis. The latter proves that the neutral scalar sector of the most general R-parity violating MSSM
neither spontaneous nor explicit CP-violation in agreement with[19]. In Section3, the tree-level masses and mi
ing of the neutral scalar sector is investigated. Using the Courant–Fischer theorem for the interlaced eige
we prove that there is always at least one neutral scalar which is lighter than theZ-gauge boson. We present appro
imate formulae which relate the Higgs masses, mixing and Higgs-gauge boson vertices of the R-parity co
(RPC) case with the R-parity violating (RPV) one. In Section4, the positiveness of the scalar mass matrices
stability of the vacuum is discussed.

2. Basis choice in the neutral scalar sector

In this section we develop a procedure connecting a general neutral scalar basis with the vanishing s
VEV basis, the latter being more convenient for practical applications. The most general, renormalisable
invariant superpotential that contains the minimal content of fields, is given by

(2.1)

W = εab

[
1

2
λαβkLa

αLb
βĒk + λ′

αjkLa
αQbx

j D̄kx − µαLa
αHb

2 + (YU )ijQ
ax
i Hb

2 Ūjx

]
+ 1

2
εxyzλ

′′
ijkŪ

x
i D̄

y
j D̄z

k,

whereQax
i , D̄x

i , Ū x
i ,La

i , Ēi ,H
a
1 ,Ha

2 are the chiral superfield particle content,i = 1,2,3 is a generation index
x = 1,2,3 anda = 1,2 areSU(3) andSU(2) gauge indices, respectively. The simple form of(2.1) results when
combining the chiral doublet superfields with common hyperchargeY = −1

2 into La
α=0,...,3 = (Ha

1 ,La
i=1,2,3). µα

is the generalised dimensionfulµ-parameter, andλαβk, λ
′ , λ′′ , (YU )ij are Yukawa matrices withεab andεxyz
αjk ijk
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being the totally anti-symmetric tensors, withε12 = ε123 = +1. Then the five neutral scalar fields,ν̃Lα,h0
2 from

theSU(2) doublets,Lα = (ν̃Lα, ẽ−
Lα)T andH2 = (h+

2 , h0
2)

T , form the most general neutral scalar potential of
MSSM,

Vneutral=
(
m2
L̃
)
αβ

ν̃∗
Lαν̃Lβ + µ∗

αµβν̃∗
Lαν̃Lβ + µ∗

αµαh0∗
2 h0

2 + m2
H2

h0∗
2 h0

2 − bαν̃Lαh0
2 − b∗

αν̃∗
Lαh0∗

2

(2.2)+ 1

8

(
g2 + g2

2

)[
h0∗

2 h0
2 − ν̃∗

Lαν̃Lα

]2
,

where general complex parametersbα , an hermitian matrix(m2
L̃)αβ andm2

H2
all arise from the supersymmet

breaking sector of the theory. The last term in(2.2) originates from theD-term contributions of the superfield
Lα,H2. Defining

(2.3)
(
M2

L̃
)
αβ

≡ (
m2
L̃
)
αβ

+ µ∗
αµβ, and m2

2 ≡ m2
H2

+ µ∗
αµα,

one can rewrite the potential in(2.2) in a compact form as

(2.4)Vneutral=
(
M2

L̃
)
αβ

ν̃∗
Lαν̃Lβ + m2

2h
0∗
2 h0

2 − (
bαν̃Lαh0

2 + H.c.
) + 1

8

(
g2 + g2

2

)[
h0∗

2 h0
2 − ν̃∗

Lαν̃Lα

]2
.

In order to go to the vanishing sneutrino VEV basis, we redefine the “Higgs-sneutrino” fields

(2.5)ν̃Lα = Uαβν̃′
Lβ,

whereU is a 4× 4 unitary matrix

(2.6)U = V diag
(
eiφα

)
Z,

being composed of three other matrices which we define below,V unitary andZ real orthogonal. The potential i
the primed basis becomes,

(2.7)

Vneutral=
[
ZT

(
M̂′2

L̃
)
Z

]
αβ

ν̃′ ∗
Lαν̃′

Lβ + m2
2h

0∗
2 h0

2 − [
(b′Z)αν̃′

Lαh0
2 + H.c.

] + 1

8

(
g2 + g2

2

)(
h0∗

2 h0
2 − ν̃′ ∗

Lαν̃′
Lα

)2
,

where

(2.8)
(
M̂′2

L̃
) = diag

(
e−iφα

)
V†(M2

L̃
)
V diag

(
eiφα

)
, b′T = bT V diag

(
eiφα

)
.

The unitary matrix,V, is chosen such that(M̂′2
L̃ ) is real and diagonal—the hat( ˆ ) is used to denote a diagon

matrix. The phasesφα are chosen such thatb′
α is real and positive [they are equal to the phases of(bT V)∗α ]. The

minimisation conditions for the scalar fields are now derived, to obtain conditions for the vacuum expe
values,

∂V

∂ν̃′ ∗
Lα

∣∣∣∣
vac

= [
ZT

(
M̂′2

L̃
)
Z

]
αβ

ν̃′
Lβ − (b′Z)αh0∗

2 − 1

4

(
g2 + g2

2

)(
h0∗

2 h0
2 − ν̃′ ∗

Lγ ν̃′
Lγ

)
ν̃′
Lα

∣∣
vac= 0,

(2.9)
∂V

∂h0∗
2

∣∣∣∣
vac

= m2
2h

0
2 − (b′Z)αν̃′ ∗

Lα + 1

4

(
g2 + g2

2

)(
h0∗

2 h0
2 − ν̃′ ∗

Lγ ν̃′
Lγ

)
h0

2

∣∣
vac= 0,

where “vac” indicates that the fields have to be replaced by their VEVs,

(2.10)〈ν̃′
Lα〉 = vα√

2
,

〈
h0

2

〉 = vu√
2
.

TheU(1)Y symmetry of the unbroken Lagrangian was used to set the phase ofvu to zero, however, at this stage a
other vacuum expectation values will be treated as complex variables. By combining Eqs.(2.9), (2.10)we obtain

(2.11)
[
ZT

(
M̂′2

˜
)
Z

]
αβ

vβ − (b′Z)αvu − 1(
g2 + g2

2

)(
v2
u − v∗

γ vγ

)
vα = 0,
L 8
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(2.12)m2
2vu − (b′Z)αv∗

α + 1

8

(
g2 + g2

2

)(
v2
u − v∗

γ vγ

)
vu = 0.

In a general basis, it is difficult to solve the above system with respect to the VEVs without making some a
imations, for example assuming small “sneutrino” VEVs[11]. In order to simplify calculations we would like t
find a basis where the “sneutrino” VEVs vanish,v1 = v2 = v3 = 0. In other words, we are seeking an orthogo
matrix Z, such that the following equation,

(2.13)
[
ZT

(
M̂′2

L̃
)
Z

]
α0v0 − (b′Z)αvu − 1

2
M2

Z

v2
u − v2

0

v2
u + v2

0

v0δ0α = 0,

holds. If the above system is satisfied, then a solution with zero “sneutrino” VEVs exists. The other solution
non-vanishing “sneutrino” VEVs will be discussed later. In Eq.(2.13),

(2.14)M2
Z = 1

4

(
g2 + g2

2

)(
v2
u + v2

0

)
,

is theZ-gauge boson mass squared. It is obvious that whenvi = 0, v0 is real. It is now useful to define

(2.15)tanβ ≡ vu

v0
.

To determineZ, multiplying (2.13)by Zγα , summing overα and solving forZα0, yields,

(2.16)Zα0 = b′
α tanβ

(M̂′2
L̃ )αα − 1

2M2
Z

tan2 β−1
tan2 β+1

.

For given set of model parameters,Zα0 depends only on tanβ which we can now fix by solving the orthonormali
condition,

(2.17)
3∑

α=0

Zα0Zα0 =
3∑

α=0

b′2
α tan2 β

[(M̂′2
L̃ )αα − 1

2M2
Z

tan2 β−1
tan2 β+1

]2
= 1.

This equation can be easily be solved numerically for any given set of model parameters.
It is worth noting that whenbi = 0 and using notation more typical for this case,b′

0 ≡ m2
12, (M̂′2

L̃ )00 ≡ m2
1,

Eq.(2.17)reduces to one of the standard RPC MSSM equations for the Higgs VEVs:

(2.18)m2
12vd = vu

[
m2

1 − 1

8

(
g2 + g2

2

)(
v2
u − v2

d

)]
.

For some parameter choices Eq.(2.17)may admit multiple solutions for tanβ. Each of the possible tanβ specify
a different basis, and each of these bases has one solution of the minimisation conditions with vanishing “sn
VEVs. The subtlety highlighted earlier is the following: all possible solutions of the minimisation condition
be found in each basis, so, in general, each basis contains a number of extrema equal to the number o
solutions for tanβ. Hence, a solution withvi = 0 in one basis, is a solution withvi �= 0 in another basis. Th
important point to note is that by considering all possible values of tanβ, and selecting the value which correspon
to the deepest minima for the solution with vanishing sneutrino VEVs, all the solutions will have been acc
for, and the vanishing sneutrino VEV basis will have been determined correctly. The value of the potentia
vacuum, in terms of tanβ is given by

(2.19)V (tanβ) = − M4
Z

2(g2 + g2
2)

(
tan2 β − 1

tan2 β + 1

)2

.

The obvious conclusion from the equation above is that the deepest minimum of the potential is given
solution for tanβ or cotβ which is greatest.
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Knowing tanβ, one should fixm2
2 using Eqs.(2.12), (2.14)–(2.16)(again in the analogy with RPC MSSM whe

m2
2 is usually given in terms ofMA, tanβ). Namely

(2.20)m2
2 = Zα0b

′
α cotβ − 1

2
M2

Z

tan2 β − 1

tan2 β + 1
.

In this waym2
2 is chosen to give the correct value of theZ-boson mass.

Only the first column of theZ matrix,Zα0, is defined by Eq.(2.16). The remaining elements ofZ must still be
determined. Having fixed the first column of the matrix, the other three columns can be chosen to be ortho
the first column and to each other. This leaves us with anO(3) invariant subspace, such that the matrixZ is given
by

(2.21)Z = O
(

1 0
0 X3×3

)
,

where

(2.22)O =




Z00 −
√

Z2
10 + Z2

20 + Z3
30 0 0

Z10
Z00Z10√

Z2
10+Z2

20+Z3
30

−
√

Z2
20+Z3

30√
Z2

10+Z2
20+Z3

30

0

Z20
Z00Z20√

Z2
10+Z2

20+Z3
30

Z10Z20√
Z2

20+Z3
30

√
Z2

10+Z2
20+Z3

30

− Z30√
Z2

20+Z3
30

Z30
Z00Z30√

Z2
10+Z2

20+Z3
30

Z10Z30√
Z2

20+Z3
30

√
Z2

10+Z2
20+Z3

30

Z20√
Z2

20+Z3
30




,

andX is an, as yet, undetermined 3× 3 orthogonal matrix determined by three angles. This remaining free
can be used to diagonalise[ZT (M̂′2

L̃ )Z]ij , i.e. the (real symmetric) “sneutrino” part of theZT (M̂′2
L̃ )Z matrix, with

entries(M̂2
L̃
)i . We have now accomplished our aim of finding the matricesV andZ which, after inserting into

potential of Eq.(2.7)and dropping the primes, reduce the scalar potential to the form

(2.23)Vneutral=
(
M2

L̃

)
αβ

ν̃∗
Lαν̃Lβ + m2

2h
0∗
2 h0

2 − [
Bαν̃Lαh0

2 + H.c.
] + 1

8

(
g2 + g2

2

)(
h0∗

2 h0
2 − ν̃∗

Lαν̃Lα

)2
,

where

(2.24)
(
M2

L̃

)
αβ

≡ [
ZT

(
M̂′2

L̃
)
Z

]
αβ

and Bα ≡ (b′Z)α,

with (M̂′2
L̃ ) andb′ given by Eq.(2.8). In this basis the matrixM2

L̃
adopts a particularly simple form

(2.25)
(
M2

L̃

)
αβ

=
(

B0 tanβ − 1
2M2

Z cos2β Bj tanβ

Bi tanβ (M̂2
L̃
)iδij

)
,

where there is no sum overi in the down-right part of the matrix. Notice that we did not only succeed to
consistently go to a basis where the sneutrino VEVs are zero, but also we managed to have the sneutrin
(M̂2

L̃
)i diagonal and all the parameters of the scalar potential in Eq.(2.23)real.

As a byproduct of our procedure, we denote here that the potential of Eq.(2.23)exhibits neither spontaneous n
explicit CP-violation at the tree level. The latter is in agreement with the results of Ref.[19] following a different
method. Of course, the parametersµα of the superpotential and the soft supersymmetry breaking couplings s
general complex. The result that the neutral scalar potential is CP invariant can also be seen directly from E(2.4).
By forming the complex basis(ν̃Lα,h0∗

2 ) the first line of the potential can be rewritten as a matrix; a rota
can then be performed such that the matrix is real and diagonal. After the rotation, the second line, b
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contribution fromD-terms, contains complex parameters in general, but the rotation matrix can be chose
that these phases are set to zero.

A question arises when we include high order corrections to the potential. Then the vanishing “sne
VEVs will be shifted to non-zero values by tadpoles originating, for example, from theLQD contribution in the
superpotential(2.1). The “sneutrino” VEVs maybe set back to zero by a renormalisation condition such
counterterm for these VEVs set their one particle irreducible (1PI) tadpole corrections to zero.

To conclude, it is worth making a remark about the sign ofB0. As is clear from the form of Eqs.(2.24), (2.8),

(2.16), if (M̂′2
L̃ )αα − 1

2M2
Z

tan2 β−1
tan2 β+1

> 0 for all α, B0 is always positive in the vanishing sneutrino VEV basis.

3. Parametrising the neutral scalar mass matrices

The neutral scalar sector of the R-parity violating MSSM is in general very complicated. This is due
fact that the scalars mix through the lepton number violating terms proportional toBi , M2

L and unless all of thes
parameters and VEVs are real one has a 10×10 matrix to consider. However, for any given set of model parame
one can always perform the basis change described in the previous section and arrive to the potential d
Eq. (2.23), with only real parameters. Consequently, the physical neutral scalars are, at the tree level, ex
eigenstates. This implies that the neutral scalar mass matrix decouples into two 5× 5 matrices, one for the CP-od
particles and one for CP-even. In the same manner as in the R-parity conserving MSSM, once quantum co
are considered, the CP invariance will generically be broken[20].

Ultimately, one would like to parametrise the scalar sector resulting from the potential in(2.23)with as few
parameters as possible in order to make contact with phenomenology. These parameters in the case of th
conserving MSSM are: the physical mass of the CP-odd Higgs boson

(3.1)M2
A = 2B0

sin 2β
,

and tanβ. An advantage of the form of potential in Eqs.(2.23)–(2.25)is that,MA and tanβ can still be used fo
parameterising the general Higgs sector in the R-parity violating MSSM.M2

A is the mass of the lightest CP-od
Higgs boson in the R-parity conserving MSSM; as such, it is used here as a parameter.m2

A is used to denote th
physical tree-level mass of the lightest CP-odd Higgs in the R-parity violating MSSM (the convention ado
that masses in the RPC case, parameters in this model, are denoted byM , and the masses in the RPV model a
denoted bym).

3.1. CP-even neutral scalar masses and couplings

The Lagrangian after spontaneous gauge symmetry breaking contains the terms

(3.2)L⊃ −(
Reh2

0 Reν̃L0 Reν̃Li

)
M2

EVEN

( Reh2
0

Reν̃L0
Reν̃Lj

)
.

As such, the scalar CP-even Higgs squared mass matrix becomes

(3.3)M2
EVEN =




cos2 βM2
A + sin2 βM2

Z −1
2 sin 2β(M2

A + M2
Z) −Bj

−1
2 sin2β(M2

A + M2
Z) sin2 βM2

A + cos2 βM2
Z Bj tanβ

−Bi Bi tanβ M2
i δij


 ,

where

(3.4)M2
i ≡ (

M̂2
˜
)
i
+ 1

cos2βM2
Z,
L 2
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are in fact the sneutrino physical masses of the RPC case. It is important here to notice that the top-le× 2
sub-matrix is identical to the RPC case, for which the Higgs masses are given by

(3.5)M2
h,H = 1

2

(
M2

Z + M2
A ±

√(
M2

Z + M2
A

)2 − 4M2
AM2

Z cos2 2β
)
,

and will be used as parameters in the RPV model.
The matrix(3.3)always has one eigenvalue which is smaller thanM2

Z . This may be proved as follows: one fir
observes that the upper left 2× 2 submatrix of(3.3), call it A, has at least one eigenvalue smaller than or equ
M2

Z . Then using the Courant–Fischer theorem[21] of the linear matrix algebra one proves that, for one flavour,
eigenvalues of the 3× 3 matrixM2

EVEN, are interlaced with those ofA. This means that the matrixM2
EVEN with

i = 1 has at least one eigenvalue smaller or equal thanM2
Z . Repeating this procedure twice, proves our statem

Furthermore, it is interesting to notice that in the region where tanβ 	 1, the eigenvector(sinβ,cosβ,0,0,0)T

corresponds to the eigenvalue with mass approximatelyM2
Z . Notice that this is the same eigenvector as in the R

case which corresponds to the Higgs boson which couples almost maximally to theZ-gauge boson.
Lepton flavour violating processes have not been observed as yet and therefore, bearing in mind canc

the parametersBi tanβ have to be much smaller than min(M2
A,M2

i ). To get a rough estimate, consider the domin
contribution from neutral scalars and neutralinos in the loop[22],

(3.6)mν ∼ aew

16π

B2 tan2 β

m̃3
� 1 eV,

with m̃ = max(MA,Mi) andB ∼ O(Bi). This shows that

(3.7)
Bi tanβ

m̃2
∼ 1.2× 10−3

√
m̃

∼ 0.1%.

With this approximation, it is not hard to find a matrixZR which rotates the fields into the mass basis, such th

(3.8)ZT
RM2

EVENZR = diag
[
m2

h0,m
2
H0,

(
m2

ν̃+
)
i

]
,

with m2
h0 being the lightest neutral scalar mass and

(3.9)ZR �




cosα sinα − cos(β−α)cosαBj

cosβ(M2
j −M2

h)
+ sin(β−α)sinαBj

cosβ(M2
j −M2

H )

−sinα cosα
cos(β−α)sinαBj

cosβ(M2
j −M2

h)
+ sin(β−α)cosαBj

cosβ(M2
j −M2

H )

cosβPh
i Bi

cos(β−α)

cosβPH
i Bi

sin(β−α)
δij


 ,

where there is no sum overi and(M2
j ,M2

h,M2
H ) are defined in(3.4), (3.5). In addition,

(3.10)tan2α = tan2β
M2

A + M2
Z

M2
A − M2

Z

and P
h,H
i = M2

Z cos2 2β − M2
h,H

cos2 β(M2
H − M2

h)(M2
i − M2

h,H )

(the common convention is to choose 0� β � π/2 and−π/2 � α � 0). The mass eigenstates of the RPV mo
are therefore given by

h0 � cosα Reh2
0 − sinα Reν̃L0 +

(
cosβP h

i Bi

cos(β − α)

)
Reν̃Li ,

H 0 � sinα Reh2
0 + cosα Reν̃L0 +

(
cosβP H

i Bi
)

Reν̃Li ,

sin(β − α)
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n the valid

mass
ds.
nsion—
it
.
r,
s with the
(3.11)

(ν̃+)i �
(

−cos(β − α)cosαBj

cosβ(M2
j − M2

h)
+ sin(β − α)Bj sinαBj

cosβ(M2
j − M2

H )

)
Reh2

0

+
(

cos(β − α)sinαBj

cosβ(M2
j − M2

h)
+ sin(β − α)cosαBj

cosβ(M2
j − M2

H )

)
Reν̃L0 + Reν̃Li ,

with corresponding masses,

(3.12)m2
h0 � M2

h − M2
Z cos2 2β − M2

h

(M2
H − M2

h)cos2 β

3∑
i=1

B2
i

M2
i − M2

h

+O
(

B4

M6 cos4 β

)
,

(3.13)m2
H0 � M2

H + M2
Z cos2 2β − M2

H

(M2
H − M2

h)cos2 β

3∑
i=1

B2
i

M2
i − M2

H

+O
(

B4

M6 cos4 β

)
,

(3.14)
(
m2

ν̃+
)
i
� (

M̂2
ν̃

)
i
+ B2

i

cos2 β

M2
i − M2

Z cos2 2β

[M4
i − M2

i (M2
A + M2

Z) + M2
AM2

Z cos2 2β] +O
(

B4

M6 cos4 β

)
.

The above expressions, are useful in relating the masses of the neutral scalars in the RPC and RPV case i
approximationB tanβ � min(M2

A,M2
i ). They are presented here for the first time except the mass in(3.14)which

agrees with Ref.[15]. We note here that these formulae are not valid if some of the diagonal entries in the
matrix are closely degenerated—in such case even smallBi terms lead to the strong mixing of respective fiel
However in many types of calculations (e.g. various loop calculations) one can still formally use such expa
in the final result one often gets expressions of the typef (m1)−f (m2)

m1−m2
which have a well defined and correct lim

also for degenerate masses, even if the expansion used in the intermediate steps was, in principle, wrong
It is interesting to note that the rotation matrixU defined in(2.6), although explicitly calculated in this Lette

does not appear to all the neutral scalar vertices. For example, the vertices of the CP-even neutral scalar
gauge bosons read as,1

(3.15)

LV V H = 1

2

g2MZ

cosθw

(cosβZR2s + sinβZR1s)Z
µZµH 0

s + 1

2
g2MW(cosβZR2s + sinβZR1s)W

+µW−
µ H 0

s ,

whereH 0
s=1,...,5 are the Higgs boson fields,h0,H 0, (ν̃+)1, (ν̃+)2, (ν̃+)3, respectively. From(3.9)andLV V H above,

it is easy to see that the light Higgs boson coupling to the vector bosons(V = Z,W), is proportional to sin(β − α)

as in the RPC case.2 In fact, the coupling sum rule,

(3.16)
5∑

s=1

g2
V V H0

s
= g2

V V φ,

valid in the RPC case fors = 1,2, persists also here, wheregV V H0
s

are the couplings appearing in(3.15)andgV V φ

the corresponding coupling appearing in the Standard Model.

3.2. CP-odd neutral scalar masses and couplings

For the CP-odd case one finds,

(3.17)L⊃ −(
Imh2

0 Im ν̃L0 Im ν̃Li

)
M2

ODD

( Imh2
0

Im ν̃L0
Im ν̃Lj

)
,

1 Note that the matrixZ defined in(2.21)has nothing to do with neitherZR nor ZA defined in this section.
2 We follow the conventions of Ref.[23].
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ix
where the CP-odd mass matrix reads,

(3.18)M2
ODD =




cos2 βM2
A + ξ sin2 βM2

Z
1
2 sin 2β(M2

A − ξM2
Z) Bj

1
2 sin 2β(M2

A − ξM2
Z) sin2 βM2

A + ξ cos2 βM2
Z Bj tanβ

Bi Bi tanβ M2
i δij


 ,

andξ is the gauge fixing parameter inRξ gauge. In fact, by using an orthogonal rotation

(3.19)V =
(sinβ −cosβ 0

cos sinβ 0
0 0 1

)
,

we can always project out the would-be Goldstone mode, of the CP-odd scalar matrix and thus

(3.20)VT M2
ODDV =


 ξM2

Z 0 0

0 M2
A

Bj

cosβ

0 Bi

cosβ M2
i δij


 .

Under the approximation of small bilinear RPV couplings [see Eq.(3.7)], a solution is determined for the matr
ZA which rotates the fields into the mass basis, such that

(3.21)ZT
AM2

ODDZA = diag
[
m2

G0,m
2
A0,

(
m2

ν̃−
)
i

]
,

(3.22)ZA �




sinβ cosβ
Bj

M2
j −M2

A

−cosβ sinβ
Bj tanβ

M2
j −M2

A

0 Bi

cosβ(M2
i −M2

A)
δij


 ,

with the mass eigenstates given by

G0 � sinβ Imh2
0 − cosβ Im ν̃L0,

A0 � cosβ Imh2
0 + sinβ Im ν̃L0 + Bi

cosβ(M2
i − M2

A)
Im ν̃Li ,

(3.23)(ν̃−)i � Bi

M2
j − M2

A

Imh2
0 + Bj tanβ

M2
i − M2

A

Im ν̃L0 + Im ν̃Li ,

with corresponding masses,

(3.24)m2
A � M2

A − 1

cos2 β

3∑
i=1

B2
i

M2
i − M2

A

+O
(

B4

M6 cos4 β

)
,

(3.25)
(
m2

ν̃−
)
i
� M2

i − B2
i

(M2
A − M2

i )cos2 β
+O

(
B4

M6 cos4 β

)
.

The coupling of theZ-gauge boson to the CP-even and CP-odd neutral scalar fields is given by

(3.26)LZHA = −ig2

2cW

[
(pH0

s
− pA0

p
)µ

(
3∑

α=0

ZR(2+α)sZA(2+α)p − ZR1sZA1p

)]
ZµH 0

s A0
p,

where the four momentapµ

H0
s
, p

µ

A0
p

are incoming and the fieldsA0
p=1,...,5 correspond toG0,A0, (ν̃−)1, (ν̃−)2, (ν̃−)3,

respectively. One may check that the couplingZ − G0 − h0 derived from(3.26)is proportional to sin(α − β) as it
should be.
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4. Positiveness and stability of the scalar potential

4.1. Positiveness

In general, one should inspect whether all physical masses in the CP-odd and CP-even sector are pos
that, all diagonal square subdeterminants of mass matrices should be positive. One can easily check that
odd and CP-even mass matrices in(3.3), (3.18)respectively, lead, in the rotated basis, to the same set of condi

(4.1)M2
i > 0 with i = 1,2,3 and M2

A >
1

cos2 β

3∑
i=1

B2
i

M2
i

.

Using the form ofM2
A in (3.1), the last equation can be rewritten in the form

(4.2)B0 > tanβ

3∑
i=1

B2
i

M2
i

.

Excluding some very singular mass configurations, the above conditions are rather trivially fulfilled if one
into account the bound of Eq.(3.7).

4.2. Stability

The question of whether the potential is stable, i.e. bounded from below, is far more complicated. I
cases the quartic (D-)term dominates and there is no problem. The only exception being when the fields
the direction|h0

2|2 = ∑4
i=0 |ν̃Li |2. In such a case, one should check whether the remaining part of the poten

positive along this direction.

DenotingR ≡
√∑3

i=0 |ν̃i |2 andh0
2 = Re−iφ , whereφ is a free phase, and using Eqs.(2.20), (2.25), (3.4), one

can write down the scalar potential along this direction in the vanishing snueutrino VEV basis as

Vneutral= B0

sinβ cosβ
ν̃∗
L0ν̃L0 + [

M2
i + B0 cotβ

]
ν̃∗
Li ν̃Li + Bi tanβ

(
ν̃∗
L0ν̃Li + ν̃L0ν̃

∗
Li

) − Bα

(
ν̃Lαh2

0 + H.c.
)

(4.3)≡ ν̃
†
LQν̃L − (

BT ν̃LRe−iφ + H.c.
)
,

where the real symmetric matrixQ is

(4.4)Q =
(

M2
A Bi tanβ

Bj tanβ [M2
i + B0 cotβ]δij

)
.

Finding the stability conditions for the potential(4.3)is difficult, it depends on nine real variables (4 moduli and fi
phases of the fields). To simplify the problem, we perform one more field rotation to the basis in which the
Q is diagonal. This can be done, in general, by numerical routines (routines where already used in ca
the vanishing sneutrino VEV basis, and therefore, finding the stability conditions for the general scalar p
always has to involve some numerical analysis). We thus define the matrixP, ν̃L → Pν̃L, as

(4.5)P†QP = diag(X0,X1,X2,X3).

In fact,Q is real, so we can chooseP to be real orthogonal. Also, we denoteDβ ≡ BαPαβ . Obviously, the rotation
P preserves the value ofR = |h0

2|.
The potential becomes:

(4.6)Vneutral=
3∑[

Xα|ν̃Lα|2 − DαR
(
ν̃Lαe−iφ + H.c.

)]
,

α=0
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ite
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e

s
that the

rox-
whereX0 has to be positive, otherwise forφ = 0 along the directioñνLi = Im ν̃L0 = 0 the potentialVneutral=
|Reν̃L0|2[X0 − D0 sign(Reν̃L0)] falls to−∞ at least for one direction along the Reν̃L0 axis. In fact the condition
on Xα is Xα � 2|Dα|. Thus our first conclusion is that the matrixQ has to be positively defined. One can wr
down appropriate conditions in the same manner as for the scalar mass matrices; comparing with Eq.(4.1), it can
be observed that this condition is automatically fulfilled if relation(4.1)holds.

With Xα positive, one can write down the potential as:

(4.7)Vneutral=
3∑

α=0

∣∣∣∣√Xαν̃Lα − Dα√
Xα

Reiφ

∣∣∣∣
2

− R2
3∑

α=0

D2
α

Xα

.

To further simplify the problem, denotẽνLα = uαei(φ−φα), whereuα � 0 are field moduli andφα are free phases
Then

(4.8)Vneutral= R2

(
3∑

α=0

∣∣∣∣√Xα

uα

R
− Dα√

Xα

eiφα

∣∣∣∣
2

−
3∑

α=0

D2
α

Xα

)
,

whereR =
√∑3

i=0 |ν̃i |2 =
√∑3

i=0 u2
i . Phasesφα can be adjusted independently ofuα . The worst case from th

point of view of potential stability, the smallest first term inside the parenthesis, occurs forDαeiφα = |Dα|. Denot-
ing furtherεα = uα/R, 0� εα � 1, one can reduce our initial problem to the question whether the function

(4.9)g(εα) =
3∑

α=0

∣∣∣∣√Xαεα − |Dα|√
Xα

∣∣∣∣
2

−
3∑

α=0

D2
α

Xα

=
3∑

α=0

(
Xαε2

α − 2|Dα|εα

)
,

depending now on four real positive parameters, is non-negative on the unit sphere
∑3

α=0 ε2
α = 1. In general such

problem can be solved numerically using the method of Lagrange multipliers. ForXi > X0 − D0, the minimum
occurs for

(4.10)εα = |Dα|
Xα + λ

,

whereλ can be found numerically as a root of the following equation:

(4.11)
3∑

α=0

D2
α

(Xα + λ)2
= 1.

For smallerXi , the minimum is realised forεi = 0 for one or more values ofi and requires analysis of variou
special cases. Having found the correct minimum, to prove the stability of the potential one needs to show
functiong at the minimum is non-negative.

As shown in Eq.(3.7), Bi terms and thus alsoDi terms are usually very small. In this case one can set app
imate, sufficient conditions for the stability of the potential, without resorting to solving Eq.(4.11), numerically.

DenoteD = ∑3
i=1 D2

i andXmin = min(X1,X2,X3). Then, using the inequalityDiεi �
√∑3

i=1 D2
i

√∑3
i=1 ε2

i =
D

√
1− ε2

0, one has

(4.12)g(εα) � X0ε
2
0 + Xmin

(
1− ε2

0

) + (Xi − Xmin)ε
2
i − 2|D0|ε0 − 2D

√
1− ε2

0.

Terms(Xi − Xmin)ε
2
i are always non-negative. The worst case being when the vector(ε1, ε2, ε3) is along the min-

imal Xi axis, where these terms vanish. Other terms are rotation invariant in the 3-dimensional space(ε1, ε2, ε3),
so Eq.(4.12) is equivalent to finding parametersX0,Xmin,D0,D for which the expression(4.13), depending on
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(4.13)g′(ε0) = X0ε
2
0 + Xmin

(
1− ε2

0

) − 2|D0|ε0 − 2D

√
1− ε2

0 � 0.

Analysis of(4.13)is further simplified by one more approximation, justified for smallD:

(4.14)g′(ε0) � X0ε
2
0 + Xmin

(
1− ε2

0

) − 2|D0|ε0 − 2D.

The rhs of Eq.(4.14) is now trivial. Following approximate conditions for the stability of the potential can
summarised as follows:

Xmin range Stability requires

Xmin � X0 − D0 X0 � 2|D0| + 2D

0< Xmin < X0 − D0 (X0 − Xmin)(Xmin − 2D) � D2
0

Both conditions are sufficient, but not minimal—we have made some approximations and there may b
meters which do not fall into either of the categories above, and yet still give a stable potential. For exa
X0 = X1 = X2 = X3 ≡ X, one can easily derive the exact necessary and sufficient condition for potential st

asX � 2
√

D2
0 + D2, less strict thanX � 2(|D0| + |D|) which would be given by the table above.

For complementary work the reader is referred to Ref.[24].

5. Conclusions

In this Letter we present a procedure for calculating the rotation matrix which brings the neutral scalar fi
the general R-parity violating MSSM onto the vanishing sneutrino VEV basis where they developn zero VEVs,
with n being the number of flavour generations. In doing so, we have made no assumption about the co
of the parameters. We consider the case ofn = 3 generations, but our approach immediately applies to o
cases, apart from obvious modifications of the form ofZ matrix defined in(2.21), (2.22). As a byproduct of basi
change, we prove that the tree level MSSM potential does not exhibit any form of CP-violation, neither e
nor spontaneous. Consequently, the neutral scalar fields can be divided into CP-even and CP-odd sector
5× 5 neutral scalar squared mass matrices, taking a very simple form with only small RPV masses sitting
off diagonal elements. We can thus expand along small RPV masses and find analytic approximate formul
relate the RPC and the RPV neutral scalar masses. Furthermore we also find, that in general there is
least one neutral scalar field with mass lighter thanMZ which couples maximally to theZ-gauge boson in the cas
of large tanβ and largeMA. Our procedure for finding the rotation matrixU has been coded3 and is numerically
stable.

In the end, we are aiming to construct the most general MSSM quantum field theory structure resorting
to R-parity violation nor to other approximations. This will be useful for examining the phenomenology
MSSM as a whole. The convenient choice of the basis for the neutral sector found in this Letter is a fi
towards this direction.

Acknowledgements

The authors thank Apostolos Pilaftsis for helpful discussions. A.D. and M.S.-S. would like to thank
Nuffield Foundation” for financial support. J.R. would like to thank IPPP for the hospitality during his visi

3 The code will be available fromhttp://www.fuw.edu.pl/~rosiek/physics/rpv/scalar.html.

http://www.fuw.edu.pl/~rosiek/physics/rpv/scalar.html


A. Dedes et al. / Physics Letters B 627 (2005) 161–173 173

of a UK

19;
work was supported in part by the KBN grant 2 P03B 040 24 (2003-2005). S.R. acknowledges the award
PPARC studentship.

References

[1] G. Feinberg, P. Kabir, S. Weinberg, Phys. Rev. Lett. 3 (1959) 527;
See also S. Weinberg, The Quantum Theory of Fields, vol. I: Foundations, Cambridge Univ. Press, Cambridge, UK, 2000.

[2] H.P. Nilles, Phys. Rep. 110 (1984) 1;
H.E. Haber, G.L. Kane, Phys. Rep. 117 (1985) 75;
S.P. Martin, hep-ph/9709356.

[3] P. Fayet, Phys. Lett. B 69 (1977) 489;
G.R. Farrar, P. Fayet, Phys. Lett. B 76 (1978) 575.

[4] For reviews, see H.K. Dreiner, hep-ph/9707435;
G. Bhattacharyya, Nucl. Phys. B (Proc. Suppl.) 52 (1997) 83, hep-ph/9608415;
M. Chemtob, Prog. Part. Nucl. Phys. 54 (2005) 71, hep-ph/0406029.

[5] Y. Grossman, H.E. Haber, Phys. Rev. D 67 (2003) 036002, hep-ph/0210273.
[6] S. Weinberg, Phys. Rev. D 26 (1982) 287;
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