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Abstract

We complete the effective potential calculation of the two-loop, top/bottom Yukawa correc
to the Higgs boson masses in the minimal supersymmetric standard model, by comput
O(α2

t + αtαb + α2
b
) contributions for arbitrary values of the bottom Yukawa coupling. We a

compute the corrections to the minimization conditions of the effective potential at the
perturbative order. Our results extend the existingO(α2

t ) calculation, and are relevant in regions
the parameter space corresponding to tanβ � 1. We extend to the Yukawa corrections a conven
renormalization scheme, previously proposed for theO(αbαs) corrections, that avoids unphysical
large threshold effects associated with the bottom mass and absorbs the bulk of the correcti
the one-loop expression. For large values of tanβ, the new contributions can account for a variat
of several GeV in the lightest Higgs boson mass.
 2003 Elsevier B.V. All rights reserved.

1. Introduction

One of main features of the minimal supersymmetric standard model (MSSM) [1]
prediction of the existence of at least one light Higgs boson [2]. After the conclusion
LEP and Tevatron run I experimental programs that reported no significant evidenc
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Higgs boson, the experimental search for this particle has now become one of the
tasks of the Tevatron run II and of the future LHC. Within the MSSM, the tree-level ma
of the neutral Higgs bosons can be parameterized in terms of three input paramet
mass of the CP-odd HiggsmA, theZ boson massmZ and the ratio of the two Higgs vacuu
expectation values, tanβ ≡ v2/v1. At tree level, at least one of the MSSM Higgs boso
is bound to be lighter than theZ boson, thus the failure of detecting it at LEP indica
that the MSSM could be a realistic theory only after the radiative corrections to the H
boson masses have been taken into account.

The radiative corrections arise from loop diagrams involving Standard Model par
and their superpartners. Although the earliest computations [3] of radiative corre
to the MSSM Higgs masses date back to the eighties, it was first realized in Re
that the inclusion of the one-loop top/stopO(αt ) corrections, whereαt = h2

t /(4π), ht

being the superpotential top coupling, may push the light Higgs mass well above th
level bound. In the subsequent years, an impressive theoretical effort has been d
to the precise determination of the MSSM Higgs masses: full one-loop comput
have been provided [5,6], leading logarithmic effects at two loops have been inc
via appropriate renormalization group equations [7,8], and genuine two-loop corre
of O(αt αs) [9–13],O(α2

t ) [9,12,14], andO(αbαs) [15] have been evaluated in the lim
of zero external momentum. The tadpole corrections needed to minimize the eff
potential,Veff, have also been calculated [16] at the same perturbative orders. Furthe
the full two-loop corrections to the MSSM effective potential have been calculate
Ref. [17], together with a first study of the effect of the two-loop corrections to the H
masses controlled by the electroweak gauge couplings [18].

The corrections controlled by the top Yukawa coupling are in general the
relevant ones. However, in regions of the MSSM parameter space where tanβ � 1 the
superpotential bottom couplinghb may be large (we recall that, at the classical lev
hb/ht = (mb/mt) tanβ ) and the one-loop bottom/sbottom corrections ofO(αb), where
αb = h2

b/(4π), can be numerically relevant and compete with those ofO(αt ). At the two-
loop level, the evaluation of the corrections controlled by the bottom Yukawa cou
requires the inclusion of one-loop, tanβ-enhanced threshold corrections to the bott
mass [19]. If the physical bottom mass is used as input parameter in the one-loo
of the computation, potentially large tanβ-enhanced corrections appear at two loops
address this problem, a set of renormalization prescriptions for the parameters
bottom/sbottom sector that avoid the occurrence of unphysically large threshold e
at two loops was proposed in Ref. [15] for theO(αbαs) part of the corrections.

The purpose of this article is to complete the calculation of the two-loop, top/bo
Yukawa corrections to the Higgs boson masses in the effective potential approach
corrections were previously computed [9,12,14] in the limithb → 0, which is accurate
enough only for moderate values of tanβ . In that limit, the two-loop Yukawa correction
to the MSSM Higgs masses are ofO(α2

t m
2
t ), which we denote asO(α2

t ) for brevity.
On the other hand, when the bottom Yukawa coupling is left arbitrary, the resulting
loop corrections are proportional to various combinations of couplings and masse
we find terms ofO(α2

b m
2
t ), which might as well be interpreted as tanβ-enhanced term
of O(αtαb m
2
b). To simplify our notation, we will refer to all such “mixed” terms as to

O(αtαb) corrections, and to the terms that depend only on the bottom Yukawa coupling as
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to O(α2
b) corrections. Our computation will thus provide us with theO(α2

t + αtαb + α2
b)

corrections to the MSSM Higgs masses, extending theO(α2
t ) results obtained in Ref. [14

As a byproduct, we also calculate theO(α2
t + αtαb + α2

b) corrections to the minimizatio
conditions of the effective potential. We express our results in theDR renormalization
scheme, as well as in an “on-shell” scheme which extends the prescription descr
Ref. [15] to the case of the Yukawa corrections. The resulting analytical formulae are
lengthy, thus we make them available, upon request, in the form of a Fortran code (
make your request to P. Slavich, e-mail address:slavich@mppmu.mpg.de).

The structure of this paper is the following. In Section 2 we recall some general iss
the effective potential approach to the calculation of the Higgs masses. Section 3 de
our two-loop computation of theDR tadpoles and CP-odd, CP-even Higgs mass matr
while Section 4 addresses our on-shell renormalization prescription. Numerical r
are given in Section 5 and in Section 6 we present a short discussion of the corre
controlled by the tau Yukawa coupling as well as our conclusions.

2. Higgs masses in the effective potential approach

We begin our discussion by recalling some general results concerning the comp
of the MSSM Higgs masses in the effective potential approach. The effective pot
which we write from the start in terms ofDR-renormalized fields and parameters, c
be decomposed asVeff = V0 + �V , whereV0 is the tree-level scalar potential and�V

contains the radiative corrections. Keeping only the dependence on the neutral Higg
H 0

1 andH 0
2 , the tree-level MSSM potential reads

V0 = (
µ2 + m2

H1

)∣∣H 0
1

∣∣2 + (
µ2 +m2

H2

)∣∣H 0
2

∣∣2 + m2
3

(
H 0

1H
0
2 + h.c.

)

(1)+ g2 + g′2

8

(∣∣H 0
1

∣∣2 − ∣∣H 0
2

∣∣2)2
,

where:µ is the Higgs mass term in the superpotential (we assume it to be real, negl
all possible CP-violating phases);m2

H1
, m2

H2
and m2

3 are soft supersymmetry-breakin
masses;g andg′ are theSU(2)L andU(1)Y gauge couplings, respectively. The neut
Higgs fields can be decomposed into their vacuum expectation values (VEVs) plu
CP-even and CP-odd fluctuations asH 0

i = (vi +Si + iPi)/
√

2 (i = 1,2). The VEVsvi are
determined by solving the minimization conditions of the effective potential, i.e.,

(2)
∂Veff

∂Si

∣∣∣∣
min

= 0,
∂Veff

∂Pi

∣∣∣∣
min

= 0,

the second equality being automatically satisfied since we assume that CP is con
However, it is also possible to takev1 andv2 as input parameters, or equivalentlyv2 ≡
v2

1 + v2
2 and tanβ ≡ v2/v1, wherev2 is related to the squared running mass of theZ boson

throughm2
Z = (g2 + g′2)v2/4. In this case, the minimization conditions ofVeff can be

translated into conditions onµ2 andm2
3:

m2 m2
H + Σ1 − (m2

H + Σ2) tan2β

(3)µ2 = − Z

2
+ 1 2

tan2β − 1
,

slavich@mppmu.mpg.de
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(4)m2
3 = m2

Z

2
sin2β + 1

2
tan2β

(
m2

H1
− m2

H2
+ Σ1 − Σ2

)
,

where the “tadpoles”Σ1 andΣ2 are defined as

(5)Σi ≡ 1

vi

∂�V

∂Si

∣∣∣∣
min

.

In the effective potential approach, the mass matrices for the neutral CP-odd and C
Higgs bosons can be approximated by

(6)
(
M2

P

)eff
ij

= ∂2Veff

∂Pi∂Pj

∣∣∣∣
min

,
(
M2

S

)eff
ij

= ∂2Veff

∂Si∂Sj

∣∣∣∣
min

.

Exploiting the minimization conditions of the effective potential, Eq. (2), the CP-odd m
matrix can be written as

(7)
(
M2

P

)eff
ij

= −m2
3
v1v2

vivj
− δijΣi + ∂2�V

∂Pi∂Pj

∣∣∣∣
min

.

(M2
P )

eff has a single non-vanishing eigenvalue that, in the approximation of zero ex
momentum, can be identified with the squared physical mass of theA boson. We denot
it as m̄2

A = m̂2
A + �m2

A, wherem̂2
A = −2m2

3/sin2β is the squared running mass of theA

boson. The CP-even mass matrix can in turn be decomposed as

(8)
(
M2

S

)eff = (
M2

S

)0,eff + (
�M2

S

)eff
,

where the first term in the sum is the tree-level mass matrix expressed in terms ofmZ and
m̄A:

(9)
(
M2

S

)0,eff =
(

m2
Zc

2
β + m̄2

As
2
β −(m2

Z + m̄2
A)sβcβ

−(m2
Z + m̄2

A)sβcβ m2
Zs

2
β + m̄2

Ac
2
β

)
,

(cβ ≡ cosβ , sβ ≡ sinβ and so on), while the second term contains the radiative correct

(10)
(
�M2

S

)eff
ij

= ∂2�V

∂Si∂Sj

∣∣∣∣
min

− (−1)i+j ∂2�V

∂Pi∂Pj

∣∣∣∣
min

.

It is clear from Eqs. (7)–(10) that, in order to make contact with the physicalA mass, the
effective potential should be computed as a function of both CP-even and CP-odd fi

SinceVeff generates one-particle-irreducible Green’s functions at vanishing ex
momentum, it is clear that the effective potential approach neglects the mome
dependent effects in the Higgs self-energies. The complete computation of the ph
masses of the CP-even Higgs bosons,mh and mH , and of the CP-odd Higgs boso
mA, requires the full, momentum-dependent two-point functions. A detailed discu
of the correspondence between the effective potential approach and the full comp
has been presented in Ref. [14]. Here we just notice that the main conclusions pre
in that paper regarding theO(αtαs) andO(α2

t ) corrections apply also toO(αt αb + α2
b)

corrections discussed here. Namely, the two-loopO(αtαb + α2
b) corrections to the lightes
Higgs eigenvalue are fully accounted for by the two-loop effective potential evaluation
of mh supplemented by known momentum-dependent one-loop contributions, and the
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same is true formH when mA is not too large. Instead, ifmA > mt a full two-loop
O(αtαb + α2

b) computation ofmH requires additional momentum-dependent two-lo
contributions, neglected by the effective potential calculation, that have not been com
so far.

3. Computation of the two-loop Yukawa corrections

We shall now describe our two-loop computation of the tadpolesΣi , theA-boson mass
correction�m2

A and the matrix(�M2
S)

eff, including terms controlled by the top and/
the bottom Yukawa couplings. The computation is consistently performed in the gau
limit, i.e., by setting to zero all the gauge couplings, and by keepinght andhb as the only
non-vanishing Yukawa couplings. In this limit, the tree-level (field-dependent) spec
of the MSSM simplifies considerably: gauginos and Higgsinos do not mix; charge
neutral Higgsinos combine into Dirac spinors with degenerate mass eigenvalues|µ|2; the
only massive SM fermions are the top and bottom quarks, while all other fermion
gauge bosons have vanishing masses; the only sfermions with non-vanishing coupli
the stop and sbottom squarks; the lightest CP-even Higgs boson,h, is massless, and th
same is true for the Goldstone bosons; all the remaining Higgs states,(H,A,H±), have
degenerate mass eigenvaluesm2

A. The tree-level mixing angle in the CP-even sector is
α = β − π/2.

The renormalization of the effective potential is performed according to the lin
Ref. [16], i.e., we expressVeff, from the beginning, in terms ofDR-renormalized fields
and parameters. In practice, this amounts to dropping all the divergent terms in�V and
replacing the two-loop integralsI (m2

1,m
2
2,m

2
3) and J (m2

1,m
2
2) (see, e.g., Ref. [16] fo

the definitions) with their “subtracted” counterpartsÎ andĴ , first introduced in Ref. [20]
Alternatively, we could follow the procedure of Refs. [13,14]: express�V in terms of
bare parameters and then renormalize the derivatives of�V (i.e., the tadpoles and th
corrections to the Higgs masses), checking explicitly the cancellation of the dive
terms. The general formulae for the tadpoles and the corrections to the Higgs masse
look slightly more complicated in the latter case. However, we have checked that th
renormalization procedures lead to the same final result, as they should.

According to Eqs. (5), (7) and (10), the tadpoles and the corrections to the Higgs
matrices can be computed by taking the derivatives of�V with respect to the CP-even an
CP-odd fields, evaluated at the minimum ofVeff. Following the strategy of Refs. [13,14
we compute�V in terms of a set of field-dependent parameters (masses and angle
use the chain rule to express the corrections in terms of derivatives of�V with respect to
those parameters. In each sector, the field-dependent parameters can be chosen a

(11)mq, m2
q̃1
, m2

q̃2
, θ̄q̃ , ϕq, ϕ̃q, (q = t, b),

where:mq andm2
q̃i

are the quark and squark masses;θ̄q̃ is the field-dependent squa

mixing angle, defined in such a way that 0� θ̄q̃ < π/2 (to be contrasted with the usu

field-independent mixing angleθq̃ , such that−π/2 � θq̃ < π/2); ϕq is the phase in the
complex quark mass;̃ϕq is the phase in the off-diagonal element of the squark mass
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matrix. For the explicit Higgs field dependence of these parameters, see Refs. [13,
the expression of�V relevant to theO(α2

t ) corrections (i.e., withhb set to zero), the top
and stop phases always combine in the differenceϕt − ϕ̃t , so that a convenient choice f
the field-dependent parameter iscϕt−ϕ̃t

≡ cos(ϕt − ϕ̃t ). On the other hand, when bothht

andhb are non-zero, as it is the case in the present computation of theO(α2
t + αtαb + α2

b)

corrections, the situation becomes more complicated: besides the terms involvingϕt − ϕ̃t

andϕb− ϕ̃b, we find other terms, coming from diagrams with a charged Higgs or Golds
boson, that involve the combinationsϕt + ϕ̃b, ϕb + ϕ̃t , ϕt + ϕb andϕ̃t + ϕ̃b.

Exploiting the field-dependence of the various masses and angles, we get the fol
general formulae for theO(α2

t +αtαb +α2
b) corrections in theDR renormalization scheme

(12)

(
�M2

S

)eff
11 = 2h2

bm
2
bF

b
1 + 2h2

bAbmbs2θbF
b
2 + 1

2
h2
bA

2
bs

2
2θbF

b
3

+ 1

2
h2
t µ

2s2
2θt F

t
3 + 2hthbmbµs2θt F

t
4 + hthbµAbs2θt s2θbF5,

(13)

(
�M2

S

)eff
12 = h2

t µmts2θt F
t
2 + 1

2
h2
t Atµs2

2θt F
t
3 + hthbmbAts2θt F

t
4

+ h2
bµmbs2θbF

b
2 + 1

2
h2
bAbµs2

2θbF
b
3 + hthbmtAbs2θbF

b
4

+ 1

2
hthbs2θt s2θb

(
AtAb + µ2)F5 + 2hthbmtmbF6,

(14)

(
�M2

S

)eff
22 = 2h2

t m
2
t F

t
1 + 2h2

t Atmts2θt F
t
2 + 1

2
h2
t A

2
t s

2
2θt F

t
3

+ 1

2
h2
bµ

2s2
2θbF

b
3 + 2hthbmtµs2θbF

b
4 + hthbµAts2θt s2θbF5,

(15)v2
1Σ1 = mtµcotβs2θt F

t + mbAbs2θbF
b + 2m2

bG
b,

(16)v2
2Σ2 = mbµ tanβs2θbF

b + mtAts2θt F
t + 2m2

t G
t ,

(17)�m2
A = − 1

cβsβ

(
h2
t µAt

m2
t̃1

− m2
t̃2

F t + h2
bµAb

m2
b̃1

−m2
b̃2

Fb + 2hthbFA

)
.

In the equations above,At andAb are the soft supersymmetry-breaking trilinear coupli
of the Higgs fields to the stop and sbottom squarks, ands2θq ≡ sin2θq̃ (q = t, b) refer
to the usual field-independent squark mixing angles. The functionsF

q
i (i = 1,2,3,4),

F5, F6, Fq , Gq andFA are combinations of the derivatives of�V with respect to the
field-dependent parameters, computed at the minimum of the effective potential
definitions are given in Appendix A. It can be noticed that, as it is predictable from
form of the MSSM Lagrangian, the above results are fully symmetric with respe
the simultaneous replacementst ↔ b and H1 ↔ H2, the latter resulting into tanβ ↔
cotβ,v1 ↔ v2, (�M2

S)
eff
11 ↔ (�M2

S)
eff
22 andΣ1 ↔ Σ2.

An explicit expression of the two-loop top and bottom Yukawa contribution to�V can
be found in Ref. [12], while the complete two-loop effective potential for the MSSM
given in the second paper of Ref. [17]. However, those expressions were compu

vanishing CP-odd fields, thus omitting the dependence on the phasesϕq and ϕ̃q . Since
these phases appear in�V in many different combinations, it is not possible to infer the
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general field-dependent expression of�V by means of simple substitutions in Eq. (D.
of Ref. [12], as it was the case in the computation of theO(αtαs + α2

t ) corrections.1

We worked out the general expression of the two-loop top and bottom Yu
contribution to�V in terms of all the field-dependent parameters of Eq. (11). We
computed its derivatives in order to obtain explicit formulae for the various func
appearing in Eqs. (12)–(17). The use of a recursive relation for the derivativ
I (m2

1,m
2
2,m

2
3), presented in Ref. [16], helped us to keep the number of terms invo

under control. However, the resulting analytical formulae are very long and we choo
to display them in print. Instead, we make them available in the form of a Fortran co

4. On-shell renormalization scheme and input parameters

The results presented in the previous section are valid when the MSSM input para
are expressed in theDR renormalization scheme. This way of presenting the res
is convenient for analyzing models that predict, via the MSSM renormalization g
equations, the low-energyDR values of the parameters in terms of a set of boun
conditions assigned at some scaleMGUT much larger than the weak scale (see Refs. [21
for a list of public codes that are commonly used in this kind of analyses, and Ref
for a comparison among them). General low-energy analyses of the MSSM, ho
do not refer to boundary conditions at high scales, and are usually performed in
of parameters with a more direct physical interpretation, such as pole masse
appropriately defined mixing angles in the squark sector. Such an approach re
modifications of our two-loop results, induced by the variation of the parameters en
the one-loop corrections when moving from theDR scheme to a different scheme (fo
generic parameterx, we define the shift from theDR valuex̂ asδx ≡ x̂ − x).

However, it is not always possible to find a sensible definition with a direct phy
interpretation for all the relevant parameters. For example, while there is a well-k
physical (≡ pole) definition for the masses, the so-called “on-shell” (OS) definition,
an OS definition for the squark mixing angles can be also conceived [24], it is not
what meaning should be assigned to an OS definition of parameters like(At ,Ab,µ, tanβ).
For instance, they could be related to specific physical amplitudes. However, give
present ignorance of any supersymmetric effect, such a choice does not seem part
useful. In these cases it seems sometimes simpler to stick to aDR definition.

It is rather easy to devise an OS renormalization scheme for the parameters
top/stop sector, based on the OS prescription for the top and stop masses and t
mixing angle and treatingAt as a derived quantity, while retaining aDR definition forµ
and tanβ (see, e.g., Refs. [13,14]). Instead, some additional care is required in the c
of an OS scheme for the parameters in the bottom/sbottom sector, due to the pot
large one-loop threshold corrections [19], proportional to tanβ , that contribute to the pol
bottom mass. For example, a definition ofAb in terms of the OS bottom and sbotto
masses and sbottom mixing angle, similar to the definition ofAt , would produce a shiftδAb
1 Also, we do not agree with Ref. [12] on the sign of the penultimate line of Eq. (D.6).
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proportional to tan2β [25]. When tanβ is large, this would induce very large correctio
to the Higgs masses at two loops, questioning the validity of the perturbative expans

To overcome this problem, we adopt a set of renormalization prescriptions fo
parameters in the bottom/sbottom sector, first introduced in Ref. [15] for the ca
the strong corrections, that avoid the occurrence of unphysically large threshold e
and at the same time enforce other desirable properties such as the decoupling o
particles, the infrared finiteness and gauge-independence. Generalizing these presc
to the case of the Yukawa corrections, and combining them with the usual prescriptio
the top/stop parameters [14], we obtain a convenient OS renormalization scheme
O(αtαb + α2

b) part of the corrections to the Higgs masses. Since the corrections cont
by the bottom Yukawa coupling can be sizeable only for large values of tanβ , we work
directly in the physically relevant limit of tanβ → ∞, i.e.,v1 → 0, v2 → v.

For the OS squark masses and mixing angles, top quark mass and electroweak pa
v ≡ (

√
2Gµ)

−1/2 we adopt the definitions

δm2
q̃i

= Π
q̃

ii

(
m2

q̃i

)
, δθq̃ = 1

2

Π
q̃

12(m
2
q̃1
)+ Π

q̃

12(m
2
q̃2
)

m2
q̃1

− m2
q̃2

,

(18)δmt = Σt(mt ), δv = v

2

ΠT
WW (0)

m2
W

,

whereq̃ = (t̃ , b̃), while Π
q̃
ij (p

2),Σt(p) andΠT
WW (p2) denote the real and finite parts

the self-energies of squarks, top quark andW boson, respectively. Following Ref. [14], w
further treatµ as aDR parameter computed at a reference scaleQ0 = 175 GeV, andht

andAt as derived quantities that can be computed by means of the tree-level formu
mt ands2θt , respectively. In principle, we still have to definemb,hb andAb. However, in
the large tanβ limit, the bottom mass is just zero, and the sbottom mixing angle beco

(19)s2θb =
√

2hbµv

m2
b̃1

− m2
b̃2

,

which is independent ofmb andAb. We can thus treathb as a quantity derived from th
sbottom mixing, and use Eqs. (18) and (19) to obtain a prescription forδhb:

(20)δhb = hb

(δm2
b̃1

− δm2
b̃2

m2
b̃1

− m2
b̃2

+ δs2θb

s2θb
− δv

v

)
.

In Ref. [15], an OS definition for the quantitỹAb ≡ hbAb, or equivalently forδAb =

(δÃb−δhbAb)/hb, was proposed in terms of the(b̃1b̃

∗
2A) proper vertexiΛ12A(p

2
1,p

2
2,p

2
A)

for the case of the strong corrections. A generalization of that definition that can also en-
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compass the Yukawa corrections is given by

(21)

δÃb = − i√
2

[
Λ12A

(
m2

b̃1
,m2

b̃1
,0

) + Λ12A
(
m2

b̃2
,m2

b̃2
,0

)]

+ Ãb

2

[Πb̃
11(m

2
b̃1
)− Πb̃

11(m
2
b̃2
)

m2
b̃1

− m2
b̃2

+
Πb̃

22(m
2
b̃1
) −Πb̃

22(m
2
b̃2
)

m2
b̃1

−m2
b̃2

+
ΠAA(m

2
b̃1
)− ΠAA(m

2
b̃2
)

m2
b̃1

− m2
b̃2

]
.

Having fully specified our OS renormalization prescriptions in the limit tanβ → ∞,
physically relevant for theO(αtαb + α2

b) corrections, we can proceed to obtain formu
for the CP-even Higgs masses in our OS scheme and merge them with the knownO(α2

t )

OS results [14] that contain an explicit dependence on tanβ . This can be done in thre
steps: first, we take the limit of tanβ → ∞,mb → 0 in the generalDR results for the
O(α2

t + αtαb + α2
b) part of (�M2

S)
eff; then we add the contributions due to the sh

of the parameters entering the one-loop corrections (this requires the computation
O(αt + αb) part of the counterterms in the large tanβ limit); finally, we subtract from this
results the pureO(α2

t ) part which, being relevant for all values of tanβ , must instead be
computed separately with the formulae of Ref. [14]. Notice that we do not encounte
terms that blow up when we take the limit of large tanβ in the DR results: unphysically
large contributions could only be introduced by hand, as the result of a poor choice
renormalization conditions for the parameters in the bottom/sbottom sector.

We discuss now the parameters that we will actually use as inputs of our calculat
particular, although we have used Eqs. (19), (20) to define an OS bottom Yukawa co
hb through the sbottom mixing, we still need to exploit the experimental informatio
the bottom mass in order to obtain theDR running couplingĥb. The OS coupling will
then be computed through the relationhb = ĥb − δhb. Following Ref. [15], we define th
running couplingĥb at the reference scaleQ0 = 175 GeV to be

(22)ĥb ≡ hb(Q0)
DR
MSSM = m̄b

√
2

v1

1+ δb

|1+ εb| ,

where:m̄b ≡ mb(Q0)
DR
SM = 2.74± 0.05 GeV is the standard model bottom mass, evol

up to the scaleQ0 to take into account the resummation of the universal large Q
logarithms;εb contains the tanβ-enhanced threshold corrections from both the glu
sbottom and the higgsino-stop loops (denoted asεb and ε′

b, respectively, in Eqs. (25
and (26) of Ref. [15]);δb contains the residual threshold corrections that are not enha
by tanβ . Notice that, as shown in Ref. [26], keepingεb in the denominator of Eq. (22
allows to resum the tanβ-enhanced threshold corrections to all orders in the perturb

expansion. On the other hand, there is no preferred way of including the threshold
corrections parametrized byδb, whose effect on the value of̂hb is anyway very small.
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Neglecting all the terms controlled by the electroweak gauge couplings,εb reads

εb = −2αs

3π

mg̃µ tanβ

m2
b̃1

−m2
b̃2

[ m2
b̃1

m2
b̃1

− m2
g̃

ln
m2

b̃1

m2
g̃

−
m2

b̃2

m2
b̃2

− m2
g̃

ln
m2

b̃2

m2
g̃

]

(23)− αt

4π

Atµ tanβ

m2
t̃1

− m2
t̃2

[ m2
t̃1

m2
t̃1

− µ2
ln

m2
t̃1

µ2 −
m2

t̃2

m2
t̃2

− µ2
ln

m2
t̃2

µ2

]
.

It appears from Eq. (22) thatĥb blows up whenεb approaches−1, in which case the correc
value of the bottom mass cannot be reproduced withĥb in the perturbative regime, an
the corresponding set of MSSM parameters must be discarded. It can also be notice
Eq. (23) that, since we takemg̃ > 0, for At > 0 (At < 0) theO(αs) andO(αt ) contributions
enterεb with the same (the opposite) sign. Moreover, if we take only theO(αs) part ofεb
into account,̂hb can be enhanced by the threshold correction only for large values omg̃

and large and positive2 values ofµ, whereas, when we include theO(αt ) part, ĥb can be
enhanced also for small values ofmg̃ and large and negative values of bothµ andAt .

For the top/stop sector, we take as input the current central value of the top
mass,mt = 174.3 GeV [27], and the parameters(mQ,t̃ ,mU ,At) that can be derived b
rotating the diagonal matrix of the OS stop masses by the angleθt̃ , defined in Eq. (18)
Concerning the sbottom sector, additional care is required, because of our non
definition ofhb and of the fact that, at one loop, the parametermQ,b̃ entering the sbottom
mass matrix differs from the corresponding stop parametermQ,t̃ by a finite shift [25]. We
start by computing the renormalized couplinghb as given by Eqs. (20) and (22). The
we computemQ,b̃ following the prescription of Ref. [25]. Finally, we use the parame
hb andmQ,b̃ to compute the actual values of the OS sbottom masses and mixing
Concerning theA-boson mass, which enters the tree-level mass matrix for the CP
Higgses, we take as input the physical massmA, dropping the distinction betweenmA and
the effective potential mass̄mA (this amounts to neglecting the effect of the uncompu
momentum-dependent two-loop corrections). The renormalization of theZ-boson mass
whose numerical value we take equal to the physical massmZ = 91.187 GeV, does
not affect theO(αtαb + α2

b) corrections. The remaining numerical inputs are the
electroweak parameterv = 246.218 GeV and the strong coupling constant, which we
asαs(Q0) = 0.108.

5. Numerical results

We are now ready to discuss the numerical effect of our two-loop correction
the previous sections we have discussed how to express our results in either tDR
renormalization scheme or an OS scheme suitably chosen to separate the genu
loop corrections from the threshold corrections in the relation betweenmb andhb. OurDR
results for the two-loop corrections to the Higgs masses and to the electroweak sym
2 Our convention for the sign ofµ is such that, e.g., the sbottom mixing parameter readsXb = Ab + µ tanβ.
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breaking conditions can be easily implemented in the existing codes [21,22] that co
the MSSM mass spectrum from a set of unified parameters at the scaleMGUT. A study
of the implications of our results in the framework of gravity (mSUGRA), gauge (GM
or anomaly (AMSB) mediated supersymmetry breaking models goes beyond the sc
this paper, and will appear elsewhere [28]. In the following discussion, we will ad
low-energy point of view and assume that the various input parameters are related
possible, to physical quantities. To this aim, we will make use of the OS renormaliz
scheme presented in Section 4. We recall that, although our OS prescription is defi
the limit tanβ → ∞, the corrections have an indirect dependence on tanβ coming from
the input value for̂hb, see Eq. (22).

In Fig. 1(a) and (b) we show the light Higgs massmh as a function of tanβ , for
mA = 120 GeV andmA = 250 GeV, respectively. The other input parameters are ch
asAt = 1 TeV, Ab = 2 TeV, µ = mQ,t̃ = mU = mD = mg̃ = 1 TeV. In each plot, the
long-dashed curve corresponds to the value ofmh obtained atO(αt + αtαs + α2

t ), i.e., by
including only the one- and two-loop corrections controlled by the top Yukawa coup
the dot-dashed curve includes in addition the one-loopO(αb) corrections, controlled b
the bottom Yukawa coupling;3 the short-dashed curve includes the two-loopO(αbαs)

corrections computed in Ref. [15]; finally, the solid curve corresponds to the full two
Yukawa computation ofmh, i.e., it includes also theO(αtαb +α2

b) corrections discussed i
the previous sections. We can see from Fig. 1(a) and 1(b) that the corrections contro
the top Yukawa coupling depend very weakly on tanβ when the latter is large. On the oth
hand, theO(αb) corrections lower considerablymh when tanβ increases. Concerning th
two-loop corrections controlled by the bottom Yukawa coupling, the comparison bet
the dot-dashed and short-dashed curves shows that theO(αbαs) corrections amount to
small fraction of theO(αb) ones, but they can still lowermh by several GeV when tanβ
is large. The comparison between the short-dashed and solid curves shows that th
of the O(αt αb + α2

b) corrections can also amount to several GeV when tanβ is large.
From Fig. 1(a) we see that, whenmA is small and the correction tomh is mainly driven
by (�M2

S)11, the O(αtαb + α2
b) corrections enter with the same sign as theO(αbαs)

corrections, reducing further the value ofmh. On the other hand, Fig. 1(b) shows th
for larger values ofmA, when the correction tomh is sensitive to(�M2

S)22, the new
corrections account for an increase inmh of a few GeV at moderately large values of tanβ

(i.e., tanβ ≈ 30–40). This is basically due to a positive contribution to(�M2
S)22 coming

from theO(αtαb) part of corrections. When tanβ takes on larger values, however, t
overall effect of theO(αtαb + α2

b) corrections tomh turns again to negative.
It is interesting to realize that theO(αtαb + α2

b) corrections can be sizeable also
parameter choices that make theO(αbαs) corrections irrelevant. In Fig. 2 we showmh as
a function of tanβ , for mA = 120 GeV,µ = At = −2 TeV,Ab = −3 TeV,mQ,t̃ = mU =
mD = 1 TeV andmg̃ = 200 GeV. The meaning of the various curves is the same a
Fig. 1. Due to the small value of the gluino mass with respect to the sbottom mass
O(αbαs) corrections tomh are negligible (in fact, the dot-dashed and short-dashed cu
3 In the calculation of the one-loopO(αt ) andO(αb) corrections we include the effects proportional tom2
Z

and the momentum corrections as in [5].
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Fig. 1. The massmh as a function of tanβ, for mA = 120 GeV (upper panel) or 250 GeV (lower panel). T
other input parameters areAt = 1 TeV,Ab = 2 TeV,µ = mQ,t̃ = mU = mD = mg̃ = 1 TeV. The meaning of the

different curves is explained in the text.
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Fig. 2. The massmh as a function of tanβ, for mA = 120 GeV, µ = At = −2 TeV, Ab = −3 TeV,
mQ,t̃ = mU = mD = 1 TeV andmg̃ = 200 GeV. The meaning of the different curves is explained in the tex

overlap). On the other hand, comparing the short-dashed and solid curves we see
O(αtαb + α2

b) corrections can still amount to a few GeV when tanβ is large enough.
Finally, Fig. 3 shows both CP-even Higgs masses,mh andmH , as functions of the

CP-odd Higgs mass, in the region of relatively smallmA (100 GeV< mA < 180 GeV),
for tanβ = 40. The other input parameters are chosen asAt = 1 TeV, Ab = 2 TeV,
µ = mQ,t̃ = mU = mD = mg̃ = 1 TeV. The meaning of the various curves is the sa
as in Fig. 1. Comparing the short-dashed and solid curves we see that, for this
of parameters, the effect of theO(αtαb + α2

b) corrections is particularly evident in th
region wheremA is small, and can account for variations of several GeV (around 5 in
example) in bothmh andmH .

In general, it appears from Figs. 1–3 that the two-loopO(αbαs) andO(αtαb + α2
b)

corrections are usually a small fraction of the one-loopO(αb) ones. We stress that this
a desirable consequence of our renormalization prescription, which allows to se
the tanβ-enhanced threshold corrections, resummed to all orders in the renorm
couplinghb. If we were to adopt for the bottom/sbottom sector the same renormaliz
prescription that we use for the top/stop sector, the dependence on tanβ of the one-loop
corrections would be smoother, but very large corrections would appear at two
questioning the validity of the perturbative expansion.

To conclude this section, we notice that our knowledge of the general formulae f
corrections to the CP-even Higgs mass matrix in theDR scheme allows us to estima
the uncertainty connected with the fact that we take the limit of tanβ → ∞,mb → 0 in
the corresponding OS results. In the numerical examples considered above we fin

in the regions where the corrections are sizeable, theDR results for theO(αbαs) part of
(�M2

S)
eff vary by less than 20% when the limit tanβ → ∞,mb → 0 is taken. TheDR
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Fig. 3. The massesmh and mH as a function ofmA, for tanβ = 40, At = 1 TeV, Ab = 2 TeV, µ =
mQ,t̃ = mU = mD = mg̃ = 1 TeV. The meaning of the different curves is explained in the text.

results for theO(αtαb + α2
b) part of the corrections vary instead by less than 10%. We

assume that similar variations occurr also in the corresponding OS results, which le
shifts inmh typically smaller than 1 GeV.

6. Conclusions and discussion

In this paper we computed theO(αtαb + α2
b) corrections to the MSSM neutral Higg

boson masses and to the minimization conditions of the MSSM effective potential.
corrections are relevant when the ratio of the Higgs VEVs, tanβ , is large. Combined
with the previously computedO(αtαs) [13], O(α2

t ) [14] andO(αbαs) [15] corrections
to the neutral Higgs masses, and with the corresponding corrections to the minim
conditions of the effective potential [16], these results provide us with a com
computation of the leading two-loop corrections controlled by the top and bottom Yu
couplings.

Using the formalism of the effective potential, we obtained complete analytic ex
sions for the momentum-independent part of theO(α2

t + αtαb + α2
b) corrections, valid for

arbitrary values of the MSSM input parameters when the latter are expressed in tDR
renormalization scheme. We also discussed an OS renormalization prescription for
rameters of the bottom/sbottom sector in the physically relevant limit of large tanβ . Such
prescription, first introduced in Ref. [15] for the case of theO(αbαs) corrections, allows

to separate the large threshold corrections appearing in the relation betweenhb and the
pole bottom mass from the genuine two-loop effects. Finally, we discussed the numerical
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impact of our results in a few representative examples, showing that, for large val
tanβ , theO(αt αb +α2

b) corrections can induce variations in the Higgs masses of the
of a few GeV. Since our analytic expressions, both in theDR and the OS schemes, are t
long to be useful if explicitly written on paper, we choose to make them available i
form of a Fortran code.

Although the terms controlled by the top and bottom Yukawa couplings undoub
account for the bulk of the two-loop corrections, several pieces are still missin
a complete two-loop computation of the MSSM Higgs masses. When tanβ is large,
the corrections controlled by the tau Yukawa couplinghτ might in principle be non
negligible. In the approximation of neglecting the electroweak gauge couplings
only two-loop corrections involving the tau Yukawa coupling are those ofO(αbατ ) and
those ofO(α2

τ ), whereατ = h2
τ /(4π). While the mixedO(αbατ ) corrections would

require a dedicated computation,4 explicit formulae for theO(α2
τ ) corrections can be

obtained from the formulae of Refs. [14,16] for the purelyO(α2
t ) corrections, with

the replacementst → τ , b̃L → ν̃τ , Nc → 1 and H1 ↔ H2 (the latter resulting into
tanβ ↔ cotβ , v1 ↔ v2, (�M2

S)
eff
11 ↔ (�M2

S)
eff
22 andΣ1 ↔ Σ2). If the input parameter

are given in the OS scheme, a suitable definition ofδAτ is required in order to avoid
introducing tanβ-enhanced terms in the two-loop part of the result. Anyway, we find
theO(α2

τ ) corrections to the Higgs masses are in general very small compared with
controlled by the bottom Yukawa coupling. Besides the hierarchy betweenmb andmτ , the
suppression of the tau corrections is motivated by the absence of color enhanceme
by the fact that the only tanβ-enhanced threshold corrections to the relation betweehτ

andmτ are those controlled by the electroweak gauge couplings.
A full two-loop determination of the MSSM Higgs masses will require going bey

the gaugeless limit and the effective potential approximation, i.e., including bot
corrections controlled by the electroweak gauge couplings and the effect of the mome
dependent part of the Higgs self-energies. It can also be expected that, among th
loop corrections, at least those involving the top Yukawa coupling affect the H
masses in a non-negligible way. In Ref. [18] the two-loop, zero-momentum electro
corrections have been computed numerically in a representative scenario, and fo
yield a shift in the lightest Higgs boson massmh of about 1 GeV with respect to the resu
obtained in the gaugeless approximation. In Ref. [29], the theoretical uncertainty
prediction formh arising from the combined effect of the missing two-loop correcti
and the leading three-loop corrections has been estimated to be around 3 GeV.

If the MSSM is a viable theory for physics at the weak scale, a light Higgs b
will be discovered either at the Tevatron or at the LHC. Subsequently, its propertie
be determined with high precision at a future linear collider: for example, the pred
experimental accuracy in the determination ofmh at TESLA is about 50 MeV [30]. I
is thus clear that further effort will be required in the coming years, in order to imp
the accuracy of the theoretical predictions up to the level required to compare wi
experimental results expected at the next generation of colliders.
4 We thank A. Brignole for drawing our attention on this point.
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Appendix A

We present here the expressions for the functionsF t
i (i = 1,2,3,4), F5, F6, F t , Gt

andFA, appearing in Eqs. (12)–(17), in terms of derivatives of theDR-renormalized�V ,
computed at the minimum ofVeff:

(A.1)

F t
1 = ∂2�V

(∂m2
t )

2
+ ∂2�V

(∂m2
t̃1
)2

+ ∂2�V

(∂m2
t̃2
)2

+ 2
∂2�V

∂m2
t ∂m

2
t̃1

+ 2
∂2�V

∂m2
t ∂m

2
t̃2

+ 2
∂2�V

∂m2
t̃1
∂m2

t̃2

+ 1

4m4
t

(
∂�V

∂cϕt+ϕb

+ zt
∂�V

∂cϕt−ϕ̃t

+ zb
∂�V

∂cϕt+ϕ̃b

)
,

(A.2)

F t
2 = ∂2�V

(∂m2
t̃1
)2

− ∂2�V

(∂m2
t̃2
)2

+ ∂2�V

∂m2
t ∂m

2
t̃1

− ∂2�V

∂m2
t ∂m

2
t̃2

− 4c2
2θt

m2
t̃1

− m2
t̃2

(
∂2�V

∂c2
2θ̄t

∂m2
t

+ ∂2�V

∂c2
2θ̄t

∂m2
t̃1

+ ∂2�V

∂c2
2θ̄t

∂m2
t̃2

)

− zt

s2
2θt

m2
t (m

2
t̃1

− m2
t̃2
)

∂�V

∂cϕt−ϕ̃t

,

F t
3 = ∂2�V

(∂m2
t̃1
)2

+ ∂2�V

(∂m2
t̃2
)2

− 2
∂2�V

∂m2
t̃1
∂m2

t̃2

− 2

m2
t̃1

− m2
t̃2

(
∂�V

∂m2
t̃1

− ∂�V

∂m2
t̃2

)

+ 16c2
2θt

(m2
t̃1

− m2
t̃2
)2

(
c2

2θt

∂2�V

(∂c2
2θ̄t

)2
+ 2

∂�V

∂c2
2θ̄t

)

− 8c2
2θt

m2
t̃1

− m2
t̃2

(
∂2�V

∂c2
2θ̄t

∂m2
t̃1

− ∂2�V

∂c2
2θ̄t

∂m2
t̃2

)

4zt
(

∂�V ∂�V ∂�V
)

(A.3)+
s4
2θt

(m2
t̃1

− m2
t̃2
)2 ∂cϕt−ϕ̃t

+
∂cϕb+ϕ̃t

+ zb
∂cϕ̃t+ϕ̃b

,
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(A.4)

F t
4 = ∂2�V

∂m2
t̃1
∂m2

b

+ ∂2�V

∂m2
t̃1
∂m2

b̃1

+ ∂2�V

∂m2
t̃1
∂m2

b̃2

− ∂2�V

∂m2
t̃2
∂m2

b

− ∂2�V

∂m2
t̃2
∂m2

b̃1

− ∂2�V

∂m2
t̃2
∂m2

b̃2

− 4c2
2θt

m2
t̃1

− m2
t̃2

(
∂2�V

∂m2
b̃1
∂c2

2θ̄t

+ ∂2�V

∂m2
b̃2
∂c2

2θ̄t

+ ∂2�V

∂m2
b∂c

2
2θ̄t

)

− zt

s2
2θt

m2
b(m

2
t̃1

− m2
t̃2
)

∂�V

∂cϕb+ϕ̃t

,

(A.5)

F5 = ∂2�V
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t̃1
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− ∂2�V

∂m2
t̃1
∂m2

b̃2
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∂m2
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∂c2

2θ̄t

)

− 4c2
2θb

m2
b̃1

− m2
b̃2

(
∂2�V
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)
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2θb

(m2
t̃1

− m2
t̃2
)(m2
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b̃2
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∂2�V
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− 4ztzb
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∂�V
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,

(A.6)

F6 = ∂2�V

∂m2
t ∂m

2
b

+ ∂2�V

∂m2
t̃1
∂m2

b

+ ∂2�V

∂m2
t̃2
∂m2

b

+ ∂2�V

∂m2
b̃1
∂m2

t

+ ∂2�V

∂m2
b̃2
∂m2

t

+ ∂2�V

∂m2
t̃1
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b̃1

+ ∂2�V

∂m2
t̃1
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b̃2
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b̃1
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∂m2
t̃2
∂m2

b̃2
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4m2
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b

∂�V
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In the above formulae,zq ≡ sign(Xq),5 where Xq (q = t, b) is the squark mixing
parameter. The functionsFb

i , Fb and Gb can be obtained from their top counterpa
through the replacementt ↔ b.
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