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Abstract

We complete the effective potential calculation of the two-loop, top/bottom Yukawa corrections
to the Higgs boson masses in the minimal supersymmetric standard model, by computing the
O(atz + arap + ag) contributions for arbitrary values of the bottom Yukawa coupling. We also
compute the corrections to the minimization conditions of the effective potential at the same
perturbative order. Our results extend the exis@@z,z) calculation, and are relevant in regions of
the parameter space corresponding tgstas 1. We extend to the Yukawa corrections a convenient
renormalization scheme, previously proposed for@he ;) corrections, that avoids unphysically
large threshold effects associated with the bottom mass and absorbs the bulk of the corrections into
the one-loop expression. For large values ofgathe new contributions can account for a variation
of several GeV in the lightest Higgs boson mass.

0 2003 Elsevier B.V. All rights reserved.

1. Introduction

One of main features of the minimal supersymmetric standard model (MSSM) [1] is the
prediction of the existence of at least one light Higgs boson [2]. After the conclusion of the
LEP and Tevatron run | experimental programs that reported no significant evidence for a

E-mail addresses: dedes@ph.tum.de (A. Dedes), degrassi@fis.uniroma3.it (G. Degrassi),
slavich@mppmu.mpg.de (P. Slavich).

0550-3213/$ — see front mattéi 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.nuclphysb.2003.08.033


http://www.elsevier.com/locate/npe

A. Dedes et al. / Nuclear Physics B 672 (2003) 144-162 145

Higgs boson, the experimental search for this particle has now become one of the major
tasks of the Tevatron run Il and of the future LHC. Within the MSSM, the tree-level masses
of the neutral Higgs bosons can be parameterized in terms of three input parameters: the
mass of the CP-odd Higgs,, theZ boson mass: z and the ratio of the two Higgs vacuum
expectation values, tgh= vy/v1. At tree level, at least one of the MSSM Higgs bosons

is bound to be lighter than th# boson, thus the failure of detecting it at LEP indicates
that the MSSM could be a realistic theory only after the radiative corrections to the Higgs
boson masses have been taken into account.

The radiative corrections arise from loop diagrams involving Standard Model particles
and their superpartners. Although the earliest computations [3] of radiative corrections
to the MSSM Higgs masses date back to the eighties, it was first realized in Ref. [4]
that the inclusion of the one-loop top/stdp(«;) corrections, wherey, = htz/(47r), hy
being the superpotential top coupling, may push the light Higgs mass well above the tree-
level bound. In the subsequent years, an impressive theoretical effort has been devoted
to the precise determination of the MSSM Higgs masses: full one-loop computations
have been provided [5,6], leading logarithmic effects at two loops have been included
via appropriate renormalization group equations [7,8], and genuine two-loop corrections
of O(a;ay) [9-13], O(atz) [9,12,14], andD(apa;) [15] have been evaluated in the limit
of zero external momentum. The tadpole corrections needed to minimize the effective
potential,Ves, have also been calculated [16] at the same perturbative orders. Furthermore,
the full two-loop corrections to the MSSM effective potential have been calculated in
Ref. [17], together with a first study of the effect of the two-loop corrections to the Higgs
masses controlled by the electroweak gauge couplings [18].

The corrections controlled by the top Yukawa coupling are in general the most
relevant ones. However, in regions of the MSSM parameter space whetestah the
superpotential bottom couplinky, may be large (we recall that, at the classical level,
hy/h: = (mp/my)tang) and the one-loop bottom/shottom correctionstiy,), where
ap = h,f/(4n), can be numerically relevant and compete with thos@@f;). At the two-
loop level, the evaluation of the corrections controlled by the bottom Yukawa coupling
requires the inclusion of one-loop, tArenhanced threshold corrections to the bottom
mass [19]. If the physical bottom mass is used as input parameter in the one-loop part
of the computation, potentially large tArenhanced corrections appear at two loops. To
address this problem, a set of renormalization prescriptions for the parameters in the
bottom/sbottom sector that avoid the occurrence of unphysically large threshold effects
at two loops was proposed in Ref. [15] for tB¥w, ;) part of the corrections.

The purpose of this article is to complete the calculation of the two-loop, top/bottom
Yukawa corrections to the Higgs boson masses in the effective potential approach. Such
corrections were previously computed [9,12,14] in the lilmjt— 0, which is accurate
enough only for moderate values of anin that limit, the two-loop Yukawa corrections
to the MSSM Higgs masses are 6(«?m?), which we denote a®)(a?) for brevity.

On the other hand, when the bottom Yukawa coupling is left arbitrary, the resulting two-
loop corrections are proportional to various combinations of couplings and masses: e.g.,
we find terms ofO(afmtz), which might as well be interpreted as fguwenhanced terms

of O(arap m%). To simplify our notation, we will refer to all such “mixed” terms as to
O(a;ap) corrections, and to the terms that depend only on the bottom Yukawa coupling as
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to O(a,f) corrections. Our computation will thus provide us with tﬁ(azx, + oo + ab)
corrections to the MSSM Higgs masses, extending?ie?) results obtained in Ref. [14].
As a byproduct, we also calculate thl{a,z +asop + a,f) corrections to the minimization
conditions of the effective potential. We express our results inCiRerenormalization
scheme, as well as in an “on-shell” scheme which extends the prescription described in
Ref. [15] to the case of the Yukawa corrections. The resulting analytical formulae are rather
lengthy, thus we make them available, upon request, in the form of a Fortran code (please
make your request to P. Slavich, e-mail addreksiich@mppmu.mpg.jle

The structure of this paper is the following. In Section 2 we recall some general issues of
the effective potential approach to the calculation of the Higgs masses. Section 3 describes
our two-loop computation of thBR tadpoles and CP-odd, CP-even Higgs mass matrices,
while Section 4 addresses our on-shell renormalization prescription. Numerical results
are given in Section 5 and in Section 6 we present a short discussion of the corrections
controlled by the tau Yukawa coupling as well as our conclusions.

2. Higgsmassesin the effective potential approach

We begin our discussion by recalling some general results concerning the computation
of the MSSM Higgs masses in the effective potential approach. The effective potential,
which we write from the start in terms @R-renormalized fields and parameters, can
be decomposed a& = Vo + AV, whereVj is the tree-level scalar potential ardy/
contains the radiative corrections. Keeping only the dependence on the neutral Higgs fields
HY andHY, the tree-level MSSM potential reads

2 2
Vo= ) [HEI+ 4 ) | 1213+ )
2
g’ +g?

o ([HD = [ H]), (1)
where:u is the Higgs mass term in the superpotential (we assume it to be real, neglecting
all possible CP-violating phases)iZ, , m%, andm3 are soft supersymmetry-breaking
massesg andg’ are theSU(2); andU(1)y gauge couplings, respectively. The neutral
Higgs fields can be decomposed into their vacuum expectation values (VEVS) plus their
CP-even and CP-odd fluctuationslai,gz (i +Si +iP)/v2 (i =1,2). The VEVsy; are
determined by solving the minimization conditions of the effective potential, i.e.,

d Vet —0. 0 Vet —0. @)

9Si Imin 9P |min
the second equality being automatically satisfied since we assume that CP is conserved.
However, it is also possible to take andv; as input parameters, or equivalenty =
vf + v% and tang = v,/v1, wherev? is related to the squared running mass ofZhgoson
throughm% = (g% + g’%v?/4. In this case, the minimization conditions B can be

translated into conditions gn? andm3:

+
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2

ms 1
m2=7Zsm2ﬂ-|-§tan2ﬂ(m§h—m%2+21—22), (4)
where the “tadpoles¥; and X; are defined as
10AV
i = : (5)
V; 3Si min

In the effective potential approach, the mass matrices for the neutral CP-odd and CP-even
Higgs bosons can be approximated by

( )eff 32Veff
Plij = 3o P

( Z)eff_ 32Veff (6)

5).: =
min Y 08;0S;
Exploiting the minimization conditions of the effective potential, Eq. (2), the CP-odd mass
matrix can be written as

L U1V2 32AV

M2~ — =Xt —
( P)’/ mBU,‘vj it dP;0P;

min

(7)

min

(/\/112[,)Eff has a single non-vanishing eigenvalue that, in the approximation of zero external
momentum, can be identified with the squared physical mass of theson. We denote
itasm4 =5 + Am%, wherem3 = —2m3/sin26 is the squared running mass of the
boson. The CP-even mass matrix can in turn be decomposed as

(M3 = (M) 4 (amB)*", (8)

where the first term in the sum is the tree-level mass matrix expressed in tenmsarfd
my:

20eft _ [ MZCh LS —mG - mb)spe

(M3)™ = 2, -2 22, =22 ) ©)

—(m% +m9)sgcp mysg +miycg
(cp = cosp, sg = sinpg and so on), while the second term contains the radiative corrections:
2 2
eff  9°AV i 0°AV
(MY = 55057 |~ D™ 3PP (10)
i J 'min min

Itis clear from Egs. (7)—(10) that, in order to make contact with the phygicakss, the
effective potential should be computed as a function of both CP-even and CP-odd fields.
Since Vet generates one-particle-irreducible Green’s functions at vanishing external
momentum, it is clear that the effective potential approach neglects the momentum-
dependent effects in the Higgs self-energies. The complete computation of the physical
masses of the CP-even Higgs bosomg, and my, and of the CP-odd Higgs boson,
my, requires the full, momentum-dependent two-point functions. A detailed discussion
of the correspondence between the effective potential approach and the full computation
has been presented in Ref. [14]. Here we just notice that the main conclusions presented
in that paper regarding th@(«, ;) and O(a?) corrections apply also t& (o ap + )
corrections discussed here. Namely, the two-l64p; o), + ab) corrections to the Ilghtest
Higgs eigenvalue are fully accounted for by the two-loop effective potential evaluation
of my supplemented by known momentum-dependent one-loop contributions, and the
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same is true foiny whenmy, is not too large. Instead, if14 > m; a full two-loop
O(arap + af) computation ofm g requires additional momentum-dependent two-loop
contributions, neglected by the effective potential calculation, that have not been computed
so far.

3. Computation of the two-loop Yukawa corrections

We shall now describe our two-loop computation of the tadpleghe A-boson mass
correctionAmE‘ and the matri><(AM§)eﬁ, including terms controlled by the top and/or
the bottom Yukawa couplings. The computation is consistently performed in the gaugeless
limit, i.e., by setting to zero all the gauge couplings, and by keepirandh,, as the only
non-vanishing Yukawa couplings. In this limit, the tree-level (field-dependent) spectrum
of the MSSM simplifies considerably: gauginos and Higgsinos do not mix; charged and
neutral Higgsinos combine into Dirac spinors with degenerate mass eigenyaltiethe
only massive SM fermions are the top and bottom quarks, while all other fermions and
gauge bosons have vanishing masses; the only sfermions with non-vanishing couplings are
the stop and sbottom squarks; the lightest CP-even Higgs bas@massless, and the
same is true for the Goldstone bosons; all the remaining Higgs stdled,, H*), have
degenerate mass eigenvalwé{;{:~ The tree-level mixing angle in the CP-even sector is just
a=p8—mn/2.

The renormalization of the effective potential is performed according to the lines of
Ref. [16], i.e., we expres¥es, from the beginning, in terms ddR-renormalized fields
and parameters. In practice, this amounts to dropping all the divergent terfvig end
replacing the two-loop integralg(m?2, m3, m3) and J (m3, m3) (see, e.g., Ref. [16] for
the definitions) with their “subtracted” counterpaftand ./, first introduced in Ref. [20].
Alternatively, we could follow the procedure of Refs. [13,14]: exprads in terms of
bare parameters and then renormalize the derivatives1of(i.e., the tadpoles and the
corrections to the Higgs masses), checking explicitly the cancellation of the divergent
terms. The general formulae for the tadpoles and the corrections to the Higgs masses would
look slightly more complicated in the latter case. However, we have checked that the two
renormalization procedures lead to the same final result, as they should.

According to Egs. (5), (7) and (10), the tadpoles and the corrections to the Higgs mass
matrices can be computed by taking the derivatives Bfwith respect to the CP-even and
CP-odd fields, evaluated at the minimum@fs. Following the strategy of Refs. [13,14],
we computeAV in terms of a set of field-dependent parameters (masses and angles), and
use the chain rule to express the corrections in terms of derivativé¥ afiith respect to
those parameters. In each sector, the field-dependent parameters can be chosen as

mg, mgl, mgz, 05, ©q, ©q. (g=1.,b), (11)

where:m, and mgi are the quark and squark massé;;is the field-dependent squark
mixing angle, defined in such a way tharg(ﬁq < /2 (to be contrasted with the usual
field-independent mixing angl;, such that-7/2 < 6; < 7/2); ¢, is the phase in the
complex quark massp, is the phase in the off-diagonal element of the squark mass
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matrix. For the explicit Higgs field dependence of these parameters, see Refs. [13,14]. In
the expression oAV relevant to the(?(a,z) corrections (i.e., withh;, set to zero), the top
and stop phases always combine in the difference ¢;, so that a convenient choice for
the field-dependent parametercis_g, = coS¢; — ¢;). On the other hand, when both
andh, are non-zero, as it is the case in the present computation 61@2§+ oo + ozg)
corrections, the situation becomes more complicated: besides the terms inyglving
andg, — @5, we find other terms, coming from diagrams with a charged Higgs or Goldstone
boson, that involve the combinations+ @5, ¢» + @1, ¢ + ©p andg; + @p.

Exploiting the field-dependence of the various masses and angles, we get the following
general formulae for th@(ozt2 +oarop + a,f) corrections in th®R renormalization scheme:

1,
(AM_%) = 2hZ2m2F} + 2h2 Apmpsog, FS + Zh2 AZs2 20, F2

2
1
+ Zh?uzsﬁe FL + 2hihpmpass, Fy + hohpieApsog, s20, Fs, (12)
1
(AM ) = hz M S 26, F2 + 2h Atuszg F3 + hihpmp Ay sog, F4
1
+ h%,umbszgh sz + Eh%Ab,us%eb Fé’ + hihpm; Apsog, Ff
1
+ Shihsan, 52, (Ai A + 14%) Fs + 2hshym,my F, (13)
1
(AMB)58 = 212m2 F} + 2h2 Amysas, Fy + 2h2A2S2e, F}
1
+ 2h£u2s§9h F2 + 2hihpmy pszg, F2 + hehp i Arsag, s26, Fs, (14)
U%Z'l:m,u cotBsag, F' —l—mbAbszgth ~|—2mbi (15)
v%Ez = mpptanBsoy, F? + myArsoo, F' + 2mt2Gt, (16)
1 h2uA h2uA
Am? = ( R R ] thA> (17)
Cﬁsﬁ m~ —mt~2 mgl—mbz

In the equations abovd, andA, are the soft supersymmetry-breaking trilinear couplings
of the Higgs fields to the stop and sbottom squarks, g@nd= sin%; (¢ = t,b) refer
to the usual field-independent squark mixing angles. The functansi =1,2,3,4),
Fs, Fs, F4, G1 and F,4 are combinations of the derivatives ofV with respect to the
field-dependent parameters, computed at the minimum of the effective potential; their
definitions are given in Appendix A. It can be noticed that, as it is predictable from the
form of the MSSM Lagrangian, the above results are fully symmetric with respect to
the simultaneous replacements> b and Hy <> H>, the latter resulting into taf <«
cotp, vy < v, (AM%)?{ PN (AM%)gg andX; < X».

An explicit expression of the two-loop top and bottom Yukawa contributiofn Yocan
be found in Ref. [12], while the complete two-loop effective potential for the MSSM was
given in the second paper of Ref. [17]. However, those expressions were computed for
vanishing CP-odd fields, thus omitting the dependence on the phasasd ¢,. Since
these phases appearA¥ in many different combinations, it is not possible to infer the
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general field-dependent expressiono¥ by means of simple substitutions in Eq. (D.6)
of Ref. [12], as it was the case in the computation ofthe; o, + a,z) correctionst

We worked out the general expression of the two-loop top and bottom Yukawa
contribution toAV in terms of all the field-dependent parameters of Eq. (11). We then
computed its derivatives in order to obtain explicit formulae for the various functions
appearing in Egs. (12)—(17). The use of a recursive relation for the derivatives of
1(m3,m3,m3), presented in Ref. [16], helped us to keep the number of terms involved
under control. However, the resulting analytical formulae are very long and we choose not
to display them in print. Instead, we make them available in the form of a Fortran code.

4. On-shell renormalization scheme and input parameters

The results presented in the previous section are valid when the MSSM input parameters
are expressed in thBR renormalization scheme. This way of presenting the results
is convenient for analyzing models that predict, via the MSSM renormalization group
equations, the low-energyR values of the parameters in terms of a set of boundary
conditions assigned at some scadeyt much larger than the weak scale (see Refs. [21,22]
for a list of public codes that are commonly used in this kind of analyses, and Ref. [23]
for a comparison among them). General low-energy analyses of the MSSM, however,
do not refer to boundary conditions at high scales, and are usually performed in terms
of parameters with a more direct physical interpretation, such as pole masses and
appropriately defined mixing angles in the squark sector. Such an approach requires
modifications of our two-loop results, induced by the variation of the parameters entering
the one-loop corrections when moving from th& scheme to a different scheme (for a
generic parameter, we define the shift from thBR valuex aséx = £ — x).

However, it is not always possible to find a sensible definition with a direct physical
interpretation for all the relevant parameters. For example, while there is a well-known
physical & pole) definition for the masses, the so-called “on-shell” (OS) definition, and
an OS definition for the squark mixing angles can be also conceived [24], it is not clear
what meaning should be assigned to an OS definition of parametetglika,, u, tang).

For instance, they could be related to specific physical amplitudes. However, given our
present ignorance of any supersymmetric effect, such a choice does not seem particularly
useful. In these cases it seems sometimes simpler to sticRBR @efinition.

It is rather easy to devise an OS renormalization scheme for the parameters in the
top/stop sector, based on the OS prescription for the top and stop masses and the stop
mixing angle and treating, as a derived quantity, while retainingR definition for
and targ (see, e.g., Refs. [13,14]). Instead, some additional care is required in the choice
of an OS scheme for the parameters in the bottom/sbottom sector, due to the potentially
large one-loop threshold corrections [19], proportional todtatihat contribute to the pole
bottom mass. For example, a definition 4§ in terms of the OS bottom and sbottom
masses and sbottom mixing angle, similar to the definitiof,ofvould produce a shitA,

1 Also, we do not agree with Ref. [12] on the sign of the penultimate line of Eq. (D.6).
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proportional to tafj [25]. When targ is large, this would induce very large corrections
to the Higgs masses at two loops, questioning the validity of the perturbative expansion.

To overcome this problem, we adopt a set of renormalization prescriptions for the
parameters in the bottom/sbottom sector, first introduced in Ref. [15] for the case of
the strong corrections, that avoid the occurrence of unphysically large threshold effects
and at the same time enforce other desirable properties such as the decoupling of heavy
particles, the infrared finiteness and gauge-independence. Generalizing these prescriptions
to the case of the Yukawa corrections, and combining them with the usual prescriptions for
the top/stop parameters [14], we obtain a convenient OS renormalization scheme for the
O(asap + af) part of the corrections to the Higgs masses. Since the corrections controlled
by the bottom Yukawa coupling can be sizeable only for large values ¢f, tere work
directly in the physically relevant limit of tgfi— oo, i.e.,v1 — 0, v2 — v.

For the OS squark masses and mixing angles, top quark mass and electroweak parameter
v = (v/2G,)~Y/2 we adopt the definitions

4 (.2 4 (.2
om2 =11} (m2),  860; = L Mapmg,) + Mip0mg,)
i i ’ ’

q gi 97 9 m2 — m2
q1 q2
3m,=2t(m;), dv = 57 2 (18)
2 ms,

whereg = (7, b), while H{’j(pz), X (p) and 1%, (p?) denote the real and finite parts of

the self-energies of squarks, top quark aidboson, respectively. Following Ref. [14], we
further treaty as aDR parameter computed at a reference s@de= 175 GeV, andi;

andA; as derived quantities that can be computed by means of the tree-level formulae for
m; andspy,, respectively. In principle, we still have to defing, h;, and A,. However, in

the large tam8 limit, the bottom mass is just zero, and the shottom mixing angle becomes

\/ihb v

$20y =~ P (19)
m- —ms-
by by

which is independent ofi, and A,. We can thus tredi, as a quantity derived from the
sbottom mixing, and use Eqgs. (18) and (19) to obtain a prescriptiaihfor

Sm? — sm?
X 8
(Shb — hb( ;1 2b2 + 526, _ _U) (20)

ms —ms N v
by by 20

In Ref. [15], an OS definition for the quantit§, = h,A,, or equivalently forsA, =
(8Ap—8hy,Ap)/ hp, was proposed in terms of tiig1 55 A) proper vertex A124 (p2, p3, p%)
for the case of the strong corrections. A generalization of that definition that can also en-
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compass the Yukawa corrections is given by

- i
34y = = —[Asoa(mf . m? ,0) + Asza(mf . m? . O)]

- b2 b2 b 2 b (2
LA [Hmmgl) = [3ym? ) M3p(m? ) = M3y0m2 )
2

(21)

Maa(m2 ) — Maa(m? )

+ > 5 2 }
m};l — m};z

Having fully specified our OS renormalization prescriptions in the limitgar oo,

physically relevant for thé («; a5 + cxb) corrections, we can proceed to obtain formulae

for the CP-even Higgs masses in our OS scheme and merge them with the @tjaﬁ\m

OS results [14] that contain an explicit dependence orgtarhis can be done in three

steps first, we take the limit of tam—> 0o, mp — 0 in the generaDR results for the

O(at + ooy + O‘b) part of (AMS 2)eff: then we add the contributions due to the shifts

of the parameters entering the one-loop corrections (this requires the computation of the

O(as + ap) part of the counterterms in the large fafimit); finally, we subtract from this

results the pur@(a,z) part which, being relevant for all values of tdpnmust instead be

computed separately with the formulae of Ref. [14]. Notice that we do not encounter any

terms that blow up when we take the limit of large faim the DR results: unphysically

large contributions could only be introduced by hand, as the result of a poor choice of the

renormalization conditions for the parameters in the bottom/sbottom sector.

We discuss now the parameters that we will actually use as inputs of our calculation. In
particular, although we have used Eqgs. (19), (20) to define an OS bottom Yukawa coupling
hp through the sbottom mixing, we still need to exploit the experimental information on
the bottom mass in order to obtain tBR running couplingfzb. The OS coupling will
then be computed through the relation= hy, — Shy,. Following Ref. [15], we define the
running couplingfzb at the reference scalgg = 175 GeV to be

rﬁb\/? 1+
v |1+ep]’

= b(QO)MSSM

(22)

where:m, = mb(QO)SM = 2.744 0.05 GeV is the standard model bottom mass, evolved
up to the scaleQg to take into account the resummation of the universal large QCD
logarithms;e;, contains the tag-enhanced threshold corrections from both the gluino-
sbottom and the higgsino-stop loops (denotedasind ¢, respectively, in Egs. (25)

and (26) of Ref. [15])8, contains the residual threshold corrections that are not enhanced
by tang. Notice that, as shown in Ref. [26], keepigg in the denominator of Eq. (22)
allows to resum the tafrenhanced threshold corrections to all orders in the perturbative
expansion. On the other hand, there is no preferred way of including the threshold
corrections parametrized b, whose effect on the value @f, is anyway very small.
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Neglecting all the terms controlled by the electroweak gauge couplipgsads

2 2 2 2
¢ — 2t mgutanp [ "o g M ’”52]
37'[ mg —mg mg —mg mg mg —mg mg
by b by 8 8 b g g
2 2 2 2
(673 Atutanﬂ mf]_ mf]_ mt~2 mt~2
ey AL R — In 2| (23)
n My TH n M

It appears from Eq. (22) thaj, blows up where, approaches-1, in which case the correct
value of the bottom mass cannot be reproduced Witfin the perturbative regime, and

the corresponding set of MSSM parameters must be discarded. It can also be noticed from
Eq. (23) that, since we take; > 0, for A; > 0 (A; < 0) theO(ay) andO(a;) contributions
entere, with the same (the opposite) sign. Moreover, if we take only(#ie;) part ofe,

into account/z;, can be enhanced by the threshold correction only for large valueg of

and large and positifevalues ofx, whereas, when we include ti@(,) part,z, can be
enhanced also for small valuesmf and large and negative values of batland A;.

For the top/stop sector, we take as input the current central value of the top pole
mass,m, = 1743 GeV [27], and the paramete(s, 7, my, A;) that can be derived by
rotating the diagonal matrix of the OS stop masses by the ahgtiefined in Eq. (18).
Concerning the sbottom sector, additional care is required, because of our non-trivial
definition of 4, and of the fact that, at one loop, the paramm% ; entering the sbhottom
mass matrix differs from the corresponding stop parame@; y a finite shift [25]. We
start by computing the renormalized couplihg as given by Eqgs. (20) and (22). Then
we computen;, ; following the prescription of Ref. [25]. Finally, we use the parameters
hp ande ; to compute the actual values of the OS sbottom masses and mixing angle.
Concerning theA-boson mass, which enters the tree-level mass matrix for the CP-even
Higgses, we take as input the physical mass dropping the distinction betweem, and
the effective potential mass4 (this amounts to neglecting the effect of the uncomputed
momentum-dependent two-loop corrections). The renormalization of theson mass,
whose numerical value we take equal to the physical mags= 91.187 GeV, does
not affect theO (o ap + ozg) corrections. The remaining numerical inputs are the OS
electroweak parameter= 246.218 GeV and the strong coupling constant, which we fix
asa,(Qp) =0.108.

5. Numerical results

We are now ready to discuss the numerical effect of our two-loop corrections. In
the previous sections we have discussed how to express our results in eithi2R the
renormalization scheme or an OS scheme suitably chosen to separate the genuine two-
loop corrections from the threshold corrections in the relation betwgemd#,. OurDR
results for the two-loop corrections to the Higgs masses and to the electroweak symmetry

2 Our convention for the sign qf is such that, e.g., the sbottom mixing parameter réggs- A, + ptang.
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breaking conditions can be easily implemented in the existing codes [21,22] that compute
the MSSM mass spectrum from a set of unified parameters at the Keale. A study
of the implications of our results in the framework of gravity (InSUGRA), gauge (GMSB)
or anomaly (AMSB) mediated supersymmetry breaking models goes beyond the scope of
this paper, and will appear elsewhere [28]. In the following discussion, we will adopt a
low-energy point of view and assume that the various input parameters are related, when
possible, to physical quantities. To this aim, we will make use of the OS renormalization
scheme presented in Section 4. We recall that, although our OS prescription is defined in
the limit tang — oo, the corrections have an indirect dependence o taoming from
the input value fofi,, see Eq. (22).

In Fig. 1(a) and (b) we show the light Higgs mas$ as a function of tag, for
ma =120 GeV andn 4 = 250 GeV, respectively. The other input parameters are chosen
asA;=1TeV,Ap,=2TeV,u=mgy;=my =mp=mzg=1TeV. In each plot, the
long-dashed curve corresponds to the valuapbbtained atO(a; + oras + atz), i.e., by
including only the one- and two-loop corrections controlled by the top Yukawa coupling;
the dot-dashed curve includes in addition the one-l64p;) corrections, controlled by
the bottom Yukawa couplin@;the short-dashed curve includes the two-laBfuy, o)
corrections computed in Ref. [15]; finally, the solid curve corresponds to the full two-loop
Yukawa computation o, i.e., it includes also thé («a; +a§) corrections discussed in
the previous sections. We can see from Fig. 1(a) and 1(b) that the corrections controlled by
the top Yukawa coupling depend very weakly ongamhen the latter is large. On the other
hand, theD(«;) corrections lower considerabhy;, when targ increases. Concerning the
two-loop corrections controlled by the bottom Yukawa coupling, the comparison between
the dot-dashed and short-dashed curves shows tha@®(agx,) corrections amount to a
small fraction of theD(«;,) ones, but they can still lowen,, by several GeV when tagh
is large. The comparison between the short-dashed and solid curves shows that the effect
of the O(a;ap + ag) corrections can also amount to several GeV whergtanlarge.
From Fig. 1(a) we see that, when, is small and the correction ta;, is mainly driven
by (AM%)H, the O(a;ap + a,f) corrections enter with the same sign as ey, «;)
corrections, reducing further the value mf,. On the other hand, Fig. 1(b) shows that
for larger values ofn 4, when the correction taz;, is sensitive to(AMg)zz, the new
corrections account for an increasesnp of a few GeV at moderately large values of fan
(i.e., tan8 ~ 30-40). This is basically due to a positive contributior(mM%)zz coming
from the O(o;ap) part of corrections. When tghtakes on larger values, however, the
overall effect of theD (o, o, + ozg) corrections tony, turns again to negative.

It is interesting to realize that th® (o) + a,f) corrections can be sizeable also for
parameter choices that make 1w, o) corrections irrelevant. In Fig. 2 we show, as
a function of targ, form, = 120 GeV,u = A, = -2 TeV, A, = -3 TeV, moi=my =
mp =1 TeV andmz = 200 GeV. The meaning of the various curves is the same as in
Fig. 1. Due to the small value of the gluino mass with respect to the sbottom masses, the
O(apay) corrections tony, are negligible (in fact, the dot-dashed and short-dashed curves

3 In the calculation of the one-looP (a;) and O(«ay,) corrections we include the effects proportionahté
and the momentum corrections as in [5].
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Fig. 1. The mas®:;, as a function of tag, for m4 = 120 GeV (upper panel) or 250 GeV (lower panel). The
other input parameters arg =1 TeV, A, =2 TeV, u = Mmgz=my=mp=mg= 1 TeV. The meaning of the
different curves is explained in the text.
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overlap). On the other hand, comparing the short-dashed and solid curves we see that the
O(azap + ag) corrections can still amount to a few GeV when fais large enough.

Finally, Fig. 3 shows both CP-even Higgs masses,andmpy, as functions of the
CP-odd Higgs mass, in the region of relatively sma}{ (100 GeV< m4 < 180 GeV),
for tang = 40. The other input parameters are choserdas= 1 TeV, A, = 2 TeV,
mw=mg;=my=mp=mz=1TeV. The meaning of the various curves is the same
as in Fig. 1. Comparing the short-dashed and solid curves we see that, for this choice
of parameters, the effect of th@(w,ap + af) corrections is particularly evident in the
region wheren 4 is small, and can account for variations of several GeV (around 5 in this
example) in bothn, andmg.

In general, it appears from Figs. 1-3 that the two-l@@f,o;) and O(o o + ozg)
corrections are usually a small fraction of the one-ldja;,) ones. We stress that this is
a desirable consequence of our renormalization prescription, which allows to set apart
the tand-enhanced threshold corrections, resummed to all orders in the renormalized
couplinghy. If we were to adopt for the bottom/sbottom sector the same renormalization
prescription that we use for the top/stop sector, the dependence grofahe one-loop
corrections would be smoother, but very large corrections would appear at two loops,
guestioning the validity of the perturbative expansion.

To conclude this section, we notice that our knowledge of the general formulae for the
corrections to the CP-even Higgs mass matrix in fife¢ scheme allows us to estimate
the uncertainty connected with the fact that we take the limit ofstan oo, m; — 0 in
the corresponding OS results. In the numerical examples considered above we find that,
in the regions where the corrections are sizeable DiReresults for theD (a,ay) part of
(AM%)Eﬁ vary by less than 20% when the limit t&n— oo, m;, — 0 is taken. TheDR
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Fig. 3. The masses:;, and my as a function ofm,, for tang = 40, A, =1 TeV, A, =2 TeV, u =
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results for thed (a;ap + a,f) part of the corrections vary instead by less than 10%. We can
assume that similar variations occurr also in the corresponding OS results, which leads to
shifts inmy, typically smaller than 1 GeV.

6. Conclusions and discussion

In this paper we computed th@(a; o + af) corrections to the MSSM neutral Higgs
boson masses and to the minimization conditions of the MSSM effective potential. Such
corrections are relevant when the ratio of the Higgs VEVs,Stais large. Combined
with the previously compute® (o, a5) [13], O(a?) [14] and O(apay) [15] corrections
to the neutral Higgs masses, and with the corresponding corrections to the minimization
conditions of the effective potential [16], these results provide us with a complete
computation of the leading two-loop corrections controlled by the top and bottom Yukawa
couplings.

Using the formalism of the effective potential, we obtained complete analytic expres-
sions for the momentum-independent part ofd](ez,z + asop + a,f) corrections, valid for
arbitrary values of the MSSM input parameters when the latter are expressedDRthe
renormalization scheme. We also discussed an OS renormalization prescription for the pa-
rameters of the bottom/sbottom sector in the physically relevant limit of large. t8ach
prescription, first introduced in Ref. [15] for the case of éx,«,) corrections, allows
to separate the large threshold corrections appearing in the relation beiyesa the
pole bottom mass from the genuine two-loop effects. Finally, we discussed the numerical
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impact of our results in a few representative examples, showing that, for large values of
tang, the O (o +a§) corrections can induce variations in the Higgs masses of the order
of a few GeV. Since our analytic expressions, both indfitand the OS schemes, are too
long to be useful if explicitly written on paper, we choose to make them available in the
form of a Fortran code.

Although the terms controlled by the top and bottom Yukawa couplings undoubtedly
account for the bulk of the two-loop corrections, several pieces are still missing for
a complete two-loop computation of the MSSM Higgs masses. Whefi tanlarge,
the corrections controlled by the tau Yukawa coupling might in principle be non-
negligible. In the approximation of neglecting the electroweak gauge couplings, the
only two-loop corrections involving the tau Yukawa coupling are thos®@f,«,) and
those of O(a?), wherea, = h2/(4r). While the mixedO(apa;) corrections would
require a dedicated computatidrexplicit formulae for theO(af) corrections can be
obtained from the formulae of Refs. [14,16] for the purék(af) corrections, with
the replacements — t, b, — v;, N. — 1 and Hy < H» (the latter resulting into
tang <> CotB, v1 < vz, (AM2)SN & (AMZSH and 21 < X). If the input parameters
are given in the OS scheme, a suitable definitior8 4f is required in order to avoid
introducing tarB-enhanced terms in the two-loop part of the result. Anyway, we find that
the O(a?) corrections to the Higgs masses are in general very small compared with those
controlled by the bottom Yukawa coupling. Besides the hierarchy betwgemdm , the
suppression of the tau corrections is motivated by the absence of color enhancements, and
by the fact that the only tgfrenhanced threshold corrections to the relation between
andm are those controlled by the electroweak gauge couplings.

A full two-loop determination of the MSSM Higgs masses will require going beyond
the gaugeless limit and the effective potential approximation, i.e., including both the
corrections controlled by the electroweak gauge couplings and the effect of the momentum-
dependent part of the Higgs self-energies. It can also be expected that, among the three-
loop corrections, at least those involving the top Yukawa coupling affect the Higgs
masses in a non-negligible way. In Ref. [18] the two-loop, zero-momentum electroweak
corrections have been computed numerically in a representative scenario, and found to
yield a shift in the lightest Higgs boson masg of about 1 GeV with respect to the result
obtained in the gaugeless approximation. In Ref. [29], the theoretical uncertainty in the
prediction formy arising from the combined effect of the missing two-loop corrections
and the leading three-loop corrections has been estimated to be around 3 GeV.

If the MSSM is a viable theory for physics at the weak scale, a light Higgs boson
will be discovered either at the Tevatron or at the LHC. Subsequently, its properties will
be determined with high precision at a future linear collider: for example, the predicted
experimental accuracy in the determinationngf at TESLA is about 50 MeV [30]. It
is thus clear that further effort will be required in the coming years, in order to improve
the accuracy of the theoretical predictions up to the level required to compare with the
experimental results expected at the next generation of colliders.

4 We thank A. Brignole for drawing our attention on this point.
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Appendix A

We present here the expressions for the functiElh$i =1,2,3,4), Fs, Fg, F', G’
and F4, appearing in Egs. (12)—(17), in terms of derivatives oflifierenormalized\ V,
computed at the minimum dfes:
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In the above formulaez, = sign(Xq),5 where X, (¢ =t,b) is the squark mixing
parameter. The functionEib, F’ and G® can be obtained from their top counterparts
through the replacement b.
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