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Abstract 

In this letter, we provide evidence for a classical sector of states in the Hilbert space of Finite Quantum Mechanics 
(FQM). We construct a subset of states whose the minimum bound of position-momentum uncertainty (equivalent to an 
effective ti) vanishes. The classical regime, contrary to standard Quantum Mechanical Systems of particles and fields, but 
also of strings and branes appears in short distances of the order of the lattice spacing. For linear quantum maps of long 
periods, we observe that time evolution leads to fast decorrelation of the wave packets, phenomenon similar to the behavior 
of wave packets in ‘t Hooft and Susskind holographic picture. Moreoever, we construct explicitly a non-dispersive basis of 
states in accordance with ‘t Hooft’s arguments about the deterministic behavior of FQM. 0 1997 Elsevier Science B.V. 

Studies of quantum field and string theories in the 
vicinity of the horizon of black holes suggest the 
existence of a minimal length at the string scale 

[l-5] and consistency with the Bekenstein entropy 
bounds for black holes [6] requires the finite dimen- 

sionality of the Hilbert space of states. These ideas 
lead ‘t Hooft [7,8] some years ago, and subsequently 
Susskind [9] to propose the holographic picture. Ac- 
cording to this picture there is a description of the 

physical world in terms of finite number of Bits of 
information per Planck unit of area of a two dimen- 
sional screen at the boundaries of the world. The 
particles moving in space-time are represented as 

two dimensional areas where the number of Bits 

distributed give information about mass, momentum 

and quantum numbers of the particles. The black 
holes are represented by maximum information den- 

sity and the corresponding number of Bits is propor- 
tional to their mass. The various interactions of 

particles are represented by splitting and joining the 
representative two dimensional regions. In this pic- 

ture, it is very natural to represent strings by strings 

of Bits with length and energy proportional to their 
number [9,10]. Ideas of information processing by 
black holes have been introduced many years ago by 
Wheeler. 

Although we are far at the moment from a funda- 
mental theory which encompasses naturally such a 
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on a specific supersymmetric matrix model approxi- 

mation of M-theory [14], provide hints that the holo- 

graphic picture is on the right track. The finite 
dimensionality of Hilbert space in the holographic 

picture suggests the existence of a number-theoretic 

structure with discrete space-time and dynamical 
variables related to the Bits of information. We 

remind the reader that the string theory has a num- 

ber-theoretic ( p-adic) nature which is far from being 

understood [ 151. 

Sometime ago, a discrete version of Quantum 

Mechanics, called Finite Quantum Mechanics 
(FQM), using the discrete and finite representations 

of the Heisenberg group appropriate for toroidal 

phase spaces, has been introduced by H. Weyl [16] 
and subsequently studied J. Schwinger [17]. Balian 

and Itzykson [lg] provided explicit expressions for 

quantum maps of prime integer dimensions, while 
quantization of a family of maps from the modular 

group SL(2,Z) has been given by Berry [19] for 
every finite dimension N. 

In this work we study physical properties of 

FQM, dispersion of wave packets and the modifica- 

tion of the uncertainty relation coming from a sector 
in the Hilbert space of states which looks classical. 

According to ‘t Hooft [7,8] this is expected in any 
system with finite dimensional Hilbert space and it is 

the consequence of the existence of bases of states 

which, although they are not eigenstates of the uni- 
tary evolution matrix chosen, they do not disperse 

under time evolution. For a class of unitary evolution 
matrices, we construct explicitly their eigenstates 

which turn out to be completely delocalized. We 
construct the ‘t Hooft basis of non-dispersive states 
and we show that the evolution matrix typically 

decorrelates Gaussian wave packets, property which 
is observed in the interaction of wave packets with 
the horizon of black hole and it is consistent with the 

existence of a maximum information density. 
We also examine the violation of the uncertainty 

relation which is due to the finiteness of the Heisen- 
berg group. For particular states, we find that the 
effective Planck constant vanishes. Of course this 
does not necessarily imply that for these particular 
states the dispersion in position and momentum si- 
multaneously can become arbitrarily small. Further- 
more, in a different subset of states evolution in time 
does not lead to dispersion in position or in momen- 

turn. Obviously, in order to have a real classical 
behavior both characteristics must simultaneously 

appear. 
We finally note that recently various proposals for 

the modification of the uncertainty principle implied 

by the dynamics of D-branes have been put forward 
which provide evidence that the string scale is root 
the ultimate one and it can be probed by scattering of 

D-branes [20]. Recent progress on the matrix model 
interpretation of the M-theory indicates that it is 

possible to formulate a theory describing these states 

and their dynamics. 
We review first the structure of Finite Quantum 

Mechanics(FQM). The classical phase space for one 
degree of freedom is the discrete square torus T’ of 
dimensions N X N and the classical time is discrete ‘. 

Such a phase space can be realized physically as the 

configuration space of the center of the electronic 
circular orbits in a transverse magnetic field periodi- 
cally closing the plane to form a torus. 

The simplest classical canonical transformations 

are the linear ones 

(;:::)=(: i;)(z) (1) 

with a,b,c,d, integers modulo N (mod Nl, with 
determinant ad - bc = 1 mod N (here we differ from 
Berry et al. [19,22] who take ad - bc = 1). Thus the 

linear canonical transformations form the group 
X(2, N). For N = p” where p is a prime integer, the 

quantum mechanical representation has been studied 
by [23]. For general N = nf= , pLFc it is known that 

SL(2,N) = nf=, SL(2,prl) and the quantization is 
reduced with tensor products to the previous case. 

The classical harmonic oscillator corresponds to 
the mapping n = d = 0 and -b = c = 1 but this 

mapping commutes with elements of SL(2, NJ of the 

form 

a b 
i 1 -b a’ 

a2 + b’ = 1 mod N. 

These elements form a subgroup of SL(2, N 1 which 
we call O,(N). For N power of a prime, this is a 

z for the Heisenberg group of phase spaces of arbitrary arbitrary 

genus see [Zll. 
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cyclic group and we call the corresponding generator 
the Balian-Itzykson (BI) oscillator [l&24,23]. When 

N = l-If= , p:i the group is the product of k cyclic 
abelian groups. 

On the N dimensional Hilbert space the basic 

operators are the shift and clock matrices Qij = 
w’+~-?$~ and Pij = Ss+l_i,j where Sij is the Kro- 
necker delta with indices mod(N) and N = 2s + 1 

where o is the N-th root of unity, w = e %. These 

matrices satisfy the relation 

QP = wPQ (2) 

and generate the discrete and finite Heisenberg-Weyl 

group m(N) [171 

J,, = cors/‘PrQs, r,s = { 1,. . . N}. (3) 

The matrices Q and P are connected by the finite 
Fourier transform 

F,,- l &+l-kXs+l-n 
fi (4) 

with the properties, QF = FP and F4 = 1. The 

monomials J,, satisfy the relations 

Jr, Jr,,, = &S-S”)/2J,,s, J TS (5) 

with Jr: = I, and so they form a complex basis for 
SU( N) [25]. One can show [17] that HW( N) = 
l-j,“, 1 Hw( pll) where the prime factors belong to the 
factorization of N. In FQM the time is discrete and 

we cannot define unambiguously the Hamiltonian of 
dynamical systems but only the unitary evolution 
operator of a unit time step. In the case of linear 

maps, i.e. elements of SL(2,N), the dynamical equa- 

tion which replaces the Heisenberg equation of mo- 
tion is provided by the metaplectic representation of 

SL(2,N) [18,241 

U+(A) JrsU( A) = Jr,,, 

where (r’, s’) = (r,s) A. Explicit construction of the 

evolution matrix U(A) is given in [24] for a matrix 
A of SL(2, N) and N a prime integer: 

u( A),, 

= $( -2c,N) 

x 1, @ ( > -[a(k- l)*+d(l- 1y-2(k- l)(I- 1)]/(2c) 

(6) 

where 

A= “, ; 
( I 

and (al p) = k 1 depending on whether a is (or is 

not) the square of an integer mod p and the upper 

(lower) value, 1(-z), in the curly bracket corre- 

sponds to N = 4 k + 1. The exponent has to be calcu- 
lated mod N so the inverse 1/(2c) has to exist 

mod N. 

Now we come to the implications of FQM. The 

basic features of quantum mechanical behavior, is 
the uncertainty relation, the dispersion of the wave- 

packets and the superposition principle. Any viola- 
tion of the above features is considered as violation 

of Quantum Mechanics. Field Theories share the 

same characteristics plus the transformation of en- 

ergy into matter and vice versa subject to Lorenz 

invariance and conservation of Quantum numbers. 

The first departure from Quantum Mechanical parti- 
cle behavior is observed in string theory due to the 

non-locality of the string [26]. The well known cor- 
rection of the uncertainty relation found in Refs. 

[l-3,5] in the high energy scattering of strings for 
fixed impact parameter has the form 

AxAp 2 fi( 1 + (Y’( Ap)‘) (8) 

and implies a minimum distance of the order of the 

string scale /, = g/ &?. Another equivalent form 
of the same fact has been proposed by Yoneya [27] 

which is more intuitive 

Ax At 2~‘~~. (9) 

In this relation, the size of the string of energy E 
contrary to the particle behavior, is Ax afs2E [9] 

and the time resolution At a l/E. This form of the 
uncertainty relation, has the benefit to apply also to 
the semi-classical D-branes as recently shown by 
Yoneya. In the recent literature there is an extended 
study of possible violation of the uncertainty relation 
coming from string defects [28]. 

In the following, we wish to investigate the form 
of the violation of the uncertainty relation in the 
context of FQM. Therefore we must calculate the 
commutator of the position and momentum opera- 
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tom. We define the position operator 8, e = e’g, and 

so 4 is defined modulo diagonal integer matrices. 
We choose 

&,=;(s+ 1 -i)6,, 

By Fourier transform, the corresponding momentum 

operator is found to be P = e-It, with 

B,,= _l” (-1Y” 
‘J N sinG( i -j) 

(11) 

when i # j and zero when i = j. 
The position and momentum operators chosen 

have definite properties under the parity operator 

S = F2, i.e., S@S = -4 and the same holds for 3, as 

it follows from b = - F-‘GF. The matrix 6 is a 

discrete version of the derivative of the &function. 
Incidentally, we note here that for continuous 

time, one particle hamiltonians can be written as 

N X N matrices 

which can be easily treated numerically 

convergence to the continuum standard 

( 12) 

with fast 

Quantum 
Mechanical results [29]. We have checked the case 
of harmonic oscillator for the ground state as well as 

for excited states. The eigenvalues come very close 

to the exact ones (exept the end of the spectrum) 
with an effective fi being equal to 21r/N. We hope 

to come back in the future on this point. 

Having defined explicitly the form of the position 
and momentum operators in FQM, we calculate the 

uncertainty relation for these operators (4, fi>, 

(13) 
where the dispersion of an observable A is defined 

as AA= ((A-(A)) >. d 
The commutator on the right hand side(RHS) can 

be explicitely calculated 

Tci _j)( _ l)(i-j) 

-t[Q,jj]ij=; N 
sin$(i-j) 

= Cii (14) 

when i # j and zero when i = j. In Ref. [30] it has 
been shown that the above commutator has the cor- 
rect continuum limit. It will prove important to know 

the eigenvalues of this hermitian matrix. Although it 

is difficult to find explicit expressions for eigenvec- 
tors and eigenvalues, we observe that the commuta- 

tor matrix C for fixed (i - j) goes in the large N 
limit to the matrix CZ 

Cij + Cm G ;( - 1)“-‘)6ij. 

The above matrix has eigenvectors 

(15) 

Uk = 
r 

$( - l)Uk} (16) 
I:O,...,N-1 

and eigenvalues, - % for k = 1,. . . ,N - 1 and 
%(N- 1) for k= 0. Except from the last eigen- 
value, this reminds the situation in the standard 

quantum mechanics if we identify r? = $. For finite 

N, the matrix C commutes with the finite Fourier 
transform so they share common eigenvectors. Nu- 

merical investigation shows that for relatively large 
N N 100, there are few big negative eigenvalues and 
most of the remaining eigevalues are very close to 

21r/N. 
We discuss now the implications of the new 

uncertainty relation (13). For a general wave func- 

tion 

@= &;$i, ~,c,2=1 (17) 
i= 1 i=l 

where $i are the normalised eigenvectors of the 

hermitian commutator matrix 2, 

&Ii = ei*i 

we find that 

(18) 

It would be desirable to write the RHS of (19), 
which is an effective Planck constant as a function of 
Aij and AB, but thit is not in general possible. For 
the limiting matrix C, 

fi( $) = ; I 1 - Nlc,l’ I . (20) 

Because some of the E;‘S have to be negative, we can 
find an (N - 2)-dimensional subset ZcI of the N-di- 
mensional complex unit sphere for which ti($) van- 
ishes. To get some feeling of the geometry of &“,, 
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we observe that the latter is invariant under the 
grou_p of zomplex matrices which preserve f?, i.e., 
lJtCU = C. Such an example is the Finite Fourier 
Transform matrix. Defining a non-positive definite 
inner product 

(21) 
we find that if $,,2 belong to Z,, and moreover 
they are orthogonal with respect to this inner prod- 
uct, then any linear combination of them belongs to 
Xc,,. The set of matrices which preserve C form a 
group which is isomorphic to the non-compact group 
U(n,m) where n(m) are the numbers of positive 
(negative) eigenvalues of C. On the other hand, in 
order to stay on the unit complex N- dimensional 
sphere, we have to restrict to the diagonal compact 
subgroup U(n) @ U(m). 

Numerical study of the C eigenstates shows 
smooth localization structure indicating possible ana- 
lytic expression for their exact forms. In Figs. 1, 2 
we plot some eigenstates of the commutator c^ for 
N = 47 which correspond to non-degenerate eigen- 
values. The parity symmetry is realized in all eigen- 
states and we observe that the simplest structure 
appears for the most negative eigenvalue. Also, plot- 
ted is the eigenvector corresponding to the smallest 
positive eigenvalue which happens to be smaller than 
21r/N. 

The commutation relation (13) breaks explicitly 
translation invariance since the shift operator P does _ 
not commute with C. The violation of translation 
invariance implies a non-trivial dependence of the 
RHS of the uncertainty relation on the momentum 

Fig. 1. The eigenvector of the commutator for N = 47 correspond- 

ing to the largest negative eigenvalue. 
Fig. 3. fi for Gaussian widths from 1 to 4 lattice spacings for the 

case N = 47. 

Fig. 2. The eigenvector of the commutator for N = 47 correspond- 

ing to the smallest positive eigenvalue. 

spectrum of the wavefunction $. One possible way 
to probe the dependence on the width of the momen- 
tum spectrum is to saturate the RHS for a class of 
Gaussians I& of various widths. 

In Fig. 3 we plot the RI-IS of the uncertainty 
relation (19) for Gaussians of various widths in units 
of lattice spacings. We observe that for widths bigger 
than a few lattice spacings the RI-IS becomes 271/N 
which is the equivalent of fi for FQM. Going to 
smaller widths we find a sharp transition to classical 
behavior because fi(rG;,> goes to zero. Thus, the 
classical regime appears in the order of the lattice 
spacing where the FQM exhibits deviation from the 
standard uncertainty relation. The classical sector 
Zc,, must disappear in the appropriate limit where 
the standard quantum mechanics is recovered, but for 
every finite N it signals a completely different be- 
havior from particle string or D-brane uncertainty 
relation. 

0.12 
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We now construct the ‘t Hooft non-dispersive 

states for a class of specific evolution matrices of 
FQM. The BI harmonic oscillator group of matrices 

A= (22) 
a2 + b2 = 1 mod N is cyclic abelian group with 4k 

elements and its generator R, = ( _ l: i:) for 

primes up to 20000 were determined by a -search 

algorithm in Ref. [24]. For N = 4k + 1, R, is diago- 

nalized by a matrix in SL(2,N) 

- tb, 0 

0 a, + tb, 
T-' 

1 
T=- 1 1 

( 1 1+t --t r 

(23) 

with t = g k mod N. Since the 4k-period of R, and 

g coincide we see that a0 - tb, turns out to be a 

primitive element g. Thus it is simple to construct 
the generator R,, 

1 g+g-’ g-l- gl 
R, = 

2 2t 

g-g-’ g+g-’ . 
(25) 

\ 

- - 
2t 2 I 

Now, since U(A) defines a representation of 

SL(2,N), we have 

U(R,) = U(T)U U-'(T). (26) 

The eigenvalue problem for V( R,) was solved ana- 
lytically for all primes of the form N = 4k + 1 in 

Ref. [24,23]. The observation is simply that 

lJg O 
( 1 0 g-1 

is by construction the matrix 

D,_,= -S,_,.,c,,, , k,f= l,... ,N (27) 

which has eigenvalues - e y”,/= 1, . . . ,4 k and - 1. 
The eigenvectors are determined by the multiplica- 
tive characters of the finite field F, = {O,l, . . . ,p - 1) 
and these are the (4 k + l&dimensional vectors 17, = 

10, fljj< g ‘)) where 
I7l 

e?i;Jn 

R;( g”) = T, j,n = 1,2,.. .,4k (28) 

whilst the (4 k + 1)th eigenvector is defined to be 

{l,O, . . . ,Ol. To proceed, we observe that the circu- 
lant matrix D, in (27) permutes the axes vectors ei, 

ei = aij (29) 

as follows: 

Dmei = ( -)mel +Rmfi- 1). 
(30) 

So the non-dispersive ‘t Hooft states for G = U(R,) 
= U(T)CU-‘CT) in (26) are ui = U(T)e’ and they 
evolve as 

Dm16i = ( _)mUr+gm(i-l). 
(31) 

Using (6) we find explicitely the U(T) and L&‘S are 
found to be 

1 
(u9.4 = &((l + r)JN)) 

1 
-(r(k- I)‘+(i- l)*+Z(l -tXk- lxi- 1)) 

XW2 . (32) 

We observe that all the components of ui’s are pure 
phases. The evolution law given by (31) implies that 

the dispersion of the position operator in the states 
i 

u, 

(At): =k!i+(~~(~)i)2Ui~ (Q)j=U’+~U’ (33) 

remains constant, since all (u’), are pure phases and 
they remain so under evolution with U(R,). The 
same happens to the dispersion of momentum opera- 

tor because U(R,) commutes with the finite Fourier 

transform, F = I~U(R,,)~. 
According to ‘t Hooft, the set of the non-disper- 

sive states is not observable by localized experiments 
but only the effects of linear combinations of a big 
number of them which produce localized states (par- 
ticles). In terms of the non-dispersive basis, FQM is 

a deterministic theory. For the quantum linear maps 
the non- dispersive states permute among themselves 
during evolution in a random way. This implies that 
Gaussian wave packets seen as linear combinations 
of the non-dispersive states basis will decorrelate 
quickly and become delocalized. This can be under- 
stood by the following semi-classical argument: Since 
linear maps of long period produce long random 
trajectories and the corresponding wavefunctions 
have to be extended along them, Gaussian wave 
packets at time to will disperse under time evolution 
along random the trajectories [23,311. 
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This property is reminiscent of the behavior of 

wavepackets falling on the horizon of a black hole 
which become extended along the horizon due to a 

minimum information density per Planck area. This 
is also true for strings which become extended and 

are wrapped around the horizon [7,9]. 
We conclude our discussion with the following 

observations. The classical sector of FQM is charac- 

terized by the following two features: 

There is a subset of states I/I* where the effective 

Planck constant ?+L(I)~> vanishes. This however, 
does not necessarily imply that for the particular 

(Gaussian) states the dispersion in position and 

momentum simultaneously can become arbitrarily 
small. In fact the product of the position momen- 

tum uncertainty is bounded to be bigger than 

1/16n2 due to the property of the Fourier trans- 
form. The intringuing property here, is the vanish- 
ing of the commutator for very narrow Gaussians. 

In a different subset of states evolution in time 
does not lead to dispersion in position or in 
momentum. 

The above two characteristics must simultaneously 

appear in order to have a real classical behavior. In 

other words, one should determine the intersection of 
the two different subsets of the Hilbert space. This 
problem remains open for future investigation. 

Another novel feature of FQM is the existence of 
quantum maps which decorrelate Gaussian initial 
states and distribute the wave packet information 

equally among the points of the configuration space. 
This is a desirable property according to the holo- 
graphic picture which preserving unitarity random- 

izes the initial information in a retrievable way. 

Acknowledgements 

We would like to thank CERN theory division for 
kind hospitality while parts of this work has been 
done. We also thank Gregory Athanasiu and A. 
Polychronakos for interesting discussions. 

References 

111 G. Veneziano, Europhys. Lett. 2 (1986) 199; 

D. Amati, M. Ciafaloni. G. Veneziano, Phys. Len. B 216 

(1989) 41. 

I21 
131 

[41 
[51 
161 

[71 
181 

191 

[lOI 

[ill 

1121 

[131 

1141 

[151 

1161 

[171 
1181 

[191 

DO1 

1211 
La 

D.J. Gross, P.F. Mende, Nucl. Phys. B 303 (1988) 407. 

K. Konishi, G. Paffuti, P. Provero, Phys. Lea. B 234 (1990) 

276; 

M. Maggiore, Phys. Lett. B 304 (1993) 65. 

L.J. &ray, Int. Jour. Mod. Phys. A 10 (1995) 145. 

A. Kempf, G. Mangano, Phys. Rev. D 55 (19971 7090. 

J. Bekenstein, Phys. Rev. D 30 (19841 1669; D 49 (1994) 

1912. 

G. ‘t Hooft, Nucl. Phys. B 342 (1990) 471. 

G. ‘t Hooft. Dimensional Reduction in Quantum Gravity, 

gr-qc/9310006. 

L. Susskind, Phys. Rev. D 49 (1994) 6606; Journ. Math. 

Phys. 36 (1995) 6377. 

0. Bergman, C. Thorn, Phys. Rev. D 52 (1995) 5980; 

hep-th/ 9702068. 

J. Polchinski, Phys. Rev. Lett. 75 (1995) 4724: E. Witten, 

Nucl. Phys. 460 (1995) 335; 

P.K. Townsend, Phys. Lett. B 373 (1996) 68; 

A. Strominger, C. Vafa, Phys. Lett. B 379 (1996) 99. 

R. Dijkgraaf, E. Verlinde, H. Verlinde, Nucl. Phys. B 486 

(1997) 77. 

I. Maldacena, Black Holes in String Theory, Princeton Univ. 

Thesis, hep_th/9607235. 

T. Banks, W. Fischler, S.H. Shenker, L. Susskind, Phys. 

Rev. D 55 (19971 5112; hep-th/9610043: 

R. Dijkgraaf, E. Verlinde, H. Verlinde, hep-th/9703030. 

L. Brekke, P. Freund. M. Olson, E. Witten, Nucl. Phys. B 

302 (1988) 365; 

L. Brekke, P. Freund, Phys. Rep. 233 (1993) 1. 

H. Weyl, Theory of Groups and Quantum Mechanics, Dover 

(1930). 

J. Schwinger, J. Math. Phys. 2 (1961) 407. 

R. Balian, C. Itzykson, CR. Acad. Sci. (Paris) 303 (1986) 
713. 

M. Berry et al., Annals. Phys. 122 (1979) 26; .I. Hannay, M. 

Berry, Physica D 1 (1980) 267. 

M. Douglas, D. Kambat, P. Pouliot, S. Shenker, Nucl. Phys. 

B 485 (19971 85; 

U. Danielsson, G. Ferreti, B. Sundborg, hep-th/9603081. 

A. Jaffe et al., Corn. Math. Phys. 126 (1989) 421. 

J.P. Keating, J. Phys. A 27 (1994) 6605. 

[23] G. Athanasiu, E.G. Floratos and Nicolis, J. Phys. A 29 

(1996) 6737, hep-th/9509098. 

[24] G. Athanasiu, E.G. Floratos, Nucl. Phys. B 425 (1994) 343. 

[25] D. Fairlie, F. Fletcher, C. Zachos, Joum. of Math. Phys. 31 

(1990) 1088. 

1261 M. Karliner, I. Klebanov, L. Susskind, Int. J. Mod. Phys. A 3 

(1988) 1981. 

1271 T. Yoneya and Miao Li, hep-th/9611072 

[28] G. Amelino-Camelia, J. Ellis, N. Mavromatos, D.V. 

Nanopoulos, hep-d-i/9701144; 

F. Lizzi, N. Mavromatos, hep-th/9611040, Phys. Rev. D 55 

(1997) 7859. 
[29] P. Stovicek, J. Tolar, Rep. on Math. Phys. 20 (1984) 157. 

1301 T.S. Santhanam, A.R. Tekumalla, Found. of Phys. 6 (1976) 

583. 

1311 M. Bartuccelli, F. Vivaldi, Physica D 39 (1989) 194. 


