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Abstract 

In the context of a recently proposed method for computing exactly string loop corrections regularized in the infra-red, 
we determine and calculate the universal moduli-dependent part of the threshold corrections to the gauge couplings for the 
symmetric Z2 x Z2 orbifold model. We show that these corrections decrease the unification scale of the underlying effective 
field theory. We also comment on the relation between this infra-red regularization scheme and other proposed methods. 

String theories provide a unified description of 
gauge and gravitational interactions at a scale close 
to the Planck mass Mp = l/d-. For four- 
dimensional vacua of the heterotic string the relation 

between the running gauge coupling g,(p) of the 
low-energy effective field theory and the string cou- 
pling g,, assuming the decoupling of massive modes, 
must have the following form: 

16?r2 
k 

l&r2 -= 
&2(P) “-ii!- +b,log~+b,, 

P 
(1) 

where b, are the usual effective field theory beta- 
function coefficients of the group factor G,, and k, is 
the level of the associated Ka&Moody algebra. The 
thresholds A, are due to the infinite tower of string 
modes and can be calculated at the level of string the- 

- k,Y(T, U) - c, , (2) 

where T, U are the VEVs of gauge singlet fields 
corresponding to the moduli of the internal torus3 
and &a are the (N = 2)-sector contributions to the 
beta-function coefficients. The term Y(T, U) stands 
for the universal group-independent contribution to 
the threshold corrections, and c, are group-dependent 
constants. These constants are also scheme dependent, 
that is, they depend on the renormalization scheme in 
which the running gauge couplings g, (,u) are defined. 

’ On leave from Centre National de la Recherche Scientifique, 
France. 

String unification relates the fundamental string 
scale M, z l/a to the Planck scale and to the 
string coupling constant g, which is associated with 

2 Work supported by the EEC contract ref. ERBCHBGCT940634. 3 Here Ti = T, Ui = U. 

ory [ l-71. For symmetric-orbifold models they have 
the general form: 
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the expectation value of the dilaton field. At the tree 
level this relation reads 

MS = gap - (3) 

Given the fact that low-energy data, assuming the min- 
imal supersymmetric standard model as the underly- 
ing low-energy field theory, indicate gauge unification 
at a scale Mx N 2 x lOI6 GeV [S] which is two or- 

ders of magnitude less than the Planck scale, threshold 
corrections (2) play a crucial role in string unifica- 
tion. Their effect has been extensively studied in the 

literature [ 9-141 4 except for the moduli-dependent 
universal terms Y (T, U) which have received little at- 
tention because they can be formally reabsorbed into 
a redefinition of g, . However, such a redefinition al- 
ters Eq. (3) in a moduli-dependent way and conse- 
quently the relation between string unification scale 
and Planck mass gets modified. Following this obser- 

vation, the purpose of the present letter is to evaluate 
explicitly these terms in the context of the symmet- 
ric Z2 x Z2 orbifold model and study their effect on 
the unification of the gauge couplings. We choose this 
model for several (related) reasons: (i) there are no 
one-loop corrections to the relation (3) between the 
Planck scale and the string coupling [ 6,171, (ii) there 
is no Green-Schwarz-like threshold Auniv( T, U) i.e. no 
axion-dilaton-moduli mixing at the one-loop level, and 
(iii) there are no (N = 1 )-sector contributions to the 

beta-functions (ha = b,) ; the last two points allow 

us to define the unification scale in a manifest way. 
As we will see in the sequel, the contribution of the 
group-factor independent terms Y( T, U) has a decreas- 
ing effect on the unification scale. Besides the rele- 
vance that the universal contributions Y(T, U) might 
have in the string unification, we should mention that 
their non-harmonic part is also related to the one-loop 
correction of the K%hler potential for the moduli fields 
[ 7,18 ] _ The Kal-rler potential turns out to be related to 
the one-loop corrections of the Yukawa couplings, and 
its moduli dependence has attracted much attention in 
the rapidly growing subject of dualities [ 191. 

In a recent article [6] an interesting method for 
computing unambiguously the string loop corrections 
has been proposed. The procedure which is used 

4 Of course, alternative possibilities are either to modify the low- 

energy spectrum in order to increase the effective field theory 

unification scale [ 14,151, or to choose a non-standard hypercharge 

normalization [ 161. 

consists of replacing flat four-dimensional space- 
time with a suitably chosen curved one in a way 
that preserves gauge symmetries, supersymmetry and 
modular invariance, and with curvature that induces 

an infra-red cut-off and can be consistently switched 
off. In this framework, vertices for space-time fields 
such as F;,, are truly marginal world-sheet operators 
and therefore deformations induced by the associated 
background fields are exactly calculable. This allows 
in particular for the computation of various one-loop 
correlators. For instance, in the case of the symmetric 
orbifolds, the vacuum amplitude with two insertions 
of the magnetic background operator reads 

(4) 

Here F2,2(7;:, r/i) are the internal two-torus solitonic 
contributions and e, is the charge operator associated 
with the group factor G,, its square acting as $ % on 
the appropriate part of the model-dependent function 
n. The latter is a modular function of degree 10. It 
deserves stressing here that the radiative corrections 
(4) include exactly the back-reaction of the gravita- 
tionally coupled fields; this accounts for the term ’ 

& which is universal and guarantees modular in- 
variance. Finally, the (suitably normalized) SU(2)k 
partition function 

T(X) = -2X2&5 [Z(n) - Z(2X)l/ 
x=& 

(5) 

with 

(6) 

replaces the flat-space contribution and ensures the 
convergence of the integral at large values of Imr by 
introducing a universal mass gap p = -$$ to all 

string excitations. This infra-red regularization of the 
string (on-shell) loop amplitude vanishes when the 
flat-space limit is reached since lim,,o I(X) = 1. 

5 This universal term was also found in [5] for the three-point 

function of two gauge bosons and the modulus T. 
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Before going further in the evaluation of the group- 
independent terms Y (T, U) we would like to relate the 

above correlator (4) to the one-loop effective field 
theory gauge couplings g,(p) renormalized at some 
scale ,u, in a specific ultra-violet scheme, the I%? 
scheme, and show that despite the presence of the 
curvature-induced infra-red regulator I( $) in (4), 
the thresholds are infra-red-cutoff independent. This 

can be done by identifying the string one-loop cor- 

rected coupling 

responsible for the non-trivial infra-red behaviour of 
the integral in (4). We then rewrite ( 10) in the form 

with the corresponding field theory one-loop corrected 
gauge coupling, similarly regularized in the infra-red 

167r* 
- + b,(4r)E 
khEm 

where ,we have subtracted and added back a 
b, s3 $r( g) term, a manipulation perfectly well 

defined thanks to the presence of the regulator I( $ ) . 
Inserting the result 

(8) ~~I(~)=logM:+log~+O(~) 
S lu* s 

3 
Here we have used dimensional regularization for the 
ultra-violet and M is an arbitrary mass scale; b, are 
the full beta-function coefficients for the group factor 
G, and I’m is the field theory counterpart of the infra- 
red regulator (5), obtained by dropping all winding 
modes 6 . On the other hand, one knows that in the DR 
scheme the relation between the field theory bare and 
running coupling is 

1671” 167r* O” dt _& -=- 
&are Z(p) 

- b,(4rr)E =e 18. 
s 
0 t- 

(9) 

Plugging (9) into (8) and identifying the latter with 

(7) leads to 

16~~ 
- = k$$+g (5) -b,(2y+2). 
g:(P) 

(10) 
s 

Eq. (10) has been obtained by using an explic- 
itly infra-red-regularized string loop amplitude. It is 
worthwhile to compare this expression to the one de- 
rived in [ 11 without any infra-red regulator. In order 
to do so we first isolate the contribution of the mass- 
less states 

3 r2,2(7;:9 ui)-2 - 
lim C 

IrnT’cc -24 Qcrfi=b,, 

i=I 77 

(11) 

‘The extra 6 in the argument of rm accounts for the identifi- 
cation of the (dimensionless in the above convention) Schwinger 

proper-time parameter r with T Im 7. 

(13) 

into (12) and taking the limit p + 0 in the remain- 

ing integral since it does not suffer any longer from 
divergences at Imr --f co, we finally obtain 

16~? 
-= 

k 16~~ 
a-----+ - 

&(P) s s* J d*T 

Imr 

x 

( 

=& ‘14’: [Gi _ &] ;2- be) 

i=l 

+b,log~+b,log~. 
lu* 

(14) 

As far as the group-factor dependent terms are con- 
cerned, expression ( 14) agrees, including the constant 
contribution, with the one obtained in [l] also in the 
l%? scheme. Hence, the relation between the running 
gauge couplings of the low-energy field theory and the 
string coupling does not depend on the infra-red reg- 

ularization prescription. This result could have been 
anticipated as a consequence of the cancellation of 
the infra-red divergences between the fundamental and 
the effective theory since they have the same mass- 
less spectrum. However it could only be proved in the 
presence of a consistent infra-red regulator, similar in 
both theories. Moreover, it is important to emphasize 
that ( 14) contains rigorously all universal terms that 
were missing in previous approaches [ 1,2] and that 
we will now determine. 
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The symmetric & x 22 orbifold model has a Eg x -- 
EC x U( 1>2 gauge group7 and fi = C&CL6 where 

(15) 

These are proportional to the Eisenstein modular- 

covariant functions GZ and Gs respectively [20]. 
They are both related to the modular invariant j 
(we use the standard normalizations, namely j(r) = 
$ -t 744 + O(9), q = exp(2n+)): 

2 

=;(j-Aw, (16) 

with j( i) = 1 23. The operator ai acts as 8i; 6 on (ng 
for cr = Es while for a = Ed it acts similarly on the 

factors ai, 3 and 81 of ?&. One can use the above 
relations (16) as well as * 

1 dlogj (j-j(i)>“2 --= 
V4Jlogq j1/3 (17) 

to show that 

where 

f1 = dlogrl 
2- 

dlogq 
(19) 

is a non-modular-covariant function which plays a role 
in string gravitational anomalies. Notice, however, that 
the non-holomorphic combination 02 - & is mod- 

ular covariant of degree 2; once multiplied by $, 

the latter is proportional to the gravitational R2-term 

renormalization. If we introduce ( 18) into ( 14)) we 
can perform the integral corresponding to the group- 

7 In this case kn = 1 and g, = b, with bE, = -90 and bE, = 126. 
’ Ftq. ( 17) can be proved very easily. Both sides are holomorphic 

modular-invariant functions that have the same analytic&y prop- 

erties. Therefore they must be proportional. The proportionality 
factor is found by comparing the corresponding power expansions. 

factor dependent part by using the result (for I;: = T, 
ui = U) 

7 

= -log (1~(T)[4(~(U)[41mT 1mU) 

(20) 

first established in [2] and recently generalized in 

[4]. Finally, comparison with Eqs. ( 1) and (2) leads 
to the universal part of the thresholds for the Z2 x Z2 
orbifold model, 

X ___ 

(21) 

as well as to the constants c, in the m scheme: 

c,=b,log4& (22) 

A few remarks are in order here. We observe that, 

apart from the expected universal threshold induced by 
the back-reaction term &, there are other univer- 
sal contributions originated by the group-trace factor 

=$dfi. It is quite remarkable that the only group- 

factor dependence of the latter (see ( 18) ) is a constant 
proportional to the beta-function coefficients while the 

other pieces are all universal. These play a very spe- 
cific role and could almost have been guessed: com- 
bined with the back-reaction term they ensure modu- 
lar invariance and finiteness of Y (T, U) everywhere in 
the moduli space. Indeed, by using Eqs. ( 16) and the 
Fourier expansion of j it appears that 

-- 

6 
fl2fl 
- = 

?r’” 
-;; + 33 + o(q) 

and 

;-126=&33+0(q). 

The cancellation of constant and tachyonic terms 
avoids large-Im r divergences in (2 1) even when the 
gauge group gets enlarged. 
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Expression (2 1) can be further simplified if one 
uses a generalization of (20) (see [ 41) , valid for more 
general modular-invariant functions, tc integrate the 

last terms 9 : 

X 

+ ;1og1m -j(U)I. (23) 

Hence, while Y (T, U) is finite and remains finite along 
the whole line of enhanced symmetry T = U, both 
terms of (23) are logarithmic divergent when T + U 
as a consequence of the extra massless states. This di- 
vergence is precisely the one that is responsible for the 

non-trivial monodromy properties of the prepotential 
in N = 2 models [4,21,22]. 

Finally, it is interesting to note that Eqs. (16) and 
( 17) allow us to recast the function s1 into the form 

!A _ _ j -;w pm/,,-’ . 
rl 

24 (24) 

Although this expression strictly holds for the model 

under consideration, it seems that its validity could be 
extended (up to a factor) to more general string vacua 
with N = 2 supersymmetry [ 211. Again, advocating 
modular invariance and infra-red finiteness, one could 
draw the conclusion that for these models the univer- 
sal thresholds are proportional to those of the 22 x Z2 
orbifold. At the present stage of investigation, how- 
ever, this observation is by no means to be considered 
as a claim. 

Let us now proceed to the numerical evaluation of 
Y( T, U) for the model at hand. We will concentrate on 
the case Re T = Re U = 0 lo and express Im T, Im U 
in terms of the internal radii: Im T = RI R2, Im U = 
R2/ RI. Our starting point is Eq. (21) which reads now 

a Using the method of orbits of the modular group, the remaining 
integral in (23) can also be reduced to a multiple series expansion 

14 I but such a manipulation is not useful for our purpose. 
“’ We have verified numerically that as far as the universal thresh- 

olds are concerned, switching on the Re T and Re U fields leads to 

small dumping oscillations (for increasing radii) with maximum 
width < 3% around the Re T = Re U = 0 results. 

Y(Rl,R2) = 
J 

&,L(RI) r1,1(Rz)j7, (25) 

J= 

where Ii,1 (R) is the soliton contribution of a com- 

pactified single boson, 

(26) 

(we set 71 = Rer, 72 = Imr), and 

___ (27) 

One can readily derive the large-radius behaviour 
of the universal corrections. For Rt = R2 = R > 1 we 
can neglect the windings, setting IZ = 0 in Eq. (26)) 
and split the integral (25) into two terms: 

Y(R,R) = J 

(28) 

where 71 corresponds to the part of the fundamental 
domain with 72 < 1. We can now perform a Poisson 
resummation in the first term. Then, by using the re- 

sults 

J --p=(jT_ 45 drl dn _ 

6 ?r 
Fl 

(29) 

+1/2 
I 

J 

90 
drlP= -, 

rr2 
-l/2 

T$& (i$) = $ + $ + 0 (e-rR2) (30) 

1 

in the first and second terms of (28) respectively, we 
finally obtain 

Y(R, R) = 6n-R2 + s + 0 (PR2) , (31) 
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80 . 

Fig. I. Plots of the universal thresholds Y(Rl, R2) as a function 

of R2 for RI = 1,2,3,4. 

where 

is a constant that takes the numerical value K M 

0.6106. Thus the asymptotic form reads 

Y(R,R) r-,, 18.85 x R2 + 17.49 x + 

for R > 1 . (32) 

It is possible to compute explicitly the universal 
thresholds for arbitrary values of the radii RI, R:! by 
numerically evaluating (25). Problems related to the 
loss of numerical accuracy caused by the pole part 
e2r.72 in p( rt ,72) can be cured by power expanding the 
integrand to the required accuracy, before performing 
the numerical integration [ 131. Plots of the numerical 
results for Y( RI, Rz) as a function of R2 for RI = 
1,2,3,4 are given in Fig. 1 and a contour plot of 
Y( RI, R2) is given in Fig. 2. One clearly sees that the 
minimum value of Y is obtained for the radii at the 
self-dual point and it is Ymin = Y( 1, 1) M 36.4 while 
for the fermionic point we have yfermionic = Y ( 1, $) M 
53.0. We also notice that the asymptotic formula (32) 
reproduces the numerical results for RI = Rz 2 5, 
which is consistent with the fact that (32) is almost 
invariant under the duality transformation R --+ 1 /R. 

Let us now analyze the effect of the universal thresh- 
olds on the unification scale of the low-energy effec- 
tive field theory. In the model under consideration, the 
Es x E6 gauge group couplings will run according to 
( 1) with c, and Y( RI, R2) given by (22) and (25) 

Fig. 2. Contour plots of the universal thresholds Y( RI, Rz) as a 
function of the internal radii RI and R2. 

respectively. There is some arbitrariness in the defi- 
nition of the unification scale Mu but in the specific 

model there is a manifest way to define it [ 91, in the 
DR scheme: 

1 
X (33) 

J 2 Y(RIJw ’ 
l+&J 1679 

here gu = g,(Mu) =gs/da for my group 
factor, and we have used explicitly (3) in order to ex- 
press the unification scale in terms of the effective field 
theory parameters Mp and gu. The last factor in (33) 
is due to the existence of the universal terms which 
lead to a shift of the dilaton field in order to reabsorb 
the universal contributions into the string coupling. It 
is interesting to observe that since Y (RI, R2) > 0 this 
extra factor always gives a lower unification scale with 
respect to the case where these terms are neglected. 
One can consider the minimum value of the unifica- 
tion scale M$ with respect to the radii RI, R2 . Since 
Mu( RI, Rz) possesses target-space duality properties, 
it has an extremum at RI = R2 = 1 independently of 
the value of gu. On the other hand the first factor in 
(33) monotonically increases for radii moving away 
from the self-dual point, while the second one mono- 
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tonically decreases. In the asymptotic limit Ri = R2 = 
R > 1, the universal thresholds become large and the 
gu dependence of MU cancels between the two fac- 
tors of (33). Moreover, the first factor dominates and 
using (32) we find that MU grows exponentially: 

z 

MU - 0.78 x Mp x $ 

. Numerical evaluation of (33) shows that for pertur- 

bative values of gu the RI = R2 = 1 extremum is a min- 
imum and that there is no other minimum apart from 
that. Thus for the specific model, in the DR scheme, 

min _ MP g” 1 
MCI - 

2+7(i)14 x J_’ 
(34) 

Using explicit values for the various quantities that 

appear in this formula we obtain 

min = 7.87 x 1o17 x grJ x 
1 

Mu 
Jl + 0.23 x g”u 

GeV , 

(35) 

where the last factor in the product represents the effect 

of the universal thresholds. 
We would like to conclude this note with a few 

comments. We have determined the complete one- 
loop threshold corrections (see ( 14)) for general 
symmetric-orbifold models, in the DR scheme, by 
using a method introduced in [6] that allows us to 
handle the infra-red problems. Tbe group-factor de- 
pendent parts of these thresholds were obtained previ- 
ously following a different procedure [ 1,2]. The two 
results for the group-factor dependent contributions 

(constant and moduli-dependent) are in agreement, 
when evaluated within the same ultra-violet renor- 
malization scheme. Put differently, this shows that 
the relation between the running gauge couplings of 
the low-energy field theory in the DR scheme and 
the string coupling does not depend on the infra-red 
regularization prescription. This amounts to the de- 
coupling of the (infinite tower of) massive states 
and allows for an unambiguous definition of string 
effective theory. Such a conclusion could not have 
been drown without using a consistent infra-red regu- 
lator. Although our result has been established in the 
framework of an infra-red regulator induced by a par- 
ticular N = 4 four-dimensional curved background, 
we would have reached the same conclusions within 

any other background possessing similar properties, 
such as those listed in [ 231. 

Going beyond what has been achieved in previ- 
ous studies, we have determined and calculated the 
moduli-dependent universal part Y (T, U) of the thresh- 
olds for the symmetric Z2 x & orbifold model, Eq. 
(21). We have found that Y( RI, Rz) is strictly posi- 
tive with a minimum r”‘” M 36.4 at the self-dual point 

RI = R:! = 1, and is monotonically growing away from 
it. For large radii the asymptotic form of tbe univer- 
sal term is Y( R, R) N 18.85 x R2 + 17.49 x R-2. It 
would be interesting to compute the universal tbresh- 
olds in models such as the Zs orbifold, where the N = 
1 sectors do contribute, and check whether this con- 

tribution is indeed as small as one generally believes 
by looking at the group-factor dependent terms [ 121. 

Finally, we have studied the effect of the universal 
thresholds on the unification scale of the underlying 
field theory. As we stressed in the introduction, the 

universal thresholds cannot be reabsorbed into a re- 
definition of the coupling constant without affecting 
the relation between the Planck scale and the unifica- 
tion scale, and we have actually found that the exis- 
tence of these terms leads to a decrease of that scale. 
The minimum of the unification scale is obtained for 

radii at the self-dual point but the specific value de- 
pends on the value of the effective field theory gauge 
coupling gu at tbis scale. For example for g; = i we 
have a 5% decrease while for g”u = 1 we can reach 
lo%, with respect to the case where these corrections 
are not taken into account. Of course one could argue 

that this unification scale might be lowered further in 
some model other than the & x Z2 orbifold. However, 
one should be aware that the above scale concerns the 
Es x E6 symmetry breaking and that one has some- 
how to introduce a lower scale where E6 breaks down 
to some subgroup, eventually leading to the standard 
model. In order to describe such a realistic situation 
in the framework of strings, it seems difficult to avoid 
the introduction of y-fields and Wilson lines [ 11,121. 
Those will enhance the moduli space and allow for a 
better exploration of the various symmetry-breaking 
possibilities. 
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like to thank the CERN Theory Division for hospital- 
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