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Topological defects which form in a grand unification phase transition can catalyze proton decay. For monopoles the catalysis 
cross section is amplified to a value many orders of magnitude larger than the geometrical cross section. For non-superconducting 
cosmic strings there is no amplification of the cross section since there are no long range forces. Here we establish that - despite 
the presence of long range electromagnetic fields - the cross section for uncharged superconducting cosmic strings is the geometr- 
ical cross section. Hence, in contrast to the case of monopoles, there are no important new consequences for or constraints from 
cosmology. 

1. Introduction 

Several years ago Callan [ 1 ] and Rubakov [ 2 ] (see 
also Wilczek [3]  ) d iscovered that  grand unif ied 
monopoles  can catalyze pro ton  decay with a strong 
interaction cross section a ~  m - 2 rather than with the 
naive geometr ical  cross section tr~ M - 2 ,  where m ~ 1 
GeV is the proton mass and M ~  1056 GeV is the mass 
of  the monopole .  The ampl i f ica t ion  o f  the cross sec- 
t ion by 32 orders  of  magni tude  has impor t an t  conse- 
quences in cosmology. Monopoles  can be t r apped  by 
stars. They then catalyze the decay of  the pro tons  in 
these stars. F r o m  the l i fet ime o f  red giant  stars and  
from l imits  on X-ray emiss ion it is possible [4]  to 
der ive bounds  on the flux o f  monopoles  which are 
more  str ingent than previous  bounds.  

Recent ly it has been shown [ 5 ] that  the catalysis  
cross section for o rd inary  (i.e. non-superconduct -  
ing)  cosmic strings is not  amplif ied.  The reason was 
shown to be the absence o f  long range electromag- 
netic fields which can give rise to long range forces 
which b ind  a fe rmion to the topological  defect. 

In this paper  we extend the analysis to uncharged 
superconduct ing cosmic strings [6 ]. We show that  
despi te  the presence of  long range electromagnet ic  
fields, the catalysis cross section is a geometrical  cross 
section. There is no amplif icat ion.  Our  result has a 
very s imple heurist ic  physical  explanat ion.  

G r a n d  unif ied monopoles  and strings catalyze pro-  

ton decay since in the cores o f  these topological  de- 
fects the gauge and Higgs fields which media te  proton 
decay are excited. However ,  in order  to par t ic ipate  in 
the decay process, the fermions must  reach the core, 
and  the geometrical  cross section for this is very small: 
it is given by the core radius  M -1, where M is the 
scale o f  grand unif ied symmet ry  breaking.  

To see how the geometr ical  cross section emerges 
from field theory consider  for a momen t  catalysis by 
monopoles .  The in teract ion lagrangian for Higgs-me- 
d ia ted  pro ton  decay is ~ 

= g~¢~, .  ( 1. l ) 

To first order  in per tu rba t ion  theory (expanding  in 
the coupling constant  g )  the scattering ampl i tude  is 

d = g  j dt  d3x ( W ' M  I q/~/[ W M ) ,  (1.2)  

where I W)  and I W' ) are the ini t ial  and  final fer- 
mion states and I M )  denotes the monopole  state (the 
monopo le  is taken to be very heavy, so that  back re- 
act ion can be neglected) .  As discussed in refs. [ 7 -9  ], 
the matr ix  e lement  factorizes 

~ In eq. ( 1.1 ) ~ stands for a rescaled scalar field with ~ = 0 every- 
where except in the core of the string. Also, as it stands the 
term is not gauge invariant. As discussed in ref. [7], the term 
can be made gauge invariant without changing the conclu- 
sions. For notational convenience we shall use this simple but 
imprecise form. 
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~¢=g l dtd3x (~ ' l f u~ l~ ) (Ml (g lM)  . (1.3) 

Since the scalar field configuration of the monopole 
decays exponentially outside the core and since 0 ~ M 
inside the core, we get 

Jal~gM -2 J dt ( W' I#~/1'/') • (1.4) 
I 

The cross section da/dg2 is given by taking the square 
of  ~4 and by integrating over phase space: 

d a ~ l  
v f  d3k ' I d l  2 (1.5) 

d,O T 

where k' is the momentum of the final fermion state. 
T and V are total time and total volume. Using free 
fermion wave functions for I W) and I ~F' ) we get [ 5 ] 

(da/dg2) (geom.) ~g2M-2 (m/M) 2 , (1.6) 

where the numerator m 2 comes from the spinor sums. 
We call this the "naive" or "geometrical" cross 
section. 

I f  there are long range fields and forces due to the 
topological defect which couple to the fermions, then 
the amplitude of the fermion wave functions may be 
very different from that of  free Fermi wave functions 
inside the core of the defect. The amplification of the 
fermion wave functions near the core of  the mono- 
pole is the key to understanding the strong interac- 
tion catalysis cross section. To determine the 
amplification factor A we solve the Dirac equation 
outside the core in the presence of the defect and 
compare with the free wave function q/o. To be more 
precise, A is the ratio of  the amplitudes of the two 
wave functions evaluated at the core radius r ~ M - l :  

A=N(M-I ) / ¥o (M - '  ) . (1.7) 

Once we know the wave function amplification 
factor A we can easily determine the actual cross sec- 
tion by inserting into eqs. (1.3) and (1.5). We find 

da/d..Q~A 4 (da/d-O) (geom.) .  (1.8) 

For monopoles it was shown [ 10,11 ] that A ~ M /  
m. Hence the catalysis cross section corresponds to a 
strong interaction rate, i.e., da/d.O~ m-2. For ordi- 
nary cosmic strings on the other hand [ 5 ] A ~ 1 and 
hence the cross section per unit length 

da/dg2 d L ~ g 2 M  -1 ( m / M )  2 . (1.9) 
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Fig. 1. Sketch of the magnetic field B in the plane perpendicular 
to a superconducting cosmic string at x = y  = 0. The magnetic mo- 
ment  V of  fermions in the lowest angular m o m e n t u m  state is or- 
thogonal to B. 

In this paper we show that eq. (9) is valid also for 
uncharged superconducting cosmic strings. The heu- 
ristic physical argument is simple. For monopoles the 
amplification of the fermion wave function is due to 
an attractive force due to magnetic-moment-mag- 
netic-field coupling. Only fermions in the s wave can 
penetrate to the core (the others are repelled by the 
centrifugal potential barrier). For s wave fermions the 
magnetic m o m e n t / t  is radial. The monopole mag- 
netic field B is also radial. Hence there is an attrac- 
tive potential V(r)~It.B(r). For ordinary cosmic 
strings there is no such attractive force since there are 
no long range magnetic fields. 

For superconducting cosmic strings the only fer- 
mions which can penetrate to the core are those with 
Lz=0 (Lz is the angular momentum in direction of 
the string which we take to be along the z axis). With- 
out loss of generality we can consider fermions inci- 
dent in the xy plane. Then the magnetic moment  is 
radial (fig. 1 ). I f  it carries a superconducting current 
then there is a long range magnetic field B(p). How- 
ever, B(p)~e~ has vanishing radial component. 
Hence there is no long range force and the amplifi- 
cation factor A is of  the order 1. 

2. Dirac equation in the presence of a 
superconducting cosmic string 

To justify the above heuristic arguments, we solve 
the Dirac equation in the presence of the long range 
fields produced by a superconducting cosmic string 
along the z-axis: 
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( i ~ - e 4 -  m)~u=0, (2.1) 

m is the fermion mass. Two effects make this equa- 
tion harder to solve than for ordinary cosmic string. 
First the presence of long range physical fields, sec- 
ond the fact that the z component of the vector po- 
tential A prevents us from writing (2.1) as a set of 
two uncoupled equations for two-component spi- 
nors. For a current I on the string 

Au(p)=- ( I /2n) ln (pM)Ou3 ,  p > M - ' ,  (2.2) 

where p is the radius in the xy plane. 
We shall use the following representation for the y 

matrices [ 12 ]: 

,O(o  0oz) ,(o o) 
~'2=( -iax0 i0ax) ' , 3= (__~  ; ) .  (2.3) 

Then, assuming that the spinor ~u is independent o fz  
we get a set of two coupled two-spinor equations 

( i ~ 0 o - a y a l  +axOz-m)~ul =eA3~z , 

(iaz0o +ay0~ - 6 x O z - m ) ~ 2 = - e A 3 ~ t l  . (2.4) 

In order to make use of the symmetry of the problem, 
we use cylindrical coordinates p, ¢ and z. Eq.(2.4) 
can then be written as a set of coupled first order dif- 
ferential equations for the four components of ~u 

[ 
-/~ui- (2.5) 

k~U2/- ~uJ- 

We look for solutions with definite total angular 
momentum J about the string axis. In order for the 
phases to match we must have ~ui- ~e  ~ ~u + and sim- 
ilarly for ~2. The resulting equations simplify if we 
extract a common factorp-1/2, i.e., we set 

[¢~- (p) e-i~/2\ 

- -  ~ / l  - -  - - 1 / 2  ~_(~2)_p. /  i(JO-wt)m¢l-(P)e+i¢/2[ 
e / ICy (p) e_i¢/2 / . (2.6) 

\0~- (p) e+i°/2] 

Eqs. (2.4) then give the following set of component 
equations 

- i ( w - m ) ¢ ~ -  + (O/dp+ J/p)¢T = -ieA3¢~ , 

- i ( w + m ) ¢ i -  + (O/"dp-J/p)¢? =ieA3¢~-, 

- i ( w + m ) O ~  + (O/'dp+ J /p)¢~ = -ieA3¢ + , 

- i ( w - m ) ¢ ~ -  + (O/"dp-J/p)¢~ =ieAsOi- • (2.7) 

We can combine eqs. (2.7) into the following set of 
second order differential equations for the 
components 

[O2/Op2-j(J - 1 ) /pZ +w2-mZ-eZA2]¢  ~- 

= ieB¢y ,  

[02/Op 2 - J ( J +  1 )/p2 + W 2_ m 2_ e2A ~ ] ¢~ 

= ieB¢ + , (2.8) 

and an identical set of equations for the pair of com- 
ponents ¢+ and ¢ i-. B(p) is the absolute value of the 
magnetic field 

B(p)=I /Zgp ,  p > M  - l .  (2.9) 

Note that the symmetry of the problem has led to a 
significant simplification of the problem. However, 
we have not obtained uncoupled second order differ- 
ential equations for each component as we did for or- 
dinary cosmic strings. The magnetic field leads to a 
coupling o f¢  ~+ with ¢~- and of~J- with ~i-. 

We shall now investigate the system (2.8) of sec- 
ond order differential equations and show that de- 
spite the presence of the magnetic field there is no 
amplification of the fermion wave function. Note that 
if ¢i ~ is real then Cy and ¢i- must be imaginary. 
Eq. (2.8) has the form of a system of coupled Schrf- 
dinger equations (k  2 = w 2 -  m 2) 

(02/'dp2)¢ + -t-k2¢~ - = 4- Vj(p)¢ + + i e B ( p ) ¢ y ,  
(2.10) 

with potential 

Vs(p )=J(J -1 ) /p2+(e I /2g )21n2(pM) .  (2.11) 

The current I defines a length scale R j, 

Rz=2~z/eI. (2.12) 

For I =  Io = 102o A (the critical current for bosonic su- 
perconducting cosmic strings) we get R t~10  -12 
GeV-1. Thus for currents smaller than the critical 
current R~ is larger than the string width w ~ M -  1. The 
potential Vj(p) is sketched in fig. 2 for J =  1/2. The 
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Given ¢ ~+ (p) ~ (kp) ~/2 we can consider the equation 
for ~ -  (p). For any power q< 3/2 the LHS of the 
equation would dominate, leading to an inconsis- 
tency. Hence, while the magnetic field does change 
the solution of ~ -  (p) it does not produce a larger 
amplitude as kp--, O. 

For J =  - 1/2 the discussion is identical with the 
substitutions @i ~ --,@~- and ~ -  --,@i-. We conclude 
that the wave function amplification factor is of  the 
order 1: 

A = ~ ( w ) / ~ o ( w ) ~  l (2.17) 

(~o is the free fermion wave function). 

Fig. 2. Sketch of the potential V~(p) for the radial Schr~Sdinger 
equation (2.10). 

cutoff at large p corresponds to the length of the string. 
For cosmic strings of interest in cosmology p ~ 1 pc 
~ 10 32 GeV-~ and In 2 (pM) ~ 10 4. 

Vs(p) is repulsive for large p. Hence only high en- 
ergy fermions have a chance to penetrate to the core. 
The requirement on k is 

k > R i  -1.10 2 . (2.13) 

The contribution from the magnetic field to Vj (p) is 
strictly positive and does not lead to an amplification 
of the wave function. Such an amplification can only 
come from the coupling terms on the RHS of 
eq.(2.8). 

To estimate the effect of the coupling terms we 
consider eq. (2.8) in the smallp limit which [because 
of (2.8) and (2,13) ] is valid for w<p<Rl.  We make 
the power law ansatz [ 1 3 ] 

@i~(p)~(kp) p, @~-(p)~(kp) q. (2.14) 

For B =  0 the normalized wave functions for J =  1/2 
scale with the powers 

p = l / 2  and q = 3 / 2 .  (2.15) 

Now we turn on the current in the string. Since 
B (p) ~ p  - ~ the RHS of eq. ( 2.8 ) will not influence the 
power p of the "most  singular" component @ ~- (p), 
i.e., we still have 

p = l / 2 .  (2.16) 

3. Discussion 

Let us now compare the above analysis of  the small 
distance behavior of the fermion wave function in the 
presence of a superconducting cosmic string with the 
results for monopoles [ 11 ]. For superconducting 
cosmic strings the lowest angular momentum fer- 
mion wave function scales as p + t/2 as p--,0 both with 
and without magnetic field. For monopoles the small 
r behavior is very different. In the absence of the 
magnetic field the lowest angular momentum wave 
function scales as r for r--, 0, with non-vanishing mag- 
netic field there is an angular momentum eigenfunc- 
tion which approaches a non-zero constant as r--,0, 
We would like to connect the above observations with 
the heuristic reasons for the wave function amplifi- 
cation discussed in the introduction. 

As stressed in ref. [ 14 ], the key to understanding 
the wave function amplification in the presence of a 
monopole is the fact that the interaction of the fer- 
mion charge with the monopole magnetic field in- 
duces an additional contribution to the orbital angular 
momentum L proportional to B.r. I f  g is the mag- 
netic monopole charge, then q = eg is half integer and 
[15] 

L = r ×  ( p - e A )  - q r / r .  (3.1) 

The total angular momentum is 

d=L + ½tr . (3.2) 

For q = 0  the eigenvalues of d 2 are j = n +  1/2 with 
neZ +. For q#  0 the extra term in L leads to a change 
in the eigenvalues. For q = 1/2 there is an eigenvector 
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o f  12 and Jz with j= 0 (see ref. [ 11 ] ). The corre- 
sponding solut ion o f  the radial  Dirac  equat ion ap- 
proaches a non-vanishing constant  as r--,0 as opposed 
to the solutions with j >  0 which all vanish at r = 0 .  
Thus, the key to unders tanding  the strong in terac t ion  
cross section for fe rmion scattering by monopoles  is 
the observat ion  that  the extra term in the angular  
m o m e n t u m  opera tor  induced  by the monopo le  al- 
lows a solut ion o f  the Dirac  equat ion with j = 0  for 
which the angular  m o m e n t u m  potent ia l  bar r ie r  is 
complete ly  absent.  

I fB .  r =  0 as in the case o f  superconduct ing cosmic 
strings the orbi tal  angular  m o m e n t u m  opera tor  is un- 
changed in the presence o f  a non-vanishing current.  
Thus the orbi ta l  eigenfunctions are the same and the 
only change occurs in the radial  Dirac  equation.  
However ,  the small  dis tance scaling of  the wave func- 
t ion is given by j .  The magnet ic  field contr ibut ions  
are subdominan t  as p ~  0. Hence s i nce j  is unchanged 
with and without  the magnet ic  field, the p ~  0 scalings 
o f  the wave funct ions will be ident ical  and  there will 
be no wave funct ion ampli f icat ion.  

In our  discussion we have impl ic i t ly  assumed that  
the vacuum about  the string is unper turbed .  Re- 
cently, several prepr in ts  have appeared  c la iming that  
this may  not  be true [ 16 ]. I t  would be interest ing to 
invest igate the consequences o f  this effect for p ro ton  
decay catalysis. 
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