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Abstract

We consider a model involving a 4-brane in a 6D bulk which carries sigma model fields. An axion field on the 4-brane cancels the pressure
along one direction leading to an effective codimension-2 3-brane. For a range of parameters of the theory, we get a transverse space which is
non-compact, providing a possible solution to the cosmological constant problem. A setup with two branes in a compact space is also treated. In
this case, a mild fine-tuning between the radii of the two 4-branes is necessary. Finally, we explore the 4-brane problem in the Gauss–Codazzi
formulation and we discuss general aspects of gravity in the presence of additional brane sources.
© 2007 Elsevier B.V. All rights reserved.
1. Introduction

The issue of the cosmological constant appears to be one of
the most pressing problems in modern theoretical physics, per-
meating many areas, ranging from field theory to cosmology.
Conventional estimates of its value based on field theoretical
approaches are in gross contradiction with observations (around
120 orders of magnitude higher than observed for a Planck-
scale cutoff). The apparent failure has led to a number of new
and exciting ideas in both basic theory and model building. The
emergence of brane models and theories of large extra dimen-
sions [1–3] in recent years has been a major driving force in
gravitational physics and a source of rich and interesting phe-
nomenological studies. One of the most interesting feature of
these theories is that they provide a possible explanation for the
smallness of the cosmological constant [4]. Similarly, the sim-
ple observation that a codimension 2 brane is always Ricci-flat,
opened another possibility for the cancellation of the cosmolog-
ical constant. As it was shown in [5], a four-dimensional brane
embedded in a six-dimensional bulk space, where the transverse
space is compactified using fluxes, induces a conical singularity
in the bulk, deforming the space into a rugby-ball configuration.
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In this way, the brane cosmological constant (tension) is com-
pletely offloaded into the bulk, where it determines the deficit
angle of the induced conical singularity. Although this setup
only partially solves the problem, as fine-tunings are in the end
needed to ensure a flat brane [6–8], it nevertheless provides ev-
idence that extra dimensions may play a role in resolving the
cosmological constant conundrum. Extensions and alternatives
were consequently investigated by several authors (see [8–18]
and references therein).

In this Letter we study a model of an effective codimension-2
3-brane embedded in a 6-dimensional bulk space. It is a pseudo-
3-brane in the sense that although the submanifold within which
ordinary matter and fields are confined has in fact 5 dimen-
sion, i.e., is a 4-brane, the energy–momentum tensor of these
fields is selected in such a way to resemble the tensor struc-
ture of a 3-brane. The presence of the one additional dimension
of the brane is in this way hidden from the exterior space and
we can take advantage of the well-known result that branes
of codimension-2 only produce conical singularities in their
bulk spaces [19–23]. In order to produce the required energy–
momentum tensor we will employ the technique discussed in
[24,25]. However, we will not assume an empty bulk space, but
one endowed with an O(3) sigma model (see [12,14,28]), un-
like the usual flux compactification using U(1) fields [32,33].
The transverse space away from the brane will thus be curved,
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but its curvature will only be due to the sigma model fields,
since the brane cannot contribute more than a conical singular-
ity at its position. This is a setup similar to the one discussed
in [12], the main difference being the existence of a resolved
brane, rather than a purely codimension-2 singularity.

The purpose of such a setup is to address the cosmological
constant problem. We will see that, by having an appropriate
energy content, we can construct an effectively flat 4-geometry
on the brane, with all curvature being pushed away into the
transverse space. To avoid imposing unsettling fine-tunings, we
will allow for a space which is non-compact. We thus have
one dimension tangent to the 4-brane which is not compact but
can be integrated to a finite volume and a parallel dimension
which is compactified in the spirit of Kaluza–Klein theories.
As it turns out, for a range of parameters of the model, the
2-dimensional transverse space is normalizable and we thus
expect a conventional KK phenomenology, with a zero mode
mediating ordinary four-dimensional gravity on the brane and
a spectrum of KK excitations as corrections. The cosmologi-
cal constant of the 3-brane can be set to zero by proper choice
of parameters, which induces a corresponding deficit angle in
the bulk. Once this choice is made, any variation in one of
the model’s parameters, e.g., the brane cosmological constant,
results to a new value for the deficit angle, without any addi-
tional fine-tuning. In the last section of our Letter, we derive
Einstein’s equations on the 4-brane by employing the Gauss–
Codazzi formalism. Based on these equations we discuss gen-
eral aspects of such models and also the effects of additional
brane matter, which will be the source for conventional 4D
gravity once the KK reduction of the compact dimension is per-
formed.

2. General setup

We will start by describing the action of the setup. It includes
a non-linear sigma model targeted on a Kähler manifold inside
a six-dimensional bulk space. The bulk cosmological constant
is assumed to be zero. A 4-brane is also included, carrying a
tension σ and an axion field Σ . The axion is used to counteract
the brane tension along the azimuthal direction ϕ and to en-
sure that the energy–momentum tensor of the 4-brane mimics
a 3-brane outside the resolved brane core, so that we get an ef-
fective codimension-2 brane [25]. The metric of the bulk space
is considered to be

(1)ds2
6 = nμν dxμ dxν + dρ2 + gϕϕ(ρ)dϕ2

in Gauss-normal coordinates. Note that only ρ is the direction
transverse to the 4-brane, while ϕ is our compact dimension.
The brane is situated at a distance ρ0 away from the origin of
the transverse space in the radial direction. The action of the
model is thus of the form

S =
∫

d6x
√−g

(
M4R − 1

2λ2
hαβ(φ)∇Mφα∇Mφβ

)

(2)−
∫

d5x dρ δ(ρ − ρ0)
√−γ

(
σ + 1

2
γ αβ∂αΣ∂βΣ

)
.

Uppercase Greek indices run from 0 to 5, while lowercase are
indices on the 4-brane that do not include the ρ coordinate and
α, β are indices in the Kähler manifold. The first term repre-
sents the bulk contributions from the gravitational sector and
the sigma model fields φα , while the second contains the brane
contributions for the tension and the axion field. For the mo-
ment we assume a zero energy content from ordinary matter on
the brane. The energy–momentum tensor of the brane can be
written as

T
(br)
MN = δ(ρ − ρ0)

√−γ√−g
δ
μ
Mδν

N

(3)×
(

−σγμν − 1

2
γμνγ

αβ∂αΣ∂βΣ + ∂μΣ∂νΣ

)
.

We also have an energy–momentum tensor for the φα fields

(4)T
(φ)
MN = hαβ

λ2

(
∇Mφa∇Nφβ − 1

2
gMN∇Λφa∇Λφβ

)
.

Einstein’s equations become in this case

(5)RMN − 1

2
gMNR = 1

2M4

(
T

(φ)
MN + T

(br)
MN

)
or

RMN = 1

2M4

(
T

(φ)
MN − 1

N − 2
T (φ)gMN

)

(6)+ 1

2M4

(
T

(br)
MN − 1

N − 2
T (br)gMN

)
,

where we denote by N the total bulk dimension and we use
n for the dimensions of the brane (in the case we will examine,
N = 6 and n = 5). The energy–momentum tensor contains con-
tributions from both the complex scalar and the brane content.
The axion field equations are solved by

Σ = qϕ

so that Σ has 2πq jumps as we go around the ϕ direction. If in
addition, the parameter q (the axion charge) is such that

(7)q2 = 2σgϕϕ,

the axion contribution completely eliminates any tension along
the azimuthal direction ϕ. Notice that the above condition is
not a fine-tuning between q and σ in the usual sense, since the
metric component carries integration factors which are not de-
termined yet by other constraints. Thus, the value of q is not
fixed against the brane tension. With this choice we get,

T
(br)
MN − 1

N − 2
gMNT (br)

= δ(ρ − ρ0)

√−γ√−g

[
σ

(
−γμνδ

μ
Mδν

N + n

N − 2
gMN

)

+ 1

2
γ αβ∂αΣ∂βΣ

(
−γμνδ

μ
Mδν

N + n − 2

N − 2
gMN

)

(8)+ δ
μ
Mδν

N∂μΣ∂νΣ

]

and similarly for the scalar fields

(9)T
(φ)
MN − 1

gMNT (φ) = hαβ

2
∇Mφα∇Nφβ.
N − 2 λ
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Since we are using Gauss-normal coordinates, the determinants
of the bulk and the induced metric are the same and their ra-
tio cancels. We also have the equation of motion for the scalar
fields, which reads

(10)∇M∇Mφα + Γ α
βγ ∇Γ φβ∇Γ φγ = 0.

3. Single and double brane solution

In order to proceed in solving the equations in the bulk, we
must choose an ansatz for the bulk fields and the transverse met-
ric. We will assume an O(3) sigma model and a metric for the
Kähler manifold, which is now an S2 sphere, of the form

(11)hαβ = 4

(1 + φ2)2
δαβ,

where φ2 = (φ1)2 + (φ2)2. This particular choice of the sigma
model is entirely it ad hoc and has been taken as a simple exam-
ple. Another choice of the sigma model target space of the form
appearing in supergravity like SL(2)/U(1) would be equally
good. In order to investigate the resulting geometry of the trans-
verse 2D space, we will reparametrize it in a conformally flat
fashion as

ds2
2 = dρ2 + gφφ dϕ2 = ψ(r)

(
dr2 + r2 dϕ2)

(12)= ψ(r)δmn dym dyn.

This change of coordinates implies that dρ2 = ψ(r) dr2, which
leads to

⇒ δ(ρ − ρ0) = 1√
ψ(r)

δ(r − r0)

for the transformation of delta function, where r0 is the position
corresponding to ρ0 in the new conformal coordinates. We will
now adopt an ansatz for the sigma model fields of the form
φα = yα , such that φ2 = r2. This ansatz solves the equations
for the scalar fields without any further constraints and from the
expressions for the scalar energy–momentum tensor we see that
only the T

(φ)
μν components survive. Einstein’s equations reduce

to

(13)Rμν = 0,

Rmn = 2

M4λ2(1 + r2)2
δαβ∇mφα∇nφ

β

(14)+ 2σ

M4

g
(2)
mn√
ψ(r)

δ(r − r0),

where μ,ν = 0,1,2,3 are coordinates on the effective 3-brane
and m, n are coordinates of the 2-dimensional transverse space.
Note again that only r is truly transverse to the brane. The
first set of equations ensures a flat 4-dimensional space. The
transverse 2-space will be curved. Taking the trace of the last
equation yields

(15)R(2) = 4

M4λ2

1

ψ(r)(1 + r2)2
+ 4σ

M4

1√
ψ(r)

δ(r − r0),

where R(2) = − 1
ψ

∇2 lnψ is the Ricci scalar of the 2D trans-
verse space. Since the conformal factor ψ(r) depends only on
the radial coordinate, when it multiplies the delta function, it
becomes just a constant ψ(r0). The solution in the absence of
the brane is known to be

(16)ψ(r) = C2
r

2
M4λ2 +C1

(1 + r2)
1

M4λ2

.

Taking into consideration the delta function term, we obtain the
solution

(17)ψ(r) = C2
r

2
M4λ2 +C1

(1 + r2)
1

M4λ2

e
−4

σr0
M4

√
ψ(r0)Θ(r−r0) ln( r

r0
)
,

which obviously reduces to the smooth case when we take the
limit r0 → 0. We note that the value ψ(r0), which enters in the
exponent is just a constant factor. This factor enters in (7) and,
thus, the integration constant C2 prevents any fine-tuning. We
also see that the transverse space retains a non-vanishing cur-
vature inside the brane core. There are also, in general, conical
singularities at r = 0 and r → ∞. However, we can eliminate
the singularity at the origin, by imposing that C1 = − 2

M4λ2 . In
this case the 2D metric is regular at r = 0 and we only have a
singularity at infinity, which signifies a non-compact geometry.
We can also check the existence of a deficit angle at infinity and
demonstrate that no singularity occurs as we cross the bound-
ary of the resolved brane. To simplify our discussion, we define
b = 4σr0M

−4√ψ(r0) and c = M−4λ−2. Expanding the con-
formal factor around r = r0, we obtain

(18)ψ(r) ∼ C2

(1 + r2
0 )c

,

so that the two radial coordinates ρ and r are proportional near
the brane and no deficit angle is involved. However, for r → ∞
we get

(19)ψ(r) ∼ r−2c

(
r0

r

)b

and the coordinate transformation yields a transverse space
metric of the form

(20)ds2
2 = dρ2 + k2ρ2 dϕ2,

where

(21)k = 1 − c − b

2
.

The associated deficit angle is

(22)δ = 2π(1 − k) = 2π

(
c + b

2

)
.

The combination c + b
2 , which enters the expression for the

deficit angle, is indeed the Euler number of the transverse space,
as we can easily verify

χ = 1

4π

∫
dr r

∫
dϕ ψ(r)R(2)

= 1
∫

dr r

(
4
4 2

1
2 2

+ 4σ

4

√
ψ(r0)δ(r − r0)

)

2 M λ (1 + r ) M
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(23)= 1

M4λ2
+ 2σr0

√
ψ(r0)

M4
= c + b

2
= δ

2π
.

In order for the space to have a finite volume, we must have

(24)
1

M4λ2
+ 2σr0

M4

√
ψ(r0) > 1,

which, given (23), is equivalent to χ > 1. The corresponding
finite volume of the 2D space turns out to be

V2 = πC2
(1 + r2

0 )1−c

c − 1

(25)− i−b−2cπC2r
b
0 B

(
− 1

r2
0

, c + b

2
− 1,1 − c

)
.

B is the incomplete Beta function. As a result of the positiv-
ity of parameters and the constraint (24), the volume is real
and positive. Given the finite volume of the transverse space
[26–31], this setup will exhibit a four-dimensional gravita-
tional behavior at low energies compared to the compactifica-
tion scale, mediated by a graviton zero mode on the brane and
followed by a KK tower at higher energy scales. Apparently,
the space remains non-compact for the entire range of parame-
ter values for which the relation 1 < 1

M4λ2 + 2σr0
M4

√
ψ(r0) < 2 is

satisfied. Eventually, for appropriate values, the Euler number
of the transverse space reaches the value χ = 2 and the space
compactifies into a sphere.

We could also place two branes in our setup, that would
ensure a compact transverse geometry from the beginning. To
include the second brane of tension σ ′, situated at some posi-
tion ρ1 > ρ0 away from the origin, we add to the action the
term

(26)
∫

d5x dρ δ(ρ − ρ1)
√−γ

(
σ ′ + 1

2
γ αβ∂αΣ̄∂βΣ̄

)
,

where the induced metric γ is to be evaluated now at ρ = ρ1.
With this addition, both branes remain flat as long as we impose
the condition

(27)σ ′ = q̄2

2
gφφ,

relating the brane tension σ ′ and the charge of the axion q̄ on
the second brane. The metric component gφφ is evaluated at
ρ = ρ1. Eq. (15) now becomes

R(2) = 4

M4λ2

1

ψ(r)(1 + r2)2
+ 4σ

M4

1√
ψ(r)

δ(r − r0)

(28)+ 4σ ′

M4

1√
ψ(r)

δ(r − r1)

and the corresponding solution for the conformal factor reads

(29)ψ(r) = C2
r2c+C1

(1 + r2)c
e
−bΘ(r−r0) ln r

r0
−b1Θ(r−r1) ln r

r1 ,

where, in addition, we have defined b1 = 4M−4σ ′r1
√

ψ(r1).
Again, the metric is regular at the origin if we set C1 = −2c.
No deficit angle is encountered around r = 0 or as we cross
each of the two branes. The total deficit angle of the space is
deduced by checking the metric at infinity,

(30)ψ(r) ∼ rb
0 r

b1r2−2c−b−b1

1

from which the corresponding deficit angle

(31)δ = 2π(1 − k) = 2π

(
c + b + b1

2

)

may immediately be obtained. To ensure that the space has the
topology of a sphere, we must impose the condition

(32)χ = c + b + b1

2
= 2,

which relates the tensions and positions of the two branes.
Let us take a moment here to discuss the way in which the

cosmological constant problem is addressed in the context of
our model. As we already pointed out, the effective 3-brane
appears Ricci-flat, with its tension inducing a deficit angle in
the non-compact transverse space. The relations connecting the
various physical constants in the case of the single brane setup
are (7) and (22). The pitfall of unwanted fine-tunings may orig-
inate from these equations. To see if this is the case, we imagine
a situation where a flat brane solution has been found for a
specific brane tension σ . We then change the value of the ten-
sion and check whether it induces a shift in the deficit angle,
which is unobservable, while leaving other physical constants
of the model unchanged. We see that such a change may affect
through (7) the value of the axion field charge q . However, as
we previously stressed, the metric component gϕϕ carries the
undetermined integration constant C2, which in turn enters the
constant ψ(r0) and consequently b. Thus, changing the brane
tension leaves the axion charge unaltered and only affects the
deficit angle through (22), which involves b. In this way, fine-
tuning of physical constants in this setup is avoided. The new
brane tension could also lead to an additional change in the ra-
dius of the 4-brane.

As it was also discussed in [12], having a non-compact trans-
verse space is crucial. In the case of the resolved double brane
setup, however, there is still room for a solution which does
not require more than a mild fine-tuning, despite the fact that
the transverse space has necessarily the topology of a sphere.
This is due to relation (32), which fixes the value of the pre-
viously undetermined constant C2. Taking the ratio of (7) and
(27), we see that altering the value of either σ or σ ′ will induce
a change in the ratio of the corresponding axion fields. This can
be avoided if the change in brane tension is compensated by a
change in the ratio of the metric components gϕϕ at r0 and r1.
Since both carry the same overall constant C2, which cancels,
the only way to satisfy this requirement is for the brane radii to
shift. Thus, a fine-tuning between the two brane radii must be
imposed to have flat branes for arbitrary varying tensions. The
four-dimensional cosmological constant is again affecting the
value of the deficit angle through (31).

4. Gauss–Codazzi formulation

An alternative way of investigating the problem explored
above is by using the Gauss–Codazzi formalism discussed in
[34]. The equations on a codimension-1 brane, when the bulk
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space is n-dimensional turn out to be1

(n−1)Gμν

= n − 3

n − 2
κ2
n

(
Tρσ qρ

μqσ
ν + Tρσ nρnσ qμν − 1

n − 1
T qμν

)

(33)

+ KKμν − Kσ
μKνσ − 1

2
qμν

(
K2 − KαβKαβ

) − Eμν,

where Eμν is the projection of the Weyl tensor of the bulk,

(34)Eμν = (n)C
α

βρσ nαnρqβ
μqσ

μ

and Kμν is the extrinsic curvature tensor of the brane. The con-
stant κn is related to the n-dimensional Planck mass of the
theory. We will assume Gauss-normal coordinates, with the
coordinate normal to the brane denoted by ρ and an energy–
momentum tensor of the form

(35)Tμν = −Λgμν + T (B)
μν + Sμνδ(ρ),

where T
(B)
MN is the bulk energy–momentum tensor, not including

the bulk cosmological constant. Sμν is the energy–momentum
content of the brane and it is further decomposed in our case
according to

(36)Sμν = −σqμν + τ̃μν + τ̄μν.

The first term represents brane tension, the second is the axion
energy–momentum tensor and the third accounts for additional
matter content on the brane. This way we can also treat cases
with an arbitrary brane content in addition to the axion field
which is only used to eliminate the azimuthal brane pressure
and is effectively hidden. We proceed by further assuming a Z2
symmetry in the ρ direction. From Israel’s junction conditions,
this constraint fixes uniquely the extrinsic curvature of the brane
in terms of its matter content, with the resulting expression be-
ing

(37)Kμν = −κ2
n

2

(
Sμν − 1

n − 2
qμνS

)
.

Substituting this expression into (33) and using the above men-
tioned energy–momentum tensors yields the effective Einstein
equation’s on the brane

(n−1)Gμν = −Λ(n−1)qμν + 8πḠ(n−1)T̄μν

+ 8πG(n−1)(τ̃μν + τ̄μν) + κ4
n(π̃μν + π̄μν + κμν)

(38)− Eμν.

Quantities with tilde refer to the axion field contributions, while
barred quantities come from brane matter, the exception being
the second term which comes from the bulk content. The defin-
itions we use are

(39)Λ(n−1) =
(

n − 3

n − 1

)
κ2
n

(
Λ + n − 1

8(n − 2)
κ2
nσ 2

)
,

(40)G(n−1) =
(

n − 3

n − 2

)
κ4
nσ

32π
,

1 While this paper was in preparation, a similar treatment of the brane equa-
tions was presented in [35], although in a cosmological context.
(41)Ḡ(n−1) =
(

n − 3

n − 2

)
κ2
n

8π
,

(42)T̄μν = T (B)
ρσ qρ

μqσ
ν + T (B)

ρσ nρnσ qμν − 1

n − 1
T (B)qμν,

πμν = −1

4
τρ
μτνρ + 1

4(n − 2)
ττμν + 1

8
ταβταβ

(43)− 1

8(n − 2)
τ 2qμν,

κμν = −1

2
τ̃

ρ

(μτ̄ν)ρ + 1

4(n − 2)
(τ̃ τ̄μν + τ̄ τ̃μν)

(44)+ 1

4
τ̃ αβ τ̄αβqμν − 1

4(n − 2)
τ̃ τ̄ qμν.

As a cross check of the formulas above, we note that by setting
n = 5 and T̄μν = τ̃μν = 0, we recover the same equation derived
in [34]. Eq. (38) is supplemented by Codazzi’s equation

(45)DνK
ν
μ − DμK = κ2

nTρσ nρnσ qρ
μ.

Using (38), we can investigate the evolution on the hypersur-
face of dimensionality n − 1. Using (38), we can investigate
the evolution an (n − 1)-dimensional hypersurface by apply-
ing the formalism described above. We first consider the model
presented in [24], where we have an effectively codimension-2
brane situated in a 6D bulk space. There is a 4-brane and the
axion field, without any additional matter in the bulk or the
4-brane and we also assume a Z2 symmetry. The resulting space
is flat everywhere, except from the position of the brane, where
the tension induces a deficit angle in the bulk. Interestingly,
it turns out that the imposed condition (7), relating the axion
charge and the brane tension forces all terms to be quadratic
in σ , so that the cosmological constant and τ̃μν terms cancel
against the π̃μν term. The equation of motion (38) reduces in
this case to Einstein’s equations in five dimensions, without any
matter content,

(46)(5)Gμν = 0.

We must stress here that Eμν is evaluated near the brane and
not on it, so in the above mentioned space, which is flat out-
side the brane we get Eμν = 0. By looking at this equation and
taking into consideration the fact that the angular coordinate is
compact, one is prematurely lead to think of this model as a
regular Kaluza–Klein theory, with a zero mode graviton and a
tower of massive modes. This is however misleading, since (46)
carries no information of the fact that a dimensional reduction
has already been performed on a non-compact dimension. In
the presence of matter the resulting equation is

(47)(5)Gμν = 8πG5τ̄μν + κ4
6 π̄μν + κ4

6κμν − Eμν.

Notice that in this case the empty space solution no longer
holds, so the bulk space will be curved in general and we can
no longer neglect the Eμν term, which depends on the bulk cur-
vature.

We now turn to the model we considered earlier, with the
sigma model fields in the bulk. By inspecting the energy–
momentum tensor for these fields, we see that the T

(B)
mn com-

ponents are zero in the coordinate system (12). Notice that
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these coordinates are not Gauss-normal, but are related to them
through a conformal transformation. Since this transformation
does not mix T

(B)
mn and T

(B)
μν , the former will also be zero when

we turn back to the Gauss-normal coordinates used to derive
Eq. (38). On the other hand, this transformation will not affect
the later components, which will be the same in both cases. As-
suming no additional bulk or brane matter besides the axion and
the φa , the equations on the brane yield

(5)Gαβ = 3κ2
6

4

(
16

5λ2(1 + r2)2ψ
qαβ

(48)− 4

λ2(1 + r2)2ψ
nμνδ

μ
α δν

β

)
− Eαβ.

Here, α, β denote coordinates on the 4-brane, while μ, ν are co-
ordinates on the 3-brane. The components of the bulk energy–
momentum tensor are taken as the limiting values near the
brane position. From this expression we immediately deduce
that (5)R = 0, which means that the 4-brane appears Ricci-
scalar-flat, but not Ricci-flat. In fact, the fields φa act on the
brane as a form of perfect fluid with anisotropic pressure, since
we see that the fifth diagonal element of the energy–momentum
tensor is different. However, we still have contributions from
the Weyl tensor of the bulk space, which for the metric (12)
takes the form

(49)Eαβ = 3κ2
6

5λ2

1

ψ(1 + r2)2
Diag

(
1,−1,−1,−1,4ψr2).

Once this is taken into account, we interestingly find that the
bulk field contribution is cancelled by the projected Weyl tensor
and the 4-brane has

(50)(5)Rμν = 0,

and thus, it is Ricci-flat in five dimensions.
Inclusion of matter on the brane is also straightforward in

this setup. In fact, the only additional contribution compared to
the previous model in empty bulk space comes from the sigma
model fields. The resulting equation is

(5)Gαβ = 3κ2
6

4

(
16

5λ2(1 + r2)ψ
qαβ − 4

λ2(1 + r2)ψ
nμνδ

μ
α δν

β

)

(51)+ 8πG5τ̄αβ + κ4
6 π̄αβ + κ4

6καβ − Eαβ.

To first order, we expect the first and last terms to cancel as
before. In addition, we will have residual contributions in Eαβ

due to the brane content.

5. Conclusions

We presented a model where effective codimension-2 branes
are embedded in a 6D bulk space endowed with an O(3) sigma
model. The introduction of resolved branes in such a back-
ground provides a more realistic approach compared to purely
codimension-2 branes, which are known to be plagued by tech-
nical problems [11]. We presented solutions in the case of a
single brane and non-compact transverse geometry and for a
double brane setup in a sphere-compactified space. It turns out
that the single brane setup can account for a flat 3-brane with-
out requiring any fine-tunings of the physical parameters of the
model. In the double brane scenario, a mild fine-tuning between
the brane radii is needed. The Einstein equations on the effec-
tive codimension-2 brane for arbitrary dimensionality were also
derived and applied in our model to study the dynamics on the
4-brane. The model seems to admit a straightforward interpreta-
tion after KK reduction of the compact dimension of the brane.
A more detailed future treatment of perturbations in this setup
will help clarify further aspects of 4D gravity and its possible
modifications.
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