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Abstract

Abelian non-topological solitons with Baryon andror Lepton quantum numbers naturally appear in the spectrum of the
minimal supersymmetric standard model. They arise as a consequence of the existence of flat directions in the potential
lifted by non-renormalizable operators and SUSY breaking. We examine the conditions that these operators should satisfy in
order to ensure proton stability and present a realistic string model which fulfills these requirements. We further identify a

Ž .generic U 1 breaking term in the scalar potential and discuss its effect of rendering Q-balls unstable. q 1999 Elsevier
Science B.V. All rights reserved.

1. Introduction

Non-topological solitons, abelian or nonabelian,
are finite energy configurations which appear in the
spectrum of field theories with global symmetries.
w x1–3 . They arise due to the appearance of appropri-
ate couplings in the scalar potential that effectively
cause a Q number of scalar particles of mass m to
form coherent bound states with binding energy
ErQ-m. Although the general scaling property of

sŽ .their total energy E'Q s-1 receives both sur-
face and volume contributions, there is a special
class of such configurations in the large Q limit with
ss1 whose existence persists in the strict ‘‘thermo-

Ž . w xdynamic limit’’ V™`, ErQ'const 4,5 .
In the context of the minimal electroweak theory

the presence of B and L balls associated with the
perturbatively conserved Baryon and Lepton quan-
tum numbers is not feasible. Yet for strong interac-
tions, which respect strangeness and isospin, the

possible existence of charged meson balls of
strangeness andror isospin as resonances in the low

w xenergy spectrum of QCD has been considered 6,7
as a possibility.

w xRecently it was pointed out 8 that non-topologi-
cal solitons generically appear in the Minimal Super-

Ž .symmetric Standard Model MSSM . More gener-
Ž .ally, supergravity SUGRA induced logarithmic cor-

rections in the scalar potential, as well as non-renor-
malizable polynomial interactions that appear natu-

w xrally in the flat directions of the MSSM 9 , give rise
w xto baryon and lepton balls 10 . They are composed

of squarks and sleptons and are very efficient ‘‘re-
positories’’ of baryonic andror leptonic charge re-
spectively. We will henceforth call them Q-superb-
alls and denote them as Q-sballs. They convert ordi-
nary fermionic matter carrying a net B andror L
charge into its bosonic counterpart. In cosmology,
large B and L-balls can be generated from decaying

w xAffleck-Dine 11 condensates that develop typically
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in the aftermath of an inflating SUSY phase. In an
expanding universe, a coherently oscillating AD con-
densate with a net baryon charge is unstable to space
dependent perturbations decaying into large baryon

w xsballs 8 . B and L-sballs, if unstable and rapidly
decaying, could have contributed to the net baryon

w xnumber of the universe 10 . If they are metastable
but sufficiently long lived till the present, they can
be a component of the much sought after cold dark
matter. Non-abelian Q-sballs have been also dis-

w xcussed in Wess-Zumino models 12 . They mini-
mally arise in renormalizable scalar potentials with
cubic interactions that respect supersymmetry and
constitute domains that break it explicitly.

In the present paper we take a superstring inspired
view on the Q-sball bearing flat potentials in super-
symmetric extensions of the standard model. We

Ž .‘‘embed’’ the U 1 ball bearing MSSM flat direc-
tions in the ‘‘effective’’ low energy superstring pic-
ture. We do it by considering low energy string no

Ž .scale effective lagrangians such as the flipped SU 5
Ž . w x=U 1 15 model.

We establish a precise mapping between the low
energy operators of different dimensionality, such as

Ž c.2 c c c Ž c c c.2the Q ll d ,u u d and u d d , and their high
energy operators they correspond to in these models.
Conceivably they are associated with the small dis-
tance Q-sball bearing superstring induced flat direc-
tions. We further address the question of proton
stability in conjunction with these operators and
determine the conditions to avoid fast proton decay.

In the more general context of the effective la-
grangians we are considering, we generically identify

Ž .an explicit U 1 breaking term. We consider its
effect on the stability of the B-sballs in the low

Ženergy regime E-M '1 TeV, the SUSY break-s
.ing scale .

Finally we address the possibility that Q-sballs are
present in the ‘‘hidden’’ sectors of supersymmetric
theories which are a generic feature of supergravity
and more generally superstring theories. Shadow
Matter has been a subject of intense scrutiny recently
with regard to its possible rich astrophysical and

w xcosmological implications 13,14 .
The paper is organized as follows: In Section 2

we review Q-ball bearing flat directions in the MSSM
and consider the most general form of the super-
string inspired scalar potential with its one loop

contribution which is presented in Section 3. In
Section 4 we identify the leading small distance
operators of ds4 and ds6 which correspond to

Ž . Ž .the flat directions in the flipped SU 5 =U 1 model.
Large scalar vevs in those directions with a nonzero
baryon number generate the AD type of condensates
which can decay into B and L-sballs. We present
precise results using renormalization group results

Ž .for the small-large distance evolution of U 1 -sball
configurations.

2. Abelian Q-sballs from flat directions

In a scalar field theory with a global continuous
symmetry, Q-balls appear if the minimum of the

2quantity 2VVrf occurs at some point f /0,0

where VV is the potential and f is the scalar field.
In supersymmetric theories, Q-sballs are associ-

ated with the F- and D-flat directions of the super-
Žpotential. In general, the flat directions usually called

.the moduli space are parametrized by expectation
Ž .values of massless chiral fields moduli , while along

these directions the scalar potential vanishes. In other
words, supersymmetric theories have no classical
potential along flat directions. In realistic supersym-
metric theories, the role of the fields acquiring vac-

Ž .uum expectation values vevs is played by particular
combinations of the scalar quarks and leptons. The
potential along these directions appears as a result of
supersymmetry breaking, radiative corrections and
non-renormalizable terms. In MSSM, we are inter-
ested in forming operators invariant under the gauge

Ž 1group and therefore acceptable to appear in the
.superpotential . Such operators can be formed by

considering single field flat directions in a gauge
invariant way.

As an example, we start with a flat direction in
the MSSM, by considering the operator

XXsQ ll dc 1Ž .1 21

where indices denote generations. The operator XX

has ByLsy1. To see why it corresponds to a flat

1 Additional discrete symmetries and string selection rules may
prevent the appearance of otherwise gauge invariant terms in the
superpotential.
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direction of the superpotential, we consider all rele-
vant Yukawa terms

WWsl11Q H uc ql11Q H dc ql22 Q H dc
u 1 u 1 d 1 d 1 d 2 d 2

ql11 ll H ec q PPP 2Ž .e e 11

where dots stand for terms not involving the fields
Q , ll ,dc . The scalar component of such operators1 21

could be parametrized by a single scalar field f. For
example, in the case of the operator XX , by writing

Qsfsinj , Lsfcosj sinu , dc sfcosj cosu

3Ž .

the operator can be written

XXs sinj cos2j sinu cosu f 3 'cf 3 4Ž .Ž .
It can be easily checked that WW is F-flat with
respect to the derivatives of all the fields appearing

² :in the superpotential. This means that for f /0,
all derivatives E WWrE f s0, where f stands for alla a

fields.
The connection between Q-sballs and flat direc-

tions comes in when addition of new terms alter
these flatness and the potential takes the desired
form to accommodate Q-sballs. By giving non-zero
expectation values to these fields, the gauge group

Žbreaks down partially or even totally in the example
of the operator XX , the standard model group is

Ž . Ž ..broken down to SU 2 =U 1 . Also, since thecolour

fields carry baryon B and lepton L numbers, the
operator may also have a non-zero B, L or ByL
quantum number.

Let us now be more specific on the ways that a
flat direction can be lifted. This can be achieved by
supersymmetry breaking effects, by non-renormaliz-
able terms that could appear in the superpotential
and finally by one loop corrections to the supersym-
metry breaking induced soft mass terms. The tree-
level part of the scalar potential has the following
types of terms:

2
E WW E WW

)VV s qA WWqWW qB qc.c.Ž .eff ž /E f E fa a

2 < < 2qm f 5Ž .˜ a a

The last three terms are related to the supersymmetry
breaking effects. A and B are soft parameters of the

order of the supersymmetry scale while m are the˜ a

soft masses of the scalar components of the super-
fields.

Let us see now how the non-renormalizable terms
Žcan lift the flatness of the potential one loop effects
.will be discussed in the next section . Suppose that a

certain operator, describing a flat direction and
parametrized by the scalar f, takes the form f m; m
is a power which shows the number of fields enter-

Žing the operator in our previous example of the
.operator XX , ms3 . The operator cannot appear by

itself in WW , however, it can show up through NR-
terms together with other fields of the theory. Sup-
pose, f is such a field, then a term of the typex

described above will have the form

f mPk f ny1

WWsl f sl f 6Ž .nr x nr xmPky2 ny3M M

where k shows the power that the operator appears
and M is some high scale. Obviously, the derivate
with respect to the field f leaves a non-zero termx

E WW
ny1<² : <A f /0 7Ž .

E fx

and the flat direction is lifted. In addition, there are
A-terms of the form Af nrM ny3. There are two
important points worth mentioning: First, since a flat

Ž .direction is parametrized by a single scalar field,
the soft supersymmetry breaking A-term in the po-

Ž .tential violates any possible U 1 that the superpoten-
Ž .tial might respect. The absence of a continuous U 1

forbids the appearance of stable Q-sball like solu-
tions. Thus, the question arises whether there exist
certain conditions such that Q-sballs can be formed
in the MSSM potential. An apparent way out would
be to require the initial condition for the A-term to
be zero, however renormalization group running ef-
fects will drive its value to magnitudes comparable
with other soft parameters. Nevertheless the A-term
could be kept relatively small in the interesting
energy region, allowing the possibility for an unsta-
ble Q-sball to develop. Second, in the case that a
Q-sball can be formed, the sign of the A parameter
plays evidently a crucial role in developing the re-

< < 2quired minimum of the quantity VVr f .
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Ž .Returning to the scalar potential, 5 assumes the
following general form

< < 2Ž ny1.
f

2 22 < < < <VV sm f q l0 S nr 2Žny3.M
f n

q A qc.c.Ž .ny3ž /M

where c.c. means complex conjugate and we assume
for simplicity A to be real valued. We observe

Ž .indeed that the continuous U 1 symmetry respected
by the first two terms, is broken by the A-term.
Clearly, the usual Q-sball solution fse ı v tf is no0

longer a solution of the equations of motion, how-
ever, it can only be approximate one as long as the
A-term is relatively small.

In our analysis, we assume for simplicity only one
scalar f. In the case of multiple flat directions there
will be more scalars, one for each such direction.
The soft mass term m is here related to the softS

masses of the fields making up the composite opera-
Ž .tor. Its value is scale dependent m Q and is calcu-

lated at any scale using the RGEs once the initial
value is known. At tree level, this mass is indepen-

² :dent of the scalar vev f and a minimum of the
² :potential at f s0 is unavoidable. However, when

one-loop corrections are taken into account, there is
2 2Ž .a f-dependence of m sm f which could possi-S S

bly lead to a minimum away from zero.
Thus, having defined a certain flat direction, the

next task is the determination of the expectation
value of the corresponding scalar parametrizing this
direction. As stressed above, the tree-level classical
potential leaves the scalar vev undetermined. Radia-
tive corrections to the classical potential will deter-
mine this vev. Therefore, one has to add also at least
one-loop corrections to VV . The directions used to0

form condensates, should be chosen with great care.
The reason is that there are R-parity breaking terms
Ž c c c.like d d u which create proton decay at low
energies. We will work out cases where fast proton
decay is forbidden.

3. A superstring inspired Q-sball bearing flat
potential

A necessary presupposition to obtain a global
2 ² :minimum of VV rf away from f s0, as can0 0 0

be seen from the form of the effective scalar poten-
tial, is to have a f-dependent scalar mass parameter
m2. At the tree level, this is a sum of soft massS

parameters related to the fields forming up the con-
densate, independent of the value of f. Thus, at tree

2 ² :level, VV rf has a minimum at f s0. At the0 0 0

one loop level the soft mass parameter m2 is modi-S

fied by one-loop corrections proportional to the loga-
rithm logf 2rQ2 where Q is the running scale.0

Thus, m2 depends on f and a minimum away fromS

the origin is possible. For a scalar field f, the one
loop corrected potential is

1 f 2 3
X 2

VV f sVV f q m ln y 8Ž . Ž . Ž .1 0 S2 2ž /264p Q

Ž . Ž .V Q is the R.G.E. improved tree-level potential0

while the appearance of the last term is due to the
Ž .radiative corrections at one-loop level . Thus, in the

case of a scalar field f, as that described above the
one loop correction results to a shift of the soft mass
parameter of the condensate. This makes the mass

Ž .parameter of the last term in 6 a function of f,
which is essential in the determination of the mini-

Ž . ² :mum of 1 at values f /0 as required. The soft
mass parameter will be in general a linear combina-
tion of the scalar mass terms forming the condensate,
m2 sÝ a m2. The general form of the mass coeffi-S i i i

w xcient of the logarithmic term is then 16

dm2˜ iX 2m s aÝS i d ti

s a y ci g 2 m2 qci l2 m2 9Ž .˜Ý Ý Ýi A A A t t n3ž /
ni 3

where ts logQ while a are coefficients. Further-i

more, m are the gaugini masses and g are theA A

three gauge couplings; further,

2 2 2
cm sm qm qm˜ ˜Ý n Q u h3 3 3

is the sum of the scalar mass parameters of the third
generation and the higgs while only l Yukawat

contributions have been included. Let’s assume the
particular case of ns3 which will be useful in our
subsequent analysis. In this case, the general form of
the quantity VVrf 2 becomes

VV
2skqn logfqafqlf 10Ž .2f
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w 2 x w xFig. 1. Plot of the quantity log VV rf versus log f in the effective supergravity model described in the text and for the operatoreff 0

ucdcdc, for three values of the parameter A . The minimum is formed in a very high scale, when the conditions discussed in the text areeff

met. The corresponding superheavy B-ball is unstable.

Since in our case we take always l)0, it can be
checked that the necessary minima with respect to f

exist for the cases n-0, a)0, and n)0, a-0.
Clearly, k ,n ,a and l are scale dependent. Their
relation with the MSSM mass parameters m2 etc areS

easily found. To find the minima therefore, one has
to examine the values of the above quantities at any
scale while varying the coefficients a in such a wayi

so as the above conditions are met.
In Fig. 1 we plot the logarithm VV rf 2 againsteff 0

the logarithm of f , at the energy scale Qs1013
0

GeV. We have considered in the VV the zero andeff
Ž .one loop order potential 8 plus NR- and trilinear

A-terms of the form

l f 6rM 2 qA f 3
eff eff

Ž .We give to l the value OO 0.1 while the threeeff

curves correspond to negative, zero and positive
A -values starting from the one that produces theeff

deeper minimum. Yukawa effects have been in-
Žcluded only due to top quark. For presentation

purposes, in the vertical axis an arbitrary positive
2 .constant has been added to VV rf . The mini-eff 0

mum exists only when A obtains negative valueseff
Ž .;y0.1m in a narrow range, while it shifts to3r2

unacceptably high values as A changes due toeff

renormalization group running.

( )4. An SU 5 superstring model

A natural ground for the above ideas is offered by
Ž .models which possess extra U 1 symmetries. This is

Ž .because such symmetries if properly chosen may

prevent disastrous combinations of R-parity breaking
terms which lead to fast proton decay. Models with
these properties are found in string constructions. As
an example, we will work out the relevant non-renor-
malizable operators which are obtained in the case of

Ž .the string derived flipped SU 5 model. The details
w xcan be found elsewhere 15,17 . Here we recall only

the necessary parts. The generations and higgses are
accommodated in

cFs 10,y1r2 , fs 5,3r2 , ll s 1,y5r2Ž . Ž .Ž .
11Ž .

Hs 10,y1r2 , Hs 10,1r2 ;Ž . Ž .
hs 5,1 , hs 5,y1 12Ž . Ž . Ž .
The quark and lepton fields are found in the follow-
ing representations

cc c c cFs Q,d ,n , fs u , ll , ll se 13Ž . Ž . Ž .
and the tree level superpotential relevant to the above
terms is

FFhqFfhqHHhqHHh 14Ž .
Ž .Additional U 1 symmetries can be chosen to distin-

guish between the various generations that appear at
this level. However, operators of the form described
above, allowed by these symmetries, can be gener-
ated in the non-renormalizable part of the superpo-

Ž .tential. Then, terms of the form 6 appear in the
effective potential of the MSSM after the breaking of
the GUT symmetry. We will concentrate in the case
of lowest dimension operators. Let us make the
above by describing an example. Suppose we are
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interested in the operator XXsucdcdc describing a
flat direction of the MSSM and we would like to
check whether it could appear through the flipped

Ž .SU 5 non-renormalizable term

FFFfF 15Ž .
ŽHere, F is a possible singlet or a power of singlet

.fields which may appear in such terms. The fields
Ž .F, f are of the form 11 which may accommodate

the ordinary quarks and leptons, or other heavy fields
of the same quantum numbers if the model is non-
minimal. The above NR-term gives the following
two low energy operators:

F F F f F

x x x x x

c c c 16Ž .Ž . Ž . Ž . Ž . Ž .d 3,1 d 3,1 1,1 u 3,1 1,1
and

cŽ . Ž .Q 1,1 d ll 1,1

where the numbers in parentheses are with respect to
Ž . Ž .the SU 3 =SU 2 . When we take the derivative of

Ž .this term with respect to the singlet 1,1 belonging
to F, a term of the form

NucdcdcFN 2 17Ž .
will appear in the effective potential. Likewise, a
similar term corresponding to the QLdc flat direction
can appear through the same fifth order non renor-
malizable term, again taking the derivative with re-

Ž .spect to the 1,1 component of a F field, the only
one which can be used to form a MSSM singlet term
in the superpotential.

The LLec MSSM flat direction can appear through
cthe term Fffl F where again the differentiation is

taken with respect to the singlet of the F field.
c cFffl F™LLe 18Ž .

These three directions, namely ucdcdc, QLdc and
LLec, exhaust the 3-field composite operators de-
scribing flat directions in the MSSM.

Going now to the 4-field operators of the MSSM
describing flat directions, namely QQucdc, QQQL,
QLucec and ucucdcec, its easily checked that:
Ø QQucdc and QQQL can appear either from the

ŽFFFfF operators differentiating with respect to
. ŽF and from the FFFff F ones differentiating"

.with respect to f ."

Ø QLucec and ucucdcec can appear through the
c ŽFffl F operators differentiating with respect to

.F .

Higher order terms can lead to the same type of
operators with some additional suppression factors
that make such contributions less important. It is
therefore, adequate to find the minimum dimension
NR-terms which contribute to a certain type of oper-
ator.

A basic problem encountered with this type of
operators, however, is the undesirable fast proton
decay. In particular, the simultaneous existence of
terms as ucdcdc and Q ll dc in the low energy effec-
tive theory will induce a fast decay of the proton.
Thus, at first sight, it seems that terms forming
condensates for Q-balls should be banned due to
their possible catastrophic consequences and contra-
diction with the low energy data. There are certain
conditions, however, under which these terms can
exist without causing the aforementioned problems.
In particular:

² :Ø If the field F has a vanishing vev, F s0, this
operator cannot contribute to proton decay. How-
ever, the corresponding condensate survives in
the scalar potential when differentiating with re-
spect to F .

ŽØ If, as in the case of non-minimal models which is
.often the case in string constructions , one of the

fields F, f entering the operator is a heavy state,
not related to the ordinary quarks and leptons,
proton decay is avoided.

Although the above requirements look rather un-
likely to be fulfilled, it is interesting that they do
occur in certain string models. In the following, we
will investigate this possibility in the case of the

Ž .flipped SU 5 string model. We will not exhaust all
possible cases here, but we will concentrate in a
particular operator.

To avoid confusion, we remark here that in the
cfollowing, the indices in the representations F , f , lli i i

indicate the sector of the string basis they belong to
rather than the generation. In fact, the accommoda-
tion of the three generations takes place as follows:

c c cf :u ,t , f :c ,erm , f :t mre,1 2 5

F :Q ,sc , F :Q ,dc , F :Q ,bc ,2 2 3 1 4 3

ll c :t c , ll c :ec , ll c :mc 19Ž .1 2 5

cŽ . Ž . Žwhere F s 10,y1r2 , f s 5,y1 and ll s 1,yi i i
.5r2 . They also carry charges under the four surplus
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Ž .U 1 factors which will play a crucial role in deter-
mining the NR-terms.

Tree level couplings of the above model, do not
lift flat directions of the ones discussed above. There
are fifth and sixth order terms of this type which
may lift the above flatness of quark and lepton fields

w xwhich might lead to fast proton decay. These are 17

F F F f F , F F F f F , F F F f F4 4 3 3 31 2 2 3 3 23 1 1 3 3 31

20Ž .

c c cF f f ll F , F f f ll F , F f f ll F3 3 1 31 3 3 5 23 3 3 2 231 5 2

21Ž .

c c cF f f ll F , F f f ll F , F f f ll F3 2 2 31 3 1 1 31 3 5 5 233 3 3

22Ž .

However, with a proper choice of vacuum expecta-
Žw x.tion values 17 which also respects F and D flat

directions, none of these terms are dangerous since
they do not involve particles in the light Standard
Model part of the spectrum. At sixth order, the
following potentially-dangerous operators appear:

F F F f f F , F F F f f F 23Ž .4 3 3 q 5 23 4 3 3 5 y 31

The singlet fields f and f do not acquire vevsq y
and proton decay is avoided. Being safe from proton
decay problems, we turn now to the possible role of
these terms on the Q-ball formation. This will be
manifest in the way described for the term of the

Ž .form 6 . Thus in a number of cases, for example,
the role of the field f is played here by the field fx 3

which appears in a number of terms of fifth order.
Differentiating with respect to this field, we may

Ž . Žcreate the quantity analogous to that in 7 . In fact,
here, the operator is multiplied by one additional

² :singlet vev, namely F , which will offer an addi-3

tional suppression factor to the NR-coupling: l ;nr
² : .g F rM . The preceding discussion does notU 3 U

intend to systematically exhaust all possible sources
associated with Q-ball formation. Rather, it is indica-
tive in the way these finite energy configurations
may occur in realistic theories. The question on the
stability of these objects and a thorough study of the
related equations should be a first priority before a
complete analysis in the context of such theories is
done.

5. Q-sballs in the shadow world – concluding
remarks

A Hidden Sector appears to be a generic element
in supergravity theories and the low energy limit of
any superstring theory. In addition to providing a
gravity mediated mechanism to break supersymme-
try its possible role as being the origin of a purely
gravitation matter component in our universe such as

w xdark matter has been previously discussed 14 . As
so far our discussion of Q-sballs appearing in the
spectrum of susy gauge theories with unbroken global
symmetries concerned the observable sector from the
point of view of the superstring we would now like
to deal with Q-sballs appearing in the hidden sector
of any such theory. In the context of superstring
inspired models a hidden sector typically contains
scalar particles with only gravitational interactions
which are described to a very good approximation by

w xsigma models 18 . These are parametrized in general
by a coset GrH space. The group G acts nonlinearly
whereas H acts linearly and can be viewed as a
global symmetry of the s-model. Hence we would
expect the presence of abelian or nonabelian global
symmetries and hence of Q-sballs in the hidden

w xsectors of such theories 19 . In our present model
Ž . Ž .such a sector has an SU 4 =SO 10 gauge symme-

Ž .try. As such the SU 4 coupling may become strong
at around ;1010y12 GeÕ mimicking pretty much
QCD. The confinement of the nonabelian gauge
charge greatly restricts the meaningfulness of ex-
tended Q-sball configurations with a net nonabelian
charge. In a more general setting, however, in the
presence of unbroken global symmetries the hidden
sector should be expected to possess nontopological
solitons which are solutions to the field equations of
motion including gravity.

An interesting realization of this possibility was
recently put forward for the minimal non-susy elec-

w xtroweak theory 20 . Q-Balls are shown to be present
and induced by the coupling of the unobservable so
far Higgs to a gauge singlet complex scalar field in a
theory with an additional unbroken global abelian
symmetry. As these stable solitons presumably inter-
act gravitationally and only through a Higgs ex-
change to the observable sector they can be a dark
matter component.
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In summary we investigated the possible exis-
tence of Abelian non-topological solitons associated
with global B, L, or ByL quantum numbers in low
energy effective supergravity models arising from
superstring theories. We described the conditions in
the effective potential for a B-sball to appear and
discussed the role of radiative corrections, A-terms
and non-renormalizable contributions. In particular,
we found that Q-sballs are likely to appear at high
scales, however, we showed that A-terms lead to a
potential instability of the associated Q-sball. We
further discussed the ways to ensure proton stability
triggered by the above non-renormalizable operators
and presented a string example where all baryon and
lepton violating terms associated with these finite
energy configurations are suppressed.
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