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We study the electron dynamics in one-dimensional periodic and aperiodic (Thue-Morse) crystals.
For the periodic chain the mean-square displacement o*(¢) and the integrated autocorrelation function
C(1) of a quantum wave packet put on an initial site display unlimited ballistic motion defined by the
asymptotic 0%(¢)~¢? and the nonexponential C(#)~¢~! laws. In the spatial distribution of the wave
packet we find unexpected “phase chaos” features. For the aperiodic Thue-Morse sequence our numeri-
cal results show super-diffusion [o*(¢)~¢%/2] and interesting self-similar oscillations for the “return to
the origin” probability. The transmission coefficient of plane waves scattered from the aperiodic Thue-
Morse sequence is shown to display self-similar band structure with completely transmissive modes

which are related to the corresponding dynamics.

I. INTRODUCTION

The essential difference of periodic and nonperiodic
quantum lattice structures mostly lies in the localization
properties of their electronic states. In the periodic case
all the states are perfectly extended Bloch waves, while in
a strongly disordered sequence the states localize because
of quantum interference effects.! In this respect the ab-
sence of quantum diffusion in one-dimensional disordered
systems has been rigorously established.>® The corre-
sponding spectral measure is absolutely continuous and
purely pointlike for extended and localized states, respec-
tively. After the experimental discovery of quasicrystals,
attention has also been focused in quasiperiodic systems,
such as the binary Fibonacci sequence, which lie between
the periodic and the random. In this case the band struc-
ture becomes singular continuous Cantor-set-like, and the
corresponding eigenstates are ‘““critical.” The elucidation
of these fractal measures has been the subject of a large
number of studies.* !° More recent works have been de-
voted to the aperiodic deterministic structures, beyond
quasiperiodicity, such as the Thue-Morse sequence.!! ™13
The aperiodic sequences display sufficient homogeneity
properties and are also believed to be relevant for the
physics of quasicrystals. Apart from the purely theoreti-
cal interest in the aperiodic and quasiperiodic systems
there is now available a large variety of experimental data
concerning epitaxially grown superlattice structures by
x-ray and neutron diffraction, Raman scattering, etc.1617

In parallel to the usual approach, which concerns the
properties of the time-independent states in the last few
years much interest has been focused on the correspond-
ing electron dynamics.'®"2® The essence of the localiza-
tion phenomenon is that, if the electron is initially local-
ized in one of the sites it can be found again on the same
site after a long time has been elapsed. On the other
hand, if the electronic states are extended, the probability
of finding the electron again on the initial site decays with
time. Recent advances in laser technology have made it
possible to study atomic and molecular processes with a
time resolution comparable to the quantum-mechanical
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time scale.”’ From the theoretical viewpoint one can
construct simplified models and study the dynamical pro-
cesses using modern efficient computational techniques.

The problem of dynamics is best exemplified by consid-
ering the time-evolution properties of a quantum wave
packet left to evolve in the lattice. The propagation is
naturally characterized by the so-called mean-square dis-
placement, which is defined as

oA)=3 (n —ny 2y, (1)?, (1)

n

where n, is the initial site and ¥,(¢) is the wave-packet
amplitude on the nth site at time ¢. The values of o%(t)
give an estimate of the wave-packet spread in space, and,
if we focus on the asymptotic long-¢ behavior, we expect
the power-law form

o) ~t*, ()

where pu <1 for localization, u=1 for ordinary diffusion,
u>1 for super-diffusion and p=2 for ballistic motion.
Therefore, the global information about the dynamics of
a system can be obtained by calculating o*(¢), either
analytically or numerically.

In this paper we systematically investigate the dynami-
cal properties of both periodic and aperiodic sequences.
For a periodic sequence the mean-square displacement
can be analytically obtained. The corresponding asymp-
totic behavior shows exact ballistic motion. We also
show that the spatial distribution of the wave packet at a
given time instant exhibits interesting ‘‘phase-chaos”
features, despite the simplicity of the model. For the
aperiodic Thue-Morse model, instead, via a numerical
calculation of the mean-square displacement, for almost
all the range of parameters we find super-diffusion. In or-
der to further probe the properties of the aperiodic
Thue-Morse sequence we also calculate the transmission
coefficient of plane waves through the chain. Our results
demonstrate the unambiguous presence of completely
reflectionless modes, whose existence is discussed in con-
nection to the dynamical behavior.
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The paper is organized as follows: In Sec. II we
present the analytical results for the mean-square dis-
placement in the periodic chain and find several interest-
ing figures for the corresponding dynamical process. In
Sec. III we numerically calculate the dynamical proper-
ties of the Thue-Morse sequence. In Sec. IV the
transmission coefficient for plane waves is calculated, and
the main results are compared with the conclusions from
the preceding sections. A brief summary and a discus-
sion of our results are given in Sec. V.

II. DYNAMICS OF THE PERIODIC SEQUENCE

We start from the one-dimensional (1D) tight-binding
Hamiltonian:

H=3¢,n){nl+ 3 V,,[n)ml|, 3)
n {NN)

where |n) is the Wannier state of electron on the nth
site, €, is the corresponding energy level, V,,, is the hop-
ping matrix element between states |n) and |m ) and
only the nearest neighbor (NN) hoppings are taken into
account. If we express the wave function of an electron
in terms of linear combination of states |n )

V=3 v,ln), @)

from the Hamiltonian of Eq. (3) we have the following set
of difference equations for the coefficients 9,,:

Vn—l,n¢n—1+(€n_E)¢n+Vn,n+1¢n+1=07 (5)

for all n, where the lattice spacing is unity, and E is the
corresponding eigenvalue.

For a periodic chain, we choose all site levels to be of
zero energy and all the hopping matrix elements to be
unity. The corresponding time-dependent wave functions
have the Bloch form

V()= x/lz'v“ exp(—iE 1) S explikn)|n ) , ©6)
with energy
E,=2cosk , (7)

where N denotes the total number of sites. If we put a
wave packet on site n =0 at ¢ =0, its wave function can
be expressed as

B
YWO= = S0 (8)

This is just |0) at t=0, and the corresponding
coefficients are

Y, ()= exp(—iE;t)exp(ikn) . 9
k

By replacing the sum for k in Eq. (9) by an integral one

has

_inw
2

¥, (1)=exp J,(21), (10)

where J,(¢) is the nth order Bessel function. From this
simple calculation the mean-square displacement can be
expressed as

N/2

o= 3

n=—N/2

n?y,(2)]?

N/2
=3 n¥W2X21), (11
n=0

and using the properties of the Bessel functions it is easy
to obtain the result

o(t)=2¢2 . (12)

Therefore, for an infinite periodic sequence the dynam-
ical behavior is exactly ballistic. At the same time, the
probability density P,(z) to find the particle at site O at
time ¢ is given by

Po(8)=|o(0)>=1J(20)|%, (13)
whose asymptotic behavior for large # is®
Py(1)~0.39894¢ ! cos?(2t) . (14)

A temporal autocorrelation function C(¢) can be defined
by smoothing P,(¢):’

— L rtep (o
c=-= [ drpyt), (15)

and for the periodic chain we obtain the following power
law:

C(t)~t™ 1, (16)

for large t.

In Fig. 1, we demonstrate the spatial variation of
|1pn(t)|2 for different time instants . The value of the am-
plitude on a given site, at a given time, is represented by a
dot. It is interesting that the dots seem to be randomly
distributed under an envelope curve, and the peaks of the
wave packet are at the two ends. In fact, the initial wave
packet is a composition of all the plane waves within a
continuous band. At time ¢, only the modes with group
velocity s/t can reach the site having distance s away
from the site 0. Thus, the envelope curve represents the
density of states per group velocity as a function of s.
For a plane wave, the group velocity is 2 sink and the en-
velope function is proportional to 1/V'1—(s/t)?, which
can be seen in the figures. Because for each group veloci-
ty, 2sink, two values of k correspond in the Brillouin
zone, whose difference is 8k =m—2|arcsin(s /2¢)|, the
probability amplitude at a given site is the result of the
interference between the two modes depending on their
phase difference. If 8k /7 is an irrational number at a
site, the dots on the nearby sites may take almost any
value under the envelope and exhibit phase-chaos
behavior. On the contrary, if 8k /7 is rational at a site
the dots on the nearby sites can only reach several isolat-
ed values, which opens windows in the chaotic structure,
as it can be seen from the corresponding figures. Thus, if
the initial wave packet consists of a continuous spectrum
of modes, the dynamical process may display chaotic
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FIG. 1. (a) The variation of the spatial distribution of the wave packet in a periodic sequence for different times ¢. The probability
amplitudes are indicated by the dots and set a is taken for ¢ =500, set b for ¢ =1000, set ¢ for ¢ = 1500, and set d for ¢t =2000. The
units of time are #/E,, where E|, is the unit of energy taken to be the NN hopping. (b) The details of distribution at time ¢ =50. (c)
The details of distribution at ¢ =100. (d) The details of distribution at # =500. (e) The details of distribution at ¢ = 1000.
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FIG. 2. The probability of finding at the initial site O, as a
function of time ¢, in the periodic sequence.

features, despite the linearity of the model.

In Fig. 2 we illustrate the variation of the amplitude
Py (t)=|1p,(t)|? on the initial site O versus time z. The os-
cillatory behavior reflects the quantum characteristics of
the diffusion. In Fig. 3 we plot the integrated autocorre-
lation function C(t¢). It is interesting to notice that the
decay of C(t) for long times is power-law-like. The slope
of the log-log curve gives the corresponding exponent,
which is seen to vary with time starting from 0.84 for
short times and eventually approaching 1.0 for larger
times.

III. DYNAMICS IN THE THUE-MORSE SEQUENCE

As an example of an aperiodic system we choose the
Thue-Morse sequence. The corresponding eigenstates
have a Bloch-like character and are clearly different from
those of the quasiperiodic (e.g., Fibonacci) and the disor-

c)

0 i}

10 10

t

FIG. 3. The integrated autocorrelation function, as a func-
tion of time ¢, is plotted in a log-log scale. The ballistic limit
C(t)~t7! is also shown by the continuous line, which is ap-
proached for long times.

dered chains. The 1D lattice consists of two species of
the atoms, one denoted by A4 and the other denoted by B,
arranged in aperiodic fashion according to the Thue-
Morse sequence.!! This construction can be achieved by
appending to each sequence the complemented subse-
quence, as follows:

4,

AB ,

ABBA ,

ABBABAAB ,
ABBABAABBAABABBA ,

which is equivalent to making the substitutions 4 — AB
and B—>BA. If we use [ to label the generations of this
construction, the total number of sites N is 2/ ™! for the
Ith generation. In the limit /— o, the sequence is
aperiodic and has the property that every second term in
the sequence reproduces the sequence in a self-similar
form. The Thue-Morse sequence has a singular continu-
ous Fourier transform different from the quasiperiodic
Fibonacci chain, whose Fourier transform is discrete and
exhibits Bragg peaks.!!

We have used the tight-binding Hamiltonian of Eq. (3)
to describe the electronic Thue-Morse sequence by taking
the NN hopping to be 1 and the energy levels for the
atoms A4 and B to be V and —V, respectively. Initially
we put the wave packet at a central O site and investigate
the dynamic behavior by numerical integration of the
corresponding time-dependent Schrodinger equation

ii'a(tM=H¢(t) . (17)

The fourth-order Runge-Kutta method is employed. Our
results have also been checked via a direct numerical di-
agonalization of the Hamiltonian H.

In Fig. 4 we show our results for the mean-square dis-
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FIG. 4. The mean-square displacement of a wave packet in
the Thue-Morse sequence, as a function of time and for different
V values, plotted in log-log coordinates.



placement o%(t) for various values of V. The asymptotic
behavior for large ¢ is of a power-law form, but the corre-
sponding exponent u is strongly dependent on the value
of V. For small V, the difference in energy level between
atoms A and B is small, and the behavior of the system is
close to that of the periodic sequence. The value of u is
smaller than, but close to the ballistic limit of 2. If Vis
increased, the difference between Thue-Morse and the
periodic chain sequence increases, while the correspond-
ing exponent is decreased, being close to 3/2 for large V.
Therefore, the wave-packet motion is of super-diffusive
nature clearly different from the laws obtained for the
periodic or the disordered chains. Moreover, it reflects
the Bloch-like behavior of the corresponding eigenstates.

In order to further probe the dynamics we introduce
the information entropy

S()=—T3 [¥,()Pogol¥,()]*, (18)

n

which is an alternative measure to describe the character
of the wave packet in the diffusion processes.?® In Fig. 5
we plot S (¢) versus log;qt for the Thue-Morse sequences
and various values of V. For small V, it increases almost
monotonically with ¢, which means that the wave packet
spreads out continuously, similarly to the situation in the
periodic case. On the other hand, if V is large enough the
information entropy exhibits heavy oscillatory features in
time. This is due to the complicated transmitive and
reflective behavior of the subsequences for different
modes, which are included in the wave packet.

In Fig. 6 we plot the probability density for finding the
particle at site O, or the ‘“‘return-to-the-origin” probabili-
ty, at time ¢. It is shown to oscillate for all values of V
decaying much more slowly than for the corresponding
wave packet in the periodic sequence. Moreover, the os-
cillations exhibit some kind of self-similar structure,
which becomes more evident for high values of V. The
origin of this self-similar behavior in time arises from the
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3.01
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FIG. 5. The information entropy as a function of time for the
diffusion of a wave packet in the Thue-Morse sequence.
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self-similar structure of the sequence in space. This, in
turn, produces self-similar structures of the transmission
and the reflection coefficients versus the energy (or the
frequency) of the corresponding modes.

In Fig. 7 we show the shape of the wave packet at
different instants of time. By comparison with the corre-
sponding periodic case (Fig. 1) it is interesting to notice
that the chaotic features now disappear, while the two
peaks at the edges are replaced by complicated peaks
near the central site. This is due to the filtering effect of
the subsequences for the plane-wave modes included in
the wave packet. As will be seen in the next section, only
the modes in several narrow bands or subbands are
transmissive through the subsequences. Moreover, for a
comparatively large distance only a few selected modes
exist and the diffusion process does not exhibit the
phase-chaos properties present in the purely periodic
structure.

IV. TRANSMISSION COEFFICIENT OF PLANE WAVES
THROUGH THE THUE-MORSE SEQUENCE

In the preceding sections we investigated the diffusion
motion of a wave packet in periodic and aperiodic se-
quences. Since a wave packet can be decomposed into an
infinite number of plane-wave modes of a continuous
spectrum, the behavior of this diffusive motion is closely
related to the transmission coefficient from the sequence
for different modes. As the transmission coefficient in a
periodic sequence is quite trivial (it is unity within the
band and zero outside the band), we focus only on the
transmission coefficient in the aperiodic case.

From the Hamiltonian of Eq. (3), the coefficients of a
plane wave in adjacent sites are related by a transfer ma-
trix via

¢n+1 _? wn (19)
tpn . ¢n—l ’
where ?,, is the 2 X2 matrix
E—e, —1
7, = '
n 1 0

If we insert a Thue-Morse sequence with N sites of
species A and B into a periodic chain made of species A4,
and let a plane wave propagate towards the sequence
from the left then the transmission coefficient, which
measures the intensity of transmitted wave, is

4sin’k
[Ty, —T 5+ (Ty — T,y )cosk P+ (T, + Ty ) sin’k
(20)

|t|>=

where T,,,T15, T, T, are the elements of matrix 7,
defined by

E—-V —1
1 0

F N

Ty is1-
i=1

The wave vector of the incident plane wave is k and for
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FIG. 6. The return-to-the-origin probability
density P,(?), of finding the particle at site O as
a function of time t, for the wave packet
diffusion in the Thue-Morse sequence: (a)
V=0.1, (b) ¥=0.5, (c) ¥=1.0, (d) V=3.0,
and (e) ¥ =35.0. For the cases (d) and (e) cer-
tain enlarged parts are shown in the inserted
figures.
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the periodic chain is related to E by
E=2cosk +V .

In Fig. 8 we plot the transmission coefficient as a func-
tion of energy for ¥ =0.5 and 1.0. Although most of the
plane-wave modes are completely reflected by the se-
quence, we notice that there also exist several groups of
modes, which remain completely unscattered (|t|?=1).
Unlike the isolated transmissive modes in Fibonacci se-
quence and in chains with correlated disorder®?’ in the
Thue-Morse sequence these modes form a kind of band,
which is fragmented into smaller subbands. In the self-
similar band structure the main bands decompose into
subbands whose width reduces when ¥V increases. Such a
transmissive band structure reflects the Bloch-like feature
of the Thue-Morse sequence. For a further demonstra-

100000

tion of this behavior, we have calculated the total band
width as a function of the number of sites imposing a
periodic boundary condition to the two ends of the chain.
The results are shown in Fig. 9, where it is seen that the
band width is reduced and eventually reaches a finite lim-
it when N — «. This is consistent with the presence of
absolutely continuous parts in the spectrum and also
displays the Bloch-like character of the eigenstates. In
quasiperiodic systems the total bandwidth vanishes as a
power-law (singular continuous spectrum) and exponen-
tially for localized states (pure point spectrum). For a
given finite NV the bandwidth becomes narrower when ¥V is
increased, which is also compatible with the results ob-
tained from the transmission coefficient.

In the diffusion process the modes with zero transmis-
sion coefficient are resident within some subsequences
and only the transmissive modes can return to the origin.
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FIG. 9. The log-log plot of the total band width as a function
of the number of sites of a Thue-Morse sequence for which
periodic boundary conditions are imposed in the two ends. The
value of V is indicated besides the curves. The absolutely con-
tinuous component of the spectrum can be concluded from the
finite limit as N — oo.

As a result, the return probability density P,(¢), defined
in the last section, reflects the spectral character of the
transmission coefficient. For V=0 and small V, the
transmissive bands are wide, so that Py(¢) behaves like a
“white noise,” as can be seen from Figs. 6(a) and 6(b).
For larger V, the transmissive bands are very narrow, and
P,(¢) oscillates only with several selected frequencies, as
can be seen from Figs. 6(c), 6(d), and 6(e). Thus, the self-
similarity in the dynamical behavior of Py(t) can be
traced back to the self-similar structure of the |#|? versus
E curves.

V. DISCUSSION

We considered the dynamical properties of electrons in
periodic and aperiodic lattice sequences. In the periodic
case the time evolution of a wave packet performs an un-
limited ballistic motion with constant velocity. The cor-
responding mean-square displacement behaves as

0%(t)=2t? and the integrated autocorrelation function
asymptotically decays as ¢ ~!. Moreover, the spatial dis-
tribution of the wave packet at a given time exhibits in-
teresting phase-chaotic properties, under a well-defined
envelope curve. The origin of such a complicated dy-
namic behavior, in this simple model, is due to the con-
tinuous band of modes which are included in the initial
wave packet and can be transmitted through the se-
quence. On the other hand, in the aperiodic Thue-Morse
sequence only the modes within the very narrow bands or
subbands can be transmitted so that in the corresponding
diffusion process the phase-chaotic behavior disappears.
However, the probability of finding a particle at the ini-
tial site P(¢) exhibits self-similarity in time, which reflect
the spatial self-similarity of the model. The dynamic
behavior in the Thue-Morse sequence is clearly shown to
be consistent with the absence of localization, despite the
slow spread of the wave packet in space.

The present dynamical study, which concerns the local
spectral properties, in connection with our global spectral
study allows the understanding of the dominant physical-
ly interesting questions concerning the aperiodic Thue-
Morse system. The results can be easily extended to oth-
er kinds, such as the period doubling, or circle sequences,
which are generated by different substitutions.!! More-
over, a study of the higher moments of the wave packet is
also possible, in order to specify the details of the evolu-
tion.?® From the experimental side the importance of
deterministic nonquasiperiodic structures has been in-
creasingly recognized. Thue-Morse superlattice hetero-
structures have been grown on by molecular-beam-
epitaxy techniques, and the singular continuous Fourier
transform has been observed. Our results may contribute
towards understanding the electronic structure properties
of these materials.
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