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Abstract

We analyze further the possibility of obtaining localized black hole solutions in the
framework of Randall-Sundrum-type brane-world models. We consider black hole line-
elements analytic at the horizon, namely, generalizations of the Painlevé and Vaidya
metrics, which are taken to have a decaying dependence of the horizon on the extra
dimension. These backgrounds have no other singularities apart from the standard
black hole singularity which is localized in the direction of the fifth dimension. Both
line-elements can be sustained by a regular, shell-like distribution of bulk matter of a
non-standard form. Of the two, the Vaidya line-element is shown to provide the most
attractive, natural choice: despite the scaling of the horizon, the 5D spacetime has the
same topological structure as the one of a RS-Schwarzschild spacetime and demands a
minimal bulk energy-momentum tensor.
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1 Introduction

Higher-dimensional models of Gravitation have attracted considerable interest in the last
few years, mostly motivated by the need to explain the large difference in magnitude be-
tween the Planck scale MP ∼ 2×1018 GeV and the Electroweak scale of particle physics.
A number of interesting theoretical ideas have arisen from this framework [1, 2, 3]. Of
particular interest is the idea of an extra non-compact dimension [3] realized in the mod-
els proposed by Randall and Sundrum (RS), where the spacetime corresponds to regions
of AdS space separated by zero-thickness 3-branes. The Standard Model interactions
are confined on such a 3-brane, while gravitation, propagating in the five-dimensional
bulk , is represented on the brane by an ordinary massless graviton dynamically localized
on it [4]. The four-dimensional Planck mass is an effective scale given in terms of the
fundamental scale of five-dimensional gravity and the AdS radius of the five-dimensional
spacetime. Apart from the study of their cosmological implications, the above higher-
dimensional models have triggered an intense research activity on the topic of black holes
in the context of scenarios with both warped [5][6][7] and large extra dimensions [8].

In the standard four-dimensional world, gravitational collapse is described by the
four-dimensional Schwarzschild metric. In a five-dimensional framework, it would be
natural to expect that the (3+1)-dimensional spacetime could still be described by a
Schwarzschild-like metric when matter localized on the brane undergoes gravitational
collapse. For instance, the one-brane RS model accepts a RS–Schwarzschild black hole
solution with a factorized metric gMN = Diag(e−2λ|y|g(S)

µν , 1), with g(S)
µν the standard

four-dimensional Schwarzschild metric. This solution corresponds to a black string , in-
finite in the fifth dimension [9], that reduces to a usual Schwarzschild metric on the
brane. Although the five-dimensional Ricci scalar and the square of the Ricci tensor
corresponding to this solution are everywhere finite, the square of the Riemann tensor
diverges at the AdS horizon as e4λ|y|/r6. This singularity renders the above solution
physically unsuitable and has led to the speculation that there exist localized black cigar
solutions of a finite extension along the fifth dimension arising from a Gregory-Laflamme
type of instability [10] near the AdS horizon.

The possibility of obtaining localized black hole solutions in brane models was in-
vestigated in a recent article by two of the present authors [11]. There, in the frame-
work of a five-dimensional theory with a warped metric of the Randall-Sundrum type
gMN = Diag(e2A(y)gµν , 1), a dependence of gµν on the extra dimension was introduced.
A particular ansatz corresponding to a 4D Schwarzschild black hole with a “decaying”
horizon scaled as rh(y) = rhe

−ay2

was employed. The bulk energy-momentum tensor
sustaining such a behaviour was derived and was shown not to correspond to that aris-
ing from a conventional form of bulk matter (scalar or gauge field). For such an exotic,
shell-like matter distribution in the bulk, the black hole singularity is indeed localized
near the brane and the spacetime is well defined near the AdS horizon, in contrast to
the behaviour found in black-string-type solutions.

Nevertheless, the above behaviour was plagued by the appearance of a second, al-
though localized, singularity at the black hole horizon due to the singular behaviour
of the bulk energy–momentum tensor at this point. An alternative choice for the five-
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dimensional metric, which describes a spacetime with a distinctly different topology from
the first one but which also reduces to the same black hole solution on the brane, was
shown to be free of this singularity. Unfortunately, this choice failed to avoid the sin-
gularity at the AdS horizon. Thus, it was speculated but not demonstrated that the
additional bulk singularity located at the black-hole horizon is not a generic feature of
every five-dimensional spacetime that induces a black hole solution on the brane, but
that an alternative, well-defined 5D non-factorized spacetime indeed exists, sustained by
an equally well-defined distribution of bulk matter, possibly of a non-standard form.

In the present article, we pursue further the above open question. We first demon-
strate that the non-factorized embedding of a non-analytic 4D black-hole line-element
(i.e. with a diverging, at the horizon, grr metric component), in a 5D spacetime, re-
sults into the manifestation of the black hole horizon as a true spacetime singularity in
the five-dimensional curvature invariant quantities. We then proceed to introduce al-
ternative metric ansätze that describe the same four-dimensional background but which
are analytic at the black hole horizon, namely, the Painlevé and Vaidya spacetimes. A
dependence on the fifth dimension of a decaying form is introduced into the horizon
as in the previous study of the problem [11]. Both ansätze lead to five-dimensional
backgrounds with no other singularity apart from the standard black hole singularity
at r = 0, which, in addition, turns out to be localized near the brane along the fifth
dimension. These backgrounds are promoted into solutions of Einstein’s equations of
motion if we introduce a bulk energy-momentum tensor resulting from a shell-like mat-
ter distribution localized near the brane and not attributable to standard forms of bulk
matter (scalar, gauge fields etc.). The Painlevé ansatz demands the introduction of a
complicated bulk energy-momentum tensor, that is well defined at the black hole horizon.
On the other hand, the Vaidya ansatz leads to a minimal model: despite the non-trivial
profile of the black hole horizon along the extra coordinate, all curvature invariants for
this background have the form of the ones of a factorized RS-Schwarzschild spacetime;
the simplicity of the resulting background is then shown to demand the introduction
of only two non-trivial pressure components in the bulk, a feature often encountered in
brane-world models.

2 Non-factorized RS-Schwarzschild spacetimes

In what follows we shall review, in a relatively self-contained way, the results obtained in
the framework of a non-factorized Randall-Sundrum-Schwarzschild spacetime, an ansatz
introduced in Ref. [11]. In addition, we shall consider generalizations of the previously
studied ansätze and examine their singularity properties. The results of this analysis will
pave the way for the study of black hole metrics which are analytic at the horizon and
describe localized black hole configurations.

Looking for black hole solutions that are localized around the brane, we introduce
for the metric a non-factorizable ansatz of the form

ds2 = gMN dxMdxN = e2A(y)ĝµν(x, y) dxµdxν + dy2 . (1)

2



Note that a y-dependent coefficient of dy2 has been set to unity through a Weyl rescaling.
The ĝµν(x, y) metric tensor is assumed to reduce to the usual Schwarzschild one at the
location of the brane at y = 0, i.e. ĝµν(x, 0) = g(S)

µν (x), while the y-dependence will
provide an additional scaling of the value of the black hole horizon with respect to the
extra dimension, independently of the one of the warp factor. If this y-dependence is
appropriately chosen, the horizon may decay at increasing distance from the brane and
eventually vanish well before the AdS horizon, thus leading to the desirable localization
of the black hole along the extra dimension and the avoidance of the singularity at the
AdS horizon.

Our general framework will be the five-dimensional gravitational theory described
by the action

S = −
∫

d4x dy
√
−g

{

− R

2κ2
5

+ ΛB +
σ√
g55

δ(y) − LB

}

, (2)

where κ2
5 = 8πG5, with G5 the five-dimensional Newton’s constant, and ΛB stands for

a bulk cosmological constant . In addition, LB represents any additional existing bulk
matter , and the constant σ denotes the positive tension of the brane located, as noted
above, at y = 0.

In Ref. [11], we concentrated on the case of a spherically-symmetric line-element on
the brane, and chose the ansatz

ds2 = e2A(y)
{

−U(r, y) dt2 + U−1(r, y)dr2 + r2(dθ2 + sin2 θ dϕ2)
}

+ dy2 . (3)

We also assumed that the five-dimensional spacetime is Z2-symmetric and therefore
invariant under the mirror transformation y → −y. For U = U(r) and a vanishing
cosmological constant Λ on the brane, the above metric ansatz reduces to the black
string solution [9] with A(y) = −λ|y|, where λ2 = κ2

5|ΛB|/6, and U(r) = 1 − 2M
r

. For
Λ 6= 0, this solution can be easily generalized to the RS–AdS/dS–Schwarzschild one [12].
Both types of five-dimensional solutions have finite R and RMNRMN , while the square
of the Riemann tensor is given by

RMNRSRMNRS ∝ 48M2

r6
e−4A(y) . (4)

The above reveals the existence of a string-like black hole singularity infinitely extending
along the extra dimension as well as an additional singularity at the point where the
warp factor vanishes, either at the AdS horizon for a flat brane, or at a finite coordinate
distance for a de Sitter brane.

The introduction of y-dependence in the metric function U and, therefore, the result-
ing scaling of the horizon or, equivalently, the “mass” of the black hole, with the distance
from the brane, could provide a resolution to both of the above problems. If M(y) de-
creases faster than the function e−2A(y) increases, then the singular term in Eq. (4) van-
ishes before the spatial limit of the extra dimension is reached. Unfortunately, as it was
shown in [11], an empty bulk or a bulk with a single scalar or gauge field cannot support
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such a y-dependence. We then followed an alternative approach by demanding an expo-
nentially decaying black hole horizon, i.e. U(r, y) = 1 − w(y)/r, with w(y) = 2Me−ay2

and determining the components of the unknown bulk energy–momentum tensor through
Einstein’s equations. This particular ansatz was found to demand the introduction of
three independent non-trivial components of the bulk energy-momentum tensor, namely
T t

t , T r
r and Tr5. All three were shown to correspond to a localized shell-like distribution

of exotic matter around the brane and to vanish at both r and y infinity.

Although the singular term in Eq. (4) decayed exponentially with the distance from
the brane, thus, localizing the black hole singularity and removing the one from the
boundary of the extra dimension, a new problem arose. The harmless, in 4 dimensions,
horizon non-analyticity at r = w(y) was transformed into a true singularity of the five-
dimensional spacetime. All components of the bulk energy-momentum tensor diverged
at the location of the horizon with the same singularity arising in all curvature invariant
quantities through the appearance of additional terms singular at r = w(y). For instance,
the scalar curvature took the form R = −20A′2 − 8A′′ − w′2/2(r − w)2. Although all
singular terms appearing in the invariant quantities also decay exponentially away from
the brane, the question of whether the appearance of a second singularity is unavoidable
in trying to localize a bulk string-like black-hole singularity remained open.

We will now show that the embedding in a higher-dimensional spacetime of a brane
line-element that is characterized by the presence of a horizon and of mixed coordinate
dependence, i.e. dependence on both brane and bulk coordinates,quite generally results
in the manifestation of brane horizons as true, bulk singularities of the higher-dimensional
theory. This result turns out to be independent of the dimensionality of the problem
and can be demonstrated for a more general four-dimensional metric ansatz than the one
initially chosen. We may therefore consider the following Schwarzschild-like line-element

dŝ2
p = −U2(r, y) dt2 +

dr2

V 2(r, y)
+ r2 dΩ2

p−2 , (5)

describing a (p + 1)-dimensional brane, embedded in a D-dimensional spacetime of the
form

ds2 = gMN dxMdxN = e2A(y) ĝµν(x, y) dxµdxν + γmn(y) dymdyn . (6)

The existence of true spacetime singularities will be reflected in the expressions of the
D-dimensional curvature invariant quantities. For our purposes, the expression of the
scalar curvature will be adequate. In the Appendix, we give the non-vanishing Christoffel
symbols and the components of the Ricci tensor that lead to the evaluation of this
quantity.

In the restricted case where V = U , the determinant
√
−ĝ is y-independent, and,

therefore, all terms in the expression of the scalar curvature in the Appendix involving
derivatives of ln

√
−ĝ with respect to the extra coordinates will vanish. Thus, the singular

terms in the expression of R are

1

4
ĝµν ĝρλĝνλ,mĝ ,m

µρ = − 2

U2
γmn∂mU ∂nU . (7)
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Since the (p + 1)-dimensional metric describes a Schwarzschild-like black hole on the
brane, U(r, y) must vanish at the horizon. Then, the above quantity diverges trans-
forming the (p + 1)-dimensional coordinate singularity to a true singularity of the D-
dimensional spacetime. A special case of the above is the ansatz (3) used in [11] where
the presence of a horizon on the 3-brane led indeed to the appearance of a second bulk
singularity.

Let us go back to the general case of different U and V metric functions and let us
put together all terms from Eq. (A.5) involving solely derivatives of the metric tensor
ĝµν and its determinant, which is now obviously y-dependent. Then, we end up with

−2D̃mD̃m ln
√

−ĝ − ∂m ln
√

−ĝ ∂m ln
√

−ĝ +
1

4
ĝµν ĝρλ ĝνλ,m ĝ ,m

µρ +
1

2
ĝµν,m ĝµν,m =

= −2γmn

(

∂m∂nU

U
− ∂m∂nV

V
+ 2

∂mV

V

∂nV

V
− ∂mU

U

∂nV

V

)

. (8)

Another term that might also diverge at the location of the horizon is proportional to:

∂mA ∂m ln
√

−ĝ = ∂mA
(

∂mU

U
− ∂mV

V

)

. (9)

If we want the metric functions to be chosen independently of the warp factor function
A(y), then, the singular combination inside brackets in the last expression must vanish.
In the case, where only U vanishes, or U and V vanish at different values of r, the
singularity is unavoidable. In the case, where both U and V vanish at the same value
of r, the only solution that leads to the vanishing of this combination term is: U(r, y) =
g(r) V (r, y). But then, Eq. (8) is always plagued by a singularity. If on the other
hand, we allow for the metric functions and the warp factor to be related, then, it is
the combination of Eqs. (8) and (9) that must vanish instead. In principle, one cannot
exclude the possibility that a metric ansatz, that could render the scalar curvature finite,
may be found. Nevertheless one has to ensure that all curvature quantities become finite
at the same time. Despite our attempts, we have not been able to find such a metric
ansatz.

Clearly, the key to the removal of the additional bulk singularities is the use of a brane
line-element that describes a black hole solution but that is analytic at the horizon. In
four dimensions, one can use different line-elements related by coordinate transformations
in order to describe the same spacetime. However, the embedding of these line-elements
in an extra spacetime automatically breaks their equivalence. The resulting higher-
dimensional line-elements no longer describe the same spacetime, a fact which is reflected
in the different sets of curvature invariant quantities determined for each line-element.
In [11], a Kruskal-Szekeres brane line-element, that also describes a black hole solution
but without possessing a horizon, was used instead of the Schwarzschild one. It was
shown that the corresponding five-dimensional spacetime was free of the presence of the
additional singularity. Nevertheless, this particular choice failed to either eliminate the
singularity at the AdS horizon or to localize the black hole singularity. In the next
two sections, we will study two alternative, analytic, five-dimensional line-elements, with
different topological structure but both describing a black hole on the brane, that will
be shown to achieve all of the above goals.
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3 The Non-factorized RS-Painlevé spacetime

Let us start by considering a five-dimensional non-factorized metric ansatz that contains
a Painlevé-type brane line-element [13]. The four-dimensional Painlevé line-element has
been more recently employed in the study of black hole quantum mechanics [14]. A
non-factorized 5D version of it can be written as

ds2 = e2A(y)
[

−
(

1− 2m(y)

r

)

dv2−2

√

2m(y)

r
dv dr+dr2+r2(dθ2+sin2 θ dϕ2)

]

+dy2 . (10)

At the location of the brane, at y = 0, we demand the mass function to reduce to
the usual ADM mass parameter of the black hole, i.e. m(0) = M . Then, the induced
metric on the brane takes the form of the Schwarzschild solution under the coordinate
transformation

v −→ t = v + 4M
(
√

r

2M
− Arctanh

√

r

2M

)

. (11)

The advantage of the line-element (10) compared to the one given in Eq. (3) is the fact,
that although both describe the same spacetime, the former is analytic at the horizon,
i.e. no divergences appear in the metric components at r = m(y).

Hopefully, that will lead to the avoidance of the additional bulk singularity that
plagued the Schwarzschild choice. On the other hand, the y-dependence of the mass
function, or equivalently of the horizon, will be used in the same way in order to localize
the black-hole singularity close to the brane and resolve the singularity at the AdS
horizon.

From the five-dimensional perspective, the metric ansatz (10) must satisfy Einstein’s
equations that are found to have the form

6A′2 + 3A′′ +
2A′m′

r
+

m′′

2r
− m′2

8rm
= κ2

5

[

−ΛB + Sv
v δ(y) + T̂ v

v ] (12)

6A′2 + 3A′′ − 2A′m′

r
− m′′

2r
− m′2

8rm
= κ2

5

[

−ΛB + Sr
r δ(y) + T̂ r

r

]

(13)

6A′2 + 3A′′ − m′2

8rm
= κ2

5

[

−ΛB + Sθ
θ δ(y) + T̂ θ

θ

]

(14)

6A′2 +
m′2

8rm
= κ2

5 (−ΛB + T̂ y
y ) (15)

−
√

2m

r

(

A′m′

m
+

m′′

4m
− m′2

8m2

)

= κ2
5

[

Sv
r δ(y) + T̂ v

r

]

(16)

− m′

4r2

√

2m

r

(

1 +
3r

2m

)

= κ2
5 T̂vy (17)

m′

4r2
= κ2

5 T̂ry , (18)
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where Sµν is the energy-momentum tensor localized on the brane, the simplest case being
that of a brane with a constant tension, namely, Sν

µ = σ hν
µ. We will see below that for

a general mass function m(y) this may be non-trivial, that is, the brane may not be
a vacuum wall. In the above, we have also assumed that the total energy-momentum
tensor in the bulk, TMN , can be written as the sum of two contributions, one coming from
the bulk cosmological constant and one from the presence of a bulk matter distribution
related to LB, that is

TMN = −gMN ΛB + T̂MN . (19)

For the remaining of this paper, we will be assuming that a negative bulk cosmological
constant gives rise to the usual Randall-Sundrum form of the warp factor eA(y) = e−λ|y|.
Then, the terms on the lhs of the diagonal components of Einstein’s equations that are
proportional to A′2 and A′′ are cancelled by the presence of ΛB on the rhs. All remaining
terms containing derivatives of the metric function m(y) are attributed to the presence
of the bulk energy-momentum tensor T̂MN . In other words, the non-trivial profile of
the horizon of the black-hole along the extra dimension demands the introduction of a
bulk matter distribution. For this particular metric ansatz, it is necessary to introduce
non-trivial bulk energy-density and diagonal pressure components as well as three off-
diagonal ones. Since we are reading the energy-momentum tensor from the Einstein
equations, the conservation equation DMTM

N = 0 is trivially satisfied for an arbitrary
function m(y).

Having introduced a brane line-element with no apparent horizon, we expect that no
additional singularity, apart from the black-hole one, will plague the five-dimensional
spacetime. By looking at the components of the energy-momentum tensor, we can
immediately see that they do not diverge at any other point apart from the one at r = 0.
Nevertheless, we should check the expressions of the curvature invariant quantities which
are directly related to the singularity structure of spacetime. The scalar curvature is

R = −20λ2 +
m′2

4rm
, (20)

while the square of the Riemann tensor has the form

RMNRSRMNRS = 40λ4 +
48 m2 e−4A

r6
+

A′m′

rm

(2m′2

m
− 7A′m′ − 4m′′

)

+
m′2e−2A

2r4

(

13 − 9r

2m

)

+
m′2

rm2

(

m′′ − m′2

4m
+

11m′2

16r

)

− m′′2

rm
. (21)

From the expressions of the above quantities 1, we may see that the only singularity that
makes its appearance in the scalar gravitational quantities is the black hole singularity at
r = 0. The mass function m(y) is assumed to be everywhere well-defined, to scale faster
than e2λ|y| and to reduce to zero away from the brane. In this way, all singular terms,
both at r = 0 and at the AdS horizon |y| → ∞, vanish at a moderate distance from the
brane thus restoring a regular five-dimensional spacetime.

1The square of the Ricci tensor, RMNRMN , has a form similar to the one of the Riemann tensor but

lacks the 1/r6 term.
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An ansatz that manages to accommodate all the above demands and reduces to
the usual mass parameter M on the brane is: m(y) = M e−a|y|n where n is an integer
number and a a positive constant. Depending on the value of a, the localization of the
singular terms, appearing in the curvature invariant quantities, takes place at different
distances from the brane but always before the AdS horizon is reached; for a ≫ 2λ2−n,
this localization takes place at a distance smaller than the AdS radius, λ−1. The above
ansatz introduces no discontinuity in the mass function as long as n > 1 since in this
case m′(0) = 0. Discontinuities of the derivatives of the metric tensor are directly related
to a localized matter tensor on the brane through the expression

[K]µν − hµνTr[K] = −κ2
5Sµν , (22)

Kµν being the extrinsic curvature and hµν the induced metric on the brane. The brackets
denote the discontinuity across the brane. Taking into account the Z2 symmetry, we get

[K]µν =



2A′hµν + δv
µδ

v
ν

2m′

r
− 1

2
(δr

µδ
v
ν + δv

µδ
r
ν)

√

2m

r

m′

m





y=0+

. (23)

The first term in the above expression is the standard RS tension term proportional to hµν

that causes the discontinuity in the second derivative of the warp factor. Nevertheless,
for m′(y = 0) 6= 0, additional terms could also be present. This is indeed the case
for n = 1: the discontinuity that arises can be accommodated only in the presence of
additional matter strictly localized on the brane. Although this case cannot be excluded,
we consider it as a rather complicated and a physically unrealistic one.

Finally we need to check the profile of the bulk energy-momentum tensor components.
By mere inspection of the field equations (12)-(18), we may see that, for fixed y, the
components of the energy-momentum tensor scale as 1/rk, where k a positive number,
therefore all of them go to zero at large distance from the horizon of the black hole.
On the other hand, a physically sensible distribution of bulk matter demands also its
localization close to the brane: a bulk matter distribution diverging at y-infinity would
be in contradiction with the concept of localization of gravity around the brane. Figure 1
depicts the profile of the five independent “extra” components along the y-axis for three
different values of n. We choose, for simplicity, r = rh = 1 and λ = 1, in units of Planck
mass. The case n = 1 is qualitatively different from the one in which n > 1 also when
it comes to the distribution of bulk matter: all of the components are peaked at the
location of the brane and rapidly reduce to zero as y increases. On the other hand, for
n > 1, all components reach a maximum, in absolute value, at a location off the brane
before reducing to zero. Small differences appear between the cases n = 2 and n > 2: in
the latter case, all components vanish at the position of the brane while, in the former
one, some of the bulk components, including the energy-density, adopt non-zero values
at the position of the brane without, however, causing any discontinuity in the Einstein
tensor.

In all cases considered, the bulk matter is localized either on or off the brane while
vanishing at infinity, thus creating a shell-type distribution of bulk matter. For n > 1,
the energy-density ρ = −T̂ v

v and radial pressure pr = T̂ r
r satisfy a stiff equation of
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Figure 1: The plot depicts the profile of the five independent components of the bulk
energy–momentum tensor along the bulk (y) coordinate, for λ = 1, a = 10 for n = 1
and a = 20 for n = 2, 3 and for fixed r = rh = 1. All components create a shell-type
distribution of matter in the bulk and then vanish at moderate distances from the brane.

state, i.e. ρ ≃ pr, however, they are not the dominant components as the off-diagonal
component T̂ v

r prevails both at small and large distance from the brane. Almost all of
the components, including the energy-density, change sign at some point in the bulk, and
thus one can easily show that both the weak and strong energy conditions are violated
at specific regimes in the bulk. This behaviour forces us to interpret them as arising
from a non-ordinary distribution of matter. The importance of the non-factorized RS-
Painlevé metric ansatz lies on the fact that it constitutes the first example of a spacetime
with a y-dependent horizon that is well-defined for every value of the radial coordinate
r > 0. More specifically, no divergences appear either in the components of TMN , or
in the curvature invariant quantities, at the location of the four-dimensional horizon of
the equivalent Schwarzschild solution. The above example, as well as the one of the
generalized Vaidya spacetime to be studied shortly, clearly confirm our argument that
analytic black hole line-elements do not generate additional bulk singularities.
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4 The Non-factorized RS-Vaidya spacetime

We will now consider an alternative metric ansatz, that describes a Vaidya-type space-
time on the brane, of the form [15][16]

ds2 = e2A(y)
[

−
(

1 − 2m(v, y)

r

)

dv2 + 2ǫdvdr + r2(dθ2 + sin2 θ dϕ2)
]

+ dy2 , (24)

where ǫ = ±1. The y-dependence of the mass function m is assumed to satisfy the
same criteria as in the previous cases: to become trivial at the location of the brane and
to cause a rapid decrease of m away from it. For a v-independent mass function, the
above line-element takes the form of the Schwarzschild solution on the brane under the
coordinate transformation

v −→ t = v − r − 2M log(r − 2M) . (25)

Similarly to the line-element presented in Eq. (10), the above metric tensor has no appar-
ent singularity at the horizon. Therefore, we expect that no additional bulk singularities
will appear. In addition, the simpler form of this particular ansatz is quite likely to lead
to a simpler form for the bulk energy-momentum tensor.

In accordance to the usual Vaidya line-element in four dimensions, we have kept the
v-dependence of the mass function. For ǫ = +1, the null coordinate v represents the
Eddington advanced time and the corresponding line-element may be used to describe
the collapse of a spherical shell of matter on the brane leading to the increase of its mass
with time, ∂vm > 0. On the other hand, the choice ǫ = −1 represents the Eddington
retarded time which may be used for the study of an expanding shell of matter. Here, we
will be interested in the former case, with the v-dependent Vaidya metric describing the
spacetime on the brane during the collapse, and the v-independent one, or its equivalent
Schwarzschild metric, describing the spacetime before or after the collapse. In what
follows, unless otherwise stated, the mass function will be assumed to be both v and
y-dependent.

Let us first turn to the non-vanishing components of the five-dimensional Einstein’s
equations. We find that, for the metric ansatz (24), the diagonal components simply
reduce to the usual ones for an AdS spacetime, namely

6A′2 + 3A′′ = κ2
5

[

−ΛB + Sv
v δ(y) + T̂ v

v ] (26)

6A′2 + 3A′′ = κ2
5

[

−ΛB + Sr
r δ(y) + T̂ r

r ] (27)

6A′2 + 3A′′ = κ2
5

[

−ΛB + Sθ
θ δ(y) + T θ

θ

]

(28)

6A′2 = κ2
5

[

−ΛB + T̂ y
y ] (29)

where Sµν is again the stress-energy tensor localized on the wall. If we, therefore, assume
that, as before, the bulk cosmological constant gives rise to the usual Randall-Sundrum

10



form of the warp factor, the bulk energy-momentum tensor does not need to have non-
trivial energy-density and diagonal pressure components. Nevertheless, we must have
two independent non-trivial, off-diagonal pressure components, defined by the equations

−ǫ
(

4A′∂ym

r
+

∂2
ym

r

)

+
2(∂vm) e−2A

r2
= κ2

5 T̂ r
v , (30)

e−2A ∂ym

r2
= κ2

5 T̂ r
y . (31)

Once again the equation for the conservation of the energy-momentum tensor, DMTM
N =

0, is trivially satisfied by the above components for an arbitrary function m(v, y). The
presence of the bulk components is necessary to support the non-trivial form of the mass
function m(v, y). Note that even for ∂ym = 0, in which case we recover the usual 4D
Vaidya metric for each slice y = const., the necessity of having a bulk off-diagonal pressure
component, T̂ r

v , still arises. We may therefore conclude that whenever the 4D metric has
a structure that demands a non-trivial energy-momentum tensor, as for example in the
case of the dynamically evolving Vaidya line-element, its consistent embedding in a
higher-dimensional spacetime demands the introduction of a corresponding bulk energy-
momentum tensor. Leaving the problem of the localization of the black-hole singularity
aside, that means that the process of the production of black holes or, in general, of the
collapse of matter on the brane cannot be a purely four-dimensional process that can
take place in a empty bulk.

The finiteness for r > 0 characterizes not only the components of the bulk energy-
momentum tensor but also the curvature invariants derived for the line-element (24),
which are found to be

R = −20A′2 − 8A′′ ,

RMNRMN = 4 (20A′4 + 16A′2A′′ + 5A′′2) ,

RMNRSRMNRS = 8
(

5A′4 + 4A′2A′′ + 2A′′2 + 6
m2(v, y)

r6
e−4A(y)

)

, (32)

for an arbitrary warp factor function A(y). Similarly to the case studied in the previ-
ous section, the above scalar quantities do not have any new singularities in the bulk.
Formally they are identical to the ones derived for a RS-Schwarzschild line-element (al-
though in that case m(v, y) = m = constant), however, in this case, the scaling of the
horizon with the distance from the brane can lead to the localization of the black-hole
singularity.

In the following, let us consider A(y) = −λ|y| and the simple ansatz m(v, y) =
m(v) e−a|y|n , where n is an integer number and a a positive constant. For large enough
values of a, the horizon reduces to zero much faster than the square of the warp factor
so that the last, singular term in the expression of the square of the Riemann tensor
goes to zero as y → ∞ unlike the black string solution (again, for a ≫ 2λ2−n, the
localization takes place at a distance smaller than the AdS radius λ−1). As in the case of

11



the Painlevé metric, the simplest choice would be to consider a mass function continuous
in y. In the most general case of discontinuous m, and assuming Z2 symmetry, we have
for the extrinsic curvature

Kµν = −Γy
µν = A′hµν + δv

µδ
v
ν

∂ym(v, y)

r

∣

∣

∣

∣

∣

y=0

, (33)

and for the localized matter tensor

κ2
5Sµν =

[

6A′hµν − 2δv
µδ

v
ν

∂ym(v, y)

r

]

y=0+

. (34)

For the RS decaying exponential warp factor, we get the usual tension term plus an
additional term for the Svv component provided ∂ym(v, y = 0) 6= 0. For n > 1, this
quantity is zero as before, and the brane is characterized only by a constant tension.
For n = 1, however, the mass function is discontinuous on the brane and the field
equations demand the introduction of a null fluid on the brane characterized by a single
non-vanishing component Svv. We consider this case as a non-realistic one, however, we
include it in the following discussion as a choice consistent with the field equations.

Both bulk components scale as 1/r at large distances from the horizon, taken to be
rh = 2m = 1 at a fixed time v = const, and thus vanish asymptotically. In order to
study the profile of the components of the bulk energy-momentum tensor along the extra
dimension, we may set r = rh and λ = 1, again in units of Planck mass. Since we study
the collapse of brane matter, we further assume that ǫ = +1 and ∂vm > 0. We have
denoted as T̂ r(s)

v the “static part” of T̂ r
v , i.e. the first two terms in Eq. (30), that represent

the value of this component in the two static limits, either before or after the collapse of
the brane shell. On the other hand, T̂ r(a)

v stands for the total expression containing also
the non-static term proportional to ∂vm, and gives the value of the component during the
collapsing phase. The profile of the off-diagonal components of the energy-momentum
tensor, T̂ r

v and T̂ r
y , along the y-axis, is depicted in Fig. 2. As desired, both components,

either static or non-static, are “localized” around the brane and vanish exponentially
fast as y → ∞.

We can see, once again, that the bulk matter distribution is qualitatively different
depending on the value of n. For n = 1, we can see that some bulk components have a
discontinuity at the brane position while, for n > 1, all of them are continuous across
the brane. Focusing on the more realistic case of n > 1, we note that before or after
the collapse, when the line-element is taken to be static, the T̂ r

v off-diagonal pressure
component reaches a negative minimum value at some distance off the brane before
going to zero at larger distances. As the collapse begins and ∂vm starts to increase, the
T̂ r

v component increases too, reaching a maximum positive value off the brane. As the
collapse reaches its end, the T̂ r

v component falls back into its static, negative value T̂ r(s)
v .

We may thus conclude that while a bulk, negative T̂ r
v pressure component is necessary

to support a y-decaying horizon, a symmetric positive pressure barrier is necessary in
the bulk during dynamical collapse on the brane, when we have a non-trivial in-flow
of energy. The remaining off-diagonal component T̂ r

y is not affected by the process of
collapse on the brane.

12
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Figure 2: The plot depicts the profile of T̂ r(s)
v (continuous), T̂ r(a)

v (dot-dashed) and T̂ r
y

(dashed) components of the bulk energy-momentum tensor along the bulk (y) coordinate,
for λ = 1, a = 7 and for fixed r = rh = 1. For the non-static component T̂ r(a)

v we have
used ∂vm(v) = 5. All components create a shell-type distribution of matter in the bulk
and then vanish at moderate distances from the brane.

The above bulk energy-momentum tensor has zero energy-density and diagonal pres-
sure components, so its interpretation by means of an ordinary matter distribution (a
single scalar or gauge field) is not possible. Specific attempts towards this direction
have proved to be unsuccessful similarly to the analysis performed in [11]. However,
the demand for the existence of only pressure bulk components, that are not accompa-
nied by an energy-density, is not unusual in brane models. Such components have been
introduced in single [17] or two brane [18] models in order to modify the topology of
the extra dimension. In all those examples, the bulk pressure component was merely
a reflection of what existed or was taking place on the brane. The present situation is
very similar to the aforementioned one as the introduced pressure components keep the
topological structure of a brane black hole embedded in a higher-dimensional spacetime
close to the brane. In [17], it was shown that the existence of pressure components with-
out a corresponding energy-density in the bulk cannot be attributed to the presence of
an ordinary scalar field with a standard kinetic and potential term. An interpretation
of such a bulk energy-momentum tensor was finally given in terms of a scalar field with
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a non-linear kinetic term of the form (∂Mφ ∂Mφ − c2)2. By considering similar models
in the present case, as well as models with two scalar fields and bulk Lagrangian of
the form 2 LB ∼ ∂Mφ ∂Mχ, we were indeed able to construct a bulk energy-momentum
tensor with the desired non-vanishing components. Although these models could also
accommodate a y-dependent black-hole horizon, none of the models constructed could
support a decaying horizon necessary for the localization of the black-hole singularity. In
principle, however, a model of scalar fields with a structure ∂Mφa ∂Mφb Kab(φ, ∂φ) could
lead to such a bulk energy-momentum tensor.

5 Conclusions

The construction of black-hole solutions in the context of warped brane models has
proven to be surprisingly difficult due to the difficulty in localizing the black hole sin-
gularity near the brane. Although some progress has been made in the numerical con-
struction of such solutions [7], a satisfactory analytical solution of this form, that would
give us valuable information regarding the nature of the gravitational collapse on a brane
embedded in a higher-dimensional spacetime, is still missing.

In Ref. [11] an attempt was made to localize the black-hole singularity near the
brane and, at the same time, avoid the singularity at the AdS horizon by introducing
a dependence of the 4D horizon on the coordinate along the extra dimension. An ex-
ponentially “decaying” form of the black hole horizon in terms of the y-coordinate was
shown to achieve both of the aforementioned tasks. Nevertheless, this non-factorizable
line-element had to be sustained by a bulk energy-momentum tensor, which although
localized around the brane, was of an exotic nature and was plagued by an additional sin-
gularity located at the 4D horizon, a singularity that was also present in the expressions
of the curvature invariant quantities.

In this paper, we have pursued further the quest for localized black holes by provid-
ing answers to questions that remained open after the end of our previous work, such
as: is the additional singularity a generic feature of every 5D spacetime with a non-
factorized line-element?can alternative line-elements be found, that are characterized by
a similar scaling of the black hole horizon and that do not possess this problem? does
the corresponding bulk energy-momentum tensor have to be always of an exotic nature?

We have started our analysis by demonstrating that non-factorized line-elements
which are not analytic at the horizon are always accompanied by the appearance of
singular terms in the expressions of the higher-dimensional curvature invariant quanti-
ties. This leads to the manifestation of the 4D black-hole horizon as a true spacetime
singularity in the higher-dimensional spacetime. The above result paved the way for
the introduction on the brane of black-hole line-elements related by coordinate trans-
formations to the Schwarzschild one, thus describing the same 4D spacetime, that were
analytic at the horizon. We considered two ansätze of this form, the Painlevé and Vaidya
line-elements, which were then embedded in a non-factorized way in a 5D warped brane

2In all cases, the potential V , either self-interacting or cross-interacting, had to be trivially zero.
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model. In both cases, the resulting 5D spacetime was shown to be well-defined for every
r > 0 while the scaling of the horizon with the extra coordinate led to the localization of
the black-hole singularity, at r = 0. In the case of the Painlevé line-element this scaling
demands the introduction of a regular, shell-type but highly complicated bulk energy-
momentum tensor that clearly cannot be attributed to a standard form of matter. On the
other hand, the Vaidya line-element proves to be a much more attractive, natural choice.
Despite the scaling of the horizon, the 5D spacetime has the same topological structure
as the one of a factorized RS-Schwarzschild spacetime. This simplicity is also reflected
in the form of the bulk energy-momentum tensor: only two shell-like off-diagonal pres-
sure components must exist in the bulk while the energy-density and diagonal pressure
components are zero. Motivated by previously studied brane models with similar form
of bulk matter, we speculate that this particular bulk energy-momentum tensor may be
attributed not necessarily to an exotic form of matter but simply to a non-ordinary one,
i.e. scalar field theories with non-linear kinetic terms.

Acknowledgements. I. O. and K. T. acknowledge the financial support of the EU
RTN contract No. HPRN-CT-2000-00152. K. T. acknowledges also the support of the
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Appendix

For the D-dimensional spacetime described by the metric tensor given in Eq. (6), we
obtain the following non-vanishing components of the Christoffel symbols:

Γµ
ρσ = Γ̂µ

ρσ , Γµ
ρs = δµ

ρ ∂sA + 1
2
ĝµν ĝρν,s ,

Γm
rs = Γ̃m

rs , Γm
ρσ = −γmn e2A (∂nA ĝρσ + 1

2
ĝρσ,n) , (A.1)

where Γ̂µ
ρσ and Γ̃m

rs denote the components of the Christoffel symbols being evaluated
exclusively in terms of the ĝµν and γmn metric tensor, respectively. By using the above
quantities, the relevant components of the D-dimensional Ricci tensor are written as:

Rµν = R̂µν −
e2A

2
√−g

∂m[
√−g γmnĝµν,n] +

1

2
e2A ĝρλ γmn ĝµρ,m ĝνλ,n (A.2)

− e2A ĝµν

[

(p + 1) ∂mA ∂mA + D̃mD̃mA + ∂mA ∂m ln
√

−ĝ
]

− p + 1

2
e2A ∂mA ĝµν,m

Rmn = R̃mn − D̃mD̃n ln
√

−ĝ −
[

∂mA ∂n ln
√

−ĝ + ∂nA ∂m ln
√

−ĝ
]

− (p + 1)
[

D̃mD̃nA + ∂mA ∂nA
]

− 1

4
ĝαβ ĝρλ ĝαλ,n ĝρβ,m , (A.3)

where
√−g and

√
−ĝ denote the determinant of the D-dimensional and (p+1)-dimensio-

nal spacetime, respectively, and D̃m the covariant derivative with respect to the “extra”
spacetime.
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Contracting RMN by gMN , we may determine the expression of the higher-dimensio-
nal Ricci scalar which is found to be

R = e−2AR̂ + R̃ − 2D̃mD̃m ln
√

−ĝ − ∂m ln
√

−ĝ ∂m ln
√

−ĝ +
1

4
ĝµν ĝρλ ĝνλ,m ĝ ,m

µρ (A.4)

+
1

2
ĝµν,m ĝµν,m − (p + 2) ∂mA

[

(p + 1) ∂mA + 2∂m ln
√

−ĝ
]

− 2(p + 1) D̃mD̃mA .
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