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The Nambu Jona-Lasinio model is expanded in a mean field expansion. All diver- 
gences are absorbed in a renormalized fermion mass and a renormalized Yukawa 
coupling. Consequently, collective boson self-couplings are fixed in terms of this 
coupling while the boson mass is calculable in terms of the Fermi mass and Yukawa 
coupling. Equivalence to the a model in a special limit is demonstrated. 

1. Introduction 

The Nambu Jona-Lasinio model [1] was proposed sometime ago as a dynamical 
model of hadrons. Because of supposed problems with renormalizability its study 
was confined to the Hartree approximation although the basic formulation necessary 
to prove its renormalizability has existed for many years [2]. 

Recently the renormalizability of these types of models has been studied [3 -6 ] .  
It turns out to be possible when they are developed in a mean field expansion in 
terms of a collective boson field. We show all divergencies occurring in this expan- 
sion can be absorbed in a renormalized Yukawa-type coupling and a renormalized 
fermion mass. The induced boson mass, and cubic and quartic boson self-couplings 
are not arbitrary, but fixed in terms of the two renormalized parameters. This is 
achieved employing the Ward identities of the chiral symmetry and the Callan-Sy- 
manzik equations. The theory is equivalent to the a model expanded in a similar way 
for an appropriate choice of renormalized parameters. 

The paper is organized as follows. In sect. 2 we describe our expansion procedure 
In sect. 3 we study the model to lowest order. In sect. 4 we develop the renormaliza- 
tion of the theory. In sect. 5 we derive equations fixing the boson couplings and 
mass. Finally, in sect. 6, we demonstrate the equivalence to the a model. Results 
are summarized in sect. 7. 

* Work supported in part by the US Department of Energy under contract no. EY-76-C-02-3130 
A002 (Task A-Theoretical). 
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Some of what is contained in this paper is complicated by group structure but is 
otherwise similar to the development of  the bound-state mean field expansion [7] 
for (~ 4) 2. For this reason certain arguments are only outlined here and the reader 
is referred to ref. [7] for details. 

2. The mean field expansion 

The Nambu Jona-Lasinio model is described by the Lagrangian 

L = f(i~J) 4 + ~Xo [ (~4)  2 + (it~-3's4) 2] • 

We can write the four-fermion coupling constant as 

X o =g~/la~, 

where go is dimensionless and ta~ has dimensions of  (mass) z . 
The generating functional is given by the functional integral 

e iw(rl'~) = N fd4 d~ e x p i  f d 4 x  ( ~ ( i ~ ) 4  + ~ 0  ((~ 4)2 

where ~ and ri are anticommuting c-number sources. 
The Gaussian integral over boson variables o and 7r, 

I (o ; ( ;1 fdodzrexp- i  ~ta~ fd4x _go 1 2 .go 

is just a constant, i.e., it does not depend on the fermion variables. Inserting it in 
(2.2) will only change the normalization constant N. The resulting generating 
function is 

(2.1) 

(2.2) 

e iw(~'n's'J) = N ' f  dff d-~ do dzr exp{i f d 4 x  [~(i~ + go(O + i7570) 

_ 1 .  2 , ' _ 2  ~tSo~U + 7 r 2 ) + S o + J z r + - ~ r / + ~ ¢ ]  ) . (2.3) 

We have introduced sources S and J for the scalar and pseudoscalar auxiliary vari- 
ables o and n. 

The integration over the fermions can be performed exactly to obtain 

e iw~'~'S'J) =N'fdo d~ exp{ i fd4x[ -~G~7  - i tr ln( iG-1)  _ ]tao~ o l .  2r_2 + 7r 2) 

+ so + J~]}.  (2.5) 
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Here we have introduced 

G-I(x,  Y) --- [Tuau +go(o + iTsrr)] 8(4)(x - y ) .  (2.5) 

The generating function in Euclidean space is 

eW= f d °dTre -Y{° '~r )=U' fdodTrexp ( - f  [ - ~ a r l - t r l n G - I  + ~1 U2 (02o +rr2) 

- So - JTr] }.  

We can introduce a parameter e as a bookkeeping device to generate an approxima- 
tion scheme. Thus we make the definition 

e we/e = f d o  dTr exp { -F{o ,  7r)/e) . (2.6) 

At the end of  all computations we shall set e equal to one, and W e becomes IV 
except for an irrelevant constant. 

The generating function written in the form (2.6) can be expanded in a bound- 
state mean field expansion [5]. The mean fields (Oo, no) are defined by the mean 
field conditions 

= = 0 ,  (2.7a) 
o0,~r 0 0,°O 

82F ] > 0 
(2.7b) 

6 0i6 O/ ] a 0 ,n 0 
i 

Then the generating function is constructed by the following formula [5]. Here we 
use the notation oi = (o, rr). 

e-F(ffo)/e eWe/e e-trln(A)/2 ~1 - ~ f f f f c ( x , y ,  ~, w)a-~(~,y)a-~(z, w) 

+ f f f f f f s ( x ,  y . z  ) ) t z a  A -'(y,  b) 

+ 3 A -  l(x, y )  a - l(z, a) A - l(b, c)] + O(22)}. (2.8) 

This equation has implicit tensorial multiplication with the components as follows: 

Aij(x'Y) = 8 ° i ~ 8 ° J  (y) Oo' 

63F I 

Bijg(x,y, z) -- 6oi(x) 6oj(y) 6ok(z) eo ' 

64F 
Q/kl(X, y, z, w) -- 80i(X) 60j(y) 60k(Z ) 60I(W ) ii 0 

a o = (OO, no) is determined from (2.7a). 
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3. The lowest order 

According to (2.8) the lowest-order connected functional is 

Wo(n, T, S, J;  o o , 7to) = - F { n ,  ~, S, J;  o o , n o } .  (3.1) 

The mean fields are defined by the mean field conditions (2.7). Classical fields can 
be defined as 

e 8 W e 8 We 
a (x) - ~(~-)  and 7re(x) =- 8-)(x~ " 

To this order the classical fields coincide with the mean fields 

a ° ( x ) -  8W° - Cto(X ) and n°(x) - 6W° - no(X ) . 
SS(x) SJ(x) 

Classical fermion fields can be defined in the same way 

8 We 8 W e 
CAx) = s-~(x--5 ' FAx)  = sn(x)  " 

To lowest order the classical fermion fields are 

6Wo 
= - fd4yGo(x, y) ,70') and ~o(X) = - f d " y  TO') Goo', x) qJo(X) = ST(x) 

The effective action of  the composite fields can be defined in the usual way 

(o ' ,  It" } = We (J, S } - f d4x(S(x) or(x) + J(x) rd(x)) . Pc 

To lowest order the effective action is 

ro  {oo, ~o} = f [ - F o G o ' ~ o  + tr In Go 1 - 1/12o (020 + rrg)] . (3.2) 

G o now refers to 

Gol(x,  y)  = (ig + go(Oo + i3,s 7to)) 8(4)(x - y ) .  

The graphical interpretation of  the trace term is very simple. Translating fields by 
(o, rr) = (s + o, n) where s is such <01sl0) = 0 in the absence of  sources, and adding 
the constant t e r m - t r  ln(i~ + got)), we obtain 

/ [ _  ,.2z_2 n2)_ lagSoO+tr lnO +go(So +i3'srro).)] No {ao, no } Y ~taot~o + 
iO +go o 

, 2 (sg +rrg) ~ (_)v (go(so +i')'sTro)) v = - - -  t r - -  ~/~o v=2 v i~+ gov 
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Fig. 1. 

The linear terms do not contribute due to the mean field condition 6FIBs = O. The 
infinite series corresponds to the infinite set of  fermion polygons shown in fig. 1 
with vertices (go, igoTs). 

The (a, n) effective potential to this order is 

V(oo ' 1to) = ~tlol 2 (o2 + n~) - tr In G o  I (Oo, no) 

The mean field conditions (2.7) coincide with the conditions that we are at a mini- 
mum of the effective potential. They take the form 

a V _ 0 ,  a2V [ > 0 .  

Off 0 60i60 j [ 0 0 

We must keep in mind, however, that this is only demonstrated true to lowest order 
and in general the mean field conditions (2.7) which must be valid with all sources 
on might be different than the minimum condition on V. We have not examined this 
question. If  the conditions differ, (2.7) is the more rigorous mathematical statement 
and should be assumed correct. 

The fermion inverse propagator to this order is 

~ - - ~ ]  = G o  I =4~ + g o ( O o  + i')'57ro) . 

A non-zero mean field, or equivalently a non-zero classical field, implies a massive 
fermion. Assuming that % 4= 0, the mass of  the fermion is 

m = --go °o  • 

The expectation value of  the operator o(x) = ~(x) qJ(x) breaks the chiral invari- 
ance spontaneously. The chiral current, 

/~(x) = [~(x) ~ s ,  ~(x)], 

is still conserved but the vacuum state is not invariant under chiral transformations 

~(x)-+ ei~s ~(x). 

Thus the spontaneously broken Nambu model is characterized to lowest order by 
the propagation of  a massive fermion with a free two-point function. 

The inverse scalar propagator to this order, is 

~ -~ -1  = A~" (p2) = _/~g + g~ II o (p2 ) .  
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o self-energy 
Fig. 2. 

__rr_ _rr 
rr self-energy 

The scalar fermion bubble is (fig. 2.) 

d4k 
l lo(p 2) -= i tr fT-  ,a Go(k) Go(k +p)  

/, d4k k 2 + k . p + m  2 
= 4 i J ( 2 ~  "4 [(k + pi ~ - -m -~-] [/~2 -- m2] " 

Note we have shifted back into Minkowski space. The inverse pseudoscalar propa- 
gator is 

6 J ~  = A~-l (p2) = -/lg ~- gZII~(p2). 

The pseudoscalar fermion bubble is 

d4k 
[Irr(p 2 ) -~ - i  tr ( ~-Z-~a 7s Go (k) 7s Go (k + p) 

r d4k k 2 + k . p - m  2 
: 4 i J  (2~4 [(k + p)-2 m ~ ]- (k-f-- m2] • 

Direct calculation shows the mixed inverse propagator vanishes. 
The fermion bubble is quadratically divergent. Subtracting twice at zero momen- 

tum we obtain 

A ; '  : p ~ g o ~ p 2  ) o] - t# 2 + g2Ili(O) + g2 sub2iii(p2), 

The symbol sub~ stands for 

 [an;1 
sub~lli(p 2) - l l i (p  2) - l l i (O )  - p  ~ffpT] • 

o 

Next we define renormalization parameters by 

A;,(O)=_IjA [~/k;'~ _ 1 
Zo ' \ ~p2 ] o  Zo ' 

A~ -1 (0)  -- b/2 ~ A ~  -1 ~ 1 (3.3)  
Zn , \ Op2 ] o  - Zrr " 
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Thus, we are led to 

Aol  (p2) = Z~-1~-1 (p2) = Z o l  [p2 _ ~t~ + g2 o sub~Ilo(p2)], (3.4) 

and 

z~k~- 1 (p2) = Z~-I ~ - 1  (p2) = l~- i  [p2 _ ],22 + g2 sub ~ II~r (p2)1 . (3.5) 

The renormalized couplings are defined as 

g~ =ggZo , g] =g~Z~r . (3.6) 

The mean field condition to lowest order leads to the gap equation 

rd4k  2 
~ 0 0  = -ig 0 tr J ~ ) 4 ( k  + goOo) -1 , 

or 
• 2 r d4k 1 (3.7) 

P~ = argo J ~ 4  [k 2 - m 2 ] • 

On the other hand, the condition (3.7) for the pseudoscalar mass is 

Z _  cd"k 1 
U• _ p2 ° _ 4ig~ 
Z ,  0(270 4 [k 2 - m = ] 

(3.7) immediately implies that 

p~ = 0 .  (3.8) 

This is equivalent to 

A~ -1 (0) = 0 .  (3.9) 

Thus, the pseudoscalar propagator has a zero-mass pole. This is obviously the expli- 
cit lowest-order realization of  the Goldstone theorem. Breaking the symmetry via 
the non-vanishing expectation value of  o has resulted in the presence of  a massless 
pole in the Green function of  the related operator lr. 

Examining the unrenormalized expression for the o-propagator and using the 
gap equation to get rid o f p  2 we obtain * 

• 2 r d 4 k  / 2 m 2 ( 1 - 2 x )  
Aol (4m2 ) = --4tg o J ~  dx -[k 2 _ ~  _ 2x)212= 0 .  

• This is the only statement we use that is in any way cutoff dependent.' Even so the dependenc~ 
is absolutely minimal. We only assume that integrals of the form 

0 

This is satisfied by a rational cutoff scheme. In general we do not use cutoffs, as our renorma- 
lization procedure makes them irrelevant. See next footnote. 
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Thus the pole of the o propagator appears at threshold. Since we have subtracted at 
zero, our mass parameter is not the physical o mass but it is related to it through 

/a2o = am 2 +g2osub~IIo(am2 ) . 

Evaluating the subtracted bubble we obtain the explicit relation 

( /12o=4m 2 1 + ] - ~ ]  . 

The renormalized couplings are to this order 

(3.10) 

1 Z o l  g2 2 ((_d_4k)e 3 k ~ - m  2 
- _ 0 m 2 ) 3  g2 ° g2 g~ 3 J (27r) 4 (k~ + 

_ 1 f d k 2  d k 2 k 2 ( 3 k  2 - m 2) 
247r 2 (k 2 + m2) 3 

1 _Z~r_ 1 / "  dk2k 2 

2 - g 2  87r 2 J ( k  2 +m2)2 " 
g~r 

Thus 1/g2o and 1/g~ are logarithmically divergent quantities if explicitly calculated 
and hence require a renormalization procedure to make them meaningful. We shall 
assume gn and go are undetermined but  finite numbers *. They are independent of 
the bare coupling go except through the mass m. It is a property of these theories 
to all orders that the explicit go dependence is absent. In lower dimensions subtrac- 
tion is not necessary and the couplings can be calculated. We conclude that to this 
order the renormalized o and 7r propagators are finite functions of the fermion mass 
and the couplings. These couplings, because of the divergences, are considered, in 
essentially the usual way, as arbitrary renormalized parameters [9]. Higher orders 
result in further renormalization and conceivably the logarithmic divergences asso- 
ciated with them might cancel. Old work on summing of such divergences suggests 
that they do not, except in the case of vector theories where a Johnson-Baker-Wiley 
type eigenvalue condition is the condition for cancellations. 

* The reader should be consciously aware of what he might regard as peculiarities in our renor- 
realization procedure. We do not use explicit Langrangian counter term renormalization proce- 
dures in our discussions of mean field theories, but instead regard divergent Green functions as de- 
fined by either subtracting or differentiating in momentum space until they are finite and then 
integrating or adding back in the requisite number of powers of momentum multiplied by finite 
(but undefined except through identities of the theory) constants. This method is obviously 
fully equivalent to the Lagrangian counter term method but to our taste is somewhat more 
elegant for dealing with mean field problems as well as more conventional coupling constant 
renormalization problems. Furthermore we do not need to use an explicit regularization schem~ 
since the results obtained through the above procedure make no reference to divergent quanti- 
ties. As a very nice alternative example of this type of procedure see ref. [8]. 



G.S. Guralnik, K. Tamvakis / Nambu Jona-Lasinio model 291 

Eq. (3.10) implies that 

a--J I o o :  ° = t% = 4m 2 1 + > 0 .  

This goes part way towards satisfying the mean field stability condition. However, 
the condition (2.7b) is a matrix and since 

62F [ = 0 

6n60 [ ao:r o 

in order to satisfy it we must have 

82F a0,~r0 2 =u >0 
677i67r j Zrr " 

Since/~ = 0 by the Goldstone theorem, this cannot be valid. We can get around the 
difficulty by arguing that this sort of  problem is characteristic of  the theories with zero 
mass and that we will move the mass away from zero by not turning the source S(x)  
entirely off but instead setting it to a small constant value m o . Thus we simulate a 
Fermi bare mass, destroy the chiral symmetry, and a l low/~ > 0. At the absolute 
end of  any calculation we will then let m o ~ 0 and let the theory go smoothly to 
the spontaneously broken chiral symmetric limit. This works fine in lowest order. 
In higher orders there are infrared divergences which we shall assume, insofar as 
they need to be, are controlled by this procedure. Consequently, we ignore the 
problem in formal manipulations. In any event, as will be illustrated in sect. 6, the 
problem is no worse (or better) than the infrared problems of  a normal a model 
with massless pions. 

Even after satisfying the mean field stability condition by this device we have 
not guaranteed that our example is free of  esoteric behavior. This model as well as 
all other summed fermion theories have Landau type ghosts induced in the scalar 
and pseudoscalar propagators. As an example of this it is easily found that the 
o propagator has a pole at space-like momentum for p2 ~ 2m 2 eOr2/g2o). This is an 
example of  the Landau ghost first observed in electrodynamics. In this case, when 
the infinite series of  the fermion bubble graphs is summed, a tachyonic pole 
appears in QED. near 4m2e 3~/a. 

It is evident, from the nature of  the location of  this pole, that for any moderately 
small values of  the coupling constant the problems occur at such large values of  
momentum as to be beyond any conceivable relevance [9]. This "ghost" will not 
be any more of  a concern to us than it is in any conventional perturbation theory. 
This is because we will show that the effective expansion parameters of  the theory 
are eg 2 and eg 2. When e-+ 1 we therefore must take g2 a and g2 small so they serve 
the role of  expansion parameters. Consequently, the renormalized Green func- 
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1 
! 

Fig. 3. Three-boson vertices. 

tions should be calculated _t° some fixed order in g~ and g2 u. This is easily done sys- 
tematically (when g2 o and g~ are of the same order)by calculating the unrenormalized 
theory to order e n, renormalizing, setting e = 1, expanding in g2 o and g~ and discarding 
terms of the form g2omg~p where m +p >n. This expansion eliminates the ghost which 
is a property of the infinite summation and puts this theory in a form equivalent to 
that obtained from a more normal-type perturbation theory. The results can then be 
resumed in whatever form desired with the usual perils. 

Next, we examine the three- and four-boson vertex functions. The non-vanishing 
cubic vertices are the nno and aoo. The surviving quartic vertices are nnnn, aooo 
and nnoo. 

The three-boson vertex is just a fermion triangle, to this order, (fig. 3.) 

5A~- ° d4k 
P°Tro(pi, p2) = :igg t r f l : - ~ V o ( k ) T s V o ( k + p l ) T s V o ( k + p x  +P2) 

do  0 • -/ ~ z T r )  

+ (2xT),  

5 
A°; = --ig] tr f ( ~ n ~  GO (k) G O (k + P l ) Go (k + P l + P2) + (2xT).  r°ooo(pl, p2)--- ~o0 

The symbol xT is used here and in what follows as a shorthand for cross terms. The 
fermion triangles are logarithmically divergent. We subtract them once at zero and 
introduce renormalized cubic boson self-couplings by 

mXTrrra 0 mXaaa 
r°.o(O, o) = 3 z y 2 z "  , rooo(o, o) = ~ . 

We then obtain 
- -  - - 1  - - 1 / 2 - - 0  _ - - 1  - - 1 / 2  

P°~ro(pl, p2)-ZTr Zo F~,ro(pl,p2)-Z~r Z o 

+pl + p2)   Oo(k) X [~mkjrrro+ ig2ngo sub ~ d4k 

+ (2xT)] ] ,  (3.11) 
/3 

r°ooo(Pl, p2) = z-~3/2rooo(p ~, P2) = Z~ 3/2 [ mXooo 

d4k 
• *P2) Go(k) } * (2xT)[ (3.12) - t ga  subovrd(2n)4Vo(k  + _ ' Pl / _J • 
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f " S' %% 

Fig. 4. Four-boson vertices. 

g~r, kmro, and kooa can be calculated in terms of go and m. We defer the lowest-order 
case to sect. 5 where the lowest-order results are derived as a special case of the all- 
order results. Details of the lowest-order calculations are contained in ref. [7]. 

The four-boson vertex to this order is just the fermion quadrangle (fig. 4). These 
quadrangles are logarithmically divergent and need one subtraction. Subtracting at 
zero, as before, and introducing the renormalized quartic self-couplings by 

r°,~.(o, o, o) - x.~. 
z~ ' 

r°ooo(O, o, o)- Xoooo o ),oo.. 
z~  ' r.~oo(O, o, o)- 3ZoZ.' 

we obtain 

0 -- --2 - -0  f - -  rmr~rn(Pl, P2, P3) - Z °  Faaao(Pi, P2, P3) = Zo 2 ~kaaaa 
I_ 

[ r d4k 
+ ig 4 subl [trJ(-~ff)4Go(k)Go(k +pl)Go( k +Pl +P2) Go(k +Pl  +P2 +P3) 

(6xT)) [ , (3.14) + 

r°noo(Pl, P2, P3) - --1 - - 1 - - 0  -- --1 --1 [ _ 1  x -Z~  Z a Fmroa(Pl,p2, p3)-Z~r Z° 3 mroo 
K -  

1 [ r d4k . 
-g]g2o subo [tr ) ~ - ~ G o ( k ) 7 s O o (  k +Pl)"YsOo( k +Pl +P2) 

+Pl  +P2 +P3)+ (6xT))J . (3.15) Go(k 

Just as the renormalized three-boson couplings are not independent renormali- 
zed quantities, so the four-boson self-couplings will be shown to be determined to 
every order as functions of the renormalized Yukawa-type couplings and the fermion 
mass m. No other Green functions need subtractions since they are superficially 
finite. For example, the pure Fermi four-point function to lowest order is (fig. 5) 

62Go 
8r16~ - g2G°G°Aa°G°G° + g2G°iTsG°A~r°G°iTsG° + (xT) 

- -  2 - -  - -  + 2 - -  • . - -  -goGoGoAooGoGo gnGorYsGoA~ro GorysGo + (xT).  
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> <  .... 

Fig. 5. Fermi-Fermi scattering. 

The important observation to be made from this is that there is no remnant of  the 
original contact four Fermi interaction. It is this property which makes the model 
renormalizable in the mean field approximation. 

4. Renormalization to all orders 

The first step in our renormalization program is to recognize the superficially 
divergent diagrams of  the theory. It is clear that, in the bound-state mean field 
expansion, expression (2.8) gives the every-order vacuum-to-vacuum amplitude as a 
function of  the lowest-order quantities Go, ao, and lr o in the presence of  sources. 
It is tedious but straightforward to demonstrate that by differentiation of  the log 
of  this amplitude with respect to the sources that any graph to any order can be 
constructed out of  two basic vertices [ 5 - 7 ]  after the sources are turned off. One is 
the trilinear coupling of  form 

g~ZXoo(X, y) Go(Z, y) Go(v, w) , 

and the other is 

g~Za,o(X, y) Go(z, y) "rsGo(:,,, w) . 

Fig. 6 shows all the basic vertices with sources on. It further can be shown that the 
order of  the expansion in e n of  any graph is determined by adding the number of  
its independent momentum integrations which have at least one o propagator or 7r 

Fig. 6. Basic vertices. 
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Ca) D - 2  
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D =  1 

~ (c) D =  0 

~ ( d )  D - i 

~ ( e )  D - o 

Fig. 7. Classes of  superficially divergent graphs. 

propagator. Since from the results of  sect. 3 it follows that 

_ p 2 1  IX 2 P2->~[I\ 

p2...~ 1 

we can analyze the large momentum behavior of any combination of  the propaga- 
tion functions. The superficial degree of  divergence corresponding to a graph with 
B external e or rr lines and F external fermion lines is found to be 

D = 4 - B -  }F .  (4.1) 

According to the above formula, vacuum graphs will have maximal D = 4. This is 
irrelevant since vacuum bubbles are always divided out of  any Green function. Also 
graphs with one external o or 7r line, having D = 3, will always be absorbed into the 
fermion mass and need not be discussed further. 

The superficially divergent graphs that occur in our expansion, i.e., those with 
D i> 0 are the following (fig. 7): 

(a) graphs with two external (o, rr) lines (D = 2) ; 
(b) graphs with two external qJ lines (D = 1) ; 
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(c) graphs with two external ~ lines and a (o, rr) line (D = 0) ;. 
(d) graphs with three external (o, 7r) lines (D = 1) ; 
(e) graphs with four external (o, rr) lines (D = 0) .  

The analysis is the same for other four-fermion theories [6,7] like ( f~ )2  or 
(~xa~k) 2 and is not altered by the group structure of the Nambu model. 

Graphs having two external meson lines have a maximal D of 2. The leading 
behavior of the lowest-order inverse (o, 7 0 propagator is 

f 
d4k  
-k- if- ~ A z . 

As we have already seen, these graphs require two subtractions. 
Graphs with two external fermion lines are linearly divergent, thus requiring two 

subtractions. They behave like 

f d4k  k • ( k ~  ~ 7  A .  

The vertex graphs having two external fermion lines and one (o, zr) line have D = 0 
They are logarithmically divergent behaving like 

f d4k  
~ V  l n A .  

Graphs with three external (o, rr) lines have D = 1. Their true superficial diver- 
gence is logarithmic. Having dimensions of mass, the 3(o, ~r) 1PI functions must be 
proportional to the fermion mass since they vanish when the chiral symmetry is pre- 
served. The other dimensional parameter of the model p~, as we shall show, is 
always determined in terms o f m  and the couplings. 

The 3(o, it) graphs behave like 

( d4k 
mo mo in A .  

Graphs with four external (o, n) lines have D = 0 and are logarithmic. They 
behave like 

f d4 k 
~ l n A .  

No other graphs have superficial divergences. 
The next step in our rerLormalization program is to write down a set of suitable 

renormalization conditions for the superficially divergent functions at some arbitra- 
ry point Po in momentum space. For the time being, we wish to avoid Po = 0 because 
the Goldstone boson in DTro can lead to complications at this point as previously 
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mentioned. We define the following (valid after all sources are turned off): 

- '  _ . o -  
c - I ( P ° )  = "  "\6--~/ z2 ' 

PO 

[~2[,i/  \ - - 1  f 2 2 ( ~ 2 W e ] - I  Po p2 /12 - e - P 0  -- UO A ~ - l ( p 2 ) =  - 0 -- 7r 

-I P o - 1  [~-A~-I] Po -  1 - ~ j  ) zo' ~ ~p2 ! z . '  

_ 1 
ro(po, -Po)  = ~go~- !  ZOO) '  

Po 

( 6 G - l ~  " _ i75 

r . ( p o ,  - p o )  -- ~ ~goTJlpo - ~ , ( i 3  ' 

~A°l  1 - m ~ k ° ° °  
rooo(po, - Po, 0) = ~ S - - ~  Ip Z3/2 ' 

o 

6 A ~  Po-  mXmro r'.. .(Po, -Po, O) : T o  3Z~rZlol 2 , 

6 2 A a  -1 - ~koo°o 
roooo(po, -Po, O, O) = ~° 2 PO Z2 ' 

r....(po, -Po, 0,0) - 62A~-167r2 PO - -kmrn~rZ2 

- t~2Aal  P0 --~.nnoa I'mr~o(Po, -P0,0 ,  0) - 6rr67r = 3ZTrZ a (4.2) 

The renormalized parameters of the theory as will be explicitly demonstrated from 
the Schwinger-Dyson equations are: 

(a) a renormalized fermion mass m; 
(b) two renormalized boson masses/a2o and/a2; 
(c) a set of dimensionless Yukawa-type couplings 

2 (Z(2) ~2 
go -g~Zo ~z-Zfj; ' 

( z ( 2 )  
g .  - g~z,, ~2-.Ti~1 ' 

g o - g ~ z ~  ~ z - ~ ]  ' 

( . 
g~ - g ~ z .  ~z~iS] ' 
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(d) two dimensionless cubic boson self-couplings 

~krtrro , ~kaaa ; 
(e) three dimensionless quartic boson self-couplings 

XTrTrTr~ , Xaaoa , Xlrlraa • 

As we have already seen to lowest order, the boson masses are always determined 
in terms of the fermion mass and the dimensionless couplings. We shall show that this 
is true of  all orders of  the mean field expansion. The plethora of  coupling constants 
resulting from the group structure will be reduced to one Yukawa coupling and one 
quartic coupling through the use of  Ward identities of  the spontaneously broken 
chiral symmetry.  In addition, we shall show that the quartic coupling is not an inde- 
pendent renormalization parameter but is always a function of the renormalized 
Yukawa coupling. This is a consequence of the absence of a bare quartic coupling. 
In order to demonstrate that we shall employ the Callan-Symanzik equations. 

Thus, finally, we shall be left with only two independent renormalized parameters, 
a renormalized fermion mass and a renormalized dimensionless Yukawa coupling. 

Postponing proof  of  this until sect. 5, we now outline how all divergences can be 
absorbed in the renormalized parameters to every order in our expansion. 

The Schwinger-Dyson equations of  the model can be derived in a straightforward 
way from the eq. (2.6) in Minkowski space. By differentiating (2.6) with respect to 
the sources using the explicit form o fF (o ,  n) we find the following Green function 
equations 

iB+go(o(x)+iTsTr(x) )+ego ~S +iTs - ~(x)  + r/(x) = 0  , 

(4.44) 

t~g o(x) = S(x)  + go i tr G(x, x )  , (4.4b) 

t~grr(x) = J(x)  + goi tr iTsG(x, x )  . (4.4c) 

Eqs. (4.4b) and (4.4c) are displayed with Fermi sources off. We have lost no genera- 
lity from this as all Green functions with the sources off  can be derived by differen- 
tiating these equations [5]. We find for the Green functions with superficial diver- 
gence the following: 

[ d 4k 
G - l ( p )  =a0 +go o + ig2e j - ( 2 ~ G ( k  + p) Aa(k)  r a ( k  + p, k)  

+ • 2 F d 4 k  
tg°e J ( 2 r r ~  i t s  G(k + p) An(k  ) r~r(k + p, k ) ,  (4.5) 

£ d4k 
A ~ l ( p  2) = --u~ + ig~ tr J ~ 2 ~ f f G ( k  + p )  Fo(k + p, k) G(k) , (4.6) 
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A~-l(p 2) = --/a~ + ig20 r d4k t r J ~ g i T s  G(k + p) F~r(k ÷ p, k) G(k), (4.7) 

Fo(k,k + p ) ' l +  ig~e ~ [ f GAaFo + f iTsGA1rF1r] , (4.8) 
go o 

• 5 6 [ f a a o r ' o  + f i v s a ~ . I ' . l  (4.9) r~r(k, k + p) : i~/s + tgoe 6g ~ 

6 [trfi~,sGr~G] (4.10) 

i~ooo=ig3o 6 [trfCroC] (4.11) 
~go~ 

65 [tr f GPoG] (4.12) roooo =/g~ 6(go °)2 

6 2 
[trfiTsGF,G ] (4.13) F~rnuTr = ig 4 6 (go lr) 5 

62 
[tr f iTsGF,rG ] . (4.14) rnlr°° = ig4 6 (gO °) 2 

The sources S and J are off in this set of equations. 
Next we start our subtraction procedure. The number of necessary subtractions 

is dictated by the degree of superficial divergence. 
The inverse fermion propagator (4.5) is of the form 

a - l ( p ) = ~  +go(y+ ~ (p).  

The fermion self energy is in general 

(p) =~a(p 5) + B(pS). 

Subtracting once at momentum Po and consulting (4.2) leads to the following 

G - l ( p )  = [~ - m +Z 2 subp20~ (p)] Z~ -1 , 

where 

sub~o ~ (P) -9~ (A(p 2) -A(p20)) + (B(p 2) -B(P20)). 

Thus the renormalized fermion propagator, 

~--1 =Z2G-1 , 
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is defined as 

2 [- r d4k +J'~4i75G~.r= 
G - l ( p )  =l~ r -  m + Z2ig ~ sUbpoLJ (2~GAoF a ( 2 )  t i4.15) 

The inverse a-propagator A~- 1 (p2) = _#~ + II a(P2) must be subtracted twice 
since it contains quadratic superficial divergence. Thus, consulting (4.2) we obtain 

Aa(p2) =Z~I1 [p2 _ #2 +Z ° sub~giia(p2)] , 

where 
(ono  . sub22po IIa(p2)  = I I ° (p2 )  - I l o (pg )  - (p2 _ p2o) ~ aP 2/v'g 

Thus, the renormalized a-propagator 

~a  1 = Z a A a l  

is found to be 

~ a l  (/92) p2 2 • 2 F(~ d4k )] = - # a + Z o t g o s u b 2 2  t r G ( k )  P a ( k , k + p ) G ( k + P  • 

(4.16) 
The n-propagator is subtracted in the same way. The renormalized n-propagator 

~ 1  = ZnA~l 

is 

~ ; l  (p2) _--p2 _ #2 n + Z~ig~ sub22po [- £ d4k )J [ J ( - 2 ~  tr iTsG(k) P~(k, k + p)  G(k + p 

(4.17) 

Renormalized scalar and pseudoscalar fields are defined to be 

a = Z l/z ~ ,  (4.1Sa) 

- ~/2 7r-ZTr ~- • (4.18b) 

The renormalized fermion vertices are subtracted once to obtain 

[ f o ~ ° r .  + fi~sozx.r~l ra (Pl ,  P2) = 1 + ig~ e 6~O~Oa 

- A a p  a zo(1) + ig~°" sub~o,-"o iL~t f ° + fi,,o~.r~l 
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Similarly 

Fn=Zlr(1)- lr ,  r=Zu(1)-ll i 'Ys+ig~eZlr(1)sub~o,_PO{~g~[fGraAo 

The three- and four-boson vertex functions have logarithmic superficial divergence 
and must be subtracted once. Thus, we have 

8 
r . . o  = ig3o -6g~ tr(iTsGI'.G) 

1 8 . 
- 3Z~rZ1/2mX~rr° +ig3 o SUbpo,_Po{6~ootr(rfsGI'~rG)} 

= z~lzol/2Plrlro = z ~ l z o  1]2 ~mXmro 

(4.21) 

Similarly: 

Im 1 ( S t r ( G P o G ) } ]  Pooo = Z~ 3/2 F°oo = Z~ 3/2 X°oo + i~37a/2 subpo ,_po 6go~ 

(4.22) 

- 4  2 P~rumr = Z~2Pmrmr = Z~ 2 X~rTrmr + lgoZ n subi~o,_po,O tr (iTs GP,~G) , 

(4.23) 

F _ - 2 -  . 4  2 oooo - Z o Poooo = Z-~ 2 Xoooo + tgoZ o sublpo' ' tr (GPoG 

(4.24) 

f 
1 X roolrTr = Zo l  Z ;  1 Foon~ r = Zo l  Z ;  1 L-  ~ 

o , -  o, - 8 ~ g ~  tr(i~,sar,a ) . (4.25) 

Our next major step will be to indicate that (4 .15)-(4 .17)  and (4 .19)-(4 .25)  are 
finite functions of the momenta  and the renormalized parameters, i.e., all the cutoff  
dependence has been absorbed in the renormalized parameters. Our proof  will only 
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be lacking in a detailed discussion of  the overlapping divergences through displaying 
the renormalized Green functions in a form manifestly free of  overlaps. We will go 
most of  the way towards this goal by removing the bare vertices 1, and i ts  from our 
Green functions. This will, in fact, produce functions which are adequate for calcu- 
lational purposes and properly display the parameterization of  the theory. We will 
provide more details following the procedures of  ref. [8] in a work more specifically 
aimed at the study of  the Schwinger Dyson equations [10]. 

We observe that (4.19) can be written as 

6 [fcro o+fi sar. .l Fo = 1 + ' goe  ~ g o ~  

Introducing quantities I o and I~r this becomes 

2 t t f  . t t  r.(0 -= 1(~')[8(~' - ~) - ego[Ao(~ ~ ) GI,(~"~) + A~r(~'~" ) lTsGl~r(~ 01 ]  - 

(4.26a) 

Here we have explicitly displayed the coordinate associated with the propagation of  
the bound states. We have used an extended matrix notation and suppressed the 
coordinate and spin indices associated with the Fermi field. The only information 
relevant to our discussion at this point is that I o and I n, which are functions of  four 
coordinate and two Fermi matrix indices, are related to meson and fermion scat- 
tering to meson and fermion and hence by our earlier arguments are superficially 
finite. The only divergences they contain come from the divergences of  other Green 
functions. It is the use of  this fact and the similar set of  conclusions from an analy- 
sis of  Y'~(e) which allows us to eliminate the overlaps in a full analysis. For our pur- 
poses here we observe that we can write 

r o : 1 + i g ~ -  6 [fGroao] 
8(go~) 

ig]goe 6 
go 6(go~) [ J  i~s~P"A~] (" ' 

which implies that 

1 = Z o ( 1 ) - 1 P o B  o ,  ( 4 . 2 6 )  

where we have made the definition 

g° 

with Ba only a function of  renormalized quantities. Of course, B a is not finite but 
its divergences are associated with those of  Po and will be removed in a subtraction 
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and so cause no harm. In an analogous fashion we can obtain 

its = ZTr(1)~ ~rB~r • (4.27) 

We are now ready to examine the renormalized functions and prove what we have 
promised, i.e., their dependence only on renormalized parameters. 
The fermion propagator is 

2 / -2 d4k 
~ - l ( p ) = p  _ m + ig2oeZ2 SUbpo~Z2ZoZo(1 ) /~2--~  roBaGdxoFo 

-2 e d4k ] 
+ ZzZTrZn(1) I , 

or using the definition of the renormalized parameter 

~ - l  (p) =4~ - m + ig20e sub~o (/Po, BaGAoFo } 

+ ig] e sub~o {~/P~rB~rGA~rF 7r). (4.28) 

The o-propagator is 

ZI~I = p2 _ 122o + ig~ZoZ~Zo(1)-2 sub~o2 [trfPoSoCroGl 
or 

~ol(p2)  =p2 _/12o + ig20 sub22 [t 4 PoBoGFoG] . (4.29) 
Po 

Similarly the n-propagator is 

~-1 (p2) =p2 _/a~ + ig] sub22 {tr(F~rBnGFnG)}. (4.30) 
Po 

The fermion vertices are 

+ igTrg~e sub~o,_Po (FrrB~G~-~)  , (4.31) 

• ' 1 P~r = its + zgTre SUbpo,_vo (r~rBTrGA~rP~r) 

+ ig20esublo,_Po(6(g:--~(FoBaGF°~)}.  (4.32) 

Finally, the boson vertex functions are: 

Prr~ro = ~mX~r~ro + ig2~go sublo,-Po { ~ o ~ )  tr(P~B~rGI'~rG )} , (4.33) 
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Fooa = mXooo + ig3 sublo,_Po { ~ o  ~ tr(FoBoGFoG)} , (4.34) 

I I U 1 ___ Foooo = -Xoooo + ig 4 s bpo,_po,O ~(go0_)2 tr(FoBoGAoG ) , (4.35) 

/ Fomrn - 1 tr(Fa/3aG~aG ) (4.36) subpo,-po,O 

F ~  = - X ~ n  + ig4 subp ol ,-po,o ~ tr(F~B~GF~G) . (4.37) 

Thus, we have succeeded in expressing the renormalized functions only in terms 
of  renormalized quantities. This shows that the renormalized functions are finite 
functions of  the momenta and the renormalized parameter if the overlaps are not a 
problem as in fact is the case. 

A further important observation that we can make here is that the parameter e in 
these Green function equations always multiplies one of  the coupling parameters. 
Thus, if we let e ~ 1, we can keep an effective small expansion parameter by making 
all the g's approach zero. Note that with e = 1 and expanding with the g's small, the 
renormalized Green functions look identical to the renormalized coupling constant 
expansion of  a conventional o model. The esoteric aspects of  the mean field 
expansion caused by the re-ordering of terms relative to the coupling constant 
expansion are gone. What remains and is exciting are the relations among renorma- 
lized parameters which are a consequence of  how the theory was generated. We will 
display these relationships in sect. 5 while sect. 6 will develop the relationship to 
conventional theories further. 

5. The renormalized parameters 

The renormalized parameters of the theory are not all independent. As we pro- 
mised we shall show that the independent renormalized parameters are only a mass 
parameter and a dimensionless coupling, for example m and g2 a. 

Let us consider the identity (A.12) that is derived in the appendix 

(go a) r,o(p, - p )  : 1 (iTs, Co(p, -p)  } - r a p ,  -p)  . 

At the subtraction momentum the above gives 

) = 1 , ( 5 . I )  

P0,--P0 
which leads to 

Z - - ~ -  1 - i75 \6(gaK)~(gnK)]po,_Po (goK) • 
(5.2) 
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Thus, the ratio of  the two vertex renormalization factors is a function of  the renor- 
malized parameters of  the theory and the subtraction momentum. Since 6G-1/5oSn 
is superficially finite, this ratio is a finite function of  the renormalized parameters: 

(5.3) 
Zzr(1) = 
Za(1) l+a(m,  la~,g: .... k . . . ;p~).  

Next let us examine (A.11) at the subtraction momentum: 

2(goO) r . (po ,  -po)  = {a- l (Po) ,  i~'5 ) .  

The renormalization conditions imply that 

Zo(1) 
2 ~( ] -~  (gaa) i ts  = {~0o - m, i ts  } = iP g (Tu, 7s ) - 2miTs • 

Hence, 

goo = -m(1  + a ) .  

The zrTro vertex obeys the following identity (see appendix) 

or.~o(p, -p)  = a~ -1 @2) _ a ; 1  (p2). 

Expanding both sides around the subtraction momentum, we obtain 

pr..o  
o(F..o(Po, _Po) + \ Op: ]p (p2 _ p:)  + ...) 

{(OAoI~ [OA~ 1] \ 2 
: " ; 1 ( ' 4 ) -  - t- yj) - ÷ . . . .  

Equating term by term we are led to the following equations: 

oF..o(Po, -Po) = A~' (p2) _ A; '  (p~), 

o?r . . o ]  :2 oi . 
\ ap 2 ]p~ \aP2Jp2 ~ ap 2 ]p~ 

(5.4) 

(5.5) 

(5.6) 

Consulting the renormalization conditions we can write the second equation as 

Z,r [ar,,o~ (5.7) 
z-~:  1 + a  t ap 2 ] 

PO 

This means that the ratio of  the two renormalization factors is always a function of  
renormalized parameters. It is going to be a finite function since aI"TrTro/ap 2 is super, 
ficially finite. Thus, we can write 

~_Z~r = 1 _ m  (1 +a) [Or~.ro~ (5.8) 
Zo go \ ap: ! pg" 
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At this point it is obvious that there is only one independent Yukawa coupling sinc~ 

2 2 ^2 
~ = ( 1  + tX)2f1-1 go _grr =(1 +002 ' ~ ' ~ "  - -  --L~ 

g~r go gn 

Eq. (5.5), on the other hand, gives 

m~.nrr a p2 2 p2 2 
- -  _ 0--11o --la n 
o 

3Z~ Zo Zr~ ' 

which becomes, using (5.4) and (5.8), 

-m2(1 + a) Xnno = (p~ _ /~ ) /3  - (p~ - / ~ ) .  (5.10) 
3go 

This equation can serve to fix the mass/a2a in terms of the fermion mass and the 
dimensionless couplings)The mass/1~ is always fixed by the Goldstone theorem 
(A.5). If we subtract at zero momentum (/)2 = 0), we have/g2 n = 0 and 

U2 _ m2(1 + a) knno (5.11) 
3ga13 

The Ward identities (A.7)-(A.10), at the subtraction momentum Po, take the 
form 

or..oo(Po, -Po, o) = rooo(po, -Po)  - 2r . .o (Po ,  - Po) ,  

oFmr.~r(Po, -Po,  0) = 3F.no(p o, - P o ) ,  

°Pn~..o(Po, -Po,  0, 0) = 3PnTroo(Po, -Po ,  0) - rnTr~.(Po, -Po ,  0 ) ,  

°F.nooo(Po, -Po ,  0, 0) = Poooo(Po, -Po,  0) - 3Fmroo(Po, -Po,  0) .  

Using the renormalization conditions we immediately obtain from these: 

(1 +c 0 
- X o o o ~  - ~ . , , o  , 

3 g o  
(5.12) 

~'~"~ (1 + c0 )~,~,,o, (5.13) 

;k=~oo - 3~oooo = - m (1 + ¢0 F==oaa(0, 0,Po, - P o ) ,  
go 

(5.14) 

m 
rmrmr/3;Lnnoo = - 5  (1 + ct) Fmrno(0, 0, po, -Po)"  (5.15) 

The last four equations leave us with one independent boson self-coupling. Let us 
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choose Xn~.~ as the independent boson self-coupling. We shall show that it is in 
fact a function of the Yukawa couplings. 

We will not display the calculations here but it is fairly straightforward to calcu- 
late the lowest-order Green functions at zero momentum using (4.4b) and (4.4c) 
with S(x )  and J ( x )  constant. Careful analysis then shows there are only two inde- 
pendent renormalized quantities, say g~ and m to this order. The detailed method to 
do this calculation is developed in ref. [7]. We exploit this observation to construct 
the argument that to all orders this theory has only two independent parameters in 
what follows. 

We start by considering 

6P~rTr~Tr/6 a = Plrlr~Tro • 

For constant a field, the variational derivative becomes an ordinary derivative and w~ 
obtain the differential equation 

d P . . . . ( . . . )  
o d o  - oro~r~r~rTr(0; . . . ) .  ( 5 . 1 6 )  

At the subtraction momentum Po, the renormalization conditions imply 

d 
o ~ -  ( -x , , , , , , . z~  -2) = z~P, , , , , . , , , , (o ,  o, po - p o ) ,  

o o  

or 

We have introduced the "anomalous dimension" of the pseudoscalar field defined 
as 

7~r - o ~ ln ZTr/~o . 

%r is a finite function of the dimensionless couplings. The operator ad/do appearing 
in (5.17) can be expanded in terms of the independent renormalized parameters m 
and g2. It is more convenient here to use g2 instead of any other Yukawa coupling 

as our fundamental coupling. Defining the/3 function of the g~ coupling as usual as 

(4 ~- +~+~po ap-~o - ~gJg0  x. . .~  =~ro,..~(o,O,po,-po), 

we have 
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Note that we did not put  in a term of  the form 

-/3(x') a-~ M... 
on the left-hand side of  this equation. Let us explain this with Po = 0. This term is 

not present because in lowest order only g~r and m are independent parameters. 

Because 7,/3, etc., are finite functions of  the renormalized quantities and because 

we have an i teration scheme, we can always construct one more order out of  a given 

order in which 7,/3, etc., depend only on &r and m. Thus we find that in this next 
order 7,/3, etc., depend only on g~r and m. Then by an induction argument on the 
above equation with the omitted term added we can conclude to any order that 
kmrmr is fixed in terms o f g  2. If  our subtraction point  is zero, since XTr~r~.r is dimen- 
sionless, the mass derivative does not  contribute and we have 

2 o, o, o). 

To lowest order in g~ it is easy to show that 

_ g 4  _ 1 2 /3g--T~' ~"-2--~-~/3g-- g" r""'°)(°'°'°'°)= 3gs° 
87r 2 ' - m - - - ~  " 

Thus, our equation becomes 

1 lg2 0 \ 
- ~  rr a--~gXlrrrnrr = 6g ~ . (5.19) 

A solution is immediately obtained * 

XTrnnn = 12g~. (5.20) 

This is, o f  course, identical to the result obtained if  we had calculated directly [7]. 
The other couplings are easily computed from the Ward identities. For  example 
(5.13) gives to lowest order 

Xr.rr.r 12g~ 

M , , o -  7 - =  go~3 

To lowest order 

2 2 (I g2 ~-1 
g~r glr 

/ 3 = 5 = 1 - 1 - ~ 7 ~  = + ] 5 7 * ~ !  " go 

• The authors are grateful to'the referee for pointing out that eq. (5.20) which relates the Yuka- 
wa and quartic boson couplings is exactly the same as in supersymmetry (see, for example, 
ref. [13]) in which case it has been proven that the relation is true in the bare theory and is 
preserved in the renormalized theory. In the case of supersymmetry this has been shown to 
hold for a single Majorana fermion while for our case it follows directly that such a relation 
holds for any number of fermion species. 
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Thus 

X~rTra = 1 2 g o  • ( 5 . 2  1 )  

Eq. (5.11) for the bound-state mass becomes to lowest order 

- m2Xrrrr° - 4m2 (1 g2a '~ 
12 3 3go~ ~ - 4 m :  + ~ 2 7 f  J. 

This is exactly what we obtained by explicit calculation in sect. 3. 
It is clear now that the independent renormalized parameters of the theory are a 

fermion mass m and a Yukawa-type dimensionless coupling. By iteration of our 
equations we can calculate the other parameters to any order. 

6. Equivalence with the o model 

Let us consider the theory described by the Lagrangian 

L(~ ,  f ,  o', rr) =~(i~ +go(o + i'),s rr)) ~ + ~(O#o) 2 + 1(3taTr)2 

l/,t2(O2 + 7r2) ~kO- 2 + rr2)2 (6.1) 
- ~ o - 4 - ~ . w  • 

The connected vacuum-to-vacuum amplitude after the integration of the fermion 
variables is, in Euclidean space, 

[ 
e w = f d a  dn e x p / -  f ( ~ G ~  - tr In G - '  + ½a(-a  2 + gg) o 

~-rr( - a 2  + Ug) rr + X° (a24!  + n2)2 - So - Jrr)} . (6.2) + 

Again, for convenience, we have introduced 

G -1 = i$ +go(o  + iTsTr). 

The reader should not confuse this G with the exact Green function. In context no 
confusion is likely. 

The mean field expansion is defined in the same way as for the Nambu Jona- 
Lasinio model. A parameter e is introduced. The connected functional becomes 

e w,/~ - f d o  dTr exp { - F ( a ,  7r)/e } . 

At the end of  all computations e must be set equal to one. The mean field condi- 
tions are the same as (2.7). The expanded functional is given again by (2.8). Of 
course, F is different. 
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The lowest-order functional is 

Wo {ao, 7to, 7 ,  r/, S, J } : -F{oo,  7to, 7, 77, S, J } = f [ -~Go r/+ tr In Go  1 

+ 1 O o 0 2  - ~ )  Oo + 1 % 0 2  - .~o) ~o 

)to _2 i + + J % l  - ~ ( % T  ,~g)2 Soo (6.3) 

Classical fields can be defined in the usual way. To lowest order the boson classi- 
cal fields coincide with the mean fields. 

An effective action can be defined by the Legendre transformation 

P~ {*)  = W~ {$ ) - f d 4 x . ( x )  • S(x).  

For convenience we have introduced 

• = (o, 7 0 , x = ( 1 , / T s ) ,  S = (S, J ) .  

To lowest order we have 

Po {*} = Po {% } = f [ l o G o  I ~o  + tr ln(ig + g o %  " x)) 

+ ~*o (~2 _ / a ~ ) . o  _ 4_~_(%. ,0)2  (6.4) 

Translating fields by % = So + o, where ~) + (v, 0), we obtain 

Ot 

P o { S o } = f [  ~ O ( i " + g O ' ' l ) ) ¢ O - ~  (-)1 ] \i'+go"°gOSO" ) ] 

+ ~So.  (~2 _ ~u~) "So - ~ ( (So  • So) 2 + 2(So" So) v 2 + 4(So" u) 

The linear terms cancel out because of the mean field condition 

~I'o {So }/~So = 0 .  

T h B s ,  

r 
= f  ~-~0 1 2 i --1 " 1 4 SiSJskslr( .4.s)  F o (s o } (i~t - m) t~ o + igo soAij Slo + *go . . . .  ur, 

o o  

+,g, °,Jo,,r(~) [3 (-¢ ~'go~o .~ 't J-I 3 0 "O°O"O--ijk - -  ; t r  . /=s 1 \ i ~ - m ]  A 
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Let us define renormalized s fields by Y = z~ l /2 f f ,  then 

f l  I_F.X-, 1~-~-= ~-(as) P{s} = f 0 ( i ~ - m ) ~ 0 + 2  t i/ ~ + 3 ° i ~ P k t i ]  k 

+ ,~ . . . .  -(4s) E <_)n tr(g~. , ~n] 
sisjs IcSlP i/kl -- 

n=s n \ i~ - m ]  _] 

The renormalized couplings are defined as 

(6.5) 

, :  
goZ l l2 ) " 

The renormalized 1PI functions are given by 

a~i' = zl/~z]/~ a~ 1 , 
ia(3s) _ 7--1/2 7--1/2 7--1/2 ~(3s) 

/]k - "-'i /~] "-'k *//'k , 

p ( 4 s . )  = 7 -  1127- 1127- 1127- 112 ~-(4s) 

Let us consider first the inverse s propagator 

a;-'(p ~) p~ -//=o }Xo o~ + ig~ "d4k = _ t r J ( - ~ ) n ( k  + p  - m) -1 @ + p -  m) -1 . 

Imposing the renormalization conditions 

//2 (~As-I~ _ 1 

a;l(°)=-~-*'z, \ ~ J o  G '  

and subtracting twice, we are led to the following definition for the renormalized 
propagator 

= -i--i 2 Vp2 2 .= 2 f_ d4k Asl (p2) Z s zY s ( p ) = Z s  1 tr ( l ~ + p - m )  -1 - / / s  + zgs subo d(2rr)4 L 3 
X (k - m ) - l ]  . 

..1 
The renormalized s propagator is exactly the same as the renormalized propagator 

~(3s) o , a  ~(4s) They of the Nambu model. This is true for the other 1PI functions - i / k  . . . . .  i/k • 
are exactly the same functions of  the momenta and the renormalized parameters. 

The Ward identities ((A.6)-(A. 10)) of  the broken chital symmetry are the same 
for both models. Thus, the relations between the parameters obtained through 
them are valid in the case of  the o model. On the other hand the quartic boson coup 
ling is independent because the Callan-Symanzik equation that was used to fix it 
turns into an identity 

a 2 ( 4 % r -  flg.tr (g2) ~--~-- ~k47r (gTr, ~k4 re) ~ ) ~k4,r 3g4n = ~ 2  • ( 6 . 6 )  
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The ~-function of  the quartic coupling is defined as usual 

~)t47r g~_~ 
~x4~ - o ~ - to lowest order = ()t4• - 6g~). 

Substituting in (6.6) we obtain 

0 = 0 .  

Thus the independent renormalized parameters of  the o model are m, g~ and X4~. 
All other parameters are determined. For example the s mass is 

4m 2 12gs 1+ ~ . 

If  we restrict the o model by imposing the condition )t~rTr = 12g~, to lowest 
order, all the 1PI Green functions will be exactly the same for both models. In fact, 
the effective action will be the same function of  momentum, m and gn. 

The models will consequently be equivalent to all orders in the mean field expan- 
sion, because according to formula (2.8) if the generating functionals are the same 
to lowest order they will be the same to all orders since they are iterated in the same 
way. Further the identities that set the values of  the renormalized parameters iterated 
in a similar manner as discussed in sect. 5. 

The equivalence happens only in a special limit since the equations defining the 
renormalized parameters in terms of  the bare parameters are different. For example 
in the o model we have 

g2--g o + 0 
On the other hand in the Nambu model 

%)N o 

where II is exactly the same function. True equivalence is achieved when 

~g~ : _g2[a.  : d --o 
Z g~ 1 S~ap2] ° 1 (gs)N2 • 

This condition is a typical compositeness condition. Careful examination of  these 
conditions leads to the conclusion that the bare coupling parameter )t o becomes 
irrelevant. That is, no matter what value )to takes, the renormalized Green func- 
tion of  the theory in t h e Z  = 0 limit is unaffected [5,11 ]. 
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7. Conclusions 

In this paper we studied the Nambu Jona-Lasinio model  expanded in a mean 

field expansion. The connected generating functional was expressed as an inte- 
gral over boson variables and then expanded in a Laplace expansion. All divergen- 
ces can be absorbed to all orders in a renormalized fermion mass and a renorma- 
lized Yukawa type coupling. The renormalized Yukawa coupling becomes the 
new effective expansion parameter. The boson self-couplings required for renor- 
malization are determined to every order as functions of  the renormalized Yuka- 
wa coupling. Similarly the o mass is fixed in every order by the coupling and Fermi 
mass. 

We expanded tile cr model in the same way. If  a restriction is imposed on the 
renormalized lowest-order quartic boson self-couplings, the renormalized effective 
action of  the cr model to lowest order becomes equivalent to the renormalized 
effective action of  the Nambu model. Equivalence to lowest order is enough to 
guarantee equivalence to all orders in accordance with formula (2.8) and through 
iteration of  the Ward identities and Callan-Symanzik equations. This equivalence 
corresponds to a Z = 0 limit. In this limit the bare quartic coupling becomes irrele- 
vant. 

The authors wish to thank Neil Snyderman and Fred Cooper for many useful con 
versations. We would also like to thank Michael Ogilvie, Bill Caswell, and Desmond 
Fitzpatr ick for helpful conversations and P.J. Stiles for encouragement. 

Appendix 

General ized  Ward ident i t ies  * 

The Lagrangian of  the Nambu Jona-Lasinio model is invariant under the transfor- 
mations of  the form 

---> ei~75 ~ , 

where a is a constant. This symmetry is a consequence of  the absence of  a bare fer- 
mion mass. 

Every continuous symmetry implies the existence of  a conserved current. The 
current associated with the chiral invariance is 

/ ~ s ( x )  - [i~(x) ~s~ #, ~(x)]. (A.1) 

* Ward identities have also been used for bound-state mean field expansions in ref. [12]. 
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The divergence of  this current in the presence of  sources is 

au/~ = 2Jo - 2S7r - r r ) ' s  ¢ - ~ ' s ~  • (A.2) 

The vacuum expectation value of (A.2) can be used to obtain a set of  generalized 
Ward identities. Taking a variational derivative of  the vacuum expectation value of  
(A.2) with respect to the classical pseudoscalar field, defined as 

6W 
~(x) - 

~J(x) ' 

we obtain 

6 
6~(y)((OuJs(x))) = 2A~ 1 (x, y) o(x) - 2Ao 1 (x, y )  rr(x) 

6 
- 2s(x) 8(x - y )  - ~ ( ~ s  ¢(x)  

+ ~(x) 7sr/(x)).  (A.3) 

o, 7r, q2, ~ stand for the vacuum expectation values of  the corresponding operators 
(classical fields). Ai/= 8 W/6Si6S/is the boson propagator. Integrating (A.3) with 
respect to x, turning off the fermion sources and taking the limit J, S-+ constant, 
we obtain 

f d4xau 6 {jUs(x) } = 2(rA~-l(0) - 27rA~-l(0) - 2S .  (A.4) 

A6(0 ) stands for the momentum-space propagator at zero momentum. 
Taking the limit of  zero sources we end up with 

oA~l (0) = 0 .  (A.5) 

This is Goldstone's theorem. It states that, in the case o 4: O, the exact pseudoscalar 
propagator will have a zero-mass pole. Taking successive variational derivatives 
with respect to the classical fields and applying the same limiting procedure we 
obtain the following set of  identities: 

or . . o (p ,  - p )  = A~-~ (pZ) _ A~-' (p2 ) ,  (A.6) 

or . .oo(p ,  -p ,  o) = rooo(p, - p )  - 2r,.~o(p, - p ) ,  (A.7) 

or~,~,,~(p, - p ,  o) = 3r,,~o(p, - p ) ,  (A.8) 

or. .ooo(p,  -p ,  o, o) = roooo(p, -p ,  o) - 3r, , .oo(p,  -p ,  0 ) ,  (A.9) 

o r . . . . o ( p ,  -p ,  o, o) = 3r . .oo(p ,  -p ,  o) - r,~..,,(p, -p ,  0 ) .  (A.10) 

There are two additional identities involving the fermion Green functions that will 
be of use to us. They can be derived from the expectation value of  (A.2), if we vary 
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the classical fermion fields: 

2g o or,~(p, - p )  = (G -~ (p), i75 } , 

gooFno(p, -p ,  O) = ~ (Fo(P, - p ) ,  i t s  ) - V~r(p, - p )  . 

By def ini t ion 

8G - l  6F  o 
I a / i , O  " -~-  

~(~o~r) 8(goO) 8(go~r) 
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(A.1 I )  

(A.12) 
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