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Abstract

Motivated by recent cosmic ray experimental results there has been a proposition for a scenario where
a secluded dark matter particle annihilates, primarily, into Standard Model leptons through a low mass
mediator particle. We consider several varieties of this scenario depending on the type of mixing among
gauge bosons and we study the implications in novel direct dark matter experiments for detecting low
energy recoiling electrons. We find significant event rates and time modulation effects, especially in the
case where the mediator is massless, that may be complementary to those from recoiling nuclei.
© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The analysis of the positrons excess (vs. electrons) seen in cosmic ray spectra from PAMELA
[1,2] in the energy region above 10 GeV confirming previous results from HEAT [3,4] and
AMS-01 [5] experiments together with very recent results from FERMI [6] and HESS [7] Col-
laborations seems to suggest the presence of a WIMP that annihilates into leptons without any
indication of annihilation into (p, p̄) pairs or other hadrons (see Refs. [8,9] for relevant analysis).
This is also reinforced by ATIC [10] experiment which reports excess of electron plus positron
cosmic ray events in the energy region 300 � E � 800 GeV and also by signals from WMAP
and EGRET [11–13] experiments. These phenomena can be explained by a scenario, originally
proposed in Ref. [14] – a subset of the so-called secluded Dark Matter scenarios [15] – involv-
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ing a new gauge boson Xμ,1 which couples to Standard Model (SM) particles and the WIMP
through kinetic vector boson mixing with the following properties [17]:

2me � mX � mχβ � mχαDM, (1.1)

where mχβ is a typical non-relativistic WIMP momentum and velocity β ∼ 10−3 inside the
galactic halo and αDM is the dark matter coupling. It has been shown that if Eq. (1.1) is satisfied
then dark matter annihilation inside the halo to leptons is enhanced by a Sommerfeld factor
of O(αDM/β) [18] while annihilation to protons is simply kinematically forbidden. A typical
range of parameters that are going to be exploited in our analysis and satisfy Eq. (1.1) are:
mX = 0.1–1 GeV, mχ = 0.1–1 TeV and αDM = αem. The new force mediated by the X-boson is
a long range force indeed. We must note here that there is a choice of another viable possibility
with an even lighter mediator in MeV range that has been studied in Ref. [19]. Our results for
detecting low energy electrons are even more pronounced in this case.

There is also a possibility for the gauge boson mediator Xμ to couple to the SM gauge bosons
through a mass mixing matrix in a generalized gauge invariant way. These models are frequently
called Stückelberg models [20,21] and are denoted as model type II in our classification. A char-
acteristic of these models is that the electromagnetic current couples to the dark sector through a
massless pole identified as the physical photon. As we shall see, this results in considerable and
comparable rates in both nucleon or electron recoiling experiments.

Alternatively, it could be that there is a symmetry that renders dark matter particles leptophylic
[22–26]. This symmetry is spontaneously broken resulting in a massive gauge boson Xμ that
couples directly to both leptons and WIMP at tree level. Again Sommerfeld enhancement dictates
the mass of the X-boson to be in the GeV (or sub GeV) range. This is the model III that we
consider in Chapter 2.

Within the three model categories mentioned above we want:

1. To study the implications of this new force carrier on both traditional nucleon recoil, and
untraditional electron recoil direct dark matter searches, and,

2. To suggest new dark matter experiments involving the detection of electrons scattered by
this carrier providing a direct link to the recently observed cosmic ray anomalous elec-
tron/positron events.

So far there is a dedicated analysis for electron recoils in DAMA experiment [27] with ener-
gies approximately 5 KeV. Our analysis investigates recoiling electrons with energies as low as
10 eV, and suggests an experimental method on how to reach such low energies. It is therefore
complementary to the analysis of Ref. [27].

The structure of this article is as follows: In Section 2 we present a field theory setup which
helps to categorize three representative model examples that have recently been studied in detail.
In Section 3, we present event rate predictions for conventional nucleon recoil detection for
the models studied. In Section 4, we deal with the not so familiar methods of electron recoil
detection rates together with time modulation effects. We also make a proposition of a prototype
experiment to be exploited in discovering low energy electrons ejected from WIMP + atom
collisions. In Section 5 we present our conclusions.

1 In earlier models [16] of secluded dark matter, WIMPs could be annihilated into new light scalar and gauge bosons.
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2. Theory setup and model categories

In this section, we formulate the problem of the Standard Model coupled to, for simplicity,
an Abelian dark sector with arbitrary kinetic or mass mixing terms allowed by Lorentz, gauge
symmetries and renormalizability. Our formulae are then applied in subsequent sections to make
predictions for event rates in dark matter detection experiments.

To read out the gauge boson propagators we start by writing the general renormalizable form
of the Lagrangian:

L = −1

4
�T

μν K�μν + 1

2
�T

μ M2�μ − 1

2
∂μ�T

μΞ∂ν�ν + JT
μ�μ, (2.2)

where �μν = (∂μ�ν − ∂ν�μ) is a N -column matrix field strength tensor corresponding to a
N -column �μ vector field, “T ” denotes the transpose of a matrix, K and M2 are real and sym-
metric N ×N matrices with model dependent elements to be specified below and Ξ is the gauge
fixing N × N symmetric matrix necessary to remove unphysical gauge degrees of freedom. In-
teraction terms are encoded in the last term of Eq. (2.2) where an external current Jμ associated
with symmetries, couples to the gauge fields.

One has to notice that elements of the mass matrix M2 should be further restricted by elec-
tromagnetic gauge invariance. Phenomenologically speaking, there should always be a pole on
the propagator 〈�μ�ν〉 corresponding to the massless photon, i.e., the determinant of the inverse
propagator at zero momentum must be exactly zero. Furthermore, without loss of generality, we
can always assume that the diagonal elements of K are normalized to unity.

It is standard textbook exercise to find the Feynman propagator, D̃μν(p) with momentum p,
for the gauge field �μ which in momentum space reads,

iD̃μν(p) = (
Kp2 − M2)−1

(
gμν − pμpν

p2

)
+ (

Ξp2 − M2)−1 pμpν

p2
. (2.3)

At lowest order in h̄, interactions among fields are stored in the action functional

S[J̃] = 1

2

∫
d4p

(2π)4
J̃T
μ(p)

[
iD̃μν(p)

]
J̃ν(−p), (2.4)

where J̃μ(p) is the vector current in momentum space. Eqs. (2.3) and (2.4) are what we actually
need to describe observables that arise from mixing dark (or hidden) and visible gauge bosons.
As a simple example, consider the electromagnetic and the dark gauge boson current. Then in
Eq. (2.2), it is JT

μ = (eJ em
μ ,gXJ dark

μ )T . It is then clear from Eq. (2.4) that interactions between
the visible and the dark sector will involve off diagonal elements of the propagator (2.3). Observ-
ables, like nucleon recoil event rates can easily be described using the above propagator mixing
formalism [28], by simply finding the inverse matrices such in Eq. (2.3) for a given model. We
remark here that the propagator mixing formalism works equally well in different current basis
such as Q–T3 or Y–T3.

2.1. Model I: Non-standard kinetic mixing K

Models in this category [14,15] have been recently exploited in Ref. [17] as candidates for
explaining positron excess in cosmic ray data experiments. In its simplest form, the dark matter
particle, χ , is charged under a ‘dark’ U(1)X and the corresponding ‘dark’ gauge boson Xμ mixes
with the photon Aμ and Z-gauge boson, Zμ. Annihilations of dark matter particles into only SM
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Fig. 1. Diagrammatic form of Feynman propagator appeared in Eq. (2.3) between gauge boson “flavours” i and j . For
explicit expressions in model I see Eqs. (2.6)–(2.11); for model II see Eq. (2.14).

leptons (and not quarks) are kinematically allowed when the intermediate gauge boson has a
mass at the GeV scale.

In notation of Ref. [29] and in basis (Aμ,Xμ,Zμ) (or else Q − T3) our matrices K and M2

appeared in Eq. (2.3), become:

K =
⎛
⎝ 1 −ε cos θW 0

−ε cos θW 1 ε sin θW

0 ε sin θW 1

⎞
⎠ , M2 =

⎛
⎝0 0 0

0 m2
X 0

0 0 m2
Z

⎞
⎠ , (2.5)

where mX is the mass of the exotic gauge boson, mZ is the mass of Z-boson, θW is the weak
mixing angle and ε is a small (≈ 10−3) mixing parameter between U(1)Y and U(1)X field
strength tensors. Working in Feynman gauge (Ξ = 13×3) and keeping up to ε2-terms it is easy
to work out the mixed propagators D̃ij

μν(p), depicted in Fig. 1, between photon, X- and Z-gauge
bosons, labeled 1, 2, 3, respectively:

iD̃11
μν(p) = gμν

p2
+ ε2 cos2 θW

p2 − m2
X

(
gμν − pμpν

p2

)
+ O

(
ε3), (2.6)

iD̃12
μν(p) = ε cos θW

p2 − m2
X

(
gμν − pμpν

p2

)
+ O

(
ε3), (2.7)

iD̃13
μν(p) = − ε2p2 cos θW sin θW

(p2 − m2
X)(p2 − m2

Z)

(
gμν − pμpν

p2

)
+ O

(
ε3), (2.8)

iD̃22
μν(p) = gμν

p2 − m2
X

+ ε2p2(p2 − cos2 θWm2
Z)

(p2 − m2
X)2(p2 − m2

Z)

(
gμν − pμpν

p2

)
+ O

(
ε3), (2.9)

iD̃23
μν(p) = − εp2 sin θW

(p2 − m2
X)(p2 − m2

Z)

(
gμν − pμpν

p2

)
+ O

(
ε3), (2.10)

iD̃33
μν(p) = gμν

p2 − m2
Z

+ ε2p4 sin2 θW

(p2 − m2
X)(p2 − m2

Z)2

(
gμν − pμpν

p2

)
+ O

(
ε3). (2.11)

Some remarks are in order: (i) among the three physical masses only m2
X mass is shifted by an

amount of m2
Xε2 that we ignore (ii) gauge invariance for the off diagonal propagator terms is

preserved as should be the case. As far as the effective action Eq. (2.4) is concerned, additional
statements are in order:

• The single pole [1/p2] appears only in Jem · Jem exchange as usual in the SM.
• A pole [1/(p2 − m2

X)] for the exotic boson Xμ appears, apart from JX · JX exchange, also
in Jem · JX exchange at O(ε).

• There is exchange of current JX · JZ , i.e., neutrinos and dark matter particles, through a
double pole of X and Z at order ε.
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• There is exchange of Jem · JZ at order ε2 via double pole of X and Z.

The ε ≈ 10−3-term in the kinetic mixing can naturally arise as a result of mixing two U(1)’s
at high energies – a mechanism that it was first proposed in Ref. [14]. Furthermore, X-boson
contributions to the muon anomalous magnetic moment relative to the SM expectation, �αμ =
α

exp
μ − αSM

μ = (290 ± 90) × 10−11 [30], are easily found using Eq. (2.6) to be

�αμ = αem

3π
ε2 cos2 θW

(
mμ

mX

)2

, for
mμ

mX

� 1. (2.12)

This requires ε � 3 × 10−2 for mX � 1 GeV where the equality accounts for the 2σ upper limit
on �αμ. Of course, there are many other constraints on the mixing parameter ε from direct or
indirect collider searches and we refer the reader to recent work in Refs. [31–34]. For example,
as we see from Eqs. (2.6), (2.9) and (2.11) corrections to oblique electroweak observables arise
at order ε2 similar to the case of muon anomalous magnetic moment.

2.2. Model II: Non-standard mass mixing, M2

Models belonging to this category are usually referred to as Stueckelberg models [20]. A re-
cent account on “Stueckelberg” extensions of the Standard Model can be found in Ref. [35].
Here, it is more convenient to work on Y–YX–T3 basis (Bμ,Xμ,A3

μ). We now assume that only
the matrix M2 is nontrivial,

K =
⎛
⎝1 0 0

0 1 0

0 0 1

⎞
⎠ , M2 =

⎛
⎜⎝

1
4g2

Y v2 + m2
Y mY mX − 1

4gY gv2

mY mX m2
X 0

− 1
4gY gv2 0 1

4g2v2

⎞
⎟⎠ , (2.13)

where gY , g are the U(1)Y , SU(2)L gauge couplings respectively, m2
Y is a mass term for

the hypercharge gauge field Bμ and v is the vacuum expectation value. The form of the up-
per left 2 × 2 M2 matrix guarantees electromagnetic gauge invariance, i.e., massless photon.
Furthermore, the zero elements (23) and (32) guarantee that neutrinos are not charged under
electromagnetism. Demanding that the inverse propagator has poles at the physical masses,
det[p2 − M2]|p2=m2

i
= 0 where mi = 0, mX , mZ , we find that the photon mass is zero to all

orders in mY , the dark gauge boson and the Z-boson masses are not altered up to O(m2
Y ), and

thus m2
Z = 1

4 (g2 + g2
Y )v2 + O(m2

Y ).
Following Eq. (2.4) we obtain the following effective action,

S[J ] = 1

2

∫
d4p

(2π)4

{[
e2Jem(p) · Jem(−p) − 2e2 gX

gY

mY

mX

Jem(p) · JX(−p)

]
1

p2

+
[
g2

XJX(p) · JX(−p)

(
1 − m2

X

m2
Z

)
+ 2e2 gX

gY

mY

mX

Jem(p) · JX(−p)

− 2gY gX

mXmY

m2
Z

JX(p) · JY (−p)

]
1

p2 − m2
X

+
[
g2JZ(p) · JZ(−p) + g2

X

m2
X

m2
Z

JX(p) · JX(−p)

+ 2gY gX

mXmY

2
JX(p) · JY (−p)

]
1

2 2

}
+ O

(
m2

Y

)
, (2.14)
mZ p − mZ
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where e ≡ gY g/

√
g2

Y + g2 is the electron charge. Furthermore, Jem(p) = JA3(p) + JY (p) is the

momentum space Fourier transform of the electromagnetic current, i.e., J
μ
em = ∑

f Qf f̄ γ μf

with Qf e being the charge of a generic fermion f . The dark current JX obtains an analogous
formula with obvious replacement of charge Qf e by another (hyper)charge, QX . Of course,
if fermions under consideration are Majorana particles then the corresponding current has only
axial-vector form. In addition, JZ denotes the Fourier transform of the Standard Model neutral
current J

μ
Z = 1

cos θw
(J

μ
A3

− sin2 θwJ
μ
em) where the electromagnetic current is, as usual in the SM,

the sum of the third component of the isospin J
μ
A3

and hypercharge currents J
μ
Y .

The physics of Eq. (2.14) is now transparent: to order O(mY ), there are interactions between
the electromagnetic Jem and dark current JX mediated by the photon, i.e., the dark matter particle
is charged, and interactions between the hypercharge JY and dark current JX mediated by (X or
Z) gauge bosons, respectively. An estimate of the dominant contribution to �αμ results in an
upper bound mY

mX
� 9 × 10−4, where a 2σ bound on �αμ is taken from Ref. [30].

2.3. Model III: Direct coupling, no mixing

In this model, some of the SM leptons (but not quarks) �L, eR and the WIMP particle χ are
coupled directly to the dark gauge boson Xμ in principle with different couplings2:

J
μ
X = g′Y ′(eL)�̄Lγ μ�L + g′Y ′(eR)ēRγ μeR + gXY ′(χ)χ̄γ μχ, (2.15)

where Y ′(eL, eR) = (1,−1) denotes the particle hypercharge under the new gauge symmetry. As
it has been suggested in Refs. [8,22,23,25,26], this could be an anomaly free gauged U(1)Le−Lτ .
Of course, a new Dirac fermion χ would be playing the role of dark matter particle is also gauged
under this symmetry with Y ′(χ) = 1. Because we have already discussed the effects of the kinetic
and mass mixing in the previous models, without loss of generality, we assume that these mixing
matrices are trivial in this model at tree level3. If Xμ does not couple to the muon then the most
important constraint on α′ = g′2/4π will arise from the ν–e scattering at low q2:

α′

m2
X

� 7 × 10−7. (2.16)

We shall use this bound when discussing electron recoil detection rates in Section 4 as is typically
comparable (most of the time better) with other direct experimental bounds arising from LEP
or meson factories. If the Xμ vector boson couples to electrons and muons instead then there
is a comparable bound to Eq. (2.16) from the muon anomalous magnetic moment. Following

�αμ = α′
3π

m2
μ

m2
X

for mμ � mX , there is a bound

α′

m2
X

� 4.4 × 10−6. (2.17)

2 Various possibilities on how this is realized can be found in Ref. [22].
3 Of course mixing of the Xμ gauge boson with the U(1)Y is inevitable at one loop. Its magnitude is calculable:

ε � α′2 log mτ = 2 × 10−4 for α′ = αem. All the rest will then proceed following Eqs. (2.6)–(2.11) of model I.
mμ
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Fig. 2. A Feynman diagram leading to the direct interaction of the WIMP χ to the quarks relevant for direct detection of
dark matter. The process is mediated by the physical photon. The cross indicates merely that the exotic gauge boson has
a small admixture of the photon. Similarly the WIMP can also couple to electrons.

3. Conventional WIMP searches

Conventional DM searches deal with phenomena of WIMPs scattered of a nucleus. The study
of the recoil energy spectrum is the primary goal of experiments such as CDMS [36], XENON
[37] and DAMA [38]. For models we described in the previous section there are two cases which
have been discussed recently in the literature that could explain the recent anomalous cosmic ray
events:

(a) The lightest mediator is massless, and
(b) the lightest mediator is massive with mass around the proton mass (mp),

in addition to the assumption that

mp � mχ, (3.18)

where mχ is the WIMP–mass. Only model II belongs to the first category and models I, II belong
to the second since by definition, there is no direct coupling of X-boson to quarks in model III
[see, however, footnote 2]. In the following subsections we present the WIMP–nucleon cross
section for both cases (a) and (b).

3.1. Massless mediator

The differential WIMP–proton cross section in the rest frame of the initial proton is given by:

dσ = s(β)

β

e2(gXκ)2

q4

d3p′

(2π)3

d3q
(2π)3

(2π)3δ(3)(p − p′ − q)(2π)δ(T − T ′ − Tq). (3.19)

In the above equation p′, p are the momenta of the initial WIMP and the final WIMP and q the
momentum transfer to the nucleon and T = p2/2mχ,T ′ = (p′)2/2mχ and Tq = q2/2mp , are
respectively the corresponding kinetic energies in the non-relativistic limit. Furthermore, β is the
WIMP velocity and s(β) = 1 for a WIMP which is a Dirac fermion, while s(β) = β2 in case it
is Majorana one [39].4 One finds that the momentum transfer and the final nucleon energy are
given by:

q = 2μrυξ ≈ 2mpυξ, Tq ≈ 2mpυ2ξ2, (3.20)

4 The Majorana fermion does not possess electromagnetic properties. Hence only the γμγ5 of the WIMP–X-boson
interaction contributes.
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where μr is the WIMP–nucleon reduced mass, mp is the proton mass and 0 � ξ � 1 is the
cosine of the angle between the incoming WIMP and the outgoing nucleon. Integrating over the
momentum of the outgoing WIMP and the magnitude of the momentum of the final hadron as
well as the φ-angle one finds:

dσ = s(β)

β

e2(gXκ)2

2π

1

(2mp)2

dξ

υ3ξ3
. (3.21)

The above expression exhibits, of course, the infrared divergence. We will impose a low mo-
mentum cut off Eth/A provided by the energy threshold Eth, where A is the mass number of the
target, i.e.,

ξmin =
√

Eth

(2Ampβ2)
. (3.22)

Thus the total cross section for a Majorana WIMP is given by:

σ = α

2
(gXκ)2 1

(mp)2

(
Amp

Eth
− mp

Tmax

)
≈ α

2
(gXκ)2 1

(mp)2

Amp

Eth
. (3.23)

Eq. (3.23) shows a much stronger dependence of the event rate on the threshold energy Eth due to
the adopted cut-off Ecut-off = Eth/A. It is interesting to note that this cross section is independent
of the WIMP velocity (in the case of a Dirac WIMP the extracted from the data cross section
must be multiplied by β2). We distinguish two cases:

1. The case of Majorana WIMP. We find:

σ ≈ 1.6 × 10−30 cm2(gXκ)2 2Amp

Eth
. (3.24)

The direct dark matter experiments have recently set on the coherent nucleon cross section
the limits:
• The CDMSII experiment [36]: The best limit is 6.6 × 10−44 cm2. The extracted value

depends, however, on the assumed WIMP mass. So it can vary between 6.6 × 10−44 and
6.6 × 10−42 cm2.

• The XENON10 Collaboration [37] They extract 8.8 × 10−44 cm2 and 4.5 × 10−44 cm2

for WIMP masses of 100 and 30 GeV, respectively.
For our purposes we will assume that the extracted from the data nucleon cross section is
10−7pb = 10−43 cm2. Furthermore we will take as a reference a threshold energy of 5.0 keV
and examine the sensitivity of our results to the experimental threshold. Using the experi-
mental limit, σp � 1.0 × 10−43 cm2, we can write:

Rate(new)

Rate(conventional)
= 1.6 × 106 Z2

A2
(gXκ)2 Amp

Eth
. (3.25)

Note that the coherence factor now is Z2, since in the case of the photon only the protons of
the target contribute. Adopting a threshold value of 5 KeV, we get

Rate(new)

Rate(conventional)
= 3.0 × 1018 Z2

A
(gXκ)2. (3.26)

For the Ge target (A = 73,Z = 32) we get

Rate(new) = 4.3 × 1019(gXκ)2, (3.27)

Rate(conventional)
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which leads to the limit:

|gXκ| �
√

1

0.43 × 1019
= 1.6 × 10−10. (3.28)

From the second term in Eq. (2.14) and assuming that αDM = g2
X/4π = αem one can easily

translate this into bounds on the model II parameters for Majorana WIMP:

QX

mY

mX

� 0.54 × 10−10, model II. (3.29)

2. The case of a Dirac WIMP. We find:

σ ≈ 1

β2

α

2

1

(mp)2
(gXκ)2 Amp

Eth
. (3.30)

If we knew the coupling |gXκ| we could incorporate this into the evaluation of the nuclear
cross section, fold it with the velocity distribution and proceed with the evaluation of the
event rate. Since, however, we like to constrain the parameter |gXκ| we will employ an
average velocity:

σ → 〈σ 〉 ≈
〈

1

β2

〉
α

2

1

(mp)2
(gXκ)2 Amp

Eth
. (3.31)

But for a Maxwell–Boltzmann distribution, i.e., 〈 1
β2 〉 → 3

〈β2〉 , we obtain the constraint:

|gXκ| � 1.6 × 10−10

√〈β2〉√
3

≈ 0.8 × 10−13, (3.32)

from which the bound on model II for αDM = αem,

QX

mY

mX

� 0.27 × 10−13, model II, (3.33)

is found. As expected the limit is now more stringent than in Eq. (3.29).

The results for the Xe target are similar. This bound is by many orders of magnitude stronger
than the one obtained from electroweak fits [35] or (g − 2)μ [see discussion towards the end of
Section 2.2]. The corresponding bound for Dirac WIMP is about three orders of magnitude more
stringent. This means that additional mechanisms should be added in model II (Stückelberg type
of Ref. [35], for example) in order to efficiently depleting the WIMP in the early universe (the
diagram in Fig. 2 is just the crossing diagram of the annihilation cross section).

Although Eq. (3.29) [or Eq. (3.33)] provides a very stringent limit, we should not forget that
in this case we have a much stronger dependence of the rates on the energy threshold through the
need for a low energy cut off on the elementary cross section.

Alternatively we may extract from the data for Xe (A = 131, Z = 54) an elementary cross
section assuming it to be of the form:5

σS
N,χ0(A,Eth) = σ0

A

131

5 keV

Eth
, (3.34)

5 This treatment does not distinguish between a Majorana and a Dirac WIMP.
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Fig. 3. The total rates for traditional WIMP searches assuming a nucleon cross section σN = 10−43 cm2 in (a). The
case of the photon mediated process considered in this work is exhibited in (b). Both refer to the case of a heavy target
(A = 131) and were computed assuming an energy threshold of 5 KeV. The results for the iodine target used by the
DAMA experiment are almost identical.

Fig. 4. The same as in Fig. 3 in the case of the light target 19F.

where σ0 is the elementary cross section obtained in the particle model for a target with nuclear
mass number A and threshold energy Eth. Then by fitting to the experiment we obtain

(131/54)2σS
N,χ0 = 0.5 × 10−7 ⇒ σ0 = 2.9 × 10−7pb = 2.9 × 10−43 cm2. (3.35)

In spite of the (Z/A)2 factor we obtain a smaller value than in the standard experiment. This
is due to the small cut off energy Eth/A employed. With the above ingredients the number of
events in time T due to the coherent scattering [40], can be cast in the form:

R � 1.07 × 10−5 T

1 yr

ρ(0)

0.2 GeV cm−3

100 GeV

mχ0

m

1 kg

×
√〈v2〉

280 km s−1

σS
N,χ

10−43 cm2
fcoh

(
A,μr(A)

)
, (3.36)

where the elementary cross section σS
N,χ can be treated as a phenomenological parameter inde-

pendent of the WIMP mass in units of 10−43 cm2. The quantity fcoh(A,μr(A)) can be obtained
from the published in Ref. [40] values of t for the standard MB velocity distribution (n = 1).
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Fig. 5. The quantity R(Eth)/R(Eth)min, i.e., the ratio of the event rate at a given threshold divided by that at the lowest
threshold considered, as a function of the threshold energy. In (a) as predicted by traditional mechanisms (lowest thresh-
old assumed zero). In (b) as predicted by the present model (now due to the need for a cut off the lowest threshold energy
employed was 5 keV). The thick line, short dash, long dash, fine line and long short dash correspond to WIMP masses
10, 50, 100, 200 and 500 GeV, respectively.

For the photon mediated mechanism examined here the above equation must be modified by
multiplying fcoh(A,μr(A)) with the factor Z2/A2 and employing Eq. (3.34) for the elementary
cross section (in units of 10−43 cm2). The event rate per kg of target per year for the traditional
experiments for a heavy isotope like Xe and a light isotope like 19F, as a function of the WIMP
mass is exhibited in Figs. 3 and 4. On the same plots we show the event rate for the photon
mediated process examined in the present work. It is not surprising that the agreement is good
since the elementary cross section was fitted to the data. The small difference is understood,
since in the extraction of the elementary cross section from the data a zero threshold value was
used in the phase space integrals. The event rates are sensitive functions of the threshold energy,
R = R(Eth). In the case of the Xe isotope the ratio R(Eth)/R(Eth)min is exhibited in Fig. 5. The
threshold dependence is much more profound in the case of the light WIMP, since, then, the
average energy transfered is small. As expected the threshold dependence is more dramatic in
the case of the present model (this is a bit obscured in the figure since in this case the graphs are
normalized at 5 keV).

In the case of a Dirac fermion the extracted limit will be smaller, but the traditional calcula-
tions are not adequate for the analysis, due to the different velocity dependence of the elementary
cross section.

3.2. Massive mediator

In this case the WIMP–nucleon cross section reads:

σ = s(β)
16παemκ2αDMm2

p

m4
X

= (
1.2 × 10−30 cm2)s(β)

α

−1

αDM
−1

κ2
(

mp
)4

, (3.37)

137 137 mX
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where the cross section refers to Dirac (Majorana) WIMP and s(β) = 1(β2), respectively. Taking
β2 → 〈β2〉 ≈ 10−3 we find:

κ � 3 × 10−7(3 × 10−4). (3.38)

From these we obtain bounds for parameters in models I, II [see Eqs. (2.8) and (2.14)],

ε � 3.0 × 10−7(3.0 × 10−3), model I, (3.39)

QX

mY

mX

� 1.6 × 10−6(1.6 × 10−3), model II, (3.40)

where the number in parenthesis corresponds to Majorana WIMP dark matter particle. These
limits are less stringent than those obtained in the case of the massless mediator.

In the case of the massive mediator, with the possible exception of the velocity dependence
in the case of Majorana WIMP, the cross section behaves as in the standard CDM case, since
in this case we do not encounter an energy cutoff. Since, however, we do not know the values
of the parameters ε and mY

mX
, we cannot make predictions about the event rates. Instead we have

used the present experimental limits to constrain these parameters. Thus we saw that the current
experimental limits impose the most stringent limits on these parameters. If, on the other hand,
we use the previous constrains we can conclude that WIMPs in models I, II scatter off nuclei too
many times. These effects should have been seen in experiments [36,37] (or may have already
been seen [38]). An exception is a Majorana WIMP candidate in model I which results in current
sensitivity event rates.

4. Unconventional WIMP searches

4.1. Cross section

The other possibility is the direct scattering of WIMPs by electrons that are bound in atoms.
The relevant Feynman diagram is depicted in Fig. 2 with quarks replaced by electrons. In this
case only the electron flavor can be detected since the other flavors are not energetically allowed.
Since the outgoing electrons are expected to have energies in the eV region one cannot ignore
atomic binding effects. The binding energy b is found from the tables of ionization potential
(energy) of an atom.6

The problem is to find the cross section for WIMP scattered off an electron bounded in an
atom. In order to proceed we shall make two simplifying assumptions:

1. As a working example, we shall assume that the target is a hydrogenic atom denoted by H ,
i.e., a nucleus with charge +Ze and a single bounded electron with charge −e. We shall
discuss deviations from this assumption throughout.

2. The gauge boson mediator X couples only to WIMP and leptons but not to quarks. This is
a necessary condition to explain PAMELA positron excess of events. Therefore, this discus-
sion refers strictly to model III in Eq. (2.15) [see, however, footnote 2].

There are four processes that could take place in WIMP + H-like atom collisions:

6 Tables are normally given in kJ/mol, but they can easily be translated in eV, since 96.485 kJ/mol = 1 eV. Thus for
Cs we find b = 375.7/96.485 = 3.89 eV.
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χ + H −→ χ + H (elastic), (4.41)

χ + H −→ χ + H ∗ (inelastic), (4.42)

χ + H −→ χ + e− + H+ (production). (4.43)

For the rest we shall consider only the situation (4.43). The elastic scattering (4.41) cannot be
detected, and although we cannot exclude the inelastic one (4.42) from being experimentally
probed through final state photons, we believe that it would be easier to detect the electrons from
(4.43). We shall assume that the electron emerges with high momenta, p′

e, such that in the final
state its interaction with the Coulomb potential in H-like atom is negligible, i.e., we can use
plane wave states for incoming and outgoing particles. Using standard textbook [41] wavepacket
analysis our starting point will be the cross section formula in the lab frame:

dσ = 1

2Eχ 2Ee

1

|v|
d3p′

χ

(2π)32E′
χ

d3p′
e

(2π)32E′
e

|M|2(2π)δ(Tχ − T ′
χ − T ′

e − b)

× d3pe (2π)3δ(3)(pχ + pe − p′
χ − p′

e)
∣∣φ(Z,pe)

∣∣2
, (4.44)

where pχ ,pe (p′
χ ,p′

e) are the incoming (outgoing) three vector momenta of the WIMP and

electron particles respectively, and M is the matrix element of the process χ + e → χ + e

averaged over the spins of the initial states calculated in Born approximation. We also ignore
local velocity effects from the bound electron in the (static in lab frame) atom, i.e., that is the
relative velocity is v � vχ . Ti = p2

i /2mi, i = χ, e are the kinetic energies and b is the binding
energy of the electron in H-atom (≈ 13.6 eV). Moreover, in non-relativistic limit Eχ � E′

χ ≈ mχ

and Ee � E′
e ≈ me with mχ � me, while φn�m�

(p), normalized at
∫
V

d3p|φn�m�
(p)|2 = 1, is the

Fourier transform of the coordinate wave function ψn�m�
(r). Using the δ(3)-function to perform

the integration over pe, we obtain:

dσ = |M|2
16m2

χm2
eβ

d3p′
χd3p′

e

(2π)2
δ

( |pχ |2
2mχ

− |p′
χ |2

2mχ

− |p′
e|2

2me

− b(Z)

)

× ∣∣φn�m�

(
Z,p′

χ + p′
e − pχ

)∣∣2
, (4.45)

where the energy conservation delta-function has been written out explicitly. The result of
Eq. (4.45) is a product of two parts: a part that contains the dynamics of the WIMP–electron
interaction through the matrix element |M| times the probability of finding the target electron
with momentum pe = p′

χ + p′
e − pχ in H-atom. In addition the matrix element of the process

χ + e → χ + e averaged over the spins of the initial states in Born approximation reads:

|M|2 � (16π)2αDMα′m2
em

2
χ

(|pχ − p′
χ |2 − m2

X)2
s(β), (4.46)

where the factor s(β) ≡ 1(β2) for Dirac WIMP (Majorana WIMP) particle. Note that the cross
section for Majorana WIMP is always smaller by a factor of β−2 compared to the one involv-
ing Dirac WIMP. We now use the kinetic energy δ-function appearing in Eq. (4.45) in order to
perform the |p′

χ | integration and arrive at:

dσ = s(β)
16π2αDMα′m2

χ

(|pχ − p′
χ |2 − m2

X)2

|p′
χ |

|pχ |
∣∣p′

e

∣∣2
d
∣∣p′

e

∣∣
× ∣∣φn�m (Z,p′ + p′ − pχ )

∣∣2
dξ dη, (4.47)
� χ e
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where the initial WIMP momentum is |pχ | = mχβ and the scattering angles are defined as

ξ = p̂χ · p̂′
χ , η = p̂χ · p̂′

e, ξ, η ∈ [−1,1]. (4.48)

The integration over the azimuthal angles has been carried out trivially in Eq. (4.47) and the
momentum |p′

χ | of the scattered WIMP is found to be

∣∣p′
χ

∣∣ =
√

m2
χβ2 − 2mχb(Z) − mχ

me

p′2
e , with p′

e = √
2meE′

e, (4.49)

where b(Z) is the ground state energy for hydrogenic atoms is

b(Z) = Z2

2a

e2

4π
= Z2

2
meα

2
em, a � 1

meαem
, (4.50)

in the approximation μ � me where μ is the reduced mass, with αem = e2

4π
≈ 1/137,

me � 0.5 MeV and a = a0 ≈ 0.5 Å being the Bohr radius for Z = 1. Throughout this chap-
ter, we are going to use the ground state momentum distribution of hydrogenic atoms which
reads:

φ100(Z,p) = 23/2

πa

(Za)5/2

(Z2 + p2a2)2
. (4.51)

Notice that since φ100(p) depends on |p|2 and therefore from the scattering angles η and ξ and

electron energy E′
e. A term in Eq. (4.47),

|p′
χ |

|pχ | = |v′
χ |

|vχ | , arises from the fact that we treated the
H-atom as a brick wall potential. Had we not done so, the influence of the Coulomb potential on
the emerging electron would not have been uniquely correlated to p′

χ ,pχ and the back reaction
of the proton should have been taken into account.

Exactly the same result as in Eq. (4.47) can be found by using simpler time-dependent per-
turbation theory for transitions to continuum in non-relativistic quantum mechanics [42]. In a
more refined analysis however, when the recoiling energy is in the neighborhood of the binding
energy of the atom one should take into account effects from the continuum hydrogenic wave
functions instead of treating the final electron as plane wave. This analysis, though more accu-
rate, is far more complicated and does not change the qualitative features of our results. It can
be addressed in the future (together with other effects) especially if these kind of experiments
become operative [see Section 4.4 below].

We analyze below the corresponding cross sections for a massless and a massive mediator as
we did in Section 3 for the nucleons.

4.1.1. Event detection rates
In general for an atom, due to binding energy effects only the loosely bound electrons can con-

tribute to the process (4.43). So we will convolute the elementary cross section with the WIMP
velocity distribution, which, with respect to the galactic center, we will take to be Maxwell–
Boltzmann form:

f (β) =
(

3

2〈β2〉
)3/2 1

π3/2
e
− 3β2

2〈β2〉 . (4.52)

Transforming this into the local coordinate system:

β → ββ̂ + β0ẑ = ββ̂ +
√

2〈β2〉
ẑ, β2 → β2 + 2 〈β2〉 + 2β cos(θ)

√
2 〈β2〉, (4.53)
3 3 3
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where θ is the angle between β̂ and ẑ and β0 =
√

2〈β2〉
3 is the sun’s velocity with respect to the

center of the Galaxy and 〈β2〉 ≈ 10−6. Then we obtain the local distribution of speeds f�(β)

relative to the detector to be

f�(β) =
(

3

2〈β2〉
)3/2 1

π3/2
e
−(

3β2

2〈β2〉 +2β cos(θ)
√

3
2〈β2〉 +1)

. (4.54)

The integration over the angles of the distribution can be done analytically. In evaluating the
rate one has to incorporate the oncoming flux. So, adopting appropriate normalization, in the
convolution we introduce the factor 1/

√〈β2〉. This way we find the rate to be proportional to:

βf�(β)dβ√〈β2〉 =
(

3

2〈β2〉
)3/2 2√

π
e
−(

3β2

2〈β2〉 +1) β3√〈β2〉
sinh(2β

√
3/(2〈β2〉))

β
√

3/(2〈β2〉) dβ. (4.55)

Combining this with the cross section of Eq. (4.47) obtained previously we arrive at:

〈
dσ

dE′
e

β√〈β2〉
〉
=

βesc∫
βmin

dβ
βf�(β)√〈β2〉

dσ

dE′
e

, (4.56)

where the lower velocity in the integral can be read from the positivity of the square root quantity
in Eq. (4.49)

βmin =
√

2E′
e

mχ

+ 2b(Z)

mχ

, (4.57)

and βesc = 2.84
√

(2/3)〈β2〉 is the escape velocity. It is now easy to calculate the differential
event rate per eV ejected electron energy per year and per kilogram of target material to be

dR

dE′
e

= ρ0

mχ

√〈
β2

〉
Ne

〈
dσ

dE′
e

β√〈β2〉
〉
, (4.58)

where ρ0 = 0.2 GeV/cm3 is the WIMP energy density and Ne is the number of target electrons.
Integration of Eq. (4.58) upon E′

e over the region from E′
emin

= 0 to [mχβ2
esc/2 − b(Z)] results

in the total event number per unit time and mass of the target which among other parameters
depends on the mass and atomic numbers of the target atom. Moreover, we shall display results
on the total event rate R(Z) when E′

emin
= Eth with varying experimental threshold energy Eth.

4.1.2. Time modulation effects for electrons
In the convolution of the elementary cross section we have so far considered only the motion

of the sun with respect to the center of Galaxy. More realistically, one should consider also the
Earth’s velocity and then find the modulated event rate that might be detected on Earth. In this
case the WIMP velocity is read from

v′ = v + v0 ẑ + v1(sinα x̂ + cosα cosγ ŷ + cosα sinγ ẑ), (4.59)

where v0 is Sun’s velocity, v1 is Earth’s annual velocity, γ = π
6 is the angle between the projec-

tion of vector v1 on the plane yOz and the ŷ direction and α = a(t) is the complementary angle
of the angle between v1 and x̂. Then the WIMP cross section has to be convoluted with(

βf�(β)dβ√
2

)
=

(
βf�(β)dβ√

2

)
(1 + kδ cosα), (4.60)
〈β 〉 〈β 〉 0
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where the expression with the subscript “0” refers to Eq. (4.55) with δ = v1
v0

≈ 0.135 and

k =
(

2β

√
3

2〈β2〉
cosh(2β

√
3

2〈β2〉 )

sinh (2β
√

3
2〈β2〉 )

− 3

)
sinγ. (4.61)

It is now trivial to extend the distribution with energies event rate of Eq. (4.58) with

dR

dE′
e

=
〈

dR

dE′
e

〉
0
+

〈
dR

dE′
e

〉
mod

cosα, (4.62)

where 〈 dR
dE′

e
〉0 is the unmodulated differential event rate while 〈 dR

dE′
e
〉mod contains also the factor

k in Eq. (4.61).

4.2. Massless mediator

In this case dark matter scattering happens via the coupling of the exotic gauge boson to the
photon (model II). The Feynman diagram is identical to the one presented in Fig. 2 with the quark
replaced by electron. In general case the WIMP-electron cross section is not independent of the
velocity. Thus, we will first estimate the cross section by using an average velocity

√〈β2〉 =
10−3. Following Eq. (4.47) for a photonic mediator we find the differential cross section:

dσ

dE′
e

= s(β)16π2α′αDMκ2m2
χme

|p′
χ |

|pχ |
∣∣p′

e

∣∣ 1∫
−1

dξ

1∫
−1

dη
|φn�m�

(Z,p′
χ + p′

e − pχ )|2
(p′

χ − pχ )4
,

(4.63)

where q = p′
χ − pχ is the WIMP momentum transfer which is ξ dependent. The cross section

peaks up the most from the forward direction ξ ≈ 1. It should be mentioned that since the initial
electron is bound, there is no infrared divergence in this case. Moreover, the momentum transfer
can be as low as:

|q| � 2
b(Z) + E′

e

β
. (4.64)

This relation is important for explaining our numerical results below. Furthermore, in presenting
the results we assume a Dirac WIMP fermion, i.e., s(β) = 1. Furthermore, we choose a bench-
mark scenario inspired by our findings in nucleon decay:

β =
√

〈β2〉 = 10−3, Z = 1, αDM = α′ = αem,

mχ = 100 GeV, κ = 10−10. (4.65)

As it is obvious from Eq. (4.63) it is very easy to apply our numerical results to any other param-
eters, β,αDM, α′, κ , than those shown in Eq. (4.65). We must note here that there is no parameter
κ in model III. This parameter is used here as a rescale factor and its very small value is adjusted
so that we obtain rates of few events.

In Fig. 6a are shown the results for the dσ/dE′
e as a function of final electron’s energy E′

e

for three different cases of hydrogenic atoms with Z = 1,Z = 3 and Z = 6, respectively. The
differential cross section takes on its maximum values for final electron energy of around few eV
for Z = 1, around few tens of eV for Z = 3 and around a hundred eV for Z = 6. For the case
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Fig. 6. (a) Predictions for dσ/dE′
e as a function of the ejected electron energy E′

e . The target is assumed to be a hydro-
genic atom in the ground state with Z = 1,3,6 (from top to bottom). (b) The total cross section for process (4.43) as a
function of the experimental threshold energy for two binding energies. (c) The differential event rate as a function of the
electron energy and various WIMP masses (10, 100, 1000) GeV from (top to bottom). Other parameters not shown, are
taken from Eq. (4.65).

Z = 1, the extremum happens because of a fast increase of the term
|p′

χ |
|pχ | |p′

e| ∼ √
E′

e and the

almost constant value of |φ100|2 until 5 eV. For higher electron energies, e.g., E′
e � 10 eV, the

probability density factor |φ100|2 drops fast as 1/E′8
e and the term in the denominator of the

integral increases as E′2
e , resulting in overall decreasing of the cross section as E

′−19/2
e .The

same analysis can be used to describe the behavior of dσ/dE′
e in the other cases (Z = 3,Z = 6).

We must note here the in the limit E′
e → 0 we obtain dσ/dE′

e → 0 as the case should be. This is
obscured in Fig. 6 due to the range choice of E′

e.
Corresponding to the input parameters noted in (4.65) we calculate the total cross section from

Eq. (4.63) after numerical integration over E′
e in the region [Eth,mχβ2/2 − b(Z)]. Our results

for σ vs. the threshold energy Eth are depicted in Fig. 6(b). We have chosen two extreme cases
of binding energies: b = 0.74 eV that is the binding energy of the electron bounded in the two
electron atom H− and b = 13.6 eV that is the one corresponding to the H-atom we have been
dealing so far. For Eth � 10 eV the difference in cross section is about three to six orders of
magnitudes while for higher threshold energies becomes unimportant.

Following Eq. (4.63) it turns out that the total cross section for process (4.43) is WIMP mass
independent. It is experimentally useful to know how the cross section depends on the threshold
energy Eth that a given experiment can accomplish. This is plotted in Fig. 6(b). For Eth � 1 eV,
the cross section is essentially independent of Eth. When the threshold becomes 5 eV, in the case
of b(Z) = 13.6 eV, the cross section drops by a factor of 5 eV while up to 10 eV by a factor of
50. For smaller binding energy though, i.e., b(Z) = 0.74 eV, and up to 10 eV the cross section
decreases by three orders of magnitude.
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Table 1
Time modulation effects in case of a photonic mediator following Eq. (4.62) in the
text. Various input parameters are given in Eq. (4.65). H is the ratio of the modulated
divided by the unmodulated differential rate.

E′
e

[eV]
〈 dR
dE′

e
〉 [events (kg target)−1 yr−1 eV−1]

unmod. mod. H

0.1 0.11 0.01 0.09
1 0.24 0.03 0.13

10 0.02 0.002 0.10
100 8.21 × 10−9 1.04 × 10−9 0.13

Furthermore, the dependence of differential event rate dR/dE′
e as a function of the ejected

electron energy E′
e for three different WIMP masses, mχ = 10,100,1000 GeV, is shown

in Fig. 6(c). There is a maximum which follows the behavior of differential cross section.
The event rate falls as 1/mχ as the WIMP mass increases in accordance with Eq. (4.58).
For energy of few eV’s and mχ = 10 GeV we obtain a handful of events for κ = 10−10.
A total event rate is obtained after integrating over the differential rate in Fig. 6(c). As
a typical value, for mχ = 100 GeV and the parameters in (4.65) we find R(Z = 1, κ =
10−10) ≈ 1 events yr−1 (kg target)−1. The reader must recall here that this assumes a mixing
parameter as small as κ = 10−10!!

Finally, following the theoretical discussion of the previous subsection we examine effects
of the WIMP time modulation. In Table 1 we display both the unmodulated and modulated
differential event rate for four representative values of E′

e in the case of a massless mediator and
parameters of Eq. (4.65). The dimensionless parameter H , which is the ratio of the modulated by
the non-modulated differential amplitude, is constant around 9–13% independent of the energy
and the WIMP mass. So the modulation h = δ · k of the total rate is also going to be around
10%, which means that the difference between the maximum (here always in June 3rd) and the
minimum (here always in December) is 18–26%, a result should not to be overlooked.

4.3. Massive mediator

Again the relevant diagram is the one of Fig. 2 with quarks replaced by electrons. By taking the
non-relativistic limit of Eq. (4.47) and the assumption that the momentum transfer in Eq. (4.64)
is much less than the mediator mass, q2 � m2

X , we arrive at

dσ

dE′
e

= s(β)
16π2α′αDMκ2

m4
X

m2
χme

|p′
χ |

|pχ |
∣∣p′

e

∣∣

×
1∫

−1

dξ

1∫
−1

dη
∣∣φn�m�

(
Z,p′

χ + p′
e − pχ

)∣∣2
. (4.66)

In what follows we assume a Dirac WIMP fermion, i.e., s(β) = 1. We assume the following
input parameters:

β =
√

〈β2〉 = 10−3, Z = 1, αDM = α′ = αem,

mX = 1 GeV, mχ = 100 GeV, κ = 1. (4.67)
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Fig. 7. (a) Predictions for dσ/dE′
e as a function of the ejected electron energy E′

e . The target is assumed hydrogenic
atom with Z = 1,3,6 (from top to bottom) in the ground state. (b) The total cross section as a function of threshold
energy. (c) The total cross section as a function of mX for two different binding energies. We assume a Dirac WIMP,
Eth = 0 eV and input parameters from Eq. (4.67) if not stated otherwise.

Although this parameter space violates the bounds in Eqs. (2.16) and (2.17) it serves as a bench-
mark for this article in comparing results with those of Section 3 if possible. The value of κ is
chosen such that the resulting rate presented in the figures assumes no mixing of the X-boson
mediator which is formally the case of model III.

Results for the differential cross section dσ/dE′
e for the electron in the ground state of three

hydrogenic atoms are shown in Fig. 7(a). The differential cross section takes on its maximum
values for final electron energy of around few eV for Z = 1, ten of eV for Z = 3 and around
hundred eV for Z = 6. For the case Z = 1, the extremum happens because of a fast increase of

the term
|p′

χ |
|pχ | |p′

e| ∼ √
E′

e and the almost constant value of |φ100|2 until 5 eV [see Eq. (4.66)].

For higher electron energies, e.g., E′
e � 10 eV, the probability density factor |φ100|2 drops fast

as 1/E′8
e resulting in overall decreasing of the cross section as E

′−15/2
e . In physical terms,

the outgoing electrons of high energy demand high momenta in the initial electron wavefunc-
tion, which leads to suppression. The dependence on the Z is easily explained if we recall that
for hydrogenic atoms, 〈p2〉n=1 = Z2p2

0 where p0 is the Bohr momentum for Hydrogen. Fur-
thermore, despite appearances in Eq. (4.66), the differential cross section depends only very
mildly on the WIMP mass. One can show analytically that the double integral over the wave
function squared, is approximately proportional to 1/m2

χ which cancels the m2
χ in the numera-

tor.
Corresponding to the input parameters noted in (4.67) we calculate the total cross section

from Eq. (4.66) after numerical integration over E′
e in the region [Eth,mχβ2/2 − b(Z)]. For

fixed velocity, β = 0.001, and Eth = 0 we find the following representative values:
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Fig. 8. (a) Differential event rate of Dirac WIMP scattered off hydrogen (Z = 1, A = 1) target electrons per year
per kg as a function of ejected electron energy E′

e in eV. Three different WIMP masses have been assumed: mχ =
10,100,1000 GeV, from top to bottom, respectively. (b) The total event rate as a function of the experimental threshold
energy for mχ = 100 GeV for two different binding energies. Other input parameters are taken from Eq. (4.67) for the
massive mediator.

Z σ [cm2]
1 3 × 10−40

10 2 × 10−44

50 3 × 10−48

The total cross section increases by a factor of about 32 when β = βesc is taken. The cross section
decreases with Z [see also Fig. 7(a)], the reason being the fact that the binding energy increases
with Z2 [see Eq. (4.50)] and therefore we need to go to larger – compared to ground state –
momenta where the wavefunction is small despite their maximum value displacement towards
larger momenta.

Assuming that the sensitivity of detecting low energy electrons will be analogous to the ongo-
ing experiments (≈ 10−43 cm2), we could even extract bounds on various parameters in models I,
II or III. From all running experiments, DAMA [27,38] is the one that triggers on final state elec-
trons with energy around 5 KeV. From Fig. 7(a) one obtains that, around that energy, the cross
section is too small for mX = 1 GeV and all other inputs in Eq. (4.67). However, dσ/dE′

e ∝ m−4
X

and therefore for mX ≈ 1 MeV, i.e., model types proposed in Ref. [19], DAMA is a relevant
experiment. Additionally, this is demonstrated in Fig. 7(c) where the total cross section as a
function of mX is plotted for two reference values of binding energies.

In Fig. 7(b) we examine the total cross section as a function of the experimental energy thresh-
old for low energies, relevant to our proposal. As we can see, the total cross section reduces by a
factor of six in the region 0 � Eth � 10 eV. Above 10 eV the cross section drops drastically [see
total rate in Fig. 8(b)].

Although not shown, we have also examined departures of the wavefunction from the ground
state. The maximum value dσ/dE′

e|max appears at the same place in E′
e ≈ 1 − 10 eV. As an ex-

ample, the difference in dσ/dE′
e|max is an enhancement by a factor 20 when going from 1s → 2s.

Furthermore, the size of the momentum transfer in conjunction with the non-zero binding energy
are such that never let the wavefunctions to reach their zero nodes.

Assuming one electron per target atom, and the average cross section of Fig. 7(a) for Z = 1,
the differential event rate per eV of electrons energy per year per kg of hydrogen material as
a functions of E′

e for various WIMP masses is depicted in Fig. 8(a). The differential event
rate again exhibits a maximum which follows that of the differential cross section calculated
in Fig. 7(a). The event rate is of course higher for smaller WIMP mass [recall Eq. (4.58)]
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Table 2
Time modulation effects in case of a massive mediator following Eq. (4.62) and
various input parameters in Eq. (4.67). H is the ratio of the modulated by the un-
modulated differential amplitude.

E′
e

[eV]
〈 dR
dE′

e
〉 [events (kg target)−1 yr−1 eV−1]

unmod. mod. H

0.1 0.06 0.01 0.17
1 0.19 0.02 0.11

10 0.079 0.008 0.10
100 1.84 × 10−5 1.78 × 10−6 0.097

and for electron energy of few eV’s it varies from 0.01 up to 2 events yr−1 kg−1 eV−1 for
mχ = 1000, 10 GeV, respectively. For electron energy of around 100 eV the role of the
wave function is to reduce the differential rate by an order of magnitude, i.e., from 10−4 to
10−3 events yr−1 kg−1 eV−1. The total event rate for mχ = 100 GeV and the other parameters in
Eq. (4.67) is predicted to be:

R(Z = 1, κ = 1) � 2 [events yr−1 (kg target)−1]. (4.68)

It is useful to know how the total rate (4.68) varies with an experimental threshold energy. This
information can be extracted from Fig. 8(b) for two different but judiciously chosen, values of
binding energies. As in the case of the total cross section in Fig. 7(b), the total rate drops by
only a factor of five until Eth ≈ 10 eV while it drops very rapidly after about this scale. For
example, it drops by a factor of 104 for Eth = 100 eV. Smaller binding energies [upper line in
Fig. 8(b)] result in up to two order of magnitude bigger rates but for threshold energies as low as
Eth � 5 eV.

Finally, in Table 2 we calculate the effects of time modulation and present the differential
event rate for four different values of E′

e in the case of massive mediator with mX = 1 GeV.
We assume also a WIMP mass mχ = 100 GeV and Z = 1. The H ratio is constant around 10%
independent of the energy and the WIMP mass. So the modulation h of the total rate is also going
to be around 10–17%, which means that the difference between the maximum (here always in
June 3nd) and the minimum (here always in December) is 20–34%.

4.4. Experiment: The prospects of detecting single ultra low energy electrons

As discussed in a previous section observation of light X-boson would require detectors with
sub-keV sensitivities. The development of such detectors, having a low energy threshold and
low noise, remains generally a daunting challenge for present-day and future low-background
experiments.

As shown in Fig. 6 the signal of low energy electrons produced by elastic collision process
exhibits a maximum at energies around or even lower than 10 eV. At such energies a detector
with single electron sensitivity will be required to reach a reasonable efficiency. The last ten
years a particular effort is going on to develop ultra low threshold detectors in order to address
low energy neutrino physics [43–46]. This has been achieved for low mass detectors. We are,
however, seeking an even lower energy threshold.

Usual solid state detectors employed for dark matter projects have typical thresholds of a few
keV. It is very difficult to combine sub-keV and big mass at the same time. For instance Ultra-
Low-Energy Germanium detectors [36] are able to reach a threshold of a few hundred eV’s, but
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they are limited to a modular mass of a few grams. Anyway the achieved energy threshold is still
below our requirements.

Single electron efficiency is achieved using detectors reaching very high gains in order to
cope with electronic noise. Gaseous detectors are good candidates. In such detectors high gains
may easily be achieved. Having been conceived as a TPC Micromegas detector (MS) [47], it is
compatible with large drift volumes and operation at high pressure, an example of which are the
HELLAZ [48] prototypes. A great advantage of this detector is the versatility of target material:
various gases from the lightest (H2) to heaviest (Xe) could be used offering a large choice.

One idea to increase the mass of the target material is to use the recently developed Spherical
Proportional Counter (SPC). This detector consists of large spherical gas volume with central
electrode and radial electric field. Charges deposited in the drift volume are drifting to the central
sensor where are amplified and collected. A novel concept of a proportional sensor, a metallic
ball having a radius of about 15 mm, located at the center of curvature, acting as a proportional
amplification structure is used. It allows to reach high gas gains (�104) and operates from low
to high gas pressure. At such gains, provided the low electronic noise of this detector, single
electron efficiency is easily achieved.

The main advantages of the new structure relevant to our project are:

• Simplicity of the design.
• A single channel is used to read-out a large volume.
• Robustness.
• The depth of the interaction, related to the rise time of the signal, is measured. This is im-

portant to apply fiducial cuts for background rejection purpose.
• Low detector capacity � 0.1 pF, independent of the vessel size, allows very-low electronic

noise, which is a key point toward achieving low energy threshold.
• Versatility of the target material and density; the detector is compatible with a large variety

of gases and could operate from low pressure to high pressure. This could be a precious tool
to identify a possible signal out of backgrounds.

A main concern of the proposed detection scheme is the minimal background level that will be
reached by our system. By this one means that detector body and appropriate shield will be built
with materials which are screened for low levels of natural and man-made radioactive impurities.
Ordinary construction and shielding materials, however, do contain trace amounts of naturally
occurring and man-made radionuclides which result in elevated background level; we need to
design and fabricate the detector by careful material selection made out of low level activity.

Unfortunately, however, there exists very little experience at the very low energy (sub-keV)
region where our detector will be operating. An example is a low background gaseous detector
with sub-keV energy threshold developed for solar axion search [49]; the reached background
level is quite low and is flat in the sub-keV energy range down to 250 eV. Our purpose is to
further decrease the energy threshold down to about 10 eV. This region has never been explored
and therefore reaching the desired low level activity becomes a new experimental challenge.
Single electron backgrounds could be emitted by materials pulled by the electric field through
thermionic emission. The advantage of the spherical detector is that at the external vessel the
electric field is extremely low and therefore highly reduced thermionic emission is expected.

The present prototype having a volume of 1 m3, filled with a gas at high pressure with a target
mass of the order of 10 kg could fulfills sensitivity requirements for our project. We will search
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appropriate molecular gases having low binding energies and compatible with operation in the
Spherical Proportional Counter detector [50].

At present it looks realistic to soon have a sphere of radius of 5 meters, which can be under
a pressure of 5 bars. Thus, if one fills it with 80% Ar and 20% isobutane (C4H10), one can have
212 kg of hydrogen. With this much hydrogen using Eq. (4.68) and a threshold of ≈10 eV, we
expect around 200 events per year for the parameters in (4.67). In models [19] where the mediator
mass is very low, e.g., mX ≈ 1 MeV, we expect an increase of the event rate by almost six orders
of magnitude. Therefore, if a low energy experiment will be built it would possibly set the best
limits on these kind of models.

5. Conclusions

Recent cosmic ray results from PAMELA, HESS and FERMI Collaborations show an unex-
pected rising of positron events with energy that may be due to Dark Matter particle annihilations
in the halo of our Galaxy. This Dark Matter particle “sees” the SM ones only through its inter-
actions with an X-boson that couples to the SM gauge sector. Depending on the model, the
mediator can be massless or massive with different couplings. In this article we study direct de-
tection of this secluded type of dark matter employing nucleons or electrons with main emphasis
in the latter case.

Due to the small momentum transfer7 the massless case results in a large number of events that
should have been seen by current nucleon recoiling direct detection experiments and therefore
strong bounds on mixing parameters and couplings exist. Our work emphasizes the role of the
low energy electron recoil in direct detection experiments and proposes a novel experimental
avenue on how to proceed in searching for such low energy electrons. For simple hydrogenic
atoms, and at low energy, E′

e ≈ 10 eV, the cross section is enhanced by order of magnitudes
compared to keV recoil energies. In the neighborhood of low energies, the results depend highly
on the binding energy of the ejected electron: the more loose the electron is the bigger the event
rate becomes as expected. In this regard we considered two possibilities:

• The process is mediated by the massive mediator X (our model III).
In this case we do not have scattering off hadrons at tree level. So we do not have dominant
constraints on the parameters of the model coming from the ongoing WIMP searches. Using
the parameters of Eq. (4.67) we have obtained fairly large cross sections for a Dirac WIMP.
Employing the spherical TPC detector described above with a radius of 5 m under pressure
of 5 atm we have found that we could have about 200 counts in a year, assuming a threshold
of 10 eV. It is possible, however, that our choice of parameters is a bit optimistic and we may
have not considered all available constraints. Our results are also applicable to model-I. In
this case however, due to the fact that couplings of the X-boson to hadrons appear at tree
level, there exist strong constraints on the mixing parameter already from the nucleon direct
searches [see Eq. (3.38)].

• The process is accommodated by the massless mediator (leptophylic version of model II).
This mechanism is similar to that involving hadrons in Section 3, one simply replaces the
quarks by leptons. In this case we have found that the most stringent constraints on the pa-
rameters come from the standard WIMP searches. Thus using the parameters of Eq. (4.65)

7 For nucleons, the momentum transfer is ≈ 2 MeV and energy transfer is ≈ 2 KeV, while for low energy electron
recoils they are ≈ 50 KeV and ≈ 10 eV, respectively.
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we have obtained with the above detector hundreds of events per year even with a (reduc-
tion) mixing coupling constant as low as κ = 10−10 for a Dirac WIMP. Such a huge signal
cannot be seen by current experiments either due to lack of low energy threshold or because,
experiments, like CDMS and XENON, are keeping only nuclear recoil events. We were sur-
prised to find so large cross section. We now understand it, however, to be due to the photon
propagator (1/q2)2, which is favored by the fact that the momentum transfer is very low in
the case of electrons. We should mention that, since the initial electron is bound, there is no
infrared divergence and no need for a low energy cut off. It should be also noted that quark
couplings to X-boson will come back through loop corrections even if they are forbidden at
tree level by a symmetry which is eventually broken [see footnote 2]. Then current nucleon
recoil experiments will be as important [see Eq. (3.32)] and complementary to the electron
ones.

The above conclusions assume that the WIMP is a Dirac particle. If the WIMP is Majorana
particle the rates are suppressed by approximately a factor β2 ≈ 10−6. For both the above cases,
annual time modulation effects are of the order of 20–30%, important enough to be noticed.

We have limited the discussion of the rates in the case of hydrogen, since our cross section was
evaluated using hydrogenic wave functions. Certainly the obtained rates will increase, if one can
exploit the other atomic electrons with smaller binding energy. This situation was made manifest
in our work with a judicious change of the binding energy [see Figs. 6(b), 7(c), 8(b)]. But then
one should employ realistic wave functions.

In a similar fashion one can treat other dark matter candidates like right handed neutrinos,
which arise in models in which the ordinary Dirac type mass is forbidden due to a discreet
symmetry, but communication with the leptons is allowed via exotic scalars [51–53] with masses
in the 50 GeV region. It may also apply to other models involving exotic fermions and scalars
recently proposed and reviewed in Ref. [54].

Acknowledgements

A.D. and J.D.V. acknowledge partial support by the EU FP6 Marie Curie Research and Train-
ing Network “UniverseNet” (MRTN-CT-2006-035863). A.D. is also partially supported by the
RTN European Programme, MRTN-CT-2006-035505 (HEPTOOLS, Tools and Precision Cal-
culations for Physics Discoveries at Colliders). K.S. acknowledges full financial support from
Greek State Scholarships Foundation (IKY).

References

[1] O. Adriani, et al., arXiv:0810.4995 [astro-ph].
[2] O. Adriani, et al., arXiv:0810.4994 [astro-ph].
[3] S.W. Barwick, et al., Astrophys. J. 482 (1997) l191, arXiv:astro-ph/9703192.
[4] J.J. Beatty, et al., Phys. Rev. Let. 93 (2004) 241102, arXiv:astro-ph/0412230.
[5] M. Aguilar, et al., AMS-01 Collaboration, Phys. Lett. B 646 (2007) 145, arXiv:astro-ph/0703154.
[6] A.A. Abdo, et al., The Fermi LAT Collaboration, arXiv:0905.0025 [astro-ph.HE].
[7] F. Aharonian, et al., H.E.S.S. Collaboration, Phys. Rev. Lett. 101 (2008) 261104, arXiv:0811.3894 [astro-ph];

H.E.S. Aharonian, arXiv:0905.0105 [astro-phHE].
[8] M. Cirelli, M. Kadastik, M. Raidal, A. Strumia, Nucl. Phys. B 813 (2009) 1, arXiv:0809.2409 [hep-ph].
[9] P. Meade, M. Papucci, A. Strumia, T. Volansky, arXiv:0905.0480 [hep-ph].

[10] J. Chang, et al., ATIC Collaboration, Nature 456 (2008) 362.



172 A. Dedes et al. / Nuclear Physics B 826 (2010) 148–173
[11] D.P. Finkbeiner, et al., Astrophys. J. 684 (2004) 186, arXiv:astro-ph/0312547.
[12] D. Hooper, D.P. Finkbeiner, G. Dobler, Phys. Rev. D 76 (2007), arXiv:0705.3655.
[13] A.W. Strong, et al., Astron. Astrophys. 444 (2005) 405, arXiv:astro-ph/0509092.
[14] B. Holdom, Phys. Lett. B 166 (1986) 196;

B. Holdom, Phys. Lett. B 259 (1991) 329.
[15] M. Pospelov, A. Ritz, M.B. Voloshin, Phys. Lett. B 662 (2008) 53, arXiv:0711.4866 [hep-ph];

Kinetic mixing of the photon with hidden U(1)s in string theory has been studied in S.A. Abel, M.D. Goodsell,
J. Jaeckel, V.V. Khoze, A. Ringwald, JHEP 0807 (2008) 124, arXiv:0803.1449 [hep-ph].

[16] D.P. Finkbeiner, N. Weiner, Phys. Rev. D 76 (2007) 083519, arXiv:astro-ph/0702587.
[17] N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer, N. Weiner, Phys. Rev. D 79 (2009) 015014, arXiv:0810.0713

[hep-ph];
N. Arkani-Hamed, N. Weiner, JHEP 0812 (2008) 104, arXiv:0810.0714 [hep-ph];
M. Pospelov, A. Ritz, arXiv:0810.1502 [hep-ph].

[18] A. Sommerfeld, Ann. Phys. 11 (1931) 257;
Relevant to the Abelian models considered here is the article: M. Cirelli, A. Strumia, M. Tamburini, Nucl. Phys.
B 787 (2007), arXiv:0706.4071 [hep-ph].

[19] C. Boehm, P. Fayet, Nucl. Phys. B 683 (2004) 219, arXiv:hep-ph/0305261;
C. Boehm, P. Fayet, J. Silk, Phys. Rev. D 69 (2004) 101302, arXiv:hep-ph/0311143.

[20] E.C.G. Stueckelberg, Helv. Phys. Acta 11 (1938) 225.
[21] D. Feldman, Z. Liu, P. Nath, arXiv:0810.5762 [hep-ph].
[22] P.J. Fox, E. Poppitz, arXiv:0811.0399 [hep-ph].
[23] S. Baek, P. Ko, arXiv:0811.1646 [hep-ph].
[24] R. Harnik, G.D. Kribs, arXiv:0810.5557 [hep-ph].
[25] C.R. Chen, F. Takahashi, T.T. Yanagida, arXiv:0811.0477 [hep-ph].
[26] A. Ibarra, A. Ringwald, D. Tran, C. Weniger, JCAP 0908 (2009) 017, arXiv:0903.3625 [hep-ph].
[27] R. Bernabei, et al., Phys. Rev. D 77 (2008) 023506, arXiv:0712.0562 [astro-ph];

In the case of inelastic dark matter and DAMA prospects see: Y. Cui, D.E. Morrissey, D. Poland, L. Randall,
JHEP 0905 (2009) 076, arXiv:0901.0557 [hep-ph].

[28] P.Q. Hung, J.J. Sakurai, Nucl. Phys. B 143 (1978) 81, Erratum;
P.Q. Hung, J.J. Sakurai, Nucl. Phys. B 148 (1979) 538.

[29] M. Baumgart, C. Cheung, J.T. Ruderman, L.T. Wang, I. Yavin, arXiv:0901.0283 [hep-ph].
[30] For a recent review see: F. Jegerlehner, A. Nyffeler, arXiv:0902.3360 [hep-ph].
[31] M. Pospelov, arXiv:0811.1030 [hep-ph].
[32] D.E. Morrissey, D. Poland, K.M. Zurek, arXiv:0904.2567 [hep-ph].
[33] J.D. Bjorken, R. Essig, P. Schuster, N. Toro, arXiv:0906.0580 [hep-ph].
[34] B. Batell, M. Pospelov, A. Ritz, arXiv:0906.5614 [hep-ph].
[35] B. Kors, P. Nath, Phys. Lett. B 586 (2004) 366, arXiv:hep-ph/0402047;

D. Feldman, Z. Liu, P. Nath, Phys. Rev. D 75 (2007) 115001, arXiv:hep-ph/0702123.
[36] J. Yoo, CDMS Collaboration, arXiv:0810.3527 [hep-ex].
[37] J. Angle, et al., XENON Collaboration, Phys. Rev. Lett. 100 (2008) 021303, arXiv:0706.0039 [astro-ph].
[38] R. Bernabei, et al., DAMA Collaboration, Eur. Phys. J. C 56 (2008) 333, arXiv:0804.2741 [astro-ph].
[39] J.D. Vergados, J. Phys. G 30 (2004) 1127, arXiv:hep-ph/0406134.
[40] N. Tetradis, J.D. Vergados, A. Faessler, Phys. Rev. D 75 (2007) 023504.
[41] See, for instance, M.E. Peskin, D.V. Schroeder, An Introduction To Quantum Field Theory, Addison–Wesley, Read-

ing, MA, 1995.
[42] See, for example, R.W. Jackiw, H.A. Bethe, Intermediate Quantum Mechanics (Lecture Notes and Supplements in

Physics), 1986, notes by R.W. Jackiw;
L. Schiff, Quantum Mechanics, McGraw–Hill Education, 1968.

[43] J.I. Collar, I. Giomataris, Nucl. Instrum. Methods A 471 (2000) 254–259.
[44] I. Giomataris, J.D. Vergados, Nucl. Instrum. Methods A 530 (2004) 330–358.
[45] C. Hagmann, A. Bernstein, IEEE Trans. Nucl. Sci. 51 (2004) 2151–2155.
[46] H.T. Wong, Mod. Phys. Lett. A 23 (2008) 1431–1442.
[47] Y. Giomataris, P. Rebourgeard, J.P. Robert, G. Charpak, Nucl. Instrum. Methods A 376 (1996) 29.
[48] P. Gorodetzky, et al., Nucl. Instrum. Methods A 433 (1999) 554.
[49] P. Abbon, et al., New J. Phys. 9 (2007) 170, arXiv:physics/0702190.
[50] I. Giomataris, et al., JINST 3 (2008) P09007, arXiv:0807.2802 [physics.ins-det].



A. Dedes et al. / Nuclear Physics B 826 (2010) 148–173 173
[51] R. Adhikari, J. Erler, E. Ma, Phys. Lett. B 672 (2009) 136, arXiv:0810.5547 [hep-ph].
[52] Q.H. Cao, E. Ma, G. Shaughnessy, arXiv:0901.1334 [hep-ph].
[53] D. Suematsu, T. Toma, T. Yoshida, arXiv:0903.0287 [hep-ph].
[54] E. Ma, arXiv:0810.5574 [hep-ph].


	Searching for secluded dark matter via direct detection of recoiling nuclei as well as low energy electrons
	Introduction
	Theory setup and model categories
	Model I: Non-standard kinetic mixing K
	Model II: Non-standard mass mixing, M2
	Model III: Direct coupling, no mixing

	Conventional WIMP searches
	Massless mediator
	Massive mediator

	Unconventional WIMP searches
	Cross section
	Event detection rates
	Time modulation effects for electrons

	Massless mediator
	Massive mediator
	Experiment: The prospects of detecting single ultra low energy electrons

	Conclusions
	Acknowledgements
	References


