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ABSTRACT

The seesaw-extended MSSM provides a framework in which the observed light neutrino masses and

mixing angles can be generated in the context of a natural theory for the TeV-scale. Sneutrino-

mixing phenomena provide valuable tools for connecting the physics of neutrinos and supersym-

metry. We examine the theoretical structure of the seesaw-extended MSSM, retaining the full

complexity of three generations of neutrinos and sneutrinos. In this general framework, new

flavor-changing and CP-violating sneutrino processes are allowed, and are parameterized in terms

of two 3×3 matrices that respectively preserve and violate lepton number. The elements of these

matrices can be bounded by analyzing the rate for rare flavor-changing decays of charged leptons

and the one-loop contribution to neutrino masses. In the former case, new contributions arise

in the seesaw extended model which are not present in the ordinary MSSM. In the latter case,

sneutrino–antisneutrino mixing generates the leading correction at one-loop to neutrino masses,

and could provide the origin of the observed texture of the light neutrino mass matrix. Finally, we

derive general formulae for sneutrino–antisneutrino oscillations and sneutrino flavor-oscillations.

Unfortunately, neither oscillation phenomena is likely to be observable at future colliders.
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http://arxiv.org/abs/0707.3718


1 Introduction

The Standard Model of particle physics provides a remarkable description of the funda-

mental interactions of elementary particles at energy scales of order 100 GeV and below.

Precision tests at LEP, the Tevatron and other lower energy colliders have detected no sig-

nificant deviations from the predictions of observed electroweak phenomena [1]. Although

the scalar sector responsible for electroweak symmetry breaking has not yet been discov-

ered, the precision electroweak data is consistent with the Standard Model including a

scalar Higgs boson of mass 114 GeV < mh < 182 GeV at 95% CL. Despite its successes,

the Standard Model is widely acknowledged to be only a low-energy effective theory, to

be superseded (most likely at the TeV energy scale) by a more fundamental theory that

can explain the puzzling large hierarchy between the energy scale that governs electroweak

symmetry-breaking and the Planck scale [2].

Numerous proposals for a more fundamental theory that supersedes the Standard Model

have been advanced over the last thirty years [3]. Low-energy supersymmetric theories (in

which supersymmetry breaking effects of order the TeV scale are ultimately responsible for

electroweak symmetry breaking) are perhaps the most well-studied framework for TeV-scale

physics beyond the Standard Model [4–6]. The simplest supersymmetric extension consists

of the particle content of the two-Higgs-doublet extension of the Standard Model and its

supersymmetric partners. In addition to the supersymmetric interactions of the particle su-

permultiplets, one adds the most general set of soft-supersymmetry-breaking terms, which

parameterizes the unknown dynamics responsible for supersymmetry breaking [7, 8]. The

resulting minimal supersymmetric Standard Model (MSSM) yields a rich phenomenology

of new superpartners and interactions, which if present in nature is poised for discovery at

the Tevatron and/or Large Hadron Collider (LHC).

Although no significant deviations from Standard Model predictions have been observed

at colliders, there is of course one definitive set of observations that are in conflict with

(the minimal version of) the Standard Model—the observation of neutrino mixing and its

implications for neutrino masses [9]. Since neutrinos are strictly massless in the Standard

Model, the latter must be modified in order to incorporate the observed phenomena of

neutrino oscillations. The simplest approach is to introduce a gauge invariant dimension-

five operator [10]1

L5 = −fIK

Λ
(ǫijL

I
iHj)(ǫkℓL

K
k Hℓ) + H.c. , (1.1)

where Hj is the complex Higgs doublet and LI
i ≡ (νI

L , ℓ
I
L) is the SU(2)-doublet of two-

1Following refs. [7] and [6], we employ a convention where ǫ12 = −1 = −ǫ21.

1



component lepton fields,2 where I and K label the three generations.

After electroweak symmetry breaking, the neutral component of the doublet Higgs

field acquires a vacuum expectation value, and a Majorana mass matrix for the neutri-

nos is generated. The dimension-five term [eq. (1.1)] is generated by new physics beyond

the Standard Model at the scale Λ. Current bounds on light neutrino masses suggest

that v2/Λ <∼ 1 eV [11, 12], or Λ >∼ 1013 GeV. A possible realization of eq. (1.1) is based

on the seesaw mechanism, which was independently discovered by a number of different

authors [13, 14]. In the seesaw extension of the Standard Model [14], one simply adds

SU(2)×U(1) gauge singlet neutrino fields νcI
L and writes down the most general renormal-

izable couplings of νcI
L to the Standard Model fields:

Lseesaw = −ǫijY IJ
ν HiL

I
jν

c J
L − 1

2
M IJνc I

L νc J
L + H.c. (1.2)

If ‖M‖ ≫ v, then at energy scales below M a dimension-five operator of the form given by

eq. (1.1) is generated.

The MSSM is a minimal extension of the Standard Model. Nevertheless, there is a po-

tential source for lepton-number violation and hence neutrino masses. Unlike the Standard

Model, it is possible to construct renormalizable operators that violate lepton number and

baryon number [15]. In their most generic forms, such operators would lead to extremely

fast proton decay in conflict with the observations. The traditional solution is to intro-

duce a discrete symmetry called R parity [16] that distinguishes Standard Model particles

and their superpartners. In the R-parity-conserving (RPC) MSSM, neutrinos are massless

just as in the Standard Model. Thus, one way to incorporate massive neutrinos in the

RPC-MSSM is to formulate a minimal supersymmetric extension of the seesaw-extended

Standard Model [17–21]. An alternative approach is to choose a different discrete symmetry

that preserves baryon number but violates lepton number [22]. In such an R-parity-violating

(RPV) MSSM, a Z3 baryon triality guarantees that baryon number is conserved by the

renormalizable operators of the model (hence preventing fast proton decay). This approach

has the advantage that no new fields beyond those of the MSSM need to be introduced.

However, certain RPV (lepton-number-violating) couplings must be taken to be quite small

in order to explain the scale of neutrino masses [23–25].

In this paper, we shall consider the minimal supersymmetric extension of the seesaw-

extended Standard Model [17–21]. In this model, neutrino masses and mixing are governed

by the same seesaw mechanism originally introduced into the (non-supersymmetric) Stan-

dard Model. In the supersymmetry-extended model, new lepton-violating phenomena enter

2To translate the two-component spinor product LI
i L

K
k into four-component spinor notation,

see Appendix A.

2



due to additional effective lepton-violating operators generated by soft-supersymmetry-

breaking. Such effects govern the behavior of the neutrino superpartners—the sneutrinos.

Thus, the supersymmetric seesaw model provides new sources for lepton-number-violating

phenomena. For example, sneutrinos and antisneutrinos can mix due to effective ∆L = 2

operators [18, 26]. Although such mixing effects are expected to be quite small, there are

some scenarios in which sneutrino mixing phenomena could be observed in future collider

experiments [18, 27]. Sneutrino mixing also contributes a significant one-loop correction

to neutrino masses and could be partially responsible for the observed pattern of neutrino

masses and mixing [18,25,28]. The supersymmetric seesaw can also introduce lepton-flavor-

violation and CP-violating effects due to the non-trivial flavor structure of the seesaw inter-

actions [19, 20, 29]. Such phenomena are exhibited in the flavor oscillations of the charged

sleptons [30] and the sneutrinos, respectively. Moreover, new one-loop processes contribute

to ℓ I → ℓ Jγ and electric dipole moments, and provide interesting constraints on the model

parameters.

In Section 2, we introduce the Lagrangian for the three-generation supersymmetric see-

saw model, focusing on the interaction of the lepton and Higgs superfields. Our notation

for fermion fields are described in Appendix A. In Section 3, we derive the mass matrices

for neutrinos and squared-mass matrices for the sneutrinos. In the limit of M ≫ v, one can

use perturbation theory to obtain accurate analytical expressions for the diagonalization of

the effective mass and squared-mass matrices for the light and heavy neutral fermion and

scalar states, respectively. The origin of a non-decoupling contribution to sneutrino masses

noted in Section 3 is provided in Appendix B. In Section 4, we examine the constraints on

the lepton-number conserving parameters of the model due to the observed g − 2 of the

muon, the (unobserved) electric dipole moment of the electron, and the unobserved radia-

tive decays of charged leptons. In Section 5, constraints on the lepton-number violating

parameters of the model are obtained based on observed neutrino mass and mixing data.

The general theory and phenomenology of sneutrino oscillations and mixing are addressed

in Section 6. Our conclusions are given in Section 7. Although the neutrino are most easily

treated as two-component spinor fields, it is convenient to present the Feynman rules of

the model using four-component spinor notation. In Appendix A, we demonstrate how

to translate between two-component and four-component spinor notation in the interac-

tion Lagrangian. The relevant Feynman rules needed for the computations of this paper

are listed in Appendix C. Finally, some order of magnitude estimates for the contribu-

tions to one-loop neutrino masses (relevant for the discussion of Section 5.1) are provided

in Appendix D.
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2 Lagrangian and the scalar potential

In this section, we examine the terms of the Lagrangian that contribute to the masses and

the non-gauge interactions of the neutrinos and sneutrinos. That is, we focus on terms

that involve the charged leptons, neutrinos, charged sleptons, sneutrinos and the Higgs

fields. The relevant superfields (denoted with hats above the corresponding field symbol)

are specified in Table 1.

Table 1:

Fermionic

Superfield hypercharge Boson Fields Partners

L̂I −1 L̃I
j ≡ (ν̃I

L , ℓ̃
I
L) (νI

L , ℓ
I
L)

R̂I +2 R̃I ≡ (ℓ̃ I
R)∗ ℓ cI

L

N̂ I 0 Ñ I ≡ (ν̃I
R)∗ νcI

L

Ĥ1 −1 H1
j ≡ (H1

1 , H
1
2 ) (H̃1

1 , H̃
1
2 )

Ĥ2 +1 H2
j ≡ (H2

1 , H
2
2 ) (H̃2

1 , H̃
2
2 )

The electric charge (in units of e) is given by Q = T3 +Y/2, where Y is the hypercharge

specified above. The index j labels components of the SU(2) doublets with T3 = ±1/2

for j = 1, 2 respectively (and T3 = 0 for the SU(2) singlets). The fermionic partners

can be viewed either as two-component fermion fields or the left-handed projections of

four-component fermion fields, as explained in Appendix A. The index I = 1, 2, 3 labels

three possible generations of charged lepton and neutrino superfields. The notation for the

scalar field components of the hypercharge-zero superfield is motivated by the fact that in

the lepton-number-conserving limit, R̂ and N̂ possess the same lepton number (which is

opposite in sign to that of L̂). Consequently, ν̃L and ν̃R possess identical lepton numbers

[cf. eq. (6.3)].

The most general (renormalizable) form of the superpotential involving the lepton and

Higgs superfields in the R-parity-conserving extended MSSM is given by:

W = ǫij(µĤ
1
i Ĥ

2
j − Y IJ

ℓ Ĥ1
i L̂

I
j R̂

J + Y IJ
ν Ĥ2

i L̂
I
jN̂

J ) + 1
2
M IJN̂ IN̂J , (2.1)

where Yℓ and Yν are complex 3 × 3 matrices, M is a complex symmetric 3 × 3 matrix and
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µ is a complex parameter.3 In addition, there are soft-supersymmetry-breaking terms that

involve the scalar field components of the above superfields. Before writing these terms

explicitly, it is convenient to perform field redefinitions of the (charged and neutral) lepton

superfields:

L̂I → V IJ
L L̂J , R̂I → V IJ

R R̂J , N̂ I → V IJ
N N̂J , (2.2)

where VL, VR and VN are 3 × 3 unitary matrices. Note that the kinetic energy terms (and

the couplings of the lepton superfields to the gauge fields) are invariant under the above

unitary transformations. However, the coefficients of the terms of the superpotential are

modified:

Yℓ → V T
L YℓVR , Yν → V T

L YνVN , M → V T
NMVN . (2.3)

We shall choose VL, VR and VN such that:

V T
L YℓVR = diag(Ye , Yµ , Yτ ) , (2.4)

V T
NMVN = diag(M1 , M2 , M3) , (2.5)

where the elements of the two diagonal matrices above are real and non-negative. It is

always possible to find unitary matrices VL and VR such that eq. (2.4) is satisfied—this

is the singular value decomposition of an arbitrary complex matrix [31]. Likewise, it is

always possible to find a unitary matrix VN such that eq. (2.5) holds—this is the Takagi-

diagonalization of an arbitrary complex symmetric matrix [31–33]. Thus, the redefinition

of the lepton superfields [eq. (2.2)] implies that one can assume from the beginning without

loss of generality that Yℓ and M are real non-negative diagonal matrices.4 Note that the

(transformed) Yν is in general an arbitrary complex 3 × 3 matrix.

We next introduce the most general set of R-parity-conserving soft-supersymmetry

(SUSY)-breaking terms (following the usual rules of [34]) involving the slepton, sneutrino

and Higgs fields:

VSOFT = m2
H1
H1∗

i H
1
i +m2

H2
H2∗

i H
2
i + (m2

L)IJ L̃I∗
i L̃

J
i + (m2

R)IJR̃I∗R̃J + (m2
N)IJÑ I∗ÑJ

−
[
(m2

B)IJÑ IÑJ + ǫij

(
m2

12H
1
i H

2
j + AIJ

ℓ H1
i L̃

I
j R̃

J + AIJ
ν H2

i L̃
I
jÑ

J
)

+ H.c.
]
, (2.6)

where m2
L, m2

R and m2
N are hermitian matrices, m2

B is a complex symmetric matrix and

Aℓ and Aν are complex matrices. In general, these 3 × 3 matrices do not take a simplified

3With the convention for ǫij as specified in footnote 1, it is convenient to insert an extra minus sign in

front of Yℓ in eq. (2.1). This ensures that in a basis where Yℓ is a real positive diagonal matrix, the charged

lepton masses are also positive. Note that this convention differs from the one adopted in ref. [7].
4After electroweak symmetry breaking, eq. (2.4) corresponds to working in a basis in which the charged

lepton mass matrices are (real) non-negative and diagonal.
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form in the basis defined by eqs. (2.4) and (2.5). The total scalar potential is made up

of three contributions: the F -terms, which are derived from eq. (2.1), the D-terms, which

arise from the gauge interactions, and and the soft SUSY-breaking terms, which have been

specified in eq. (2.6). The total scalar potential is then given by:

V = VF + VD + VSOFT , where VF ≡
∑

i

∣∣∣∣
∂W

∂φi

∣∣∣∣
2

(2.7)

and the sum over i is taken over all scalar components of the corresponding superfields.

The Yukawa couplings of the leptons and the Higgs fields and the corresponding fermion

mass terms are derived from eq. (2.1) using the well-known formula [6, 7]:

− Lmass − LYuk = 1
2

∑

ij

[
∂2W [φ]

∂φi∂φj
ψiψj + H.c.

]
, (2.8)

where the ψi are the two-component fermion field superpartners of the corresponding φi,

and W [φ] is the superpotential function with superfields replaced by their scalar com-

ponents. After electroweak symmetry breaking, the neutral Higgs fields acquire vacuum

expectation values,5 〈
H1

1

〉
=

v1√
2
,

〈
H2

2

〉
=

v2√
2
, (2.9)

where v2 ≡ v2
1 + v2

2 = (246 GeV)2 and tanβ ≡ v2/v1. Inserting the Higgs field vacuum

expectation values into eqs. (2.7) and (2.8), one can isolate the terms of the Lagrangian

that are quadratic in the scalar fields and fermion fields, respectively. These terms yield

squared-mass matrices for the charged sleptons and sneutrinos and mass matrices for the

charged leptons and neutrinos. In the basis defined by eq. (2.4), the charged lepton mass

matrix is diagonal, with diagonal elements mℓI = v1Y
I
ℓ /

√
2.

In general, the diagonalization of these mass matrices cannot be performed analytically,

and one must resort to numerical techniques. However, the large hierarchy between neutrino

masses and charged lepton masses strongly suggests that the parameters MI ≫ v, in which

case an analytic perturbative diagonalization permits one to isolate the light (s)neutrino

sector and integrate out the superheavy (s)neutrino sector, whose particle masses are of

order the MI . This procedure was carried out for the CP-conserving one-generation model

in ref. [18]. In Section 3, we shall generalize this analysis to the most general (potentially

CP-violating) three-generation model.

First, we clarify the expected magnitudes of the parameters of the model:

5We define the overall phases of the neutral Higgs fields, H1
1 and H2

2 , such that the corresponding

vacuum expectation values v1,2/
√

2 are real and positive.
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1. We assume that the Yukawa couplings Y IJ
ν satisfy:6

‖Yν‖ <∼ O(1) . (2.10)

2. The Majorana mass M is much heavier than the electroweak scale (seesaw mecha-

nism [13])

‖M‖ ≫ v . (2.11)

3. Although µ is a supersymmetric parameter, we require it to be of a similar order to

the low-energy supersymmetry-breaking scale, MSUSY [35]:

µ ∼MSUSY . (2.12)

4. The non-singlet soft SUSY-breaking squared-masses are of a similar order to the

supersymmetry-breaking scale:

‖m2
L‖ ∼ ‖m2

R‖ ∼ M2
SUSY . (2.13)

5. The parameters m2
B and Aν are unconnected to electroweak symmetry breaking at

tree-level. However, these parameters generate a mass-splitting between sneutrinos

and antisneutrinos. The latter contributes via loop corrections to neutrino mass

splittings, which are experimentally constrained. One expects that [36]:

‖Aν‖ <∼ MSUSY , ‖m2
B‖ <∼ MSUSY‖M‖ , (2.14)

although these parameters could conceivably be larger by as much as a factor of

103 [18]. Large Aν also leads also to large corrections to charged slepton masses.

Thus, to avoid unnatural fine-tuning in order to prevent charged slepton masses from

being larger than about 1 TeV, one again expects that Aν cannot be much larger

than the supersymmetry-breaking scale. The impact of the one-loop effects of m2
B on

charged lepton radiative decays and the Higgs mass parameters also yield constraints

and imply that the bound on m2
B given by eq. (2.14) cannot be significantly relaxed.

6. The singlet soft SUSY-breaking parameter m2
N is also unconnected to electroweak

symmetry breaking at tree-level. However, the one-loop corrections to the Higgs

mass parameters depend quadratically on m2
N , so to avoid unnatural fine-tuning of

6The Euclidean matrix norm is defined by ‖A‖ ≡
[
tr(A†A)

]
1/2 =

[∑
i,j |aij |2

]
1/2

, for a matrix A whose

matrix elements are given by aij .
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the electroweak symmetry breaking scale, one expects that m2
N cannot be much larger

than (1 TeV)2. This expectation is confirmed in Appendix B, in which case

‖m2
N‖ <∼ M2

SUSY . (2.15)

If significant fine-tuning of the electroweak scale is allowed (as in the split-super-

symmetry [37] approach), then the constraints on m2
N are significantly relaxed. The

one-loop effects of m2
N on physical observables are rather mild, even as ‖m2

N‖ ap-

proaches ‖M2‖. For example, in ref. [38], the one-loop corrections to Higgs masses

in the seesaw-extended MSSM are found to be large and negative if ‖m2
L‖ , ‖m2

N‖ ∼
‖M2‖. However, these corrections become negligible once these soft-SUSY-breaking

masses are taken somewhat below the seesaw scale.

Thus, we shall present results in this paper that allow for the possibility that:

‖m2
N‖ ∼ ‖M2‖ . (2.16)

If eq. (2.16) holds, then remnants of the heavy neutrino/sneutrino sector can survive

in the effective theory of the light sneutrinos. The origin of this non-decoupling effect

is explored in Appendix B.

Although naturalness demands that the scale of low-energy supersymmetry-breaking,

MSUSY, should be (roughly) of O(v), the absence of observed supersymmetric phenomena

(and a light CP-even Higgs boson) suggest that MSUSY may be somewhat larger, of order

1 TeV. Nevertheless, in eqs. (2.12)–(2.15), one could substitute MSUSY with v; the results

of this paper are consistent with either choice.

3 The (s)neutrino (squared-)mass matrices

In this section, we examine in detail the neutrino mass matrix and the sneutrino squared-

mass matrix. In a three-generation model, the neutrino mass matrix is a 6 × 6 complex

symmetric matrix, which can be written in block (partitioned) form in terms of 3 × 3

matrix blocks. The sneutrino squared-mass matrix is a 12 × 12 hermitian matrix, which

can be written in block (partitioned) form in terms of 6 × 6 matrix blocks. Each of these

6 × 6 matrices can be further partitioned in terms of 3 × 3 matrix blocks. In order to

accommodate the proliferation of matrices of dimension 3, 6 and 12, we adopt a notational

device that allows the reader to instantly discern the dimension of a given matrix. Thus,

we use a boldface capital letter (M) to denote a 12× 12 matrix, a calligraphic letter (M)

8



to denote a 6 × 6 matrix, and a Latin letter (M or m) to denote a 3 × 3 matrix. Latin

letters will also be used to denote (scalar) mass parameters, with appropriate identifying

subscript or superscript labels to distinguish these from the 3 × 3 matrices introduced in

Sections 2 and 3. Following the conventions of Section 2, we shall employ subscript and

superscript upper case Latin indices I, J , K as generation labels that run from 1 to 3.

Lower case Latin indices i, j, k are employed for other purposes, either as SU(2) gauge

indices or as labels representing the six light sneutrino mass eigenstates. Other subscripts

appearing in this section will be used to distinguish among different matrix quantities.

3.1 The neutrino mass matrices

Working in a basis where M is a diagonal matrix [cf. eq. (2.5)], we begin by analyzing the

neutrino mass matrix. The resulting terms quadratic in the neutrino fields are given in

terms of two-component fermion fields7 by:

− Lmν
= 1

2

(
v2

√
2Y IJ

ν νI
Lν

cJ
L + M IJνcI

L ν
cJ
L + H.c.

)
= 1

2
(νT

L νcT
L )Mν


 νL

νc
L


+ H.c.

(3.1)

The neutrino mass matrix Mν is a 6 × 6 complex symmetric matrix given in block form

by:

Mν ≡


 0 mD

mT
D M


 , (3.2)

where the 3 × 3 complex matrix

mD ≡ v2Yν/
√

2 (3.3)

generalizes the neutrino Dirac mass term of the one-generation model [cf. eq. (A.5)].

Provided that ‖M‖ ≫ ‖mD‖ [as suggested by eq. (2.11)], Mν is of a seesaw type [13].

The neutrino mass matrix can be Takagi block-diagonalized [21,25,33] as follows. Introduce

the 6 × 6 (approximate) unitary matrix:

U =


 1− 1

2
m∗

DM
−2mT

D m∗
DM

−1

−M−1mT
D 1− 1

2
M−1mT

Dm
∗
DM

−1


 , (3.4)

where 1 is the 3 × 3 identity matrix.

7In Appendix A, we show how to rewrite eq. (3.1) in terms of four-component neutrino fields. However,

the two-component formalism is more economical, so we adopt this notation in what follows.
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One can check that:

U †U =


1 + O(m4

DM
−4) 0

0 1 + O(m4
DM

−4)


 . (3.5)

We define transformed (light and heavy) neutrino states νℓ and νc
h by:


νL

νc
L


 = U


νℓ

νc
h


 . (3.6)

By straightforward matrix multiplication, one can verify that

UTMν U =


−mDM

−1mT
D + O(m4

DM
−3) O(m3

DM
−2)

O(m3
DM

−2) M + 1
2
(M−1m†

DmD +mT
Dm

∗
DM

−1) + O(m4
DM

−3)


.

(3.7)

At this stage, we can identify an effective (complex symmetric) mass matrix Mνℓ
for

the three light (left-handed) neutrinos with respect to the {νℓ}-basis:

Mνℓ
≃ −mDM

−1mT
D . (3.8)

To identify the physical light neutrino states, we must perform a Takagi-diagonalization

of Mνℓ
. This is accomplished by introducing the unitary MNS matrix [39], UMNS, via

νI
ℓ = U IJ

MNS (νJ
ℓ )phys , (3.9)

where the (νJ
ℓ )phys [J = 1, 2, 3] denote the physical light neutrino fields. UMNS is determined

by the Takagi-diagonalization of Mνℓ
:

UT
MNSMνℓ

UMNS = diag(mνℓ1
, mνℓ2

, mνℓ3
) , (3.10)

where the mνℓJ
are the (real non-negative) masses of the light neutrino mass eigenstates.

For completeness, we examine the effective mass matrix of the heavy neutrino states.

Although M is diagonal by assumption, the lower right-handed block in eq. (3.7) is no

longer diagonal due to the second-order perturbative correction. However, we do not have to

perform another Takagi-diagonalization, since the off-diagonal elements are of O(m2
DM

−1),

and would only affect the physical (diagonal) masses at order O(m4
DM

−3), which we neglect.

The corresponding mixing angles would be of O(m2
DM

−2), which we also neglect here.

Thus, we identify the physical heavy neutrino mass eigenstates to leading order by:

(νc I
h )phys ≃ νcI

h , (3.11)
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with masses

mνhI
= MI

(
1 +

1

M2
I

∑

J

|mJI
D
|2
)
, (3.12)

where the MI are the diagonal elements of M in our chosen basis.

3.2 The sneutrino squared-mass matrices

We now turn to the sneutrino sector. It is convenient to separate out various pieces that

comprise the F -term contributions to the scalar potential [eq. (2.7)]:

VF ≡ Vν + Vµ + Vother , (3.13)

where Vν ≡
∑

i=eLI
1

, eNI |∂W/∂φi|2 and Vµ ≡ |∂W/∂H2
2 |2 ultimately contribute to the sneu-

trino squared-mass matrix, whereas Vother (which involves derivatives of the superpotential

with respect to the other scalar fields) makes no contributions to tree-level sneutrino masses.

As a pedagogical exercise, we first analyze the supersymmetric limit. Although super-

symmetry-breaking is required in the MSSM to generate electroweak symmetry breaking,

one often finds supersymmetric-like relations between the fermion and sfermion sectors in

the limit of v1 = v2 and µ = 0, i.e. for Vµ = VD = 0. Thus, in the following computation

the supersymmetric limit corresponds to taking the total scalar potential [eq. (2.7)] to

be V = Vν . To analyze the contributions of Vν to sneutrino masses, we can employ the

following trick. Focus on the following two terms of the superpotential:

Wν ≡ Y IJ
ν Ĥ2

2 L̂
I
1N̂

J + 1
2
M IJN INJ = 1

2

(
L̂T

1 N̂T
)

 0 Ĥ2

2Yν

Ĥ2
2Y

T
ν M




 L̂1

N̂


 . (3.14)

Consistent with eq. (3.6), we redefine the neutrino superfields as follows:

L̂1

N̂


 = U


L̂1ℓ

N̂h


 , (3.15)

where the unitary matrix U is given by eq. (3.4). Defining the matrix H ≡ Ĥ2
2Yν , the effect

of eq. (3.15) is to transform Wν into8

Wν ≃ 1
2
(HM−1HT )IJ L̂I

1ℓL̂
J
1ℓ+

1
2

[
M IJ + 1

2
(M−1H†H +HTH∗M−1)IJ

]
N̂ I

hN̂
J
h +O(H4M−3) ,

(3.16)

8Strictly speaking, this is not a permissible transformation, since W must be holomorphic in the super-

fields, whereas eq. (3.16) is a function of both Ĥ2
2 and Ĥ2 ∗

2 . However, since we ultimately set H2
2 = v2/

√
2

and only take derivatives of Wν with respect to L̃1ℓ and Ñh, the procedure outlined here yields correct

results.
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where there is an implicit sum over I and J . In deriving eq. (3.16), we have used the fact

that M IJ is a non-negative diagonal matrix. Setting H2
2 = v2/

√
2 and using eq. (2.7), we

can directly make use of eq. (3.16) to isolate the contributions to the sneutrino squared-mass

matrix that arise from Vν :

− Lmass = L̃†
1ℓM

2
ℓ†ℓL̃1ℓ + Ñ †

hM
2
h†hÑh , (3.17)

where the 3 × 3 hermitian matrices M2
ℓ†ℓ and M2

h†h are given by:

M2
ℓ†ℓ = m∗

DM
−1m†

DmDM
−1mT

D + O(m6
DM

−4) , (3.18)

M2
h†h = M2 +m†

DmD + 1
2
(MmT

Dm
∗
DM

−1 +M−1mT
Dm

∗
DM) + O(m4

DM
−2) . (3.19)

Moreover, the effective light and heavy neutrino mass matrices, Mνℓ
and Mνh

, can also be

derived by inserting eq. (3.16) into eq. (2.8). As expected, the resulting neutrino mass ma-

trices are related in a supersymmetric way to the sneutrino squared-mass matrices obtained

in eqs. (3.18) and (3.19):

M2
ℓ†ℓ = M †

νℓ
Mνℓ

, M2
h†h = M †

νh
Mνh

. (3.20)

In particular, in the supersymmetric limit,

UT
MNSM

2
ℓ†ℓ U

∗
MNS = diag (m2

νℓ1
, m2

νℓ2
, m2

νℓ3
) , (3.21)

which implies that the light neutrino and sneutrino masses coincide.

We now turn to the complete calculation of the sneutrino mass matrix. Although one

could perform the computation with respect to the basis of sneutrino states defined by

eq. (3.15), this basis is not especially convenient. This is due to the fact that the effec-

tive squared-mass matrix of the light sneutrinos is dominated by supersymmetry-breaking

effects. In particular, the supersymmetric contribution of O(m4
DM

−2) [cf. eq. (3.18)] is

completely negligible relative to the supersymmetry-breaking contributions. Thus, there is

no advantage to performing in the sneutrino sector the same change of basis used to isolate

the effective mass matrix of the light neutrinos. Hence we will write the 12× 12 hermitian

sneutrino squared-mass matrix in block form as:

−Lmass = 1
2

(
φ†

L φ†
N

)

 M2

LL M2
LN

(M2
LN)† M2

NN




 φL

φN


 , (3.22)

where φL ≡ (L̃1 , L̃
∗
1)

T and φN ≡ (Ñ , Ñ∗)T are six-dimensional vectors. The 6×6 hermitian

matrices M2
LL, M2

NN and the 6×6 complex matrix M2
LN can be written in block partitioned

12



form as:

M2
AB ≡


 M2

A†B
M2 ∗

AT B

M2
AT B

M2 ∗
A†B


 , (3.23)

where the subscripts A and B can take on possible values L and N [this labeling allows

one to keep track of the origin of the various matrix blocks]. The M2
A†A

are 3×3 hermitian

matrices and the M2
AT A are 3 × 3 complex symmetric matrices, for A = L , N . There are

no restrictions on the 3 × 3 complex matrices M2
A†B

and M2
AT B for A 6= B.

Adding up the contributions of Vν , Vµ, VD and VSOFT to the sneutrino masses yields:

M2
L†L = m2

L + 1
2
M2

Z cos 2β +m∗
Dm

T
D , (3.24)

M2
N†N = M2 +m2

N +m†
DmD , (3.25)

M2
L†N = m∗

DM , (3.26)

M2
LT N = −XνmD , (3.27)

M2
NT N = −2m2

B , (3.28)

M2
LT L = 0 , (3.29)

where we have introduced the complex 3×3 matrix parameterXν by the following definition:

XνmD ≡ 1√
2

(v2Aν + µ∗v1Yν) . (3.30)

A quick check of the supersymmetric limit confirms the expected relation between the

neutrino mass matrix and the sneutrino squared-mass matrix:

M†
νMν =


 m∗

Dm
T
D m∗

DM

Mm†
D M2 +m†

DmD


 . (3.31)

As noted above, because of the dominance of supersymmetry-breaking contributions to the

light sneutrino masses, the diagonalization of the light neutrino mass matrix and the light

sneutrino squared-mass matrix are completely independent.

Under the assumptions of eqs. (2.10)–(2.15), the 12×12 sneutrino mass matrix, written

in terms of 6 × 6 matrix blocks with estimated magnitudes,

M 2
ν̃ ≡


 M2

LL M2
LN

(M2
LN)

† M2
NN


 =


 O(v2) O(vM)

O(vM) O(M2)


 , (3.32)

also exhibits a seesaw type behavior, analogous to the seesaw type mass matrix [eq. (3.2)]

of the neutrino sector. Following the standard procedure for diagonalizing such matrices
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(see ref. [25]), we introduce a 12 × 12 unitary matrix:

V =


 I − 1

2
M2

LNM−4
NN(M2

LN)† M2
LNM−2

NN

−M−2
NN (M2

LN)† I − 1
2
M−2

NN(M2
LN)†M2

LNM−2
NN


 , (3.33)

where I is the 6 × 6 identity matrix. One can easily compute:

V †M 2
ν̃ V =


 M2

LL −M2
LNM−2

NN(M2
LN)† + O(v4M−2) O(v3M−1)

O(v3M−1) M2
NN + O(v2)


 . (3.34)

Hence, the effective 6 × 6 hermitian squared-mass matrix for the light sneutrinos reads:

M2
ν̃ℓ
≡ M2

LL −M2
LNM−2

NN

(
M2

LN

)†
+ O(v4M−2) , (3.35)

analogous to the light effective neutrino mass matrix of eq. (3.8). Likewise, the effective

6 × 6 hermitian squared-mass matrix for the superheavy sneutrinos reads:

M2
ν̃h

≡ M2
NN + 1

2

[
M−2

NN(M2
LN)†M2

LN + (M2
LN)†M2

LNM−2
NN

]
+ O(v4M−2) , (3.36)

where for completeness, we have exhibited the O(v2) corrections to the leading term. As

expected, the masses of half of the sneutrino eigenstates are of order the electroweak sym-

metry breaking scale, whereas the other half are superheavy, of order M .

Following the notation of Table 1, the (complex) sneutrino interaction eigenstates are

denoted by: ν̃L ≡ L̃1 and ν̃R ≡ Ñ∗. The latter convention reflects the fact that in the

lepton-number conserving limit of M IJ = m2
B = 0, the lepton numbers of ν̃L and ν̃R are

identical, as previously noted. (Of course, the limit of interest in this paper, ‖M‖ ≫ v,

is very far from the lepton-number conserving limit.) In analogy to νℓ and νh, we define

transformed (light and heavy) sneutrino states ν̃ℓ and ν̃h by:

φL

φN


 = V


φℓ

φh


 , (3.37)

where φℓ ≡ (ν̃ℓ , ν̃
∗
ℓ )

T and φh ≡ (ν̃∗h , ν̃h)
T are six-dimensional vectors. Sneutrino–

antisneutrino oscillations are a consequence of the ∆L = 2 elements in the light and heavy

sneutrino squared-mass matrices M2
eνℓ

and M2
eνh

, and are governed by M2
NT N and M2

L†N

(note that M2
LT L, which would also violate lepton number by two units, is zero).

Using the form of M2
AB (A, B = L or N) given by eq. (3.23) with the M2

AB given in

eqs. (3.24)–(3.29), the effective 6×6 hermitian squared-mass matrix for the light sneutrinos

[eq. (3.35)] is given by:

M2
ν̃ℓ
≡


 M2

LC (M2
LV )∗

M2
LV (M2

LC)∗


 , (3.38)
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where the lepton-number-conserving (LC) and lepton-number-violating (LV) matrix ele-

ments are given by:

M2
LC ≡ m2

L + 1
2
M2

Z cos 2β +m∗
Dm

T
D −m∗

DM(M2 +m2
N)−1MmT

D + O(v4M−2) , (3.39)

M2
LV ≡ mDM(M2 +m2 ∗

N )−1mT
DX

T
ν +XνmD(M2 +m2

N )−1MmT
D

−2mDM(M2 +m2 ∗
N )−1m2

B(M2 +m2
N )−1MmT

D + O(v4M−2) , (3.40)

under the assumption that m2
B and m2

N can be as large as indicated in eqs. (2.14) and

(2.16). Note that M2
LC is a 3× 3 hermitian matrix, and M2

LV is a 3× 3 complex symmetric

matrix. Moreover, although M is a diagonal matrix with real positive entries [cf. eq. (2.5)],

m2
N can be any 3 × 3 hermitian matrix, not necessarily diagonal nor real. The M → ∞

limit of eqs. (3.39) and (3.40) is noteworthy. In this limit, M2
LV = 0 and the lepton-

number-violating effects completely decouple, as expected. If in addition m2
N = 0, then

M2
LC = m2

L + 1
2
M2

Z cos 2β, which reproduces the well known 3 × 3 light sneutrino squared-

mass matrix of the MSSM. However, according to eq. (2.15), m2
NM

−2 ∼ O(1) is possible,

in which case M2
LC deviates from its MSSM value by a quantity of O(v2) even in the exact

decoupling limit of M → ∞. The origin of this non-decoupling behavior is explained in

Appendix B. As a result of this non-decoupling phenomenon, remnants of the heavy sector

of the seesaw mechanism may survive in the effective theory of light sneutrinos. These

non-decoupling effects can be detected in principle through measurements of the sneutrino

and charged slepton properties.

The physical light sneutrino states can be identified by diagonalizing M2
ν̃ℓ

. Note that

if M2
LV = 0, then the eigenvalues9 of M2

ν̃ℓ
are doubly degenerate, corresponding to the fact

that the conserved lepton number implies that the six light sneutrino states are comprised

of three sneutrino antisneutrino pairs. If M2
LV 6= 0, then lepton number is violated and the

sneutrinos and antisneutrinos can mix. This mixing splits the degenerate pairs and yields

(in general) six non-degenerate light sneutrinos. In particular, the resulting sneutrino

mass-eigenstates are self-conjugate real fields, which we denote by S1 ,S2 , . . . , S6.

To determine the Sk in terms of the interaction sneutrino eigenstates, one must compute

the 6 × 6 unitary matrix W that diagonalizes M2
ν̃ℓ

:

W †M2
ν̃ℓ
W = diag (m2

S1
, m2

S2
, . . . , m2

S6
) . (3.41)

Noting that ΣM2
ν̃ℓ

Σ = M2 ∗
ν̃ℓ

, where Σ ≡ ( 0 1

1 0 ), it follows that if W satisfies eq. (3.41)

then so does ΣW ∗. However, the unitary matrix that diagonalizes M2
ν̃ℓ

is unique up to

9Under the assumption that R-parity is not spontaneously broken, the (real) eigenvalues of the hermitian

matrix M2
LC are non-negative.
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a multiplication on the right by a unitary matrix UD that is arbitrary within a subspace

of degenerate eigenvalues and is otherwise diagonal. Denote the set of all such unitary

matrices by S. Hence, one can conclude that ΣW∗ = WUD for some UD ∈ S. Since W is

unitary, UD = W †ΣW ∗, and it follows that UDU∗
D = I. That is, UD must be a symmetric

unitary matrix. It then follows that the matrix W ′ ≡ WU
1/2
D satisfies W ′ = ΣW ′ ∗.10

Thus, without loss of generality, we may drop the primed superscripts and impose the

constraint W = ΣW∗ on the diagonalizing matrix that satisfies eq. (3.41). It then follows

that W has the following form:

W ≡


 X iY

X∗ −iY ∗


 , (3.42)

where X and Y are 3 × 3 complex matrices that satisfy:

XX† + Y Y † = 1 , XXT = Y Y T , (3.43)

Re(X†X) = Re(Y †Y ) = 1
2
, Im(X†Y ) = 0 , (3.44)

due to the unitarity of W. Consequently, the relation between the sneutrino interaction-

eigenstate fields ν̃I
ℓ and the six self-conjugate sneutrino mass-eigenstate fields Sk is given

by:

ν̃I
ℓ =

6∑

k=1

WIkSk =
3∑

K=1

(
XIKSK + iY IK SK+3

)
, (I = 1, 2, 3) . (3.45)

One can then invert eq. (3.45) [using eqs. (3.43) and (3.44)] to obtain:

SK =

3∑

I=1

(
XIK ∗ν̃I

ℓ +XIK(ν̃I
ℓ )∗
)
, SK+3 = −i

3∑

I=1

(
Y IK ∗ν̃I

ℓ − Y IK(ν̃I
ℓ )∗
)
, (K = 1, 2, 3) .

(3.46)

Indeed, the Sk are self-conjugate real fields as noted above.

Since M2
LC ∼ O(v2) and M2

LV ∼ O(v3M−1), the mass-splittings of the would-be

sneutrino-antisneutrino pairs are expected to be very small, of order a typical neutrino

mass. To compute the magnitude of the corresponding mass-splittings, we can employ per-

turbative techniques to evaluate the eigenvalues of M2
ν̃ℓ

[eq. (3.38)]. First, we diagonalize

the sub-matrix M2
LC :

Q†
0M

2
LCQ0 = D ≡ diag(d1 , d2 , d3) , (3.47)

10We define U1/2

D ∈ S to be the unique square root of UD that is symmetric and unitary. This is

accomplished by noting that there exists a (unique) real symmetric matrix H such that UD = exp(iH).

Then, U1/2

D ≡ exp(iH/2). Note that there is still some freedom left in the choice of W ′, which is unique up

to a multiplication on the right by a real orthogonal matrix that is arbitrary within a degenerate subspace

and is otherwise diagonal.

16



where Q0 is a 3 × 3 unitary matrix, and the eigenvalues dI are real. Note that Q0 is not

unique. In Section 4.3, we will argue that the bounds on the radiative flavor-changing

charged lepton decay ℓJ → ℓIγ imply that matrix M2
LC is very close to a diagonal form. In

the limit of diagonal M2
LC , we shall take Q0 = 1. We can then determine the off-diagonal

elements of Q0 by writing M2
LC ≃ diag(m2

1 , m
2
2 , m

2
3) +m2

LC , where m2
LC is a matrix made

up of the off-diagonal elements of M2
LC , and Q0 ≃ 1+ q0, where q†0 = −q0. By assumption,

the matrix elements of m2
LC are much smaller than the m2

I , and the matrix elements of q0

are much smaller than unity. Thus treating eq. (3.47) to first order in the small quantities,

we can solve for the off-diagonal elements of q0 in terms of the elements of m2
LC and the

m2
I . Since at first order m2

I = dI , it follows that:

(Q0)IJ ≃ (M2
LC)IJ

dJ − dI
, I 6= J . (3.48)

The diagonal elements of Q0 can then be determined to the same order by using the

unitarity ofQ0. In the remainder of this section, we will not make any assumption regarding

the size of the off-diagonal elements of M2
LC , in which case eq. (3.48) does not apply and

Q0 must be obtained numerically from eq. (3.47).

In the following, it will be convenient to define

Q = Q0T (3.49)

where T is a 3 × 3 diagonal matrix of phases given by:

T ≡ diag
(
e−iφ1/2 , e−iφ2/2 , e−iφ3/2

)
, φJ ≡ arg

(
QT

0M
2
LVQ0

)
JJ

. (3.50)

Note that the right hand side of eq. (3.47) is unchanged when Q0 → Q0T , so that the

unitary matrix Q can also be used to diagonalize M2
LC . It then follows that:

D ≡


 D B∗

B D


 =


 Q† 0

0 QT




 M2

LC (M2
LV )∗

M2
LV (M2

LC)∗




 Q 0

0 Q∗


 , (3.51)

where B is the 3 × 3 complex symmetric matrix

B ≡ QTM2
LVQ . (3.52)

Due to the rephasing of Q0 as specified by eqs. (3.49) and (3.50), the diagonal elements

of B are real and non-negative: BJJ = |BJJ |. This is the motivation for our choice of Q

in the diagonalization of M2
LC . Note that if M2

LC is approximately diagonal, then Q0 ≃ 1,

in which case φJ ≃ arg[(M2
LV )JJ ]. Thus, unless the diagonal elements of M2

LV are non-

negative, Q ≃ T 6= 1 in this limiting case.

17



Even though D ∼ O(v2) and B ∼ O(v3M−1), the unitary matrix that diagonalizes D

is not close to the identity matrix, due to the double degeneracy of the diagonal elements.

In order to perform a perturbative diagonalization of D , we first introduce the following

6 × 6 unitary matrix P, expressed in block form as:

P ≡ 1√
2


 1 i1

1 −i1


 , (3.53)

A straightforward computation yields:

P†
D P =


 D + ReB −ImB

−ImB D − ReB


 , (3.54)

which is a 6 × 6 real symmetric matrix.

If the elements of the diagonal matrix D are non-degenerate11 such that dI−dJ ∼ O(v2)

for all I 6= J , then the matrix P†D P can be diagonalized by a real orthogonal matrix R
that is close to the identity:

R =


 1 + ReR ImR

ImR 1− ReR


+ O(v2M−2) , (3.55)

where the 3 × 3 complex antisymmetric matrix R is of order O(vM−1):

RIJ = −RJI ≡ B∗
IJ

dJ − dI

, (I 6= J) . (3.56)

One can check that:

RTP†
D PR = diag(m2

S1
, m2

S2
, . . . , , m2

S6
) + O(v4M−2) , (3.57)

where the squared-masses of the light sneutrinos are given by:

m2
SJ , SJ+3

= dJ ± |BJJ | + O(v4M−2) , (J = 1, 2, 3) , (3.58)

and m2
SJ

> m2
SJ+3

. Note that the perturbations due to the off-diagonal elements of B

contribute only to the O(v4M−2) terms of the squared-masses.

11In general, we would expect the dI (which are the eigenvalues of M2
LC) to be non-degenerate. Even if

the parameters m2
L and m2

N were proportional to the identity matrix at the high energy scale due to some

flavor symmetry, this latter symmetry would not be respected by the corresponding low-energy parameters,

due to flavor-violating effects that enter the renormalization group running. Moreover, the matrix mD is

likely to reflect some of the flavor-violating effects of the model. Hence, any (near) degeneracy among the

dI would be purely accidental.
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Combining the results of eqs. (3.51), (3.53) and (3.55), the light sneutrino mixing matrix

[defined in eq. (3.41)] is given by:

W =
1√
2


 Q(1 +R) iQ(1− R)

Q∗(1 +R∗) −iQ∗(1− R∗)


+ O(v2M−2) . (3.59)

Comparing with eq. (3.42), we identify:

X =
1√
2
Q(1 +R) + O(v2M−2) , and Y =

1√
2
Q(1−R) + O(v2M−2) . (3.60)

Inserting these results into eqs. (3.45) and (3.46) yields the desired (approximate) relations

between the sneutrino mass eigenstates Sk and the interaction eigenstates ν̃I
ℓ .

For completeness, we briefly examine the modifications to eq. (3.58) if some of the dI are

degenerate. In this case, the diagonalizing matrix R is not close to the identity matrix, and

the perturbative analysis above fails. Consider the case of dI = dJ 6= dK , where {I, J,K}
is some permutation of {1, 2, 3}. The first order shift in the eigenvalues of D will depend

on BIJ as well as on the diagonal elements of B. However, the perturbations due to BIK

and BJK will only generate second-order shifts to the eigenvalues, which we neglect here.

Thus, it is sufficient to solve the characteristic equation of D in the limit of dI = dJ and

BIK = BJK = 0. In this limit, the characteristic polynomial factors into a product of two

simpler polynomial factors:12

[
(λ−dK)2 −|BKK |2

][
(λ−dI)

4 − (λ−dI)
2
[
|BII |2 + |BJJ |2 + 2|BIJ |2

]
+
∣∣B2

IJ −BIIBJJ

∣∣2
]
.

(3.61)

The resulting sneutrino squared-masses are:

m2
SI , SI+3

≃ dI ±
{

1
2

[
|BII |2 + |BJJ |2 + 2|BIJ |2 +

√
∆
]}1/2

, (3.62)

m2
SJ , SJ+3

≃ dI ±
{

1
2

[
|BII |2 + |BJJ |2 + 2|BIJ |2 −

√
∆
]}1/2

, (3.63)

m2
SK , SK+3

≃ dk ± |BKK | , (3.64)

where

∆ ≡
[
|BII |2 + |BJJ |2 + 2|BIJ |2

]2
− 4

∣∣B2
IJ − BIIBJJ

∣∣2 . (3.65)

The corresponding mixing matrix can be obtained by performing an exact diagonalization

within the two-dimensional degenerate subspace, although we shall omit the details.

12In the case of a near degeneracy where dI − dJ <∼ O(vM−1), the quartic polynomial factor of the

characteristic equation of D contains a term linear in λ− 1
2
(dI +dJ). In this case, the resulting expressions

for m2
SI , SI+3

and m2
SJ , SJ+3

are significantly more complicated than those presented in eqs. (3.62) and

(3.63).
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Finally, in the very unlikely scenario where d1 = d2 = d3 ≡ d, all of the matrix elements

of B contribute to the first order shifts of the eigenvalues of D . To determine these shifts,

put λ = d+ x in the characteristic equation of D to obtain a sixth order polynomial in x.

No further perturbative simplification is possible, since all the terms of this polynomial are

of the same order of magnitude.

As expected, the mass-splittings of the would-be sneutrino–antisneutrino pairs are

nonzero due to the presence of the lepton-number violating matrix M2
LV [cf eq. (3.52)]. If

we denote the three sneutrino mass-splittings by (∆mν̃ℓ
)J ≡ |mSJ

−mSJ+3
| (for J = 1, 2, 3),

then in the non-degenerate case,

(∆mν̃ℓ
)J ≃ |BJJ |√

dJ

. (3.66)

In the case of degenerate dI , the mass-splittings (∆mν̃ℓ
)J also depend on the non-diagonal

elements of B.

It is instructive to examine the above results in a simplified one generation model. In

this case, D ≡M2
LC and B ≡M2

LV are just numbers. In particular, m2
N is a real parameter

and M2
ν̃ℓ

is a 2 × 2 hermitian matrix, with eigenvalues

m2
S1,S2

= M2
LC ± |M2

LV |

= m2
L + 1

2
M2

Z cos 2β +
|mD|2m2

N

M2 +m2
N

± 2|mD|2M
M2 +m2

N

∣∣∣∣Xν −
Mm2

B

M2 +m2
N

∣∣∣∣ . (3.67)

The corresponding sneutrino mass-splitting, ∆mν̃ℓ
≡ |mS2

−mS1
|, is given by

∆mν̃ℓ

mνℓ

=
2M2

mν̃ℓ
(M2 +m2

N)

∣∣∣∣Xν −
Mm2

B

M2 +m2
N

∣∣∣∣ , (3.68)

where mνℓ
≡ |mD|2/M is the mass of the light neutrino and mν̃ℓ

≡ 1
2
(mS1

+ mS2
) is the

average light sneutrino mass. If mN ≪ M , then eq. (3.68) coincides with the result given

in ref. [18] after taking into account a slight difference in notation.13

Assuming that m2
B ∼ O(vM), it follows that both terms on the right hand side of

eq. (3.68) are of the same order, which implies that ∆mν̃ℓ
∼ O(mνℓ

). However, as noted

below eq. (2.14), it is possible that m2
B could be as much as a factor of 103 larger than its

naive estimate [18], in which case the sneutrino-antisneutrino mass splitting could be three

orders of magnitude larger than the corresponding light neutrino mass.14

13If we put m2
B ≡ −MBN and change the sign of Aν (with the corresponding change in Xν [cf. eq. (3.30)]),

we recover the results of ref. [18].
14A similarly enhanced sneutrino-antisneutrino mass splitting also arises in the supersymmetric triplet

seesaw model of ref. [40].
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The same set of manipulations described above can be carried out to obtain the cor-

responding results for the effective 6 × 6 hermitian squared-mass matrix for the heavy

sneutrinos [eq. (3.36)]:

M2
ν̃h

≡


 M2

H −2(m2
B)∗

−2m2
B (M2

H)∗


 + O(v4M−2) , (3.69)

where the 3 × 3 hermitian matrix M2
H is defined by:

M2
H ≡M2+m2

N +m†
DmD+ 1

2
(M2+m2

N )−1MmT
Dm

∗
DM+ 1

2
MmT

Dm
∗
DM(M2+m2

N )−1 . (3.70)

The physical heavy sneutrino mass-eigenstates are determined by diagonalizing M2
ν̃h

. At

leading order, the mass-eigenstates are mass-degenerate sneutrino/antisneutrino pairs, with

masses and mixing angles (with respect to the basis in which M is diagonal) determined

by the diagonalization of m2
N . The lepton-number violating off-block-diagonal matrix m2

B

generates sneutrino-antisneutrino mixing, and yields mass-splittings between nearly degen-

erate heavy sneutrino pairs of order ∆mν̃h
∼ O(m2

BM
−1).

The complex elements of the sneutrino squared-mass matrix govern CP-violating sneu-

trino phenomena, due to the non-degeneracy of masses of the real and imaginary parts of

the sneutrino fields. Following the discussion of the CP-properties of the sneutrino fields

in Section 6, we find it convenient to define a new basis of sneutrino interaction eigenstates

of definite CP. That is, we decompose the complex sneutrino fields into real and imaginary

parts:

ν̃ℓ =
1√
2

[
ν̃

(+)
ℓ + i ν̃

(−)
ℓ

]
, (3.71)

ν̃h =
1√
2

[
ν̃

(+)
h + i ν̃

(−)
h

]
, (3.72)

where the [+,−] superscripts indicate that the corresponding sneutrino eigenstates are

CP-even and CP-odd. With respect to the CP-basis,

− Lmass = 1
2
(ν̃

(+)T
ℓ , ν̃

(−)T
ℓ )P†M2

ν̃ℓ
P


 ν̃

(+)
ℓ

ν̃
(−)
ℓ


 + 1

2
(ν̃

(+)T
h , ν̃

(−)T
h )PTM2

ν̃h
P∗


 ν̃

(+)
h

ν̃
(−)
h


 ,

(3.73)

where P is the 6 × 6 unitary matrix introduced in eq. (3.53).

That is, with respect to the CP-basis, the effective squared-mass matrix for the light

sneutrinos is given by:

M 2

ν̃ℓ
≡ P†M2

ν̃ℓ
P =


 Re(M2

LC +M2
LV ) −Im(M2

LC +M2
LV )

Im(M2
LC −M2

LV ) Re(M2
LC −M2

LV )


 . (3.74)
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This is a real symmetric matrix (which is easily checked by recalling that M2
LC and M2

LV

are, respectively, hermitian and complex symmetric matrices), as the CP-basis consists of

real self-conjugate scalar fields.

If ImM2
LC = ImM2

LV = 0, then the sneutrino mass-eigenstates are also definite eigen-

states of CP. If in addition ReM2
LV 6= 0, then the would-be sneutrino-antisneutrino pairs

are organized into CP-even/CP-odd pairs of nearly degenerate sneutrinos [18].

Since M 2

ν̃ℓ
is real symmetric, it can be diagonalized by a 6 × 6 real orthogonal matrix,

Zν̃ via:

ZT
ν̃ M 2

ν̃ℓ
Zν̃ = (m2

S1
, m2

S2
, . . . , m2

S6
) , (3.75)

and the corresponding physical sneutrino mass eigenstates, Sk (k = 1, . . . , 6), can be iden-

tified as linear combinations of the CP-even and the CP-odd sneutrino eigenstates:


 ν̃

(+)
ℓ

ν̃
(−)
ℓ


 = Zν̃




S1

...

S6




. (3.76)

Matching with the notation employed by our discussion of sneutrino oscillations in Sec-

tion 6, we note that the sneutrino interaction eigenstates, ν̃ℓ, can be expressed in terms of

the physical (self-conjugate) sneutrino mass eigenstates Sk via:

ν̃I
ℓ =

1√
2

6∑

k=1

(ZIk
ν̃ + iZI+3,k

ν̃ )Sk . (3.77)

Comparing eqs. (3.45) and (3.77), we can identify:

XIK =
1√
2

(
ZIK

ν̃ + iZI+3,K
ν̃

)
, Y IK = − i√

2

(
ZI,K+3

ν̃ + iZI+3,K+3
ν̃

)
, (I,K = 1, 2, 3) ,

(3.78)

which can be inverted to obtain:

Zν̃ =
√

2


Re X −Im Y

Im X Re Y


 . (3.79)

One can easily verify that the orthogonality of Zν̃ implies the unitarity of W defined in

eq. (3.42) [and vice versa]. In particular, eqs. (3.41) and (3.75) imply that Zν̃ = P†W, in

which case

ZT
ν̃ Zν̃ = WTP∗P†W = WT

(
0 1

1 0

)
W = W†W = I , (3.80)
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after using the explicit forms for W and P.

In summary, we have derived the light effective sneutrino squared-mass matrix by ex-

ploiting the seesaw mechanism in the sneutrino as well as in the neutrino sector. Our

calculation is quite general under the parameter assumptions specified by eqs. (2.10)–

(2.15). We found that M2
ν̃ℓ

depends on two 3 × 3 matrix blocks, M2
LC and M2

LV , given

by eqs. (3.39) and (3.40), respectively. In particular, M2
LV is responsible for the splitting

of the masses of would-be sneutrino-antisneutrino pairs, or equivalently the mass-splitting

of CP-even/CP-odd sneutrino pairs, ν̃
(±)
ℓ , in the CP-conserving limit. As we shall see in

Sections 4 and 5, the matrices M2
LC and M2

LV provide a convenient parameterization for a

number of interesting physical observables, such as neutrino masses and radiative lepton

decays.

4 Constraints on lepton number conserving parame-

ters

The input parameters that govern sneutrino mixing phenomena and sneutrino decays are

encoded in matrices M2
LV and M2

LC given by eqs. (3.40) and (3.39), respectively [or, alterna-

tively, in the physical sneutrino masses and the orthogonal matrix Zν̃ defined in eq. (3.75)].

At present, apart from neutrino oscillations, only lepton number conserving processes are

observed in current experiments. These processes constrain the entries of the lepton num-

ber conserving matrix M2
LC . In this Section we investigate bounds on the structure of M2

LC

imposed by the measurements of the muon magnetic moment anomaly, the gµ−2, the elec-

tric dipole moment (EDM) of the electron and the radiative flavor changing charged lepton

decays, ℓ J → ℓ Iγ. The latter have also been worked out in detail in ref. [21]. Additional

constraints due to ℓ−J → ℓ−I ℓ
−
I ℓ

+
I decays and µ–e conversion in nuclei are also relevant and

have been analyzed in Ref. [21, 41]. These constraints can yield further restrictions on the

structure of M2
LC , although we shall not present this analysis here.

We briefly summarize the constraints from current experiments relevant for the compu-

tations presented in this Section. The most recent experimental measurement of the muon

anomalous magnetic moment (aexp
µ ) exhibits a slight discrepancy [42] relative to the pre-

dicted value of the Standard Model (ath
µ ). A recent theoretical review of the computation

of the Standard Model prediction [43] yielded δaµ ≡ aexp
µ − ath

µ = (2.94 ± 0.89) × 10−9,

where all theoretical and experimental errors are added in quadrature, corresponding to

a 3.3 σ effect. Thus, we roughly expect that the contribution to the muon anomalous

magnetic moment from new physics beyond the Standard Model to be no larger than
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ℓ J ℓ If

S S

−k p− k

γµ

1 2

3
(a)

1: i(aJPL + bJPR)

2: i(bI∗PL + aI∗PR)
3: −ieqS(p− 2k)µ

ℓ J ℓ IS

fC fC

γµ

1 2

3
(b)

1: i(aJPL + bJPR)

2: i(bI∗PL + aI∗PR)
3: −ieqfγµ

Figure 1: One-loop SUSY diagrams contributing to radiative, ℓ J → ℓ Iγ, decays. In (a),

the scalar S is a charged slepton and the fermion f is a neutralino. In (b), the scalar S is

a sneutrino and the fermion f [fC ] is a positively [negatively] charged chargino (qf = 1).

δaµ . 3 × 10−9. There is no experimental evidence of an nonzero EDM for the electron

(de). The most stringent upper bound, obtained in ref. [44], is de ≤ 1.6 × 10−27 e cm at

90% CL. Likewise, there is no experimental evidence for radiative flavor-changing charged

lepton decays. The 90% CL upper limits to the branching ratios for the muon and tau-

lepton radiative decays are given by: BR(µ → eγ) ≤ 1.2×10−11, BR(τ → eγ) ≤ 1.1×10−7

and BR(τ → µγ) ≤ 6.8 × 10−8 [11].

4.1 Supersymmetric corrections to the lepton-photon vertex

The amplitudes for the processes of interest are obtained by evaluating triangle diagrams

that contribute to the one-loop correction to the lepton-photon ℓ Jℓ Iγ vertex. Supersym-

metric corrections to this vertex arise from the two topologies of diagrams depicted in fig. 1.

The corresponding Feynman rules required for the vertices are given in eqs. (C.3) and (C.4)

of Appendix C. The anomalous magnetic moment and electric dipole moment (EDM) of

the leptons and the lepton flavor violating decays ℓ J → ℓ Iγ are derived from the following

terms of an effective Hamiltonian:

H = e
(
CIJ

L ℓ̄ IσµνPLℓ
J + CIJ

R ℓ̄ IσµνPRℓ
J
)
Fµν , (4.1)

which can be extracted from the computation of the effective one-loop ℓ Iℓ Jγ vertex.

The computation of the Wilson coefficients CL, CR is straightforward. After calculating

the contributions of diagrams (a) and (b) of fig. 1 and expanding in momenta of external
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particles, we find for their total Wilson coefficients

CiIJ
L = CiIJ

1L +mℓICiIJ
4L +mℓJCiIJ

4R ,

CiIJ
R = CiIJ

1R +mℓICiIJ
4R +mℓJCiIJ

4L , (4.2)

where the index i labels the contribution of diagrams i = a, b and the mℓI (I = 1, 2, 3) are

the lepton masses. For diagram (a) we obtain,

CaIJ
1L =

1

2(4π)2
qSb

I∗aJmfC12(mS, mf) , CaIJ
1R =

1

2(4π)2
qSa

I∗bJmfC12(mS, mf) ,

CaIJ
4L =

1

2(4π)2
qSa

I∗aJC23(mS, mf) , CaIJ
4R =

1

2(4π)2
qSb

I∗bJC23(mS, mf) , (4.3)

and for the diagram (b),

CbIJ
1L =

1

(4π)2
qfb

I∗aJmfC11(mf , mS) , CbIJ
1R =

1

(4π)2
qfa

I∗bJmfC11(mf , mS) ,

CbIJ
4L =

1

2(4π)2
qfa

I∗aJC23(mf , mS) , CbIJ
4R =

1

2(4π)2
qfb

I∗bJC23(mf , mS) , (4.4)

where mf and mS are the masses of the fermion f and scalar S, respectively, and all other

parameters are defined in fig. 1. The loop integrals appearing in eqs. (4.3) and (4.4) are:

C11(x, y) = − x2 − 3y2

4(x2 − y2)2
+

y4

(x2 − y2)3
log

y

x
,

C12(x, y) = − x2 + y2

2(x2 − y2)2
− 2x2y2

(x2 − y2)3
log

y

x
,

C23(x, y) = −x
4 − 5x2y2 − 2y4

12(x2 − y2)3
+

x2y4

(x2 − y2)4
log

y

x
. (4.5)

The full Wilson coefficients CL and CR are obtained by summing over all relevant triangle

diagrams in the model. In our case just two of them contribute: diagram (a) with charged

slepton and neutralino exchange and diagram (b) with sneutrino and chargino exchange.

4.2 (g − 2)µ and the electron EDM

The formalism described above leads easily to expressions for the EDM of the electron and

for the muon magnetic moment anomaly (gµ − 2)/2. For both processes I = J , so that the

flavor-diagonal piece of the effective Hamiltonian is given by

H = e ℓ̄ Jσµν

[
ReCJJ

1L +mℓJ (CJJ
4L + CJJ

4R ) − iImCJJ
1L γ5

]
ℓ JF µν , (4.6)
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where we used the relation CJJ
1R = CJJ∗

1L . By matching to the standard form [45,46]:15

H = − e

4mlJ
aJ ℓ̄

Jσµνℓ
JF µν +

idℓJ

2
ℓ̄ Jσµνγ5ℓ

JF µν , (4.7)

where aJ ≡ (gJ − 2)/2 is the magnetic moment anomaly and dℓJ is the EDM of the lepton,

one can extract the expressions for the electron EDM, de, and for gµ − 2,

de = −2e ImC11
1L , (4.8)

aµ = −4mµ

[
ReC22

1L + mµ(C22
4L + C22

4R)
]
. (4.9)

In principle, both quantities can be used to set bounds on parameters such as M , m2
N ,

m2
B and Xν that govern the heavy sneutrino sector. However, the one-loop contribution

to the C11
1L from fig. 1(b), which is sensitive to the sneutrino sector, is real if the chargino

parameters µ and M2 are real. Hence, the electron EDM measurement does not yield

any constraints on sneutrino parameters at one loop. However, there can be sensitivity

due to potentially large two-loop corrections; for further details see Ref. [29]. Similarly,

the neutrino magnetic and/or electric dipole moments16 are also insensitive to the heavy

sneutrino sector at one-loop, since there is no possibility of attaching the photon to a

one-loop graph that involves the sneutrino-neutrino-neutralino vertex (see Appendix C).

The amplitudes displayed in fig. 1 can give sizable contributions to the anomalous

magnetic moment of the muon. These contributions are flavor diagonal and are sensitive

mostly to the overall mass scale of the sleptons, gauginos and light sneutrinos—i.e. to the

diagonal entries of corresponding mass matrices. Thus, the measurement of aµ can be used

to set lower bound on these SUSY masses. Assuming that the discrepancy between the

experimentally observed muon anomalous magnetic moment and the theoretical prediction

of the Standard Model, δaµ . 3 × 10−9, is due to new physics effects arising from the

diagrams of fig. 1, one can deduce lower bounds on the magnitude of slepton squared-mass

parameter as a function of M2 and tan β. Examples of such bounds are listed in Table 2.

Note that potential contributions toM2
LC [cf. (3.39)] from the terms containing the Dirac

mass mD are suppressed by a quantity of O(m2
NM

−2). As we will show in Section 4.3, this

ratio can be at most of the order of 10−2, otherwise the Dirac mass term mD would generate

unacceptably large contributions to rare ℓ J → ℓ Iγ decays. Thus, the muon anomalous

magnetic moment can be effectively used to set a lower bound on the diagonal 22 element

15In eq. (4.7), the unit of electric charge e is taken positive, so that the electron charge is −e (which also

coincides with the convention adopted by refs. [45] and [46]). Eq. (4.7) is consistent with the corresponding

effective Lagrangian of ref. [45], by noting that Commins et al. define the anomalous magnetic moment of

the electron to be κ = −ae (J.D. Jackson, private communication).
16Note that for Majorana particles only transition dipole moments can be nonzero.
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M2 = 100 M2 = 200 M2 = 300

tanβ (mL)min (mL)min (mL)min

5 170 110 70

10 300 270 210

15 420 420 370

20 530 570 530

25 650 740 700

Table 2: Lower bounds on the square root of (m2
L)22 from the measurement of aµ. All

masses are in GeV.

of the soft slepton squared-mass matrix m2
L and on the gaugino mass parameter M2, as

specified in Table 2. The dependence on m2
R and µ is significantly weaker.

4.3 Radiative charged lepton decay: ℓ J → ℓ Iγ

The ℓ J → ℓ Iγ decay width is given by

Γ(ℓ J → ℓ Iγ) =
e2m3

lJ

4π

(
|CIJ

L |2 + |CIJ
R |2

)
. (4.10)

The corresponding branching ratio is obtained by dividing the result of eq. (4.10) by the tree

level decay width, Γ(ℓ J → ℓ IνJ ν̄I) = m5
ℓJG

2
F/192π3 (where we ignore W -propagator effects

and a very small correction due to the nonzero mass of the light final state charged lepton).

In particular, the branching ratios for the experimentally interesting decays µ → eγ and

τ → µγ are given by:

BR(µ → eγ) =
48π2e2

m2
µG

2
F

(
|C12

L |2 + |C12
R |2
)
, (4.11)

and

BR(τ → µγ) =
48π2e2

m2
τG

2
F

(
|C23

L |2 + |C23
R |2
)
. (4.12)

At leading one-loop order, fig. 1(a) yields an amplitude that is proportional to the

off-diagonal terms of the slepton soft mass matrix m2
L, and thus not relevant for setting

bounds on heavy sneutrino parameters17. The amplitude corresponding to fig. 1(b) depends

17Of course this diagram is relevant when Yν-dependent corrections to m2
L entries are generated by the

renormalization group evolution of parameters. This effect has been studied extensively in the literature

(see e.g., ref. [47]), and we will not repeat this discussion here.
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directly on the lepton flavor conserving part of the light sneutrino mass matrix, M2
LC . This

can be verified by using the Feynman rules collected in the Appendix C and employing the

mass insertion approximation (MIA) expansion; for more details see e.g. ref. [48]. Assume

(at least formally) that sneutrinos are closely degenerate in mass,

m2
Sk

= m2
0 + δm2

Sk
, (4.13)

and then expand the functions CIJ
L or CIJ

R [denoted generically in eq. (4.14) by f ], which

depend on the squared-massed m2
Sk

, up to the first order. This results in

f(m2
Sk

) ≈ f(m2
0) + (m2

Sk
−m2

0)
∂f

∂m2
Sk

∣∣∣∣
m2

0

= f(m2
0) −m2

0

∂f

∂m2
Sk

∣∣∣∣
m2

0

+m2
Sk

∂f

∂m2
Sk

∣∣∣∣
m2

0

, (4.14)

where there is an implicit sum over k. The advantage of this procedure is that it allows one

to perform the sum over the sneutrino flavor index k in evaluating eqs. (4.11) and (4.12).

For example, the neutrino squared-masses always appear multiplied by a pair of sneutrino

mixing matrices (due to the form of the sneutrino couplings given in Appendix C). Using

the inverse of eq. (3.75), one obtains Z ik
ν̃ Zjk

ν̃ m
2
Sk

= (M 2

ν̃ℓ
)ij .

It is possible to relax the assumption of approximately degenerate sneutrino masses.

In particular, it can be shown diagrammatically that it is better to use appropriate ratios

in place of the derivatives of eq. (4.14) in the MIA expansion. Thus, for J > I (corre-

sponding to the decay of a heavier lepton ℓ J into a lighter lepton ℓ I) and neglecting terms

proportional to the lighter lepton mass, one arrives at the simple result:

CIJ
L ≃ 0 ,

CIJ
R ≃ CbIJ

1R +mℓJ CbIJ
4L

≃ mℓJ

(4π)2

e2

2s2
W

(
M2

LC

)IJ

(
|Z1i

+ |2
(

∆C23

∆m2

)

iIJ

−
√

2

cos β

mχ+

i

MW
Z1i∗

+ Z2i∗
−

(
∆C11

∆m2

)

iIJ

)
,

(4.15)

where the Z± are the chargino mixing matrices defined in ref. [7],

(
∆Cij

∆m2

)

kIJ

≡





Cij(mχ+

k
, mν̃I

ℓ
) − Cij(mχ+

k
, mν̃J

ℓ
)

m2
ν̃I

ℓ
−m2

ν̃J
ℓ

, for I 6= J ,

∂Cij(mχ+

k
, mν̃I

ℓ
)

∂m2
ν̃I

ℓ

, for I = J .

(4.16)

and mν̃I
ℓ

are the three “CP-averaged” sneutrino masses, given by the positive square roots

of the eigenvalues of M2
LC [cf. eqs. (3.47) and (3.58)].
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tanβ 10 20

M2
LC




& 2702 . 42 . 112

... & 2702 . 312

... ... & 2702







& 5702 . 82 . 452

... & 5702 . 1502

... ... & 5702




Table 3: Bounds on the structure of the matrix elements of M2
LC for M2 = µ = 200 GeV.

All masses in the Table are given in GeV.

Clearly, our approximate expression for CIJ
R given by eq. (4.15), which enters the decay

rates in eq. (4.10), is proportional to the lepton number conserving squared-mass matrix,

M2
LC , defined in eq. (3.39). Even in the case wherem2

L is diagonal, contributions to radiative

lepton decays arise from the off-diagonal elements of M2
LC governed by the general form

of the matrices mD and m2
N [cf. the third term in eq. (3.39)]. Notice that the flavor

dependence disappears completely in the limit of diagonal m2
L and m2

N = 0 in which case

M2
LC is diagonal.

The effect of the seesaw contribution to the lepton number conserving part of the sneu-

trino squared-mass matrix, M2
LC , has not been previously noticed in the literature. This

yields an extra contribution to the decay branching ratios BR(ℓ J → ℓ Iγ). Consequently,

for a fixed set of chargino sector parameters (µ, M2 and tan β) and soft slepton squared-

mass matrix (m2
L), the experimental bounds on the radiative lepton branching ratios can

be used [via eqs. (4.11), (4.12) and (4.15)] to determine upper limits on the off-diagonal

matrix elements of M2
LC . Examples of such bounds for M2 = µ = 200 GeV and two sets of

tan β and mmin
L (previously exhibited in Table 2) are shown in Table 3. In obtaining these

bounds, we assumed that m2
L is diagonal so that fig. 1(a) does not contribute to the decay

amplitude.18 We then varied the matrix elements of M2
LC until the constraints from mea-

surements were violated. Moreover, we incorporated the full numerical one loop calculation

for ℓ J → ℓ Iγ, presented in Section 4.1 rather than the approximate expressions given, e.g.,

in eq. (4.15). Notice that there exist lower bounds for the diagonal elements of M2
LC from

(g − 2)µ, but upper bounds for the off-diagonal elements of M2
LC from BR(ℓ J → ℓ I + γ).

The results of Table 3 illustrate that the bounds on the square roots of the off-diagonal

elements of M2
LC are at least 10—100 times smaller than the square roots of the diagonal

18Non-vanishing off-diagonal elements of m2
L should in most cases tighten the bounds on M2

LC, barring

accidental cancellations between the amplitudes obtained from fig. 1(a) and (b).
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elements. It is convenient to rewrite eq. (3.39) in the following form:

M2
LC = m2

L + 1
2
M2

Z cos 2β +m∗
DM

−1m2
N (1 +M−2m2

N)−1M−1mT
D + O(v4M−2)

= m2
L + 1

2
M2

Z cos 2β +m∗
DM

−1m2
NM

−1mT
D + O(v4M−2) + O(v2m4

NM
−4) , (4.17)

where we have expanded out the quantity (1 + M−2m2
N )−1 under the assumption that

‖M−2m2
N‖ < 1 (to be justified shortly). Eq. (4.17) implies that the off-diagonal elements

of M2
LC are roughly of order m2

Dm
2
N/M

2 (barring any accidental cancellations). If we

assume that mD is of order the electroweak scale, then the bounds on the off-diagonal

elements given in Table 3 imply that

x ≡ ||m2
N ||

||M2|| . O(10−2) , (4.18)

with the strongest bound given by µ→ eγ decay. This result suggests that ‖m2
N‖1/2 cannot

be larger than about 10% of the Majorana mass scale M . Hence, M2 +m2
N ≃M2 and for

the estimates of the magnitude of the entries of the lepton number violating mass matrix

M2
LV in the next section we henceforth set m2

N = 0.

5 Neutrino masses and the lepton number violating

parameters

In this section we examine the constraints on the lepton number violating sneutrino squared-

mass matrix M2
LV from our knowledge of the physical (light) neutrino masses and mixing

angles.

5.1 One-loop contributions to neutrino masses

The effective operator that describes the light neutrino mass matrix is given by:

− Lmνℓ
= 1

2
M IJ

νℓ
νI

ℓ ν
J
ℓ + H.c. (5.1)

Note that νI
ℓ ν

J
ℓ is a ∆L = 2 operator, since it changes lepton number by two units. In

Section 3.1, we evaluated the tree-level contribution to Mνℓ
[cf. eq. (3.8)]. However, one-

loop contributions to the light neutrino mass matrix can be significant, and in some cases

these can be as or more important than the tree-level contribution [18, 28]. The dominant

one-loop graph involves a loop containing neutralinos and light sneutrinos, as shown in

fig. 2(a). Due to the presence of the lepton number-violating sneutrino squared-mass matrix
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(a)

νI
ℓ νJ

ℓ

Sk

χ0
i

(b)

νI
ℓ νJ

ℓ

h0, H0, A0, G0

×νcK
h νcL

h

Figure 2: One-loop corrections to light neutrino masses. (a) The loop consisting of light

sneutrinos (Sk, k = 1 . . . 6) and neutralinos (χ0
i , i = 1 . . . 4) is the dominant contribution.

(b) The loop consisting of a neutral Higgs (or Goldstone) boson and a heavy neutrino

contributes a relative correction to the light neutrino mass of at most a few percent. The

contributions of the corresponding graphs (not shown) in which the light sneutrinos in (a)

are replaced by heavy sneutrinos and the heavy neutrinos in (b) are replaced by light

neutrinos are suppressed by an additional powers of O(vM−1) as explained in Appendix D.

M2
LV , which violates lepton number by two units, fig. 2(a) can contribute significantly to

the light neutrino mass matrix. Other one-loop contributions shown in fig. 2(b), yield

corrections to the light neutrino mass matrix of at most a few percent, and thus can be

neglected.

In order to establish the results just quoted, we begin by reviewing the relevant in-

teractions that govern the one-loop contributions to the light neutrino masses. The light

neutrino couplings arise from eq. (2.8) and the supersymmetric sneutrino-neutrino-neutral

gaugino interactions. After isolating the interaction terms containing one neutrino field,

one arrives at

Lν = −Y IJ
ν

(
νI

Lν
cJ
L H2

2 + H̃2
2ν

I
Lν̃

J∗
R + H̃2

2ν
cJ
L ν̃I∗

L

)
+

i√
2
(g2W̃

3 − g1B̃)νI
Lν̃

I∗
L + H.c. , (5.2)

where W̃ 3 and B̃ are the SU(2) and U(1) neutral (two-component) gaugino fields, and

g2 and g1 are the corresponding gauge couplings. Using eqs. (3.4) and (3.6), it follows that

νL ≃ νℓ + m∗
DM

−1νc
h and νc

L ≃ νc
h −M−1mT

Dνℓ. Likewise, it follows from eqs. (3.33) and

(3.37) that

ν̃L ≃ ν̃ℓ +m∗
DM(M2 +m2

N )−1ν̃∗h , (5.3)

ν̃∗R ≃ ν̃∗h − (M2 +m2
N )−1MmT

Dν̃ℓ . (5.4)
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Thus, the effective interaction involving (at least) one light neutrino field is given by:

Lνℓ
≃ −Y IJ

ν

{
H̃2

2ν
I
ℓ ν̃

J∗
h + νI

ℓ ν
cJ
h H2

2 − (mDM
−1)KJ

(
H̃2

2ν
K
ℓ ν̃

I∗
ℓ + νI

ℓ ν
K
ℓ H

2
2

)

−[(M2 +m2
N)−1MmT

D]JKH̃2
2ν

I
ℓ ν̃

K
ℓ

}

+
i√
2
(g2W̃

3 − g1B̃)
[
νI

ℓ ν̃
I∗
ℓ +mDM(M2 +m2 ∗

N )−1νI
ℓ ν̃

I
h

]
+ H.c. (5.5)

In order to perform the explicit loop computations, it is convenient to rewrite eq. (5.5)

in terms of mass eigenstate fields. The Higgs field H2
2 is expressed as [49]:

H2
2 =

1√
2

[
v2 + h0 cosα +H0 sinα + i(cosβA0 + sin βG0)

]
, (5.6)

in terms of the CP-even Higgs fields h0 and H0 (where mh0 ≤ mH0), the CP-odd Higgs field

A0 and the Goldstone field G0, where tan β ≡ v2/v1 and α is the CP-even Higgs mixing

angle. We also define two-component mass-eigenstate neutralino fields κ0
j (j = 1, . . . , 4)

following ref. [7] by

ψi ≡ Z ij
Nκ

0
j , where ψi ≡ (−iB̃ , −iW̃ 3 , H̃1

1 , H̃
2
2 ) , (5.7)

and ZN is a unitary matrix that governs the Takagi-diagonalization of the complex sym-

metric 4 × 4 neutralino mass matrix, Mχ0 via ZT
NMχ0ZN = diag(Mχ0

1
, . . . , Mχ0

4
).

Before presenting the explicit computations, let us first estimate the order of magnitude

of the loop-contributions to the neutrino mass due to the loop graphs of fig. 2(a) and (b),

and the corresponding graphs (not shown) in which the light sneutrinos [heavy neutrinos] in

graph (a) [(b)] are replaced by heavy sneutrinos [light neutrinos]. This analysis is presented

in Appendix D—the results obtained there imply that the graphs of fig. 2(a) and (b) both

yield contributions to the one-loop light neutrino mass matrix of order the tree-level light

neutrino masses, multiplied by the appropriate vertex couplings and a typical loop factor.

Other one-loop contributions not shown in fig. 2 are suppressed by additional powers of

O(vM−1) and are utterly negligible.

We begin with an examination of the loop amplitude of fig. 2(b), which is governed by

the light neutrino-heavy neutrino-Higgs interaction term of eq. (5.5). The internal heavy

neutrino line is marked with an × to indicate the lepton-number violating propagator

proportional to its (diagonal) mass MδKL. Summing over all the internal neutral Higgs and

Goldstone states, the leading O(M) term vanishes, leaving a subleading term of O(v2M−1),

which is the magnitude of the light neutrino mass. We find that fig. 2(b) yields a leading

contribution to the light neutrino mass that is proportional to the tree-level light neutrino
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mass matrix [cf. eq. (3.8)]:

δMνℓ
≈ −Mνℓ

32π2

g2
2

c2W
log

M

mH
, (5.8)

where M and mH denote average heavy neutrino and Higgs boson masses. This correction

turns out to be of the order of at most few percent. Additional corrections can also arise

that modify the flavor structure of Mνℓ
, but these are not logarithmically enhanced and

are thus even smaller.

Hence, the possibility of a significant one-loop contribution to the light neutrino mass

matrix can only arise from fig. 2(a), which is governed by the light sneutrino-neutrino-

gaugino interaction term of eq. (5.5). In the following, we examine the corresponding loop

graph in which the external light neutrino fields are mass eigenstates (νJ
ℓ )phys [cf. eq. (3.9)].

Using four-component spinor methods, the amplitude for this graph (with incoming four-

momentum p) will be denoted by

− i[(/pΣIJ
V + ΣIJ

S )PL + (/pΣIJ∗
V + ΣJI∗

S )PR] , (5.9)

where the generic self energies ΣIJ
V,S(p2) of the Majorana neutrino must be symmetric in its

indices I, J . To evaluate this graph, we express the neutrino-sneutrino-gaugino interaction

Lagrangian in terms of the four-component self-conjugate Majorana neutrino fields νI
M and

the Majorana neutralino fields χ0
i [cf. Appendix A]:19

Lχνν̃ = −1
2

(g2Z
2i
N − g1Z

1i
N )(ZIk

ν̃ − iZ(I+3)k
ν̃ )U IJ

MNS χ̄
0
iPLν

J
MSk + H.c. , (5.10)

where the neutralino mixing matrix ZN is defined in eq. (5.7). The resulting DR-

renormalized neutrino mass matrix at one-loop order is given by:

(M (1−loop)
νℓ

)IJ = mνℓI
(µR) δIJ + Re

[
ΣIJ

S (m2
νℓ

) + 1
2
mνℓI

ΣIJ
V (m2

νℓ
) + 1

2
mνℓJ

ΣJI
V (m2

νℓ
)
]
, (5.11)

where the loop diagrams are regularized by dimensional reduction and the tree level di-

agonal mass, mνℓI
, is defined at the renormalization scale µR. In addition, m2

νℓ
, is some

average neutrino mass scale, which to a very good approximation can be taken to be zero

in the explicit loop calculations presented below.

In order to determine the masses of the light neutrinos at one-loop accuracy, it is usually

sufficient to calculate the diagonal matrix elements of the self energies (i.e., by setting I = J

in eq. (5.11)), assuming that the tree-level neutrino masses are non-degenerate. However,

19More explicitly, the non-zero components of PLνI
M are the two-component neutrino fields (νI

ℓ )phys, and

the non-zero components of PLχ0 are the two-component neutralino fields κ0
i introduced in eq. (5.7).
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in some cases ΣIJ
S,V can be numerically large for I 6= J . If the latter holds, then one

must re-diagonalize the neutrino mass matrix, (Mone−loop
νℓ

)IJ , in order to obtain the loop-

corrected physical neutrino masses and corresponding mixing matrix UMNS (more details

of a similar procedure in the context of R-parity violating models can be found, e.g., in

refs. [50] and [25]).

An explicit calculation of the diagram shown in fig. 2(a), in the limit m2
νℓ
→ 0, yields

ΣIJ
S =

−mχ0
i

4(4π)2
(g2Z

2i
N − g1Z

1i
N )2 (ZLk

ν̃ − iZ(L+3)k
ν̃ ) (ZMk

ν̃ − iZ(M+3)k
ν̃ )ULI

MNSU
MJ
MNS B0(mχ0

i
, mSk

),

(5.12)

ΣIJ
V =

−1

4(4π)2
|g2Z

2i
N − g1Z

1i
N |2 (ZLk

ν̃ − iZ(L+3)k
ν̃ ) (ZMk

ν̃ + iZ(M+3)k
ν̃ )ULI

MNSU
MJ∗
MNS B1(mχ0

i
, mSk

),

(5.13)

with an implicit sum over repeated indices, where mχ0
i

and mSk
are the neutralino and

sneutrino masses, respectively, and B0, B1 are the standard 2-point loop-integrals [51]

evaluated at p2 = 0,

B0(x, y) = ∆ − log
xy

µ2
R

+ 1 − x2 + y2

x2 − y2
log

x

y
, (5.14)

B1(x, y) = −1

2
∆ +

1

2
log

xy

µ2
R

− 3

4
− y2

2(x2 − y2)
+

(
x4

(x2 − y2)2
− 1

2

)
log

x

y
, (5.15)

with ∆ ≡ 2/(4 − d) − γ + ln 4π set to ∆ = 0 in the minimal subtraction renormalization

scheme. Note that ΣS is finite, i.e. in the sum over k the dependence on ∆ and µR cancels

exactly due to the orthogonality of Z. Likewise, ΣIJ
V is finite for I 6= J , which is easily

verified after using the orthogonality of Z and the unitarity of UMNS. This is to be expected

since in the mass basis there are (by definition) no tree-level off-diagonal neutrino mass

matrix elements. In contrast, ΣJJ
V is divergent, and after minimal subtraction it is here

that the µR dependence resides.

We now examine the relative magnitudes of the various contributions in eq. (5.11)

to the loop-corrected neutrino mass. First, we observe that ΣV [given by eq. (5.13)] is

dimensionless and has a magnitude of the order of a typical electroweak correction (this has

been numerically confirmed). Thus, the one loop contribution of the terms proportional to

the minimally subtracted ΣV in eq. (5.11) is at most a few percent of the tree-level neutrino

mass. Given the current experimental accuracy of neutrino data, this latter correction can

be neglected, as it does not provide any constraints on sneutrino parameters. Thus, we

focus on ΣS [given by eq. (5.12)], which can be simplified by employing the MIA expansion
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described in Section 4.3. The end result is:

δM IJ
νℓ

≡ (M1−loop
νℓ

)IJ −mνℓI
δIJ

≃ −1

32π2

∑

i,K,M

mχ0
i
Re
[
(g2Z

2i
N − g1Z

1i
N )2 UKI

MNSU
MJ
MNS

(
M2

LV

)
KM

] (∆B0

∆m2

)

iKM

, (5.16)

where in analogy to (4.16) we define

(
∆B0

∆m2

)

kIJ

≡





B0(mχ0
k
, mν̃I

ℓ
) − B0(mχ0

k
, mν̃J

ℓ
)

m2
ν̃I

ℓ
−m2

ν̃J
ℓ

, for I 6= J ,

∂B0(mχ0
k
, mν̃I

ℓ
)

∂m2
ν̃I

ℓ

, for I = J .

(5.17)

and the CP-averaged sneutrino masses, mν̃I
ℓ
, are defined below eq. (4.16). As expected,

this contribution is finite and is explicitly lepton number violating, as it is proportional to

the matrix M2
LV . Eq. (5.16) is a generalization of eq. (7) of ref. [18] to the 3-flavor seesaw

model.20

The results given in Section 5.1 can be used to estimate the bounds on the heavy

sneutrino soft parameters m2
N , m

2
B, Xν imposed by the current experimental measurements

of neutrino masses and mixing. These bounds allow for a significant one-loop correction to

the light neutrino mass matrix, δM IJ
νℓ

, which could even compete with the corresponding

tree-level masses. Further details will be given in Sections 5.3 and 5.4.

5.2 Radiative generation of neutrino masses and mixing

It is very tempting to explain the characteristics of the neutrino mass spectrum as a conse-

quence of radiative corrections. The most economical possibility is one in which the pattern

of neutrino masses is entirely radiatively generated by the loop corrections. However, in

the supersymmetric seesaw model this is not possible. If one sets mνℓI
= 0 (for all I) in

eq. (5.16), then mD = 0 (or equivalently, Yν = 0), in which case only the light sneutrino-

neutrino-gaugino interaction of eq. (5.5) survives. However, this interaction generates a

one-loop neutrino mass that is proportional to M2
LV [cf. eq. (5.16)], which vanishes in the

limit of mD = 0.

Here, we shall be less ambitious and investigate whether the hierarchy and/or the flavor

mixing of neutrinos can be generated entirely by loop effects. As we shown below, such a

scenario seems to be possible. However, in order to obtain the correct values of the light

neutrino mixing matrix elements, a fine-tuning of sneutrino parameters may be required.

20We correct here a typographical in eq. (7) of ref. [18] where (g2Z
2i
N − g1Z

1i
N )2 is incorrectly written as

|g2Z
2i
N − g1Z

1i
N |2.
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To be more specific, consider the following scenario. At tree level we assume the Yukawa

coupling matrix Yν to be real, non-negative and flavor diagonal, i.e. Y IJ
ν = Y I

ν δ
IJ (with

Y I
ν ≥ 0). Consequently, the tree level neutrino mass matrix [eq. (3.8)] is also real, non-

negative and diagonal so that U tree
MNS = i1. Then, the one-loop correction to the neutrino

mass matrix [eq. (5.16)] is proportional to:

αIJ ≡ 1

32π2

4∑

i=1

mχ0
i
(g1Z

1i
N − g2Z

2i
N )2

(
∆B0

∆m2

)

iIJ

. (5.18)

If one assumes that the flavor splitting of the light sneutrino masses is small, then the

ratio (∆B0/∆m
2)iIJ is approximately constant with the respect to the indices I, J , so that

αIJ ≈ α is roughly constant. Therefore, the one-loop corrected neutrino mass matrix

[eq. (5.11)] can be written as

m(1−loop)
νℓ

≃ −mDM
−1mD + Re

(
αM2

LV

)
. (5.19)

Since we have assumed above that Yν is diagonal, it follows that mD ≡ v2Yν/
√

2 is also

diagonal, in which case there is no need to distinguish between mD and its transpose. For

simplicity, we shall further assume that m2
N ≪ M2. Then, using eq. (3.40) for M2

LV , in

which only the leading O(vM−1) terms are kept [under the assumption that m2
B ∼ O(vM)

as suggested by eq. (2.14)], we may express eq. (5.19) in the following form:

m(1−loop)
νℓ

≃ −[1 − Re(αXν)]mDM
−1mD [1− Re(αXT

ν )]

− 2mD
1

M
Re(αm2

B)
1

M
mD + Re(αXν)mDM

−1mD Re(αXT
ν ) . (5.20)

To achieve the correct hierarchy of neutrino masses and mixings, one possible strategy

is to demand that the sum of the last two terms on the right hand side of eq. (5.20) is

negligible, in which case the first term yields the correct physical neutrino masses and the

mixing matrix. Then, using eq. (2.5), we perform a Takagi-diagonalization to identify the

physical (loop-corrected) neutrino masses and mixing matrix elements:

− [1− Re(αXν)]mDM
−1mD [1− Re(αXT

ν )] = (Uphys
MNS)

∗mphys
νℓ

(Uphys
MNS)

† , (5.21)

where mphys
νℓ

is the (non-negative) diagonal physical neutrino mass matrix. One can solve

eq. (5.21) analytically for Re(αXν), which yields:

Re(αXν) = 1− i(Uphys
MNS)

∗(mphys
νℓ

)1/2RM1/2m−1
D , (5.22)

where R is a complex orthogonal matrix, subject to the restriction that the right hand

side of eq. (5.22) is real. Thus, starting from any hierarchy of the tree-level diagonal, non-

vanishing Yukawa couplings Y I
ν , the special choice of Xν given in eq. (5.22) allows us to

reproduce the correct neutrino mass hierarchy and the mixing matrix.
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Clearly, the scenario just presented is not very realistic from the phenomenological point

of view. To achieve the desired result, a specific form of the Xν parameter, very close to

perturbativity limit of Yν and the charged slepton masses is required, as well as a rather

precise cancellation between the last two terms of eq. (5.20). Nevertheless, our example

above provides an analytical existence proof for a radiative mixing scenario. In general,

for given Yν and M , many choices of sneutrino parameters leading to the correct pattern

of neutrino masses and mixing at the one-loop level exist, but they need to be determined

numerically. Presumably, all successful scenarios require a certain degree of fine-tuning,

but perhaps some solutions would be deemed acceptable.

5.3 Universal parameters at the scale M

The magnitudes of the parameters Aν , m
2
B and m2

N that govern the behavior of the

heavy sneutrino sector are connected with the mechanism of supersymmetry breaking [cf.

eq. (2.6)]. These parameters decouple at the scale M ≫MZ where the sneutrino superfield

N̂ decouples. If the scale M is close to the GUT scale then soft SUSY breaking parameters

are restricted by GUT symmetry considerations. Further assumptions on the minimality

of the Kähler potential in supergravity simplify our input parameters considerably, at the

scale M ∼MGUT ,

Aν = A0 Yν , m2
B = m0 M , m2

N = xM2 , (5.23)

where A0 is a complex number, m0 and x are real numbers, M is a diagonal 3×3 Majorana

neutrino matrix [cf. eq. (2.5)] and Yν is the neutrino Yukawa coupling [cf. eq. (2.1)].

Under the universality assumptions of eq. (5.23), the matrices M2
LC and M2

LV assume

the following simple forms at the GUT scale:

M2
LC = m2

L +
1

2
M2

Z cos 2β +
x

1 + x
m∗

Dm
T
D , (5.24)

M2
LV =

2Mνℓ

1 + x

(
A0 + µ∗ cotβ − m0

1 + x

)
, (5.25)

where the light tree-level neutrino mass matrix Mνℓ
is given in eq. (3.8). As parameters

“run” from the GUT scale to low energies, m2
L receives renormalization from other Yukawa

and gauge interactions. In contrast, all the parameters associated with the superfield N̂

are hardly affected since M ∼ MGUT . Moreover, the neutrino mass matrix Mνℓ
and the

superpotential parameter µ are both multiplicatively renormalized. Hence, just above the

scale of low-energy supersymmetry breaking, the low-energy value of M2
LV is still given by

eq. (5.25), with the parameters on the right-hand side defined at the low scale. At the
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low-energy supersymmetry-breaking scale the DR running neutrino mass matrix Mνℓ
(µR)

[or its diagonal form mνI
ℓ
(µR)] receives finite threshold corrections from the neutralino–

sneutrino loop in fig. 2(a). The one-loop correction to the neutrino mass matrix given in

eq. (5.16) is proportional to the diagonal tree-level neutrino mass matrix.21 Hence, the

one-loop corrected neutrino masses assume the very simple and suggestive form

m
(1−loop)

νℓ
I = mνℓ

I

[
1 + 2Re

α

(1 + x)

(
A0 + µ∗ cot β − m0

1 + x

)]
, (5.26)

where α is defined in eq. (5.18) and all parameters are now defined at the scale µR = MZ .

We next examine the light sneutrino mass difference. Since the results of Table 3 imply

that M2
LC is very close to diagonal form, it follows that Q0 ≃ 1 (cf. discussion above

eq. (3.48)]. Combining the results of eqs. (3.49), (3.52) and (3.66), we derive

(
∆mν̃ℓ

mνℓ

)

I

=
2

mν̃
ℓI
mν

ℓI

∣∣∣∣
(Mνℓ

)II

1 + x

(
A0 + µ∗ cot β − m0

1 + x

)∣∣∣∣ , (5.27)

which is identical to the one flavor case found in eq. (3.68) and in Ref. [18] if the neutrino

mass matrix Mνℓ
is diagonal. In the more general case of non-diagonal Mνℓ

, the diagonal

elements of the neutrino mass matrix do not coincide with the neutrino masses mν
ℓI

. Con-

sequently, the quantity (∆mν̃ℓ
/mνℓ

)I exhibits non-trivial dependence on the flavor index I.

To produce quantitative results, we need to initialize the neutrino Yukawa couplings in

such a way that we always reproduce the “observed” MNS mixing matrix. Using eqs. (3.8)

and (3.10), it follows that

mD = iU∗
MNS (mphys

νℓ
)1/2 RT M1/2 , (5.28)

where R is an arbitrary complex orthogonal matrix [47], with three (complex) angles, θ1,2,3.

(As the sign of R is undetermined, one may choose det R = 1 without loss of generality.) In

the plots that follow, we assume a hierarchical spectrum for the neutrinos, and all relevant

input parameters are displayed in Table 4. The value formL adopted in Table 4 is consistent

with a supersymmetric interpretation of the observed experimental excess for δaµ.

21Indeed, assuming universal parameters at the GUT scale, and noting that x . O(10−2) [cf. eq. (4.18)],

it follows that M2
LC ≃ m2

LC1 at the GUT scale, where m2
LC is one of the approximately degenerate

eigenvalues of M2
LC . The positive square roots of the eigenvalues of M2

LC , evaluated at the low-energy scale,

are identified as the three CP-averaged light sneutrino masses. Although m2
L is no longer proportional to

the identity matrix at low-energies, this latter effect is formally of higher order in the loop expansion of

δM IJ
νℓ

[cf. eq. (5.16)]. Consequently, we can neglect the flavor splitting of the CP-averaged light sneutrino

masses in the evaluation of the ratio (∆B0/∆m2)iKM , in which case this ratio is roughly constant with

respect to the indices K and M as discussed below eq. (5.18).

38



Input Parameters

Neutrino Sector SUSY Sector

mphys
ν

ℓ1
10−14 A0 0

mphys
ν

ℓ2

√
∆m2

sol m0 0

mphys
ν

ℓ3

√
∆m2

atm µ 350

θ1 0.2+0.1 i tanβ 10

θ2 0.3 MB̃ 95

θ3 0.1 + 0.5i MW̃ 189

M1 1014 x 0.0

M2 2 × 1014 mL 197

M3 5 × 1014 mR 135

Table 4: If not otherwise indicated, the input parameters that govern the neutrino and

SUSY sectors listed above have been employed in our numerical analysis. We take ∆m2
sol =

(8.0+0.4
−0.3) × 10−5 eV2 and ∆m2

atm = (2.45 ± 0.55) × 10−3 eV2 from Ref. [11]. The values for

θ1,2,3 above are representative choices (as these angles are not fixed by the light neutrino

data). All mass parameters in the above table are in GeV units.

In fig. 3 we plot the ratios (∆mν̃ℓ
/mνℓ

)I [upper panels] and (m
(1−loop)
νℓ

/mνℓ
)I [lower

panels] as functions of the SUSY-breaking parameters m0 [left panels] and A0 [right panels].

When varying m0 we set A0 = 0 and when varying A0 we set m0 = 0. Otherwise, our input

parameters are as specified in Table 4. In obtaining these results, we have incorporated the

full one-loop contribution to the neutrino masses. In the two lower panel plots, the ratios

(m
(1−loop)
νℓ /mνℓ

)I are nearly independent of the flavor I, and thus only one curve is shown.

Our numerical results confirm our analytical approximate formulae of eqs. (5.26) and (5.27)

and demonstrate that one must have m0 . 105 GeV (|A0| . 105 GeV) to guarantee that

the radiative corrections to neutrino masses are less than 80% of the tree level neutrino

mass. In this case, the sneutrino mass difference is at most ∆mν̃ℓ
<∼ 300 ∆matm ≃ 15 eV.

For completeness, we plot in fig. 4 the results for gµ − 2 anomaly and the branching

ratios for the decays ℓ J → ℓ Iγ in the case of universal parameters at the SUGRA scale.

The results shown in fig. 4 confirm our choices of a lower bound formL [cf. Table 2] obtained

in Section 4.1 and an upper bound for x [cf. eq. (4.18)] obtained in Section 4.3.
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Figure 3: Predictions for the ratios (∆mν̃ℓ
/mνℓ

)I and (m
(1−loop)
νℓ /mνℓ

)I for the three neutrino

states (I = 1, 2, 3) as functions of the soft SUSY-breaking parameters m0 and A0. When

varying m0 [left panels] we set A0 = 0 and when varying A0 [right panels] we set m0 = 0.
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Figure 4: (a) In the left panel, the contribution to the muon anomalous magnetic moment

from the diagrams in fig. 1 as a function of mL = mR is exhibited. (b) In the right panel,

the prediction for BR(ℓ J → ℓ Iγ) is shown as a function of the parameter x = m2
N/M

2.

The upper [lower] curves correspond to τ → µγ [τ → eγ], and the middle curve to µ→ eγ.
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5.4 General case

So far we have dealt with universal boundary conditions for the supersymmetric parameters.

One can set general bounds for the lepton number violating matrix elements of M2
LV from

eq. (5.16) and the “naturalness” assumption of δmνℓ
. mνℓ

. In the general case, appropriate

bounds can be derived only numerically and depend on the particular form of the MNS

matrix. Analytical estimates can be obtained using the following approach. Let us require

that the one-loop corrections to the neutrino mass matrix do not significantly affect the

physical neutrino masses and their mixing. Combining Eqs. (3.10) and (5.16), one gets for

any I, J :

|UMI
MNS (Mνℓ

)MN U
NJ
MNS| ≥

∣∣∣∣
mχ0

i

32π2
Re
[
(g2Z

2i
N − g1Z

1i
N )2 UMI

MNSU
NJ
MNS

(
M2

LV

)
MN

](∆B0

∆m2

)

iMN

∣∣∣∣ .

(5.29)

The structure of the UMNS factors on both sides of eq. (5.29) is identical, so roughly [barring

possible cancellations between terms and the effects of truncating a potential imaginary

part22 of UMI
MNS (Mνℓ

)MN U
NJ
MNS], the condition above can be rewritten as:

| (Mνℓ
)MN | = |

(
mDM

−1mT
D

)
MN

| ≥
∣∣∣∣
mχ0

i

32π2
Re
[
(g2Z

2i
N − g1Z

1i
N )2

(
M2

LV

)
MN

](∆B0

∆m2

)

iMN

∣∣∣∣

≈ |αMN

(
M2

LV

)
MN

| , (5.30)

with αMN defined in eq. (5.18).

Further estimates depend on the particular choice of the mD (or Yν) and M and on the

neutralino sector parameters. For example, using the parameters specified in Table 4, one

has αMN ≈ α ∼ 4 × 10−6 GeV−1, so that

|
(
M2

LV

)
MN

| ≤ 2.5 × 105 GeV | (Mνℓ
)MN | . (5.31)

Eq. (5.31) implies that in the general case one should expect the entries of the matrix

M2
LV to be no more than 5 or 6 orders of magnitude larger then the typical scales in the

effective neutrino mass matrix; i.e. of the order of a few MeV2. Bounds on M2
LV can be

also translated into bounds on Xν and m2
B. From eq. (3.40) one can see that, barring fine

tuning, we have approximate relations M2
LV ∼ Mνℓ

Xν or M2
LV ∼ Mνℓ

m2
B/M . Thus the

rough estimates we made above suggest that both Xν and m2
B/M should be smaller than

approximately 100 TeV.

22If the Higgsino mixing parameter µ and the lepton trilinear coupling Aℓ are real (the case of complex

µ and Aℓ has been extensively discussed in the literature, see e.g. [52]) then there is no bound on the

imaginary parts of the matrices M2
LC and M2

LV .
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Stronger bounds on the matrix elements of M2
LV can be obtained numerically after

assuming some particular form of the MNS matrix. As an example, under the assumption

of tri-bimaximal mixing of ref. [53] and the parameters given in Table 4,

M2
LV .




2 × 10−9 ... ...

... 2 × 10−6 ...

... ... 10−5




GeV2 , (5.32)

where the dots indicate elements with similar bounds as the diagonal ones. The significant

suppression of the lepton number violating matrix elements of M2
LV relative to the lepton

number conserving matrix elements M2
LC ∼ O(v2) is particularly noteworthy.

6 Sneutrino Oscillations

The theory behind sneutrino oscillations follows closely the very well known theory of

oscillations in the neutral Kaon-meson system. The light sneutrino state [cf. eq. (5.3)],

ν̃ℓ ≃ ν̃L −m∗
DM(M2 +m2

N )−1ν̃∗R is to leading order in vM−1 the supersymmetric partner

of left-handed neutrino νL, and therefore couples to the W± and Z gauge bosons. For the

present discussion, it suffices to approximate: ν̃I
ℓ ≃ ν̃I

L, which we shall denote simply by ν̃I

in this Section. The ν̃I can be produced, for example, in e+e− annihilation via s-channel

Z exchange:

e+ + e− → ν̃I + ν̃∗I . (6.1)

When lepton number is conserved, the ν̃I (ν̃∗I ) possess a definite lepton number equal to

−1 (+1) and they are produced in definite flavor eigenstates I = 1, 2, 3.

It is convenient to introduce a two-dimensional complex vector space spanned by a

basis of vectors consisting of the sneutrinos states of a given flavor I, |ν̃I〉 and |ν̃∗I 〉. Two

important operators that act on this state are:

L̂ ≡


−1 0

0 1


 , and CP ≡


 0 1

1 0


 , (6.2)

where L̂ is the lepton number operator and CP is the CP-operator in the {|ν̃I〉, |ν̃∗I 〉} basis.

That is, |ν̃I〉 and |ν̃∗I 〉 are eigenstates of L̂:

L̂|ν̃I〉 = −|ν̃I〉 , L̂|ν̃∗I 〉 = +|ν̃∗I 〉 , (6.3)
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and the charge-conjugate parity operator CP transforms particle states into antiparticle

states:

CP |ν̃I〉 = |ν̃∗I 〉 , CP |ν̃∗I 〉 = |ν̃I〉 . (6.4)

The eigenstates of CP are given by

|ν̃(+)
I 〉 ≡ 1√

2
(|ν̃I〉 + |ν̃∗I 〉) , |ν̃(−)

I 〉 ≡ 1

i
√

2
(|ν̃I〉 − |ν̃∗I 〉) , (6.5)

with definite eigenvalues

CP |ν̃(+)
I 〉 = +|ν̃(+)

I 〉 , CP |ν̃(−)
I 〉 = −|ν̃(−)

I 〉 . (6.6)

The CP-even sneutrino state of flavor I, |ν̃(+)
I 〉, and the CP-odd sneutrino state of flavor

I, |ν̃(−)
I 〉, are states of indefinite lepton number. Of course, these states are the real and

imaginary parts of the sneutrino field of definite lepton number,

ν̃I =
1√
2
(ν̃

(+)
I + iν̃

(−)
I ) . (6.7)

Inevitably, in a supersymmetric model with a mechanism that yields neutrino flavor

oscillations, the sneutrino flavor states should oscillate as well. The sneutrino mass eigen-

states, Sk, (k = 1, 2...6) are linear combinations of the CP eigenstates |ν̃(±)
I 〉, and for a three

flavor system (I = 1, 2, 3) they are related by:

|ν̃(+)
I 〉 = ZIk

ν̃ |Sk〉 , |ν̃(−)
I 〉 = Z(I+3)k

ν̃ |Sk〉 , (6.8)

where the real orthogonal 6 × 6 matrix with Z ij
ν̃ has been introduced in eq. (3.75). The

|Sk〉 are states of definite CP unless the following CP-violating conditions hold:

ZI(J+3)
ν̃ 6= 0 , Z(I+3)J

ν̃ 6= 0 , I, J = 1, 2, 3 . (6.9)

In the presence of complex parameters in the Lagrangian (whose phases cannot be absorbed

by field redefinition), one expects the conditions specified in eq. (6.9) to be satisfied (even

in the case of a one-generation model).

Let us initially focus our analysis on the CP-conserving one-generation model. Consider

the time evolution of the sneutrino states. The time dependence of a sneutrino in the state

|ν̃(±〉 is governed by a definite frequency ω± = E±/~ where E± = (p2c2 +m2
±c

4)1/2. where

m+ and m− are the masses of |ν̃(+)〉 and |ν̃(−)〉 respectively. If these masses are large

compared to momentum p then the corresponding energies are E± ≃ m±c
2 (in which case,

ω± ≃ m± in units where ~ = c = 1). In addition to the time-dependent phase, we must
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also account for the fact that the sneutrinos decay exponentially (e.g. into a chargino and

a lepton) with a lifetime of τ± (for ν̃± respectively). We exhibit this time dependence

explicitly by writing

Ψ+(t) = e
−iω+t− t

2τ+ |ν̃(+)〉 , Ψ−(t) = e
−iω−t− t

2τ− |ν̃(−)〉 , (6.10)

where the ν̃(± are time-independent state vectors, That is, starting at t = 0, the proba-

bility for finding particle in the sneutrino state ν̃(+) is given by |〈ν̃(+)|Ψ(t)〉|2 = e−t/τ+ , as

expected.

The well known striking effects of the K-system (e.g., K–K mixing and regeneration)

can also occur in the sneutrino system. For example, we demonstrate how sneutrinos

states |ν̃〉 can turn to states |ν̃∗〉. If we start off with a sneutrino state that is Ψ(0) = |ν̃〉 =
1√
2
(|ν̃(+)〉 + i|ν̃(−)〉) at t = 0, then it follows that at time t,

|Ψ(t)〉 =
1√
2

[
e
−iω+t− t

2τ+ |ν̃(+)〉 + ie
−iω−t− t

2τ− |ν̃(−)〉
]
. (6.11)

Then, the probability amplitude that the sneutrino |ν̃〉 is in state |ν̃∗〉 is

Pν̃→ν̃∗(t) = |〈ν̃∗|Ψ(t)〉|2 =
1

4

[
e−t/τ+ + e−t/τ− − 2 e

− 1

2

“
t

τ+
+ t

τ−

”

cos[(ω+ − ω−)t]

]
. (6.12)

The quantum interference effects can only be seen if t ≃ τ+ ≃ τ− and (m+ − m−) t ≡
(∆m)t = O(1). That is,

∆m

Γν̃

≃ O(1) , (6.13)

where Γν̃ is an average decay rate for the sneutrino, and ∆m is the mass difference of the

CP-even and CP-odd sneutrino states. Eq. (6.12) describes the oscillations of sneutrinos

into antisneutrinos, or equivalently the oscillation between states of definite CP quantum

number. We shall call this phenomena CP-driven oscillations.

Similarly, one may compute the probability that the initial state |ν̃〉 is in the state |ν̃〉
at time t. We find

Pν̃→ν̃(t) = |〈ν̃|Ψ(t)〉|2 =
1

4

[
e−t/τ+ + e−t/τ− + 2 e

− 1

2

“
t

τ+
+ t

τ−

”

cos[(ω+ − ω−)t]

]
. (6.14)

One can also easily verity that Pν̃∗→ν̃∗ = Pν̃→ν̃ and Pν̃∗→ν̃ = Pν̃→ν̃∗ . However, the proba-

bility Pν̃→ν̃ is proportional to the number of negatively charged leptons (Nl−) due to the

decay ν̃ → l− +χ+ while Pν̃→ν̃∗ is proportional to the number of positively charged leptons

(Nl+) due to the decay ν̃∗ → l+ + χ−. Then the asymmetry,

Al =
Nl− −Nl+

Nl− +Nl+
, (6.15)
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is proportional to the quantum interference term cos(∆mt) in eqs. (6.12) and (6.14). That

is, the lepton charge asymmetry Al oscillates in time and provides a possible method for

experimentally determining the value of ∆m.

The signal for sneutrino–antisneutrino oscillations can be interpreted as the observation

of a sneutrino that decays into a final state with a “wrong-sign” charged lepton. The

phenomenological implications of such wrong-sign charged lepton final states at future

colliders have been explored recently in Ref. [54].

We now turn to the three-generation model (allowing for the possibility of CP-violation)

and consider the additional possibility of flavor metamorphosis. We pose the following

question: Given the state |ν̃I〉 at time t = 0, what is the probability that the sneutrino at

time t is in the state |ν̃∗J〉 or |ν̃J〉? Following the arguments given above eq. (6.11), we find

that a sneutrino wave function involves with time according to

|ΨI(t)〉 =
1√
2

(ZIk
ν̃ + iZ(I+3)k

ν̃ ) e
−iωkt− t

2τk |Sk〉 . (6.16)

Hence, the probabilities to be in the state |ν̃∗J〉 or |ν̃J〉 at time t are given by:

Pν̃I→ν̃∗
J
(t) = Pν̃∗

I
→ν̃J

(t) =
1

4

6∑

k,s=1

e
−t

h
1

2τk
+ 1

2τs

i

cos [(ωk − ωs)t] ×
(
ZJk

ν̃ ZIk
ν̃ ZJs

ν̃ ZIs
ν̃ + Z(J+3)k

ν̃ Z(I+3)k
ν̃ Z(J+3)s

ν̃ Z(I+3)s
ν̃ − 2ZJk

ν̃ ZIk
ν̃ Z(J+3)s

ν̃ Z(I+3)s
ν̃

+ ZJk
ν̃ Z(I+3)k

ν̃ ZJs
ν̃ Z(I+3)s

ν̃ + Z(J+3)k
ν̃ ZIk

ν̃ Z(J+3)s
ν̃ ZIs

ν̃ + 2ZJk
ν̃ Z(I+3)k

ν̃ Z(J+3)s
ν̃ ZIs

ν̃

)
,

(6.17)

Pν̃I→ν̃J
(t) = Pν̃∗

I
→ν̃∗

J
(t) =

1

4

6∑

k,s=1

e
−t

h
1

2τk
+ 1

2τs

i

cos [(ωk − ωs)t] ×
(
ZJk

ν̃ ZIk
ν̃ ZJs

ν̃ ZIs
ν̃ + Z(J+3)k

ν̃ Z(I+3)k
ν̃ Z(J+3)s

ν̃ Z(I+3)s
ν̃ + 2ZJk

ν̃ ZIk
ν̃ Z(J+3)s

ν̃ Z(I+3)s
ν̃

+ ZJk
ν̃ Z(I+3)k

ν̃ ZJs
ν̃ Z(I+3)s

ν̃ + Z(J+3)k
ν̃ ZIk

ν̃ Z(J+3)s
ν̃ ZIs

ν̃ − 2ZJk
ν̃ Z(I+3)k

ν̃ Z(J+3)s
ν̃ ZIs

ν̃

)
.

(6.18)

Note that the probabilities in eqs. (6.17) and (6.18) are unchanged under the interchange

of flavor indices I and J , respectively. The three-generation model possesses both flavor

and CP-driven oscillations.

In the supersymmetric seesaw model, neutrino mixing and masses are governed by a

variety of parameters that contribute to the tree-level and one-loop neutrino mass matrix

(cf. Section 5.2). Some of these parameters also are relevant for determining the struc-

ture of the real orthogonal sneutrino mixing matrix Z ij
ν̃ , which controls the properties of
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the sneutrino mixing as shown above. Consequently, the bounds on the model parame-

ters discussed in Sections 4 and 5 can be used to significantly constrain the general form

of eqs. (6.17) and (6.18).

The mass splittings among sneutrinos of different flavors is typically much larger than

the sneutrino–antisneutrino mass splitting between sneutrino states of a given flavor. In

particular, due to the renormalization group evolution of parameters, ∆m2
IJ is generally

larger than few GeV2, even in the case of universality assumptions at the high scale, whereas

sneutrino–antisneutrino mass splittings are typically of order the light neutrino masses. The

observability of oscillations depends on the ratio ∆m/Γ [cf. eq. (6.13)]. Because the total

decay width, Γ, is universal for a given sneutrino, whereas the scales of the corresponding

mass splittings are so different, it follows that ∆m/Γ ∼ O(1) can be satisfied only for one of

the two oscillation phenomena. That is, at most one oscillation phenomenon, either flavor

oscillations or CP-driven oscillations, can be observed.

Consider first the CP-driven oscillations. These oscillations can be observed if the

lifetime of the sneutrinos is sufficiently long (the appropriate numerical requirements are

given later in this section). In this case, flavor-driven oscillations are much faster and

have a very short “baseline”, so these oscillations are unobservable in collider experiments.

Therefore, one can take a time average over flavor-changing terms in the sums in Eqs. (6.17)

and (6.18), setting them effectively to zero, and retain only those terms where the mass

splitting is CP-driven and not flavor-driven (i.e. keep only those terms with s = k or

s = k + 3). Now, the sum over s can be performed, and eqs. (6.17) and (6.18) simplify to:

Pν̃I→ν̃∗
J

=
3∑

K=1

(
e−t/τK+

∣∣XIKXJK
∣∣2 + e−t/τK−

∣∣Y IKY JK
∣∣2
)

− 2
3∑

K=1

e
−t

»
1

2τK+

+ 1

2τK−

–

cos [∆Kt] Re
(
XIKXJKY IKY JK

)
, (6.19)

Pν̃I→ν̃J
=

3∑

K=1

(
e−t/τK+

∣∣XIKXJK
∣∣2 + e−t/τK−

∣∣Y IKY JK
∣∣2
)

+ 2

3∑

K=1

e
−t

»
1

2τK+

+ 1

2τK−

–

cos [∆Kt] Re
(
XIKXJKY IKY JK

)
, (6.20)

where ∆K ≡ ωK − ωK+3 and we have used eq. (3.79) to express the 6 × 6 matrices Zν̃ in

terms of the 3 × 3 matrices X and Y .

Eqs. (6.19) and (6.20) are easily interpreted. For “long baseline” oscillations, one needs

first to project flavor I onto some K (via the XIK , Y IK factors), then the CP-driven

oscillation takes place between the would-be sneutrino–antisneutrino states SK and SK+3,
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and finally the result is projected back onto flavor J .

Further simplification is possible if we exploit the bounds on the parameters due to the

ℓ J → ℓ Iγ decays obtained in Section 4.3 to conclude that the matrix M2
LC is very close to

diagonal form. In this case, the matrix Q0 that diagonalizes M2
LC [cf. eq. (3.47)] is close to

the identity matrix. Moreover, the matrix elements of R [cf. eq. (3.59)] are suppressed by

the ratio of ∆mν̃/mν̃ , and are therefore negligible. It then follows that X ≃ Y ≃ T/
√

2,

where T ≡ diag(e−iφ1/2 , e−iφ2/2 , e−iφ3/2) and φJ ≃ arg(M2
LV )JJ [cf. eq. (3.50)]. If we

consider flavor conserving (i.e. I = J) sneutrino–antisneutrino oscillations, then there is

one large contribution in eq. (6.19) in the sum over K for I = K, whereas the contributions

of I 6= K are strongly suppressed by the squares of mixing angles. Therefore, the dominant

contribution to the probability for sneutrino–antisneutrino oscillations is given by:

Pν̃I→ν̃∗
I
≈ 1

4

[
e−t/τI+ + e−t/τI− − 2 e

−t

»
1

2τI+

+ 1

2τI−

–

cos(∆It) cos(2φI)

]
, (6.21)

which coincides exactly with the formula obtained previously for the one generation case

[cf. eq. (6.12)] in the CP-conserving limit (where M2
LV is a real matrix so that cos 2φI = 1).

Similarly, for Pν̃I→ν̃I
, one reproduces eq. (6.14) in the same limiting case.

To complete the analysis of the sneutrino oscillation formulae, we must compute the to-

tal sneutrino decay width, Γk ≡ Γ(Sk → anything) = 1/τSk
. Supposing that the neutralino

is the lightest supersymmetric particle (LSP), the sneutrino decay width is the sum of the

partial widths of the following two kinematically available decay chains,23

Γ(Sk → ℓ∓ I + χ±
i ) = g2

2

mSk

32π

(
1 −

m2
χi

m2
Sk

)3/2

|Z1i
+ |2
(
|ZIk

ν̃ |2 + |Z(I+3)k
ν̃ |2

)
, (6.22)

Γ(Sk → νI + χ0
i ) =

g2
2

c2W

mSk

64π

(
1 −

m2
χ0

i

m2
Sk

)3/2

|Z1i
N sW − Z2i

N cW |2
3∑

J=1

∣∣∣(ZJk
ν̃ − iZ(J+3)k

ν̃ )UJI
MNS

∣∣∣
2

.

(6.23)

In deriving the formulae above, we have used the Feynman Rules eqs. (C.1) and (C.4)

from Appendix C and have taken the lepton masses to zero. Eqs. (6.22) and (6.23) agree

with Ref. [18] in the limit UMNS = Zν̃ = 1. Writing Zν̃ in terms of X and Y [cf. eq. (3.79)],

it easily follows that the decay rates of the sneutrinos Sk with k = 1, 2, 3 [k = 4, 5, 6]

depend on X [Y ] alone. Since X and Y differ only by the “small” R matrix [cf. eq. (3.60)],

it follows that τI+ ≃ τI−, which can be used to further simplify the expression given by

eq. (6.21).

23Γ(Sk → ℓ∓ I + χ±
i ) indicates the sum of the sneutrino partial widths to the lepton–chargino and its

charge-conjugated final states.
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The total sneutrino decay width is given by:

Γk =

3∑

I=1

2∑

i=1

Γ(Sk → ℓ∓ I + χ±
i ) +

3∑

I=1

4∑

i=1

Γ(Sk → νI + χ0
i )

= g2
2

mSk

32π




2∑

i=1

(
1 −

m2
χi

m2
Sk

)3/2

|Z1i
+ |2 +

1

2c2W

4∑

i=1

(
1 −

m2
χ0

i

m2
Sk

)3/2

|Z1i
N sW − Z2i

N cW |2

 ,

(6.24)

where the summation over the lepton indices can be performed in the limit of vanishing

lepton masses, with the use of the orthogonality [unitarity] relations for the matrices Zν̃

[UMNS].

How can one observe sneutrino CP-oscillations? Consider the following scenario: sup-

pose that the LHC finds sneutrinos with masses that are accessible at a future Inter-

national Linear Collider (ILC). Then, at the ILC, the sneutrinos are produced through

the annihilation process of eq. (6.1), and subsequently decay into [leptons + charginos]

and [neutrinos + neutralinos] following the decay widths given by eqs. (6.22) and (6.23),

respectively. Sneutrino CP-oscillations will then be observed only if the asymmetry Al

defined in eq. (6.15), is appreciable, i.e., Al ∼ O(1), which can be realized if both ∆mk

is small (providing a long enough oscillation base) and the sneutrino decay rate is suffi-

ciently slow such that ∆mk/Γk ∼ O(1). This scenario is impossible if the sneutrinos are

sufficiently heavy compared to the neutralinos and/or charginos, in which case (neglecting

the phase space suppression in eq. (6.24) and performing the summation over the chargino

and neutralino indices) the sneutrino decay rate is approximately given by:

Γk ≈ g2
2

mSk

32π

[
2∑

i=1

|Z1i
+ |2 +

1

2c2W

4∑

i=1

|Z1i
N sW − Z2i

N cW |2
]

= g2
2

mSk

32π

(
1 +

1

2c2W

)
.

(6.25)

The expression above depends only on the sneutrino mass and cannot be suppressed by a

particular choice of mixing angles of the Zν̃ , Z+ or ZN matrices. Thus, using the results of

Section 5, one can check that the ratio ∆mk/Γk is always much too small for the sneutrino

oscillations to be observed. As an example, in the case of universal parameters discussed

in Section 5.3, for the lightest sneutrino and m0, |A0| . 105 GeV we obtain

∆mS

ΓS
. 2.7 × 10−6 , (6.26)

which is very far from the value O(1) required for the observability of sneutrino oscillations.
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In the case of 2-body decays, the decay width Γk can be only suppressed by choosing

an appropriate hierarchy of particle masses. Most of the decay channels in Eqs. (6.22) and

(6.23) would have to be closed kinematically, with the open channels strongly suppressed

either by the very small phase space factors (which requires rather unnatural degeneracy

between sneutrino and neutralino or chargino masses), or by sufficiently small mixing angles

for the relevant channel. An alternative possibility is one where the sneutrinos are lighter

then all charginos and neutralinos, so that all 2-body decay channels are closed, but heavier

than some charged slepton. In this case, ν̃ → ℓ̃±W∓, and assuming that the W is produced

off-shell the end result is a 3-body decays that can produce an observable charged lepton.

Three-body phase space significantly suppresses the sneutrino decay rate (relative to the

two-body decay rates discussed above), and can yield observable sneutrino–antisneutrino

oscillations, as shown in ref. [18]. However in such a scenario, either the charged slepton is

the LSP, which is strongly disfavored by astrophysical data, or the charged slepton decays to

some new lighter supersymmetric particle, which requires extending the model beyond the

seesaw-extended MSSM considered in this paper [55]. As we have shown, the oscillations

in the three-generation case does not differ much from the one-generation case, where the

flavor indices are summed over [cf. eqs. (6.21) and (6.24)]. Thus, the results of ref. [18]

can also be used without significant changes in the three-generation case discussed in this

paper.

Finally, we discuss the case of sneutrino flavor oscillations. These oscillations are de-

scribed by eqs. (6.17) and (6.18) with indices I 6= J . For any choice of I 6= J , both

equations can be significantly simplified using the bounds on the structure of sneutrino

mixing matrices derived in Sections 4 and 5. These bounds imply that the off-diagonal el-

ements of matrices Q and R [defined in eqs. (3.49) and (3.56)] are small, which then imply

[via eqs. (3.60) and (3.79)] that the off-diagonal elements of the matrices X, Y and Zν̃ are

likewise small. Thus, to a good approximation one can keep in eqs. (6.17) and (6.18) only

terms at most quadratic in the non-diagonal elements of Zν̃ . For example, in the sum of

the first term of the product of four Zν̃ ’s in eq. (6.17), it is sufficient to keep only terms

with s, k = I, I + 3, J, J + 3. Assuming that the lifetimes of all eigenstates are very similar

(i.e., τ ≃ τk), all the dominant terms can be summed to give a simple final expression valid

for I 6= J ,

Pν̃I→ν̃J
≈ e−

t
τ

{
|QIJQJJ∗|2 + |QJIQII∗|2 + 2Re

(
QIJQJJ∗QJI∗QII

)
cos ∆mIJt

}
, (6.27)

where ∆mIJ ≡ mν̃I
−mν̃J

.

The analogous expression for the sneutrino-antisneutrino oscillation probability Pν̃I→ν̃∗
J

is bilinear in the matrix elements of R [cf. eq. (3.56)]. The latter are at most of
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O(105mν/v) <∼ 10−6 and thus lead to completely negligible sneutrino–antisneutrino transi-

tion rates.24

The form of eq. (6.27) is explicitly invariant with respect to rephasing, QIJ → QIJeiφJ .

Thus, without loss of generality, we may replace Q by Q0 [cf. eq. (3.49)] in eq. (6.27),

where the off-diagonal matrix elements of the unitary matrix Q0 are given approximately

by eq. (3.48) and the diagonal elements of Q0 are fixed by unitarity. As Q0 is close to the

identity matrix, the following approximations are valid: QJJ
0 ≃ 1 and QJI∗

0 ≃ −QIJ
0 for

I 6= J . In this approximation, eq. (6.27) simplifies for I 6= J to:

Pν̃I→ν̃J
≈ 2e−t/τ

[
|QIJ

0 |2 − Re(QIJ
0 )2 cos ∆mIJt

]
. (6.28)

If one uses the approximate expression given in eq. (3.48), QIJ
0 ≃ (M2

LC)IJ/(m2
ν̃J

−m2
ν̃I

),

then eq. (6.28) yields the oscillation probabilities directly in terms of the sneutrino squared-

mass matrix elements. As expected, the sneutrino flavor-transition depends on the flavor-

conserving matrix M2
LC .

Defining the oscillation length by L = ct we can write

∆mIJt = 5.06 × ∆mIJ (GeV)L(fm) . (6.29)

As in neutrino oscillations, it is useful to define ∆mIJ L = 2πL/L0 where L0 is the charac-

teristic length of the oscillation :

L0 = 1.24 fm × 1

∆mIJ (GeV)
. (6.30)

If the sneutrino mass difference is of O(1 GeV), the characteristic oscillation length is of

order 1 fm. Of course, the characteristic length of oscillation must be smaller than or at

most comparable to the decay length of the particle for oscillations to be observable. In

the case of the sneutrino, the decay length is [using eq. (6.25)]:

Lν̃ = cτ ≃ 28 (fm)

mν̃ (GeV)
. (6.31)

Hence, the condition Lν̃ >∼ L0 requires that

∆mIJ

mν̃

&
1

25
. (6.32)

24An accurate estimate of Pν̃I→ν̃∗

J
should also take into account similarly small effects produced by the

admixture of the heavy sneutrino states in the definition of the ν̃I , which were neglected in derivation

of eqs. (6.17) and (6.18). However, given the extremely small transition probabilities, we do not present

the full analysis here.
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Such a mass splitting between the sneutrino states of different flavors is sensible. Thus,

the likelihood of observing flavor sneutrino oscillations at colliders depends primarily on

the degree of suppression caused by the mixing angles in the matrix Q. It is instructive to

input some representative numbers in eq. (6.27). Thus, for ∆m12 = 10 GeV, mν̃ = 270 GeV,

tan β = 10 and taking into account the bounds of Table 3, we obtain for ν̃µ → ν̃e oscillations

at time t = τ = Γ−1 [cf. eq. (6.24)]:

Pν̃µ→ν̃e
≈ 1.25 × 10−5 [1 − cos(∆m12τ)] , (6.33)

Thus, as a consequence of the bounds from neutrino masses and radiative flavor changing

decays obtained in Sections 4 and 5, we conclude that in the see-saw extended MSSM,

sneutrino flavor oscillations are difficult to observe at colliders.

If the bounds of Sections 4 and 5 could be avoided, say with some cancellation mech-

anism (which in the absence of such a mechanism would appear unnatural), then it may

be possible to find regions of the supersymmetric parameter space where flavor oscillations

are observable. Then, at the ILC, one can define a flavor asymmetry for the number of

muons vs. electrons in the final state, analogous to eq. (6.15). A time-variation of this

flavor asymmetry would indicate the presence of flavor oscillations.

7 Conclusions

In this paper, we have studied sneutrino mixing phenomena in the seesaw-extended MSSM,

allowing for the full complexity of the three-generation model (which includes both flavor-

changing and CP-violating effects). We have focused primarily on the soft-SUSY-breaking

matrix parameters m2
N , m

2
B and Aν , which govern the structure of the sneutrino squared-

mass matrices. We have found a convenient parameterization of the sneutrino sector, where

all relevant physical observables depend analytically on a pair of 3× 3 mass matrices M2
LV

and M2
LC given in eqs. (3.40) and (3.39), respectively. The elements of M2

LV violate lepton

number by two units, whereas elements of M2
LC are lepton-number conserving parameters.

Within this framework, we have analyzed the constraints arising from one-loop neutrino

masses and mixings, from radiative flavor-changing charged lepton decays, and from the

electron electric dipole moment (EDM). We discovered new and potentially significant

contributions to radiative lepton decays ℓ J → ℓ I + γ due to the dependence of m2
N which

modifies the MSSM value ofM2
LC . We also observed that although the (g−2)µ measurement

places non-trivial constraints on the SUSY-breaking parameters, the electron EDMs do not

yield any additional constraints (at one loop) on the seesaw-extended MSSM parameters.
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All conclusions presented here are based on a complete numerical analysis of the processes

described above.25 In all cases, we have also provided useful analytic approximations, which

have served as a check of our numerical work.

Sneutrino mixing phenomena takes on two different forms. The mixing of sneutrinos

and antisneutrinos violates lepton number by two units, whereas sneutrino flavor mixing is

a lepton-number conserving process. Both forms of mixing are in present in principle in the

three-generation seesaw-extended MSSM. In this paper, we have generalized the sneutrino-

antisneutrino mixing formalism, originally presented in a one-generation model [18], to

the three-generation model. This sneutrino-antisneutrino mixing then acts back on the

neutrino sector, and provides an important loop correction to the neutrino mass matrix. In

this paper, we examined the possibility that starting from a diagonal neutrino mass matrix

at tree-level, the nontrivial flavor structure of the neutrino mass matrix is generated entirely

by the one-loop diagram that directly involves the sneutrino–antisneutrino transition. Our

analysis shows that this is indeed possible, although in practice certain fine-tunings among

SUSY breaking parameters in the leptonic sector seem to be unavoidable.

Returning to the sneutrino sector, we have derived analytical expressions for both

sneutrino-flavor oscillations and sneutrino-antisneutrino oscillations in eqs. (6.17) and

(6.18). We determined that if the constraints analyzed above are combined with the as-

sumption that sneutrinos can decay into two-body final states, then sneutrino-antisneutrino

oscillations are not observable at colliders. This is consistent with a similar result of the

one-generation model obtained in Ref. [18]. This conclusion is easily understood, by noting

that the sneutrino-antisneutrino mass difference, ∆mν̃ , is proportional to the neutrino mass

and is at most of the order of 1 keV. This is much smaller than the corresponding width

of the sneutrino, Γν̃ , of order 1 GeV or larger. The observability of sneutrino-antisneutrino

oscillations at colliders requires that ∆mν̃ ∼ Γν̃ . A sneutrino width of order 1 keV or less is

possible only if there are no kinematically allowed two-body final states in sneutrino decay.

In the seesaw-extended MSSM, this scenario is possible only if a charged slepton is the light-

est supersymmetric particle, a possibility strongly disfavored by astrophysical data. Other

possibilities exist if one introduces new degrees of freedom beyond the seesaw-extended

MSSM, but this lies beyond the scope of this paper.

Sneutrino flavor oscillations are more likely to be observable at colliders, since the

mass splitting between sneutrinos of difference flavors can be of order 1 GeV or larger.

We have derived simple approximate formulae for such oscillations and have estimated

their magnitudes. Unfortunately, in the seesaw-extended MSSM, after imposing bounds on

25Fortran-77 and Maple-10 numerical codes are available from the authors.
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bounding sneutrino mixing angles determined from the analysis of radiative charged lepton

decays, the resulting probabilities for sneutrino flavor oscillations are likely to be too small

to be observed directly at colliders.

At present, within the seesaw framework for neutrino masses, few handles exist for

probing the physics at the seesaw scale. At most, one can hope to measure the MNS mixing

angles, and determine neutrino mass differences (and with a little luck, the absolute scale of

neutrino masses). In the seesaw-extended MSSM, some of the physics of the seesaw scale is

imprinted on parameters that govern the properties of the light sneutrinos. With a precision

program at future colliders for measuring sneutrino observables, there are new opportunities

to explore the fundamental physics that is responsible for the origin of neutrino masses.
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Appendix A Notation for fermion fields

Fermion fields in quantum field theory can be described by employing either two-component

or four-component fermion notation [56]. In models where lepton number is not conserved,

two-component fermion notation is generally simpler and more efficient. In this appendix,

we briefly discuss the relation between the two treatments.

In Table 1, the fermionic fields associated with the lepton and Higgs sectors of the

seesaw-extended MSSM are listed. These fermion fields can be viewed either as two-

component fermion fields or the left-handed projections of four-component fermion fields,

with ΨL ≡ 1
2
(1 − γ5)Ψ and

Ψc ≡ CΨ
T
, Ψc = −ΨTC−1 , (A.1)

where Ψ ≡ Ψ†γ0 and C = −CT is the charge conjugation matrix.

For example, in four-component notation, given a four-component (anticommuting)

Dirac spinor νD, we define the following four-component spinors:

νL ≡ PLνD , νc
L ≡ PLν

c
D , νR ≡ PRνD , and νc

R ≡ PRν
c
D , (A.2)

where PL,R ≡ 1
2
(1 ∓ γ5), respectively. The corresponding two-component (anticommuting)

fields are given by the non-zero components of νL ≡ PLνD and νc
L ≡ PLν

c
D. Consequently,

we shall use the same symbols νL and νc
L for the corresponding two-component neutrino

fields. However, one must be careful to note that in our notation

νc
L = CνR

T , νc
R = −νT

LC
−1 , (A.3)

since, e.g., νc
L ≡ PLCν

T
D = C(PRνD)T . The same notation also applies to charged fermion

fields. Our conventions for left and right-handed charged conjugated fields follow those

of ref. [57]. Note that eq. (A.3) implies that anticommuting fermion fields satisfy:

νc
Rν

c
L = νRνL , νc

Lν
c
R = νLνR . (A.4)

In the text, the effective Lagrangians for fermion mass and interaction terms are given in

terms of two-component fermion fields. These terms can be easily translated into the four-

component spinor notation . As a first example, the dimension-five operator that governs

the standard seesaw mechanism [eq. (1.1)] contains a product of two-component fermion

fields, LI
iL

K
k . In terms of four-component spinors, this product is given by −(LT )I

iC
−1LK

k =

(Rc)I
iL

K
k , where LK

k ≡ (νK
L , ℓK

L ) is now interpreted as a doublet of four-component fermion

fields as described above and (Rc)I
i ≡ (νcI

R , ℓ cI
R ).
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As a second example, we derive the four component version of eq. (3.1) in the one-

generation model. One can redefine the phases of the neutrino fields such that mD and

M are real and non-negative. The two-component spinor product νLν
c
L + H.c. translates

to the product of four-component spinors: −νT
LC

−1νc
L + H.c. = νRνL + νLνR, which is the

usual Dirac mass term. Similarly, the two-component spinor product νc
Lν

c
L translates to the

four-component spinor product −νc T
L C−1νc

L = νRν
c
L. Hence, if the Majorana mass term

M 6= 0 in eq. (3.1), one cannot identify the physical mass eigenstates as Dirac fermions.

For example, the mass terms of the one-generation neutrino Lagrangian, which in terms of

two-component fermion fields is given by −Lmass = mDνLν
c
L + 1

2
Mνc

Lν
c
L + H.c., translates

in four-component notation to

− Lmass = 1
2
mD(νLνR + νRνL + νc

Lν
c
R + νc

Rν
c
L) + 1

2
M(νRν

c
L + νc

LνR)

= 1
2

(
νc

R νR

)

 0 mD

mD M




 νL

νc
L


 + 1

2

(
νL νc

L

)

 0 mD

mD M




 νc

R

νR




= −1
2

(
νT

L νc T
L

)
C−1


 0 mD

mD M




 νL

νc
L


 + H.c. , (A.5)

where we have used eq. (A.4) to write the first line of eq. (A.5) in a symmetrical fashion

and eq. (A.3) to obtain the final form above.

The Takagi-diagonalization of the neutrino mass matrix yields two (self-conjugate) Ma-

jorana fermion mass-eigenstates. This is accomplished by introducing a unitary matrix U ,


 νL

νc
L


 = U


 PLνℓ

PLν
c
h


 , (A.6)

such that

UT


 0 mD

mD M


 U =


 mνℓ

0

0 mνh


 , (A.7)

where mνℓ
≃ m2

D/M and mνh
≃M +m2

D/M . The resulting neutrino mass Lagrangian is:

− Lmass = −1
2

[
mνℓ

νT
ℓ C

−1PLνℓ +mνh
νc T

h C−1PLν
c
h

]
+ H.c. (A.8)

We can define four-component self-conjugate Majorana fields by:

ψM ≡ PLνℓ + PRCν
T
ℓ , ψM ≡ νℓPR − νT

ℓ C
−1PL , (A.9)

ΨM ≡ PLν
c
h + PRCν

c T
h , ΨM ≡ νc

hPR − νc T
h C−1PL . (A.10)
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Thus, eq. (A.8) reduces to the expected form:

− Lmass = 1
2

[
mνℓ

ψMψM +mνh
ΨMΨM

]
. (A.11)

Appendix B A non-decoupling contribution to sneu-

trino masses when m2
N ∼ O(M2)

B.1 Non-decoupling effects when m2

N
≫ v2

In Section 3.2, we noted below eq. (3.40) non-decoupling in the limit of ‖M‖ → ∞ with

‖m2
NM

−2‖ fixed. The lepton-number conserving 3 × 3 squared-mass matrix of the light

sneutrinos [eq. (3.39)] can be written as:

M2
LC = m2

L + 1
2
M2

Z cos 2β +m∗
DM

−1m2
NM

−1mT
D + O(v4M−2) + O(v2m4

NM
−4) , (B.1)

after expanding the quantity (1 +M−2m2
N)−1 under the assumption that ‖M−2m2

N‖ < 1.

Thus, we have a non-decoupling correction to the usual MSSM result of O(m2
NM

−2) as

previously noted.

To understand the origin of this non-decoupling phenomenon, we use eq. (5.4) which

relates the original right-handed sneutrino with the light and heavy sneutrino states after

block diagonalization of the sneutrino mass matrix. To formally integrate out the heavy

sector and obtain the effective theory of the light sneutrinos, we must write:

Ñ I = ν̃I
h − ǫkn[(M2 +m2

N)−1MY T
ν ]IJ L̃J

nH
2
k , (B.2)

before electroweak symmetry breaking, where we have used Ñ I ≡ ν̃I ∗
R . Note that when H2

2

is replaced by its vacuum expectation value v2/
√

2, we recover eq. (5.4) after using mD ≡
v2Yν/

√
2. In addition, we have used L̃J

1 ≃ ν̃J
ℓ + O(vM−1) and have worked consistently to

leading order in vM−1.

Consider the contribution of |dW/dNJ |2 to the scalar potential, where W is given by

eq. (2.1). Then,
dW

dNJ
= MJKNK + ǫijY

KJ
ν H2

i L
K
j . (B.3)

After squaring, and including the soft-SUSY-breaking term Ñ∗m2
N Ñ (where m2

N is hermi-

tian), we find:

Ñ∗m2
NÑ +

(
dW

dNJ

)(
dW

dNJ

)∗

= ǫijǫknY
KJ
ν Y IJ ∗

ν H2
i H

2 ∗
k L̃K

j L̃
I ∗
n

+
[
ǫij(YνM)KIÑ I ∗H2

i L̃
K
j + H.c.

]
+ (M2 +m2

N )KJÑK ∗ÑJ . (B.4)
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To obtain the relevant operator that survives in the low-energy effective theory, we insert

eq. (B.2) for Ñ I in eq. (B.4), and then take the limit as ‖M‖ → ∞, In addition, we set

ν̃h = 0. The end result is:

ǫknǫij
[
Y ∗

ν Y
T
ν − Y ∗

ν M(M2 +m2
N)−1MY T

ν

]JK
L̃J ∗

n L̃K
j H

2 ∗
k H2

i . (B.5)

Note that this is a dimension-4 (hard) SUSY-violating operator [58] which vanishes if

m2
N = 0 [as m2

N is the only SUSY-breaking source in eq. (B.5)]. If m2
N < M2, one can

expand (M2 +m2
N )−1 in eq. (B.5), which yields:

ǫknǫij [Y
∗
ν M

−1m2
NM

−1Y T
ν + O(m4

NM
−4)]JKL̃J ∗

n L̃K
j H

2 ∗
k H2

i . (B.6)

We now replace H2
2 → v2/

√
2. If m2

N ∼ O(v2), then the hard SUSY-breaking operator is of

O(v2M−2), which is the expected result. Such corrections are extremely small, assuming

that v ≪ ‖M‖, and can be be dropped from the low-energy effective field theory of the

light O(v) degrees of freedom. On the other hand, if x ≡ ‖m2
N‖/‖M2‖ is held fixed to a

finite positive value as M → ∞, then the hard SUSY-breaking operator is of O(x), which

must be kept in the low-energy effective theory if x is not too small.

In the latter case, we see the presence of a non-decoupling effect in the low-energy

effective field theory of the O(v) degrees of freedom as M → ∞. We identify this as a hard

SUSY-breaking effect described by the dimension-4 operator given by eq. (B.6). Ultimately,

this non-decoupling effect can be traced to the fact that although νL [νc
L] and ν̃L [ν̃∗R] are

superpartners, it is not quite true that νℓ [νh] and ν̃ℓ [ν̃h] are superpartners. Explicitly

[cf. eqs. (5.3) and (5.4)], whereas

νc
h ≃ νc

L +M−1mT
DνL , (B.7)

to leading order in vM−1, we have:

ν̃∗h ≃ ν̃∗R + (M2 +m2
N )−1MmT

Dν̃L . (B.8)

Clearly, with m2
N 6= 0, there is a slight discrepancy between ν̃h and the superpartner of νh.

If we replace H2
2 with its vacuum expectation value v2/

√
2 in eq. (B.5) and again make

use of L̃J
1 ≃ ν̃J

ℓ + O(vM−1), we obtain a contribution to M2
LC : Then eq. (B.5) becomes:

[m∗
Dm

T
D −m∗

DM(M2 +m2
N )−1MmT

D]JK ν̃J ∗
ℓ ν̃K

ℓ , (B.9)

which correctly reproduces the last two terms of M2
LC given in eq. (3.39). Of course, the

non-seesaw MSSM result of M2
LC derives from the soft-SUSY-breaking term, L̃∗

im
2
LL̃i, and

the D-term contribution, 1
2
M2

Z cos 2β. As expected, in the M → ∞ limit (with x→ 0), the
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low-energy effective theory reproduces the non-seesaw MSSM result. In this appendix, we

have explained the origin of the non-decoupling correction to the non-seesaw MSSM result

in the M → ∞ limit with x held fixed to a finite positive value.

Finally, we address the question of the allowed size of the matrix parameter m2
N . Does

it make sense to have x close to O(1)? In ref. [38], it is shown that for values of x ∼ 1,

there is a very large negative shift in the mass of the lightest CP-even Higgs boson due

to radiative corrections from the heavy neutrino/sneutrino sector of the seesaw-extended

MSSM. If we demand that there should be no unusually large radiative correction to a

physical observable generated as a result of mN 6= 0, we can apply the results of ref. [38]

for the radiatively-corrected physical Higgs masses to conclude that x <∼ 0.1. Note that

this upper bound is less severe than the bound of x <∼ 0.01 given in eq. (4.18). The latter

was obtained in Section 4.3 from the bounds on rare charged lepton radiative decay rates,

which imply that the matrix M2
LC should be close in form to a diagonal matrix.

B.2 Naturalness constraints on the magnitude of m2

N

It seems that phenomenological constraints allow for the possibility that ‖m2
N‖ is sig-

nificantly larger than O(v2), in which case the non-decoupling contribution to M2
LC may be

significant (perhaps as large as a few percent of the non-seesaw MSSM result). However, if

one imposes the usual fine-tuning (or naturalness) requirements for the stability of the elec-

troweak scale, one can show that ‖m2
N‖ cannot be significantly larger than O(v2). This can

be verified by computing the one-loop correction to the H2
2 self-energy. The computation

in the supersymmetric limit is performed explicitly in Appendix E, section 7 of ref. [6] for

the Wess-Zumino model. This computation is easily adapted to the present case of interest

(in which the Higgs boson couples the the neutrino/sneutrino system). We then modify the

supersymmetric computation in the case of the one-generation seesaw model by setting the

boson (heavy sneutrino) squared-mass to M2 +m2
N and the fermion (heavy neutrino) mass

to M . [Here, we are dropping terms of O(v2).] If m2
N 6= 0 (which softly breaks the super-

symmetry), the quadratic divergence does not cancel exactly. The surviving contribution

to the sqaured-mass term of H2
2 is of the form

m2
N |Yν |2I(M2, m2

N )|H2
2 |2 , (B.10)

where I is a logarithmically divergent integral (that can be regularized by dimensional

reduction [59]).

We now add this one-loop result to the corresponding tree-level contribution to the

scalar potential:

(m2
H2

+ |µ|2)|H2
2 |2 . (B.11)
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In order to achieve successful electroweak symmetry breaking with v = 246 GeV, the

complete coefficient multiplying |H2
2 |2 must be of O(v2). By assumption, we take µ ∼ O(v)

[cf. eq. (2.12)]. If m2
N ≫ v2, the correct scale of electroweak symmetry breaking can

be achieved only by an unnatural fine-tuning of the parameter m2
H2

. Thus, naturalness

requires that m2
N ∼ v2. We have not distinguished between O(v2) and O(M2

SUSY) in the

above discussion. It is likely that there is a slight separation of scales with MSUSY <∼ 1 TeV.

By imposing the naturalness condition on the dynamics of electroweak symmetry breaking

(which ultimately is the motivation for TeV-scale supersymmetry in the first place), we

conclude that the expected natural order of magnitude for ‖m2
N‖ is:

‖m2
N‖ ∼ O(MSUSY) , (B.12)

as indicated by eq. (2.15).

For completeness, we note that the same conclusion can be drawn by considering the

one-loop effective scalar potential, V (1)(φ). In particular, if we introduce a hard momentum

cutoff Λ, one obtains a one-loop contribution of [60]

V (1)(φ) =
Λ2

32π2

∑

i

StrM2
i (φ) +

1

64π2
Str

{
M4

i (φ)

[
ln
M2

i (φ)

Λ2
− 1

2

]}
, (B.13)

whereM2
i (φ) are the contributing squared-mass matrices of particles whose masses originate

from their couplings to the Higgs boson, with the vacuum expectation values replaced by

the corresponding Higgs fields, φ, and

Str {· · · } =
∑

i

(−1)2Ji(2Ji + 1)Ci {· · · } . (B.14)

In eq. (B.14), Ci counts the electric charge and color degrees of freedom of particle i (e.g.,

C = 2 for the W± gauge boson and C = 6 for a colored quark, since we count both particle

and antiparticle). It is convenient to absorb the factor of 1/2 in the last term on the right

hand side of eq. (B.13), by defining µ such that:

ln
M2

i (φ)

Λ2
− 1

2
≡ ln

M2
i (φ)

µ2
. (B.15)

Using the results of eqs. (3.12), (3.69) and (3.70), we focus on the contributions to the

supertraces from the heavy neutrinos and sneutrinos. Indeed,

∑

i

StrM2
i (φ) = 2 Tr m2

N + O(v2) , (B.16)

although m2
N is field independent and thus contributes only to the vacuum energy. Here,

we are interested in the implications of naturalness associated with electroweak symmetry
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breaking (and not the cosmological constant). Thus we focus on the field-dependent part

of the scalar potential that is quadratic in the Higgs fields. To do this, we simply replace

mD with H2
2Yν . For simplicity, we shall examine the one generation seesaw model. In this

case, we obtain the following scalar field-dependent squared-masses:

m2
νh

≃ M2 + 2|Yν |2|H2
2 |2 , (B.17)

m2
ν̃h

≃ M2 +m2
N + |Yν |2|H2

2 |2
[
1 +

M2

M2 +m2
N

]
. (B.18)

Inserting these results into the last term on the right hand side of eq. (B.13), and using

eq. (B.15) to replace Λ with µ, we end up with the following terms in V (1)(φ) that contribute

to the coefficient of |H2
2 |2

2
{
(M2 +m2

N )2 + 2(2M2 +m2
N )|Yν|2|H2

2 |2
}

ln



M2 +m2

N + |Yν |2|H2
2 |2
(

2M2+m2
N

M2+m2
N

)

µ2




−2
{
(M4 + 4M2|Yν|2|H2

2 |2
}

ln

[
M2 + 2|Yν|2|H2

2 |2
µ2

]
, (B.19)

where we have dropped terms of O(v2|H2
2 |2). Expanding out the logarithms, the above

expression reduces to

2
{
(M2 +m2

N )2 + 2(2M2 +m2
N)|Yν |2|H2

2 |2
}{

ln

[
M2 +m2

N

µ2

]
+ |Yν |2|H2

2 |2
2M2 +m2

N

(M2 +m2
N)2

}

−2
{
(M4 + 4M2|Yν|2|H2

2 |2
}{

ln
M2

µ2
+

2|Yν |2|H2
2 |2

M2

}
. (B.20)

If we keep only terms proportional to |H2
2 |2, we end up with:

4|Yν|2|H2
2 |2
{

2M2 ln

(
1 +

m2
N

M2

)
+m2

N

[
ln

(
M2 +m2

N

µ2

)
+

1

2

]
+ O(v2)

}
. (B.21)

One can check that the coefficient of |Yν|2|H2
2 |2 is precisely m2

NI(M2, m2
N), where I is the

integral appearing in eq. (B.10) after DR subtraction [59].

Appendix C Feynman rules

We exhibit here the relevant Feynman rules for the calculation of ℓ → ℓ ′γ presented in

Section 4.3. These rules are based on four-component fermion notation (see Appendix A)

and employ the conventions of Ref. [7] for sfermion, chargino and neutralino masses and
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mixing matrices. The neutrinos νI are (self-conjugate) Majorana fermions [cf. eq. (A.9)].

In the basis defined in Section 2 we obtain:

Sk χ0
i

νI

i

2

[
(g1Z

1i
N − g2Z

2i
N )(ZJk

ν̃ − iZ(J+3)k
ν̃ )UJI

MNS PL

+ (g1Z
1i∗
N − g2Z

2i∗
N )(ZJk

ν̃ + iZ(J+3)k
ν̃ )UJI∗

MNS PR

]
,

(C.1)

L+
k

χi

νI −i
(
g2Z

Jk
L Z1i

− − Y J
ℓ Z

(J+3)k
L Z2i

−

)
UJI

MNS PL ,

(C.2)

L+
k χ0

i

ℓI i

[(
g2√
2cW

ZIk
L (Z1i

N sW + Z2i
N cW ) − Y I

ℓ Z
(I+3)k
L Z3i

N

)
PL

+
(
−g1

√
2Z

(I+3)k
L Z1i∗

N − Y I
ℓ Z

Ik
L Z3i∗

N

)
PR

]
,

(C.3)

Sk χC
i

ℓI − i√
2

[
g2Z

1i
+ (ZIk

ν̃ − iZ(I+3)k
ν̃ ) PL − Y I

ℓ Z
2i∗
− (ZIk

ν̃ − iZ(I+3)k
ν̃ ) PR

]
.

(C.4)

Appendix D Order of magnitude estimates for contri-

butions to one-loop neutrino masses

In this appendix, we estimate the order of magnitude of the one-loop contributions to the

neutrino masses due to the graphs of fig. 2(a) and (b), and the corresponding graphs (not

shown) in which the light sneutrinos [heavy neutrinos] in graph (a) [(b)] are replaced by

heavy sneutrinos [light neutrinos].

In the case of graph (a), the dominant contribution involves the light sneutrino–
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(a) ×

νI
ℓ νJ

ℓ

ν̃I
ℓ ν̃J

ℓ

B̃ , W̃ 3 B̃ , W̃ 3

(b)

νI
ℓ νJ

ℓ

H2
2 H2

2

×νcK
h νcL

h

Figure 5: One-loop corrections to light neutrino masses. The × marks the location of

the ∆L = 2 transition. (a) The loop consisting of light sneutrinos and gauginos. The ×
indicates the location of light sneutrino–antisneutrino mixing, and the solid dot indicates

a factor of the gaugino Majorana mass in the numerator of the fermion-number-violating

gaugino propagator. (b) The loop consisting of the neutral Higgs field H2
2 and a heavy

neutrino. The × indicates the lepton-number-violating heavy neutrino propagator, which

is proportional to MδKL, and the solid dot indicates a mass insertion of the form (H2 ∗
2 )2.

The contributions of the corresponding graphs (not shown) in which the gauginos in (a) are

replaced by the Higgsino H̃2
2 , the light sneutrinos in (a) are replaced by heavy sneutrinos,

and the heavy neutrinos in (b) are replaced by light neutrinos are all suppressed by an

additional powers of O(vM−1) as explained in the text.

neutrino–gaugino interaction term26 of eq. (5.5). We can estimate the leading contribution

of this graph by replacing the internal lines by the interaction eigenstate fields that appear

in eq. (5.5), as depicted in fig. 5. That is, we first replace the Sk with the ν̃I
ℓ , which must

point away from both external vertices, as shown in fig. 5(a). The latter is possible only

in the presence of light sneutrino–antisneutrino mixing, which is indicated by the × in

fig. 5(a). Using the expected magnitudes of the model parameters given by eqs. (2.11) and

(2.14), the × in fig. 5(a) produces a factor ∆m2
ν̃ℓ
∼ O(v3M−1). The neutralino line can be

treated perturbatively. In the lowest order approximation, we take the neutralino to be a

gaugino (either B̃ or W̃ 3, with Majorana masses M1 and M2, respectively), and we treat

the mixing of the gauginos with the neutral higgsino states (H̃1
1 and H̃2

2 ) as a perturbation.

The corresponding gaugino propagators (with internal four-momentum q) shown in fig. 5(a)

are fermion-number-violating propagators (indicated by the clashing arrows), and are given

by iMk/(q
2 −M2

k ) for k = 1, 2. We denote the presence of the gaugino mass [which is of

26Of the three light sneutrino-neutrino-neutralino interactions of eq. (5.5), the two sneutrino-neutrino-

higgsino interaction terms are suppressed by a factor of O(mDM−1) relative to the sneutrino-neutrino-

gaugino interaction, and can be neglected.
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O(v)] in the numerator by the solid dot in fig. 5(a). Not including this explicit factor of the

gaugino mass, the loop in graph (a) then consists of two massive scalar propagators [with

mass of O(v)] and one fermion-number-violating propagator; hence the loop integral has a

mass dimension of −2. Thus, the corresponding loop integral is of O(v−2). Combining the

above results, the order of magnitude of the contribution of graph (a) is:

CL
v3

M
· 1

v2
· v = CL

v2

M
, (D.1)

which is indeed of order the tree-level neutrino mass multiplied by the product of the

relevant vertex coupling constants and a typical loop factor of 1/16π2 (denoted by CL

above).

Suppose we replace the light sneutrinos of graph (a) with heavy sneutrinos. In this case,

the effect of heavy sneutrino–antisneutrino mixing is ∆m2
ν̃h

∼ O(m2
B) ∼ O(vM). From

eq. (5.5), we see that there are potentially two contributions—one involving the gauginos

and one involving the higgsino H̃2
2 . In the case of the gaugino loop graph, each vertex

introduces a O(vM−1) suppression. Thus, following the analysis above, we conclude that

the order of magnitude of the heavy-sneutrino loop is suppressed by a factor of O(v2M−2)

as compared with the light-sneutrino loop. In the case of the loop graph involving H̃2
2 ,

we note that there is no diagonal Majorana mass term for this higgsino field. Moreover,

H̃1
1 does not couple to the external neutrinos, so we cannot use the off-diagonal Majorana

mass term µH̃1
1H̃

2
2 for the fermion-number-violating neutralino propagator. Therefore, the

heavy-sneutrino loop can be neglected.

In the case of graph (b), the propagator of the heavy neutrino (with internal four-

momentum q) is given by iMδKL/(q2 −M2), due to the presence of the lepton-number

violating mass M (indicated by the ×). Since the loop integral is dimensionless, it naively

appears that the resulting loop integral should be of O(M). However, an explicit compu-

tation of the graph of fig. 2(b) demonstrates that the coefficient of the leading O(M) term

vanishes exactly after summing over the internal neutral Higgs and Goldstone states. The

subleading term does not vanish and is of O(v2M−1), which is the magnitude of the light

neutrino mass. This cancellation can be easily understood by noting that the two vertices

of fig. 2(b) arise from interactions of eq. (5.5) that involve H2
2 . Thus we replace the neutral

Higgs and Goldstone lines of fig. 2(b) by the H2
2 field [cf. eq. (5.6)]. According to the

interaction Lagrangian of eq. (5.5), the H2
2 field must point into both external vertices, as

shown in fig. 5(b). This requires a mass insertion on the H2
2 line of the form (H2

2)
2 + H.c.

In fact, such a term exists in the MSSM Higgs potential [49] after shifting the neutral field

H2
2 → H2

2 +v2/
√

2, which results in a term of the form 1
4
m2

Z sin2 β(H2
2)

2 +H.c. Thus, in the

mass insertion approximation, graph (b) consists of the lepton-number-violating heavy neu-
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trino propagator, two massive scalar field lines27 and an insertion of O(v2). After extracting

the factor of M from the numerator of the heavy neutrino propagator, the remaining loop

integral now has a mass dimension of −2, which yields a result of O(M−2). Combining

these result, the order of magnitude of the contribution of fig. 5(b) is given by:

C ′
L

1

M2
·M · v2 = C ′

L

v2

M
, (D.2)

which is again of order the tree-level neutrino mass multiplied by the product of the relevant

vertex coupling constants and a typical loop factor (denoted above by C ′
L). This result

confirms our previous argument above. A careful evaluation of the leading behavior of the

loop integral (in the limit of M ≫ v) then reproduces the result obtained in eq. (5.8). Note

that the factor of sin2 β ≡ v2
2/v

2 that arises in the mass insertion on the H2
2 line cancels

out a similar factor of v2
2 that appears in C ′

L ∝ Y 2
ν .

If the heavy neutrinos in fig. 5(b) are replaced by light neutrinos, the resulting contri-

bution is suppressed by an additional factor of O(v2M−2) due to the suppression of the

νI
ℓ ν

K
ℓ H

2
2 interaction of eq. (5.5).
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