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We demonstrate that contributions from threshold effects in coupling constant differences at low energies in GUTs are 
simply taken into account in a scheme that preserves supersymmetry (DR dimensional reduction). Therefore, automatically 
in supersymmetric GUTs the naive step approximation at the physical mass associated with the threshold gives the correct 
result. 

From the present-day point of view, the observed 
strong, electromagnetic and weak interactions are de- 
scribed in terms of a grand unified gauge theory based 
on a simple Lie group. Perhaps the most striking pre- 
diction of grand unification is the mortality of the 
proton. While experimentalists are now moving ahead 
to observe proton decay in the near future, there are 
other important predictions of GUTs testable with ex- 
isting data or with data obtainable by present-day ma- 
chines. Needless to say that a precise evaluation of the 
various phenomenological predictions is necessary in 
order to confront experiment in an unambiguous way. 

The existence of a unique gauge coupling constant 
in GUTs automatically implies relations between the 
low energy effective couplings. These relations can be 
cast in the form 

llai(u)- llai(u) 

=Fi/(all  independent parameters;Mx//~), (1) 

where M x is the physical mass of the superheavy gauge 
bosons. If  one considers as a prototype GUT the mini- 
real SU(5) model, the standard approach based on the 
decoupling theorem [1 ] is to approximate the sponta- 
neously broken SU(5) theory with the following effec- 
tive theory 
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SU(5) /a >> Mx, 

SU(3) X SU(2) X U(1) M w ,~ # ,~ Mx, 

SU(3) X U(l)e m /a "~M w. (2) 

Extrapolating the validity of (2) to the region/.t ~ M w 
and # ~- M x (step approximation) introduces an error. 
In the approach followed by two of the authors (I.A. 
and C.K.) and Roiesnel [2], the contribution of thresh- 
old effects has been calculated exactly to the order of 
two loops. A similar estimation of threshold effects 
has been done by other people as well [3-6] .  It should 
be stressed that the incorporation of threshold effects 
is crucial since the error introduced by the step approx- 
imation leads to an appreciable uncertainty in impor- 
tant quantities as the proton lifetime. 

The functions Fij appearing in (1) are, in general [2], 

o o  

where [3 i are the mass dependent 13 functions. To the 
one-loop order, (3) becomes 

F(0) -  ? d/l '2 [b~(/.t,2)- b{)(/.t'2)], 
// - d - -  /fl i.{2 

(4) 
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with b~ the mass dependent coefficients of  the ~ func- 
tions. In the step approximation, we have [for i corre- 
sponding to SU(3), SU(2) or U(1)] 

b~(//2) = b~" O [M2x - / / 2 ] ,  

which implies the equality of  coupling constants at M x 

a 1 (Mx) = Ol2(Mx) = a3(Mx). (5) 

In reality, however, we can only have 

eq (//) = c~2(//) = a3(//) for //2 >>M 2 (6) 

which is equivalent to 

4rr/al(Mx) + C 1 = 4rr/ot2(Mx) + C 2 = 4rr/e~3(Mx) + C 3 

= 47r/t~ 5 (Mx). (7) 

The constant terms in the minimal SU(5) model, when 
the MS scheme is used are C 1 = 0, C 2 = - 2 / 3 ,  C 3 = - 1 .  
Note that these constants are gauge invariant quanti- 
ties, as we shall show explicitly later on. The error in- 
troduced by the naive step approximation is to totally 
neglect these constant terms in the limit M2///2 ~ 

In what follows we shall show that in the dimen- 
sional reduction scheme (DR) [7] all constant contribu- 
tions vanish and the naive condition (5) is effectively 
valid. The dimensional reduction scheme, designed to 
preserve supersymmetry, consists in keeping the alge- 
bra of  fields in four dimensions while performing di- 
mensional continuation in the momentum loop inte- 
grals. Integrations over mass dependent coefficient 
functions in expressions (4) generally lead to 

//'2 b~)(//'2) = b~ ln(//2/M 2) + 1/a5(Mx) + ~i(//2/M2), 

where 

(oi (//2 /m2 ) = - C  i for//2/M2 -+ O, 

= (b~ - bD) ln(//2/M 2) for//2/214 2 -+ oo 

Thus, in general 

Fi] (//2) --'----'--÷rt'i2- 2 WO--uO)M" ~ ln(/'t2/M2) + (C/ - Ci)" 
la /Mx-" 0 

AS an example we have calculated the one-loop con- 
tributions of  superheavy gauge particles together with 
the corresponding unphysical Goldstone and ghost par- 
ticles, i.e., the total physically meaningful combination 
(see table 1). Although individual graphs in the limit 

M2x///2 -~ oo have gauge dependent constant terms, their 
sum gives a gauge independent constant contributions 
[6]. Defining gUVg.v = 4-2e '  and performing integra- 
tions over f d k  4 - 2 c  we obtain in the low energy regime 
[in the minimal SU(5) model] 

1 [ - ~  ln(M2///2) + ~ e'/e] [C(5) - C(i)I, (8) 

where the Casimir coefficients are C( I )  = 0, C(2) = 2, 
C(3) = 3, C(5) = 5. Heavy scalars g.iv__e no co_ ntributions 
to the constant term in either the MS or DR scheme. 
No superheavy fermions are present in our minimal 
SU(5). In case we had superheavy fermions and follow- 
ed Weinberg's prescription [3] of  extrapolating the 
spinor algebra in 2 2 - e '  dimensions, we____would find a 
- 2 / 3  (In 2 )e '  constant piece. In the MS scheme e '= e 
and a gauge independe__nt constant term survives. On 
the contrary, in the DR scheme in which we maintain 
the algebra in four dimensions, e '  = 0 and no constant 
term appears. 

It is not difficult to see how this comes about in 
general in the DR scheme. Since the total constant 
term is gauge independent at low energies, it suffices 
to consider just the Feynman gauge. Then, two-point 
functions with external legs corresponding to light 
gauge bosons (gluons, W_+, Z0,3')  will be transverse and 
only logarithmically divergent. They will be of  the form 

F(p2/M 2) 
(guvp 2 _ pupv ) f d 4 -  2e k 

[(p + k) 2 - M21 (k 2 - M 2 )  ' 

(9) 

where in the denominator only the same mass appears. 
In the limit p2/M2 -+ O, the integral will not give any 
constant term but just a In M 2. It should be stressed 
that this is due to keeping the algebra in four dimen- 
sions (e' = 0) on the one hand, and gauge invariance on 
the other. Similarly, one could argue about three-point 
functions. 

It is not too hard to see that this property of  the 
DR scheme will be preserved to the next order of  per- 
turbation theory. In the next order of  the loop expan- 
sion the gauge couplings will be corrected by terms of  
the form 

In [ct(in)e.loop (//2)]. 

It is evident that constant terms cannot arise since they 
are not present at the one-loop level. 

The alert reader has probably already noticed that 
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Table 1 

PHYSICS LETTERS 23/30 December 1982 

11 1 1 = g" + ~a  +'~e' + e([(1-a3)/3a 3 ] In ( l - a )  - [(3-4a+au)/2a] I n ( l - a )  

2 5 + 1  
- i-8 ~'c~ + 1/6a + 1/3a 2) 

1 1 
= - "~ + ~'e ln(1--a'~ 

f- = --g +~e ln(1-a)  

= - e  [(1/3a 3) In ( l - a )  + 1/3~ 2 + 1/6~ + 1/9] 

= -1  + ~ + e' + e [ -  ~- + ~ + ( l - a )  In ( l - a ) ]  

=3_3a_e,+e[2 s ~ - ~ a +  a - l ( 1 - ~ )  2 I n ( l - a ) ]  

gauge propagator = [ 1 / ( k  2 - M 2 ) ]  {gpv  - a K p K v / [  k2 - ( l - a )  M 2  ]} 

gpVgpv = 4 - 2e' 

integrations over [ dp 4- 2 e 

m 

this property o f  the DR scheme has important  implica- 
tions for supersymmetric GUTs. In a supersymmetric 
theory,  in order to preserve supercurrent conservation, 
i.e., supersymmetry,  the algebra must be kept  in four 
dimensions [7]. Therefore, one is forced to use the 
DR scheme or perhaps some derivative subtraction 
scheme. But in the DR scheme, as we have shown, the 
supernaive step approximation at M x (not 2M x or 
elsewhere) gives the correct result. Thus, all naive re- 
normalization group computations in_ SUSY GUTs, as 
long as they have been done in the DR scheme, do not  
have to be corrected with threshold effects. Of course, 
this property of  the DR scheme is just a property of  
the scheme and is not  connected with supersymmetry.  
Hence, although this scheme might break supersym- 
metry at higher loops and perhaps should be abandon- 

ed for SUSY GUTs, its legitimate use in ordinary GUTs 
is unquestionable. 

As an application, let us consider the renormaliza- 
tion group equations for the three gauge couplings of  
a minimal supersymmetric SU(5) theory (with two 
Higgs doublets).  They are (to the order of  two loops) 

1/(~3(Mw) = 1/(~5(Mx) - (b~O)/2n)ln(Mx/Mw) 

3 

4 1 ~  (b~ll)/b~O)) In [a](Mw)/a5(Mx)], 
]=1 

[1/~(Mw)] sin2Ow(Mw)= 1/o~5(Mx)-(b~O)/21r)ln(gx/Mw) 
3 

1 ]~l(b~)/b~O))ln[ot/(Mw)/C~5(mx)], (10) 
47r,= 
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3 
[ 1/et(Mw)] cos2Ow(Mw) 

= 1/a5(Mx)-(b~O)/21r) ln(Mx/Mw) 

3 

con'd  
1=1 

where 

b~0) = 9 - 2  NG, b~0) = 5 - 2 N G ,  b~)  = - 2 N G  --~,  

constant differences that correspond to the contribu- 
tion of  threshold effects are zero. Thus, the naive step 
approximation gives the correct result. It  is evident 
that our result implies a great simplification in c__ompu- 
tations. By performing all calculations in the DR 
scheme, the naive step approximation at M x contains 
all threshold effects. 
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and 

= 24 (for N G = 3), b! 1) 25 

Ll~ 9 14 

ForAM-- S = 0.1 GeV, we obtainMx/M w = 8.7 X 1013 
and sin20w(Mw) = 0.233. 

In conclusion, we would like to restate our result. 
In the DR scheme, where we keep the algebra in four 
dimensions while performing momentum loop integra- 
tions in 4 - 2 e  dimensions, constant terms in coupling 
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