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We study the cosmologicalsolutionsof theone-loopcorrectedsuperstringeffectiveaction, in
a Friedmann—Robertson—Walkerbackground,and in the presenceof the dilaton and modulus
fields.A particularlyinterestingclassof solutionsis foundwhich avoid the initial singularityand
are consistentwith the perturbativetreatmentof the effective action.

1. Introduction

Einstein’stheory hasbeenvery successfulas a classicaltheoryof gravitational
interactions.However, a quantumtheory of gravity would requireto incorporate
Einstein’stheoryin a moregeneralframework.Todayour bestcandidatefor such
a frameworkis superstringtheorywhich also hasthe prospectof unification of all
other interactions.Superstringsappearto involve a minimum length which is of
the order of the Planck scaleand, thus, they are expected to lead to drastic
modificationsof the Einsteinaction at short distances.Thesemodificationscan in
principle havecosmologicalconsequenceswhich distinguishstring cosmologyfrom
the standardmodel and provide some indications for a stringy origin of the
universe.Furthermore,onehopesto find resolutionsto some puzzlesin Einstein
cosmologyincluding the initial singularityproblem.

String theorygives rise to two kinds of suchmodifications.The first is associated
with the contribution of the infinite tower of massivestring modes and leadsto
a’-corrections, while the second is due to quantum loop effects. Both these
contributions can be studied in the context of an effective field theory which
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involvesonly the masslessstring modes.The effectivelangrangiancanbe derived
from string theoryusinga perturbativeapproachin both the stringtensiona’ and
string coupling expansion. An alternative direct way to take into account all

a’-correctionsat the classical string level is to considerconformal field theories
which describeexact string solutions in time-dependentgravitationalbackgrounds
[1,21.However, this is not in general sufficient for probing the short-distance
behaviorof the theory since the gravitationalcoupling is dimensionfulandquan-
tum correctionsbecomeimportantin this region.

Oneof the unique propertiesof the stringeffective action is that couplingsare
field-dependent.For our purposes,the relevant fields are the dilaton which plays

the role of the string loop expansionparameter,and the moduli whose vacuum
expectationvaluesdescribethe sizeandthe shapeof the internalcompactification
manifold. Since thesefields haveno potential their contributionis expectedto be
important in any cosmologicalsolution of the effective action. Here we restrict
ourselvesto the simple caseof a singlemodulusfield, besidesthe dilaton, which
correspondsto the common compactificationradius.

The tree-levelstringeffective actionhasbeencalculatedup to severalordersin
the a’-expansionin both the sigma model approach[3], where one considers
stringspropagatingin backgroundfields, and the S-matrix approach,where the
effectiveaction is computeddirectly from string scatteringamplitudes[41.It turns
out that thereis no moduli dependenceof the tree-levelcouplings.The one-loop
correctionsto the gravitationalcouplingshavealso beencalculatedrecently in the

context of orbifold compactificationsof the heteroticsuperstring[51.It has been
shown that thereare no moduli-dependentcorrectionsto the Einsteinterm while
thereare non-trivial R2-contributions.They appearas the Gauss—Bonnetcombi-
nation multiplied by a function of the modulusfield. It is interestingto consider
the implicationsof this term to the cosmologicalsolutionsof Einsteinequationsfor
many reasons.Firstly, this term is subjectto a nonrenormalizationtheoremwhich

implies that all higher-loop moduli-dependentR2-contributionsvanish. In addi-
tion, it breaks the continuousisometries of the tree-levelmodulus kinetic terms
leaving intact only the duality symmetries.Finally, as has beenpointedout in the
literature, higher-derivativemodifications of the Einsteinaction could cure the
problem of singularities[6,71.

The purposeof this paperis to studytheevolutionof the equationsof motion of
the superstring effective lagrangianin the presenceof the moduli-dependent
R2-corrections.We investigate the asymptotic solutions and we show that the
one-loop effective action contains a class of interesting cosmologicalsolutions
which avoid the initial singularity. This is possibleonly for a definite sign of the
correspondingfour-dimensionaltrace anomalyfor which the strong energycondi-
tions [81relatedto the modulusenergy momentumtensorcanbe violated.These
solutions start from flat space time in the infinite past. they pass through an
inflationary period and they end up as a slowly expandinguniverse.Although in
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our analysiswe omit terms higher thanquadratic in the Riemanntensor,we will
arguethat the aboveresultpersistsin the full theoryundercertain assumptionson
the moduli dependenceof loop correctionsto higher-derivativeterms.

Nonsingularcosmologicalsolutionswere first derived in ref. [61,in the context
of higher-derivativeextensionsof the Einstein action obtained by taking into
accountthe contributionof conformally coupledmatterfields. String theory leads
to an effective higher-derivativegravitationalaction alreadyat the classicallevel.
In particular,the Gauss—Bonnetdensitymultiplied by the dilaton field appearsat

the string tree-level in the next-to-leadingorder of the a’-expansion,and it has
been studied extensivelyin the literature [91.As we will show in sect. 3, the
additionof this term alonedoesnot lead to violation of the energyconditionsand
thusit cannotprovideany singularity-freesolution,in contrastto the modulus-de-
pendentloop correction.

We also examinethe possibleexistenceof time-dependentsolutionswhich fix
asymptoticallythe vacuumexpectationvalue of the modulus field. This is moti-
vated from the fact that the Gauss—Bonnetcontributionscould be viewed as a
time-dependentpotential for the moduluswith an extremumat the self-dualpoint.
We show that this possibility can be realizedonly at early times and in singular
strongcoupling solutions.

This paper is organizedas follows. In sect. 2 we review the string effective
action and the loop correctionsto the gravitationalcouplingsand we derive the
equationsof motion for the coupledsystemof the graviton, dilaton andmodulus
field. In sect. 3 we study the cosmologicalsolutions in the simplecasewherethe
dilaton is ignored. We classify all asymptoticsolutions andwe show by numerical
integrationthat two of them can be smoothlyjoined avoiding the singularity. We
justify this behaviorby demonstratingthe violation of theweak and strongenergy
conditionsrelated to the singularity theorems.Finally, we explore the parameter
spaceof all initial conditionsby the use of the correspondingphasediagram.In
sect. 4 we repeatthe sameanalysisin the presenceof the dilaton field and show

that the previousresults remainunaffected.Our conclusionsare summarizedin
sect.5.

2. The loop corrected effective action and the equations of motion

Let usconsidertheuniversalpartof the effectiveactionof anyfour-dimensional
heteroticsuperstringmodel which describesthe dynamics of the graviton, the
dilaton S andthe commonmodulusfield T. At thestring tree-level,andup to first
order in the a’-expansion,it takesthe form [3,41

1 DSDS DTDT -

= —FR + — 2 + ~ — 2 + ~(Re S)R~B+ ~(Im S)RR, (2.1)2K (S+S) (T+T)



500 I. Antoniadzset al. / Singularity-freecosmologysolutions

where D denotescovariantdifferentiation,R is thescalarcurvature,K — ~/8~rGN

with GN the Newtonconstant,R~Bis the Gauss Bonnetintegrand

R~B R~*AR~KA 4R~R~~+ R2, (2.2)

and RR ~ ~. The inverse of Re S plays the role of the string
coupling constantsquaredwhile Im S is a pseudoscalaraxion. Finally, the real
part of the complexmodulusfield T correspondsto the squareof the compactifi-
cation radius.

At the one-looplevel the moduli dependenceof the gravitational couplingsin
the caseof the heteroticstring compactified on a symmetric orbifold has been

studiedin ref. [5]. It is shown that thereare no moduli-dependentcorrectionsto
the Einsteinterm,while thecontributionsto the four derivativegravitntional terms

take the form

LL~ff ~(T, T)R~B+&(T,T)RI~. (2.3)

The moduli-dependentfunctionsaredefinedas

~(T, 7)- 32~2 1n[(T+7)~(iT)~~1 (2.4)

and e(T, T) —i~(T,T), where 77(r)—q1 U~ ~(1 q2’~),with q = e~,is the
Dedekindn-function. ~l(T, T) is invariant under the duality SL(2, Z) transforma-
tions T —~ 1/T and T —* T + i which are the discretesubgroupof the continuous
SL(2, l~l)isometrygroupof themoduluskinetic termsin (2.1). The coefficientbgr is
proportionalto the four-dimensionaltrace anomalyof the N — 2 sectorsof the
theory

~(—3N~+N~) ‘
3

1(—3+N
3 2)’ (2.5)

where N~,N~and N3 2 denotethe numberof chiral,vector andspin-~ massless
supermultiplets.

We now considerthe effective action (2.1) + (2.3) in a spatially flat homoge-

neousandisotropicRobertson Walker background.Since RRvanishesidentically
in this background,it is consistentwith the equationsof motion to assumefor
simplicity Im S const.and Tm T 0. The latter is required in order to have a
vanishingderivativeof ~(T, 7)with respectto Im T. Settingthelength scaleK = 1
anddefining Re S e~/g

2,where g is the four-dimensionalstring coupling, and
Re T — e°,the effective action takesthe form

~ f d4x~{~R+ ~(D~)2+ ~(D~)2+ ~[A e~-6~)]R~B}, (2.6)

where A 2/g2, ~ bgr/2~T2and ~(o-) ln[2eTh4(ie°)].

* We use the conventionsR~ ~ ~ ~ + ..., and s~’~ 5/~/~ with E0~jk

E,Jk.
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The equationsof motion derivedfrom the action (2.6) by varyingwith respectto

the metric, the dilaton andthe modulusfield havethe form

2 &9~’
T — — _____ —~ = ~ + T~2~— 0 (2 7)~Li~ P.i’ /IP

1 &5~’ af
~D’~D,~o-+ R~B 0, (2.8)

y—g ocr

1 os~9
v/_-_- ~ _~D~LD~+~R~B=0, (2.9)

where

T~?=R~ ~ + ~D~o’D~o— ~g~~(Du)2 + ~D,J~cPD~I~—

~ (g~~g~
5~ (2.10)

and f= 1
1

6[A e~ O~(cr)].

Substitutingthe spatiallyflat Robertson—Walkeransatzfor the metric

~ (1, e2~~8jj) (2.11)

in (2.7)—(2.10) and consideringonly time-dependentfields, we end up with the
equations

3th
2 — j~2— ~,cJ~2+ 24f~3 0, (2.12)

2~+ 3th2 + ~&2 + ~2 + 16fth3+ 8fth2 + 16f~c~= 0, (2.13)

~+3+o~—th2(th2+~i) —0, (2.14)

‘i+3th~—3Ae”th2(th2+i) —0, (2.15)

where (2.12) and (2.13) correspondto the T
011 and T,, componentsof (2.7),

respectively.Thesetwo equationsarenot functionally independentbecauseof the

Bianchi identity relatedto the conservationof the total energy momentumtensor.
In fact the linear combination c~X (2.13) ó X (2.12) ~o-x (2.14)— x (2.15)
yields the time derivative of (2.12). Thus, we can reject (2.13) and considerthe
systemof (2.12), (2.14) and (2.15) as the independentequationsof motion.
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Finally, let us also define here the energydensity(p) andpressure(p) of the
dilaton—modulusmatter system.Assuminga perfectfluid form for their energy—
momentumtensorT00 = p, T~ pe

2~’,andusing(2.12), (2.13),we get

p = 3th2 p — (2cii + 3th2). (2.16)

3. Analysis of the metric—modulus system

For simplicity we start our analysisby neglectingall the dilaton related terms.
Although 1 = const.is not a solution of the dilatonequationof motion (2.15), the
metric—modulus system provides a simple model to study the effect of the
Gauss Bonnet ioop correction(2.3). This simplification will be justified in sect.4,
wherethe full systemwill be examined,andwe will show that the main resultsof
the following analysisremainvalid even in the presenceof the dilaton.

The systemof equationsof motion (2.12)—(2.15)is now reducedto

4th2 &2 2O.~—o-th3 0, (3.1)

o+3th6-+o—th2(th2+th)=0. (3.2)

Note that the absolutevalueof thetrace anomalycoefficient0 canbe absorbedby

a time rescaling

(3.3)

which impliesthat we can replace0 by its sign. Fromthe expression(2.5) onesees
that in any theorywith N ~ 4 supersymmetrythe sign of 0 tends to be positive
unlessthereis a considerableexcessof vectorbosons.

The nonlinearsystem(3.1), (3.2) can be integratedusingnumerical methods.
Given initial valuesfor cr, w and th, the valueof ci~can bedeterminedfrom (3.1).
Then, thetime derivativeof (3.1) togetherwith (3.2) form a second-ordersystemof
differential equationswhich canbe numerically solvedgiven the aboveboundary
conditions.

Beforeproceedingto the numericalintegration,we shall first derive analytically
the asymptoticsolutionsin the limits t —~ and t —* 0. Forthis purposewe will use
the asymptoticexpansionof ~‘(o-) = 8~/3u for o~—~ + ~,

—sign(cr)~-e~. (3.4)
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In the limit t —~ ~ we find two kind of solutions. The first is obtainedusing the
ansatz

w=co0+alnt, o-—u0+f3lnt, (3.5)

with w0 and cr0 constants,andit leadsto two possibilities,

(A,0): a=~, If3~=~ (3.6)

and

3(1—a
2)

(B,
0): /31 2, a

3 — a2+ 5a — 1 —0, exp[sign(j3)cr
0] = OTra

3 , (3.7)

which leadsto 0 > 0, a 0.207 and sign(/3)cr
0 4.64— ln 0. A,. is actually the

asymptoticsolution of the tree-levelsystem(0 = 0), while B,, is a new asymptotic
solution where the Gauss—Bonnetterm is important at late times. They both
describea slowly expandinguniverse,while the radiuse°~’

2is eitherexpandingor
contractingdue to the duality symmetryci —~ — ci of eqs. (3.1), (3.2).

The secondkind of solutions is obtainedusingthe flat spaceansatz

w=w
0+w1t’~, u=u0+f3 ln t, (3.8)

which leadsto

15
(C,,): a— —1, 1/31—5, exp[sign(/3)cr0J — (3.9)

20~w1

This describesan asymptoticallyflat universewith slowly expanding(or con-
tracting)radius.

In the limit t —, 0 we find only oneasymptoticsolution,

(A0): w=w0+a In t, ci cr0+u1t
3, (3.10)

with

1
a=1, /3=2, o~= , . (3.11)

o~(u~)

This is a singular solution which also fixes the modulusfield to a constant(but
arbitrary)value.

Note that the modulusequation of motion (3.2) for slowly varying th can be
consideredas describingthe motion of ci in the presenceof a potential propor-
tional to ~(ci). This potentialhasan extremumat the self-dualpoint ci = 0 which
correspondsto a minimum for 0 <0, providing a possiblemechanismto fix the
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IF :1~2

-200 -150 -100 -50 0 50 100 150 200
time

Fig. 1. The scalefactor c” (Continuousline) and the Hubbleexpansionrate~ (dashedline) for the
nonsingularsolution(b <0).

value of the compactification radius. Unfortunately, the first equation(3.1) re-
quires th = 0 when ci = 0 which leadsto a vanishingpotential for ci. The resulting
solution ci 0 and w const. cannotbe continuouslyapproachedin the asymp-
totic region. In the next sectionwe will seethat in the presenceof the dilaton, (3.1)
has a slowly expandingsolution (w ln t) which leadsto a realization of this
mechanismat early times. In addition, the possibilityof fixing themodulusthrough
the samemechanismat finite time, in a regionwhere th exhibits an extremum,
remainsopen.

Numerical integrationof the system(3.1), (3.2) verifies the existenceof the

above list of asymptotic solutions but it also reveals anothervery interesting
characteristic:For 5 <0, thereexists a region of boundaryconditions, for which
thetwo asymptoticsolutionsA~,andC0. are smoothlyjoined avoiding thesingular-
ity. In fact, startingfrom theasymptoticallyflat solution C, at the infinite past,one
is always continuouslydriven to the slowly expandingsolution A,. at the infinite
future. For the rest of the boundaryconditions,as well as for 5 > 0, the singular
solution A0 is recovered.A typical nonsingularsolution is presentedin figs. 1, 2 ~.

Fig. 1 showsthat the expansionrateof theuniverseth startsfrom a zerovalue(flat
spacetime) at t —~ ~, growsup to a maximumvalue, andthen falls down again
as 1/t at t —~ ~. The scalefactor, correspondingly,starts from a constantvalue,
goes through a period of rapid expansion(inflation) and ends up as a slowly
expandinguniverse.On the otherhand,fig. 2 showsthat the modulusfield starts
from — ~ correspondingto a zero compactificationradius at the removepast,

passesthroughthe self-dualpoint ci = 0 during the inflationary period,and ends
up asa slowly expandingregimeat the infinite future ~. The vanishingof ci in the

* In all plots we haveused I o o4.

** The duality symmetryimplies also theexistenceof the dual solution o —~ ~.
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200 150 tOO 50 0 50 100 150 200
time

Fig. 2. The modulus field if (continuous line) and its derivative ó~(dashedline) for the nonsingular
solution.

regionwhere th is maximumis a generalfeatureof this kind of solution,which is
dueto the form of theGauss—Bonnetloopcorrectionas describedabove.

Figs. 1, 2 also show that the obtainednonsingularsolutionscan have all time

derivativesof w and ci less thanone in Planckunits,which is consistentwith our
approximationof neglectinghigher-derivativetermsin the effectiveaction.This is
in general sufficient provided that the moduli-dependentcoefficients of the
higher-ordertermsarenot large enoughto compensatethe derivativesuppression.
Under this assumptionthe main featuresof thesesolutionsareexpectedto survive
afterhigher-ordercorrectionsare takeninto account.

The avoidanceof the singularityis accompanied,as expected,by a violation of
theweak andstrongenergyconditions[81relatedto the energy—momentumtensor
of the modulus field, which are illustrated in fig. 3. This violation can be
demonstratedanalytically in the following way. The systemof equationsconsisting

0.06 ~ I.~H

0.015

0.03

I F~H

100 60 20 20 60 100

time

Fig. 3. p + p (dashedline)and p + 3p (Continuousline) for the nonsingularsolution.
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of the time derivativeof (3.1) togetherwith (3.2) canbe solved for th, and then
~‘(ci) termscan be removedusing (3.1). Using (2.16) we obtain

16th4+ 24th2&2+ 5o-~ 45~”(ci)th2ó-4
p+p= 2th 2th2

16th4 8th2&2+5ci4

8—
p+3p —6(th2+th) —24th4&2 , (3.12)

16th4 8th262+ 5ci4

where ~“(o~) 32~/3ci2.It is easyto seethat since ~“(ci) < 0, eq. (3.12) implies
that p + p > 0 andp + 3p> 0 for S > 0. Thus, the energyconditionscanneverbe
violated in this caseand we cannotavoid the initial singularity. This is also the
result of the numericalintegration, for S -‘ 0, which always leadsto the singular

solution A
0 at every times.

On the contrary,as seenfrom (3.12), 5 <0 allows for solutionswhich explicitly
violate both energyconditions. Of coursethis is in generala necessarybut not
sufficient requirementin order to avoid singularities. In our case,the numerical
integrationof the system(3.1), (3.2) has shown that the violation of the energy
conditionsat someinstant is also sufficient. In fact, the nonsingularsolutionscan
be obtainedby imposing th p + p — 0, which implies p + 3p <0, at the starting
point of our integration. The initial values for ci and th at this point obey a
constraintwhich canbe derivedusingeqs.(3.12)and (3.1). For a specific valueof
the modulus ci, the expansionrate th is given by

4v
4z5 5v4z4+40v2z3 8(2+7v2)z2+96z 144 0, z>~, (3.13)

where z 5~”(ci)th~axand v ~‘(ci)/~”(cr) satisfying 1 <t.’ < 1 due to the
propertiesof ~(ci). Onecanshow that the aboveequationhasat leastonesolution
for z for anyvalueof v. In termsof our orginal variablesci and th, thesesolutions

areplottedin fig. 4.
The entire region of initial conditionswhich lead to singular or nonsingular

solutionsfor 5 <0 canbe exploredby the useof the correspondingphasediagram.
In fact, the system of second-orderdifferential equations (3.1), (3.2) can be
reducedto a singlefirst-orderequationfor thevariable th asa function of ci. First
(3.1) canbe solvedfor & in termsof th andci,

& —5~’(ci)th3+Ithl~52~~(ci)2th4+4. (3.14)

On the other hand,the time derivativeof (3.1) togetherwith (3.2) leadsto (3.12)
whichcanwritten in the form

dth th2 16th4-l-24th2&2+5&4—45~”(ci)th2&4
— = . (3.15)
dci 1(th4 ~th&2+5&4
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1.0 I

08 I

0.6

0.4 I

0.2 ~>0 -

6 1.5 1 0.5 0 0.5 1 1.5 2

Fig. 4. Themaximumof the expansionrate~ma,as a functionof the modulus ir for o- > 0 (continuous
line) andcr > 0 (dashedline).

Inspectionof (3.14) showsthat the two branches defined by the two signsof the
square root correspond to two disconnected classes of solutions associated with
positive or negative values of &. These are related by a duality transformation
ci —* ci, and thus we can restrict to the case &> 0.

The phase diagram of (3.15) is presented in fig. 5. The asymptotic solutions C,.

and A,. are located in the regions ci —~ — cc and ci —* + cc, respectively, while the
singular A0 appears in the region th —~ cc, ci> 0. As one sees, for negative initial
values of ci, nonsingularsolutions are obtainedfor all valuesof w. They always
interpolate between an asymptotically flat and a slowly expanding universe. The
maxima of th correspond to points of the curve (&> 0) shown in fig. 4. On the
other hand, for positive initial values of ci, singular solutionsareobtainedfor all
values of th lying abovea critical curve (bold line). Note that theyneverendup as
an asymptotically flat space—time. Compared to other known nonsingular solutions

00

Fig. 5. Thephasediagramof c,~asa functionof ir; continuouslines correspondto nonsingularsolutions
anddashedlines to singularones.Theboundaryof the two regionsis plottedby abold line.
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[6,71derivedfrom higher-derivativeeffectivegravity theories,our solutionsextend
over an infinite region of the phasespacewhere themaximumvalueof curvatureis
not bounded.

As alreadymentioned,anotherinterestingcharacteristicof thesenonsingular
solutions is that they contain an inflationary regime‘~. This is expected at least
during the period whenthe energyconditionsareviolated dueto the development
of negative pressure. The numerical analysis shows that the amount of inflation
increaseswith risingvaluesof ~i

2th given in fig. 4. For valuesof orderoneonly
a few e-foldings are obtained(see fig. 1), while larger valuesof this parameter
breakthevalidity of the perturbativetreatmentof the effectiveaction. In any case,
thesesolutionsprovide an exampleof a cosmologicalmodel which is driven to an
inflationary eraandthenexits in a finite time. This is in contrastto thebehaviorof

other nonsingularsolutions which start from de-Sitterspace in the remote past
[6,71.In factthe solutionspresentedherestart asymptoticallyfrom flat space—time,
which is welcome as it has recently been argued that eternal de-Sitter inflation may
not be possible without a beginning [111.Moreover,their characteristicsare very
similar to those arising in the context of a “pre-big-bang” scenario motivated by
generalizedscale-factordualitysymmetriesof string theory [2].

The propertiesof the nonsingularsolutionsdependcrucially on the form of the
modulus-dependent function ~(u) arising from the string loop corrections to the
dimensionlessgravitationalcouplings (2.6). For instanceif ~(ci) ci2, de-Sitter

spaceis obtainedasymptotically.On the other hand,if one considersthe dilaton
field instead of the modulus in the presence of the first order in a’ Gauss—Bonnet
interaction (2.6), the singularity can never be avoided. In fact, the analysis is
equivalent to that of the metric—modulus system (3.1), (3.2) with the substitutions
ci —* ~cP,5~’(ci)—~ Ae~. Then, the energy conditions (3.12) have also the same
form with S~”(ci) replaced by Ae’’~ and they cannot be violated since A = 2/g2 is
positive.

4. Analysis including the dilaton terms

Wenow extend our analysis including the dilaton contributionsin the effective
action (2.6),which leadsto theequationsof motion (2.12), (2.14)and (2.15).A time
dilatation combinedwith a shift in the dilaton field,

t—*t’— ~/T~Tt,P—’=~P+2ln~5I ln A, (4.1)

can be usedto eliminateboth A and the absolute value of 5. In analogy with the
analysisof the previoussectionwe shall first derive the asymptoticsolutions. As

* A discussionof the contribution of the string loop moduti-dependent corrections to thegravitational
couplings in connection with the inflationary solutions of ref. [6] wasreportedin ref. [101.
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one can see from (3.4), the asymptotic behavior of the modulus-dependent
Gauss—Bonnetcoefficient ~(ci) for large ci is proportional to e’°~,while the
dilaton-dependentcoefficient is proportionalto e~.It follows that the asymptotic
solutions of the metric—modulus system derived in sect. 3 will survive in this case,
with the dilaton eitherbeing negligible or behavingsimilarly to the modulus. In
addition, somenew solutionsareexpectedfor dominantlarge asymptoticvaluesof

the dilaton field.
In the limit ~ —* cc the asymptoticsolutions A,. and B,. of sect. 3 are extended

with the dilaton being of theform cP — ~ + y ln t to the solutions

(A’,.): a— 9f32+3y2 4 (4.2)

and

(B~,): 1/31 y=2, a—.0.205,

sign(/3)ci
0’—4.67—ln5, 5>0, 4~~-’3.62. (4.3)

Furthermore, A,. can also be extended with the dilaton of the form ~ — 4 + q$1t~’,

a= ~, 1/31— ~, y 2, 4~ 5
1

4exp(~0). (4.4)

In the abovesolutionsthe dilaton field eithergrows to plus or minus infinity (At.
or A’,. and B~,)corresponding to weak or strong string coupling, respectively, or it
asymptoticallyreachesan arbitraryconstantvalue(A~,).As in the metric—modulus
case,in the solution A’,. the Gauss—Bonnettermsbecomeirrelevantat largetimes.

Similarly, the asymptoticallyflat solution C,. can be extendedwith the dilaton
being either of the form ~ 4~+ 41t~,

(C,’,): a 1, 1/31 y=5,

15
exp[sign(p)ci0] — 3 , = ~ exp(40)o4, (4.5)

2~rw15

or of the form cP — 4o + y ln t,

a= —1, 1/31 y—5,

5 15
exp(40) —i, 5>0, exp[sign(f3)ci0J = — (4.6)

6w1
2irw

1S

In C,’., the dilaton goes to a constant, while C,’~ is a weakcoupling solution.
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Therearealso threenew solutionswherethe modulusfield goesasymptotically
to an arbitrary constant. They are obtained from A~,(D,., D,’,) or C,’, (E,,) by
interchanging the role of ci and ‘P, ci — ci

0 + ci~t~and cP 4~+ y ln t,

2
a ~, l~l , /3= 2, ci1 1~2S~’(ci0), (4.7)

(D,’,): a=0.223, /3= y— 2,

ci1—.0.002S~’(ci0), 4~-~3.24, (4.8)

a —1, —f3—y 5,

5 15cr1
exp(c/0)= —-—--~, ~‘(ci0) —-——-i-, (4.9)

6w1 Sw1

with cr0 + 0.
The sameprocedurecanbe followed to derivethe singularsolutionsin the limit

—* 0. The solution A0 is extendedwith the dilaton field going to a constant,
~P q~0+4i1t~,

(At): a 1, /3—y—2,

S~’(ci~) 3 exp(q50)
ci1— , ~—— . (4.10)

+ 3 exp(2ç60) 52~~(ci0)

2+ 3 exp(2~
0)

Furthermore, for the same form of w and 5 <0, two new solutions can be
obtained with the modulus behaving logarithmically, ci ci0 + /3 in t, and the
dilaton beingeitherof the form ~ — + y ln t,

S’rr
(B0): a 1, 1131 y, exp(40) -~- exp[ sign(13)ci0], (4.11)

or of the form i

(C0): a=1, 1131 y= 2, 4~ —V irS exp[—~sign(p)ci0]. (4.12)

B0 is a weak coupling solution, while C0 is a strong coupling one.
Finally, for the same logarithmic behaviorof w and 5 > 0, thereis one more

singular solution,

(D0): ~~o+Y in t, ci ci0 exp ~ (4.13)
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with

y—2, 3a3—3a2+5a—1—0, f3=5~”(0)a3(a—1) >0,

2(3a— 1)
exp(q5

0) — ~, (4.14)
3(1 — a)a

which leadsto a —‘ 0.223, /3 0.019S, ~ 3.24. This is a strong coupling asymp-
totic solutionwherethe modulusfield approachesthe self-dualpoint in a nonana-
lytic way. It providesan exampleof realizingthe mechanismdescribedin sect. 3
accordingto which the Gauss Bonnet term in (2.14) acts as a potential for the
modulus with a minimum at the self-dual point.

The integration of the nonlinear system (2.12), (2.14), (2.15) canbe performed
numerically following a similar procedure we used in the previoussection for the
metric—modulus case. However, in the presenceof the dilaton the phasespaceis
enlarged considerably since two more initial valuesare required for 1 and ~Pin
addition to ci, w and th. Instead of presenting a detailed numerical investigation
which will not be very illuminating, we concentrate to the analysis of some
physically interestingcases.In the caseS > 0, we verified that the fixed modulus

singularsolution D0 (4.14)is obtainedfor a largeregionof the parameterspace.It
turns out that the modulusfield at t — 1) approachesits self-dualpoint by dumping

oscillationsconsistentlywith the effective potential interpretation(see fig. 6).
The case 5 <0 is more interestingsince it admits nonsingularsolutions.They

could in principle be derivedby the methoddescribedin sect.3 which consistsof

~ F~I.I. 140.6-~- 12 (0°:.:~~

0.2~ 05 15 2.5 0

time

Fig. 6. The scalefactor c’’ (dashedline) and the modulus ir (continuousline) in a singularsolution
(cS > 0) wherethe modulusapproachesits self-dualpoint (ir 0) atearlytimes.
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Fig. 7. The dilaton field D (Continuousline) and its derivative 1 (dashedline) for the nonsingular
solution.

starting the numerical integration at a point where the energy conditions are
violated, for instancewhen iii = 0. It turns out that this method is not veryuseful
because,in this case,the violation of energyconditionsalthough necessaryis not
sufficient to avoid the initial singularity[8]. An alternativeway would be to start
the integrationwith anasymptoticallyflat solution in the infinite past,which in the
metric moduluscasewasshown to leadalwaysto nonsingularsolutions.This turns
out to be the case even in the presenceof the dilaton. Startingfrom C,’,, which
extendsC,. with a negligible dilaton, one is smoothly driven to A’,. in the infinite
future. This confirms that the main characteristicsof such solutionsare a conse-
quenceof the modulus-dependentstring loop correction to the Gauss—Bonnet
term and they do not dependon the existenceof the dilaton.

In a typical nonsingularsolution the scalefactor andthe internal radiusbehave
similarly to thoseobtained in the absenceof the dilaton (figs. 1, 2). The dilaton
evolutionis presentedin fig. 7; it startsfrom a constantvalue in the remotepast
and grows logarithmically towards a strong coupling in the future. During the
inflationary period when the modulus passesthrough its self-dual point, the
dilaton also jumps to its maximum value. This can be easily understoodby
inspectionof its equationof motion (2.15), where the Gauss—Bonnetterm plays
the role of a runawaypotential for th const. In the limit t —s cc, althougha weak
couplingsolution of the form A’,. or an asymptoticallyconstantdilatonof the form

A’,’, are not a priori excluded,strongcoupling seemsto be preferredat leastin the
restrictedregionof the parameterspacewe scanned.In any case,at late timesthe
effectiveaction (2.6) shouldprobablybe modified by the additionof a dilaton and
moduluspotential arising from supersymmetrybreakingor other nonperturbative
effects, which would stabilize thesefields.
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5. Conclusions

In this work we haveexaminedthe cosmologicalimplicationsof the moduli-de-
pendentioop correctionsto the gravitationalcouplingsof the superstringeffective
action in the caseof orbifold compactifications.Thesecorrectionsconsistof the

Gauss—Bonnetintegrand multiplied by a universal nontrivial function of the
moduli fields and a numerical coefficient S which dependson the massless

spectrumof every particularmodel. We first derivedthe equationsof motion for
the metric, the dilaton andthe moduluscorrespondingto the commoncompactifi-
cationradius,andwe classifiedall asymptoticsolutions.Among them, thereis one
wherethe internal radiusis fixed at its self-dualpoint as the universeapproaches
the initial singularity.

In the caseof negativesign for theparameter5, we haveshownthat the strong
energycondition p +p > 0 associatedto the stress energytensorof the modulus
can be violated, leading to an inflationary period and providing the possibility of
avoiding the initial singularity. In fact a numerical analysis of the system has
verified the existenceof a classof nonsingularsolutionswhich interpolatebetween
an asymptotically flat and a slowly expandinguniversewith a period of rapid
expansion,when the modulus field passesthrough its self-dualvalue. This is in
contrastto the behaviorof other nonsingularsolutionswhich havebeenproposed
in the literature,wherede-Sitterspacewas alwaysobtainedat “early” times[6,7],
but it sharesthe propertiesof a “pre-big-bang”phaseproposedin ref. [2].

Our solutions dependcrucially on the form of the modulus-dependentstring
loop corrections,while the dilaton contribution is negligible and can be ignored.
Furthermoreall time derivativescan remainboundedin the perturbativeregime,
which is consistentwith our approximationof neglectinghigher-derivativetermsin
theeffectiveaction,providedthe moduli-dependentcoefficientsof the higher-order
terms arenot largeenoughto compensatethe derivativesuppression.Finally, the
whole parameterrangehas been exploredin the absenceof the dilaton by the

study of the corresponding phasediagramandwe found that the classof nonsingu-
lar solutionsextendsoveran infinite regionof the phasespace.

Thiswork wassupportedin part by EEC contractsSC1-0394-C,SC1-915053and

SC1-CT92-0792.Oneof us(K.T.) thankstheCentrede PhysiqueTheoriqueof the
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