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Spectral Analysis of Microwave

Background Perturbations Induced by

Cosmic Strings

Leandros Perivolaropoulos∗†

Abstract

Using a simple analytic model based on seed superposition we ob-
tain the spectrum of microwave background perturbations induced by
cosmic strings on all angular scales larger than about 2 armin. We
assume standard recombination in an Einstein de Sitter universe with
h = 1/2 and study the fluctuation spectrum along a great circle in the
sky. Doppler and potential perturbations on the last scattering surface
(Sachs-Wolfe effect) are shown to dominate over post-recombination
perturbations on scales smaller than about 2 degrees. Using a filter
function corresponding to the COBE experiment we obtain an effec-
tive power spectrum index neff ≃ 1.35 in good agreement with the
recently announced second year COBE data showing neff ≃ 1.5. The
only free parameter (Gµ) of the string model is fixed by normalizing
on the COBE detection leading to Gµ = 1.6. Other parameters (e.g.
the rms string velocity) are fixed by comparing with string simulations.
Using these parameter values we compare the rms temperature fluc-
tuations (∆T

T
)rms predicted for ongoing experiments (Tenerife, SP91,

MAX, OVRO etc) with detections and with the corresponding predic-
tions of inflationary models.
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1 Introduction

The rapid development of both observations and theory has turned the
search for the origin of cosmic structure into one of the most exciting fields
of scientific research. Succesful observations performed during the past few
years have imposed severe constraints on theories of structure formation.
In spite of these constraints one important question remains open: What

is the origin of primordial fluctuations that gave rise to structure in the

universe? Two classes of theories attempting to answer this question have
emerged during the past ten years and have managed to survive through the
observational constraints with only minor adjustments.

According to the first class, primordial fluctuations are produced by
quantum fluctuations of a linearly coupled scalar field during a period of in-
flation (Hawking 1982; Starobinsky 1982; Guth & Pi 1982; Bardeen, Stein-
hardt & Turner 1983). These fluctuations are subsequently expected to
become classical and provide the progenitors of structure in the universe.
Because of the extremely small linear coupling of the scalar field, needed
to preserve the observed large scale homogeneity, the inflationary perturba-
tions are expected by the central limit theorem, to obey Gaussian statistics.
This is not the case for the second class of theories.

According to the second class of theories (Kibble 1976; Vilenkin 1981;
Vilenkin 1985; Turok 1989; Brandenberger 1992), primordial perturbations
are provided by seeds of trapped energy density produced during symmetry
breaking phase transitions in the early universe. Such symmetry breaking
is predicted by Grand Unified Theories (GUT’s) to occur at early times
as the universe cools and expands. The geometry of the produced seeds,
known as topological defects is determined by the topology of the vaccuum
manifold of the physically realized GUT. Thus the defects may be pointlike
(monopoles), linelike (cosmic strings), planar (domain walls) or collapsing
pointlike (textures).

The cosmic string theory (Vilenkin 1981) for structure formation is the
oldest and (together with textures (Turok 1989)) best studied theory of the
topological defect class. By fixing its single free parameter Gµ (µ is the
effective mass per unit length of the wiggly string and G is Newtons con-
stant) to a value consistent with microphysical requirements coming from
GUT’s, the theory may automatically account for large scale filaments and
sheets (Vachaspati 1986; Stebbins et. al. 1987; Perivolaropoulos, Branden-
berger & Stebbins 1990; Vachaspati & Vilenkin 1991; Vollick 1992; Hara &
Miyoshi 1993), galaxy formation at epochs z ∼ 2 − 3 (Brandenberger et.
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al. 1987) and galactic magnetic fields (Vachaspati 1992b). It can also pro-
vide large scale peculiar velocities (Vachaspati T. 1992a; Perivolaropoulos
& Vachaspati 1993) and is consistent with the amplitude, spectral index
(Bouchet, Bennett & Stebbins 1988; Bennett, Stebbins & Bouchet 1992;
Perivolaropoulos 1993a; Hindmarsh 1993) and the statistics (Gott et. al.

1990; Perivolaropoulos 1993b; Moessner, Perivolaropoulos & Brandenberger
1993; Coulson et. al. 1993; Luo 1993) of the cosmic microwave background
(CMB) anisotropies measured by the COBE collaboration (Smoot et. al.

1992; Wright et. al. 1992) on large angular scales (θ ∼ 10◦).
The CMB observations provide a valuable direct probe for identifying

signatures of cosmic strings. There are three main mechanisms by which
strings can produce CMB temperature fluctuations.

The first mechanism has been well studied both analytically (Bran-
denberger & Turok 1986; Stebbins 1988; Veeraraghavan & Stebbins 1990;
Perivolaropoulos 1993a; Perivolaropoulos 1993b; Moessner et. al. 1993) and
using numerical simulations (Bouchet et.al. 1988; Bennett et. al. 1992) and
is known as the Kaiser-Stebbins effect (Kaiser & Stebbins 1984; Gott 1985).
According to this effect, moving long strings present between the time of
recombination trec and the present time t0, produce step-like temperature
discontinuities between photons that reach the observer through opposite
sides of the string. These discontinuities are due to the peculiar nature of
the spacetime around a long string which even though is locally flat, globally

has the geometry of a cone with deficit angle 8πGµ. The magnitude of the
discontinuity is proportional to the deficit angle, to the string velocity vs

and depends on the relative orientation between the unit vector along the
string ŝ and the unit photon wave-vector k̂. It is given by (Stebbins 1988)

δT

T
= ±4πGµvsγsk̂ · (v̂s × ŝ) (1)

where γs is the relativistic Lorentz factor and the sign changes when the
string is crossed. The angular scale over which this discontinuity persists is
given by the radius of curvature of the string Ψ(t) = ξΘ(t)/2 (the parameter
ξ measures the string curvature radius as a fraction of the horizon angular
scale Θ(t)).

The second mechanism is based on the Doppler effect. Moving long
strings present on or before the last scattering surface produce, due to
their deficit angle, velocity fields directed towards the surface swept by the
string. These perturbations affect both the plasma and the dark matter.
The growth of velocity perturbations produced before recombination on the
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plasma, is prevented by pressure and photon drag. However, velocity fields
produced on the plasma last scatterers of photons by moving long strings at

the time of recombination are important because they produce temperature
fluctuations on the scattered photons via the Doppler effect. The magni-
tude of these fluctuations can be obtained from the velocity perturbations
(Vachaspati & Vilenkin 1991; Vachaspati 1992a) induced by a long string as

δT

T
= k̂ · ~v = λπGµvsγsk̂ · (v̂s × ŝ) (2)

where

λ = (1 +
(1 − T

µ )

2 < (vsγs)2 >
) (3)

and T is the tension of the wiggly long string estimated by simulations to
be T ≃ 0.7µ. The scale over which these fluctuations persist is the radius of
curvature of long strings at trec (Ψ(trec)).

The third mechanism is based on potential fluctuations on the last scat-
tering surface produced by both loops and long string wakes. Wakes are
planar density enhancements induced by the growing velocity perturbations
of long strings on dark matter (Stebbins et. al. 1987; Perivolaropoulos et.

al. 1990). These perturbations begin to grow at about the time of equal
matter and radiation teq (assuming Cold Dark Matter (CDM)). A wake pro-
duced by a long string at time ti has angular dimensions Ψ(ti) × vsγsΘ(ti)
and a surface density at time t given by (Perivolaropoulos et. al. 1990)

σ(ti, t) = λ4πGµvsγstiρ(ti)(
t

ti
)2/3 (4)

where ρ(ti) is the mean dark matter density at ti. The temperature pertur-
bation due to the potential Φ(x, trec) (Sachs & Wolfe 1967; Stebbins 1993)
produced by the wakes present on the last scattering surface is

δT

T
=

1

3
Φw(x, trec) =

1

3
4πGσ(ti, trec)h(x) (5)

where h(x) = x cos φ is the perpendicular distance to the wake as a function
of the distance x from the wake on the last scattering surface and φ is the
angle between the photon wave-vector and the wake surface. As in the pre-
vious cases, the angular distance from the wake over which this perturbation
persists is approximatelly Ψ(ti).

Loops present on the last scattering surface with their accreted dark mat-
ter are also expected to contribute to the potential fluctuations. It will be
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seen however that their contribution is minimal due to their very small size
indicated by numerical simulations. According to simulations (Bennett &
Bouchet 1988) loops are produced with relativistic velocities (which quickly
erase any initial correlations) and typical size R(t) ≃ 10−4H−1(t) (H−1(t)
is the Hubble scale at time t), which for t = trec corresponds to an angular
scale of about 0.3 arcsec (even though the largest loops can be about ten
times larger (Bouchet 1988)). This scale is too small for any observable ef-
fects in present experiments. For completeness however we will include loops
in our analysis in order to explicitly demonstrate that they are unimportant
compared to other types of perturbations.

The temperature fluctuations induced by a loop of radius R, due to the
disturbance of the last scattering surface potential at a distance x from the
center of the loop may be approximated by

δT

T
=

1

3
Φl(x, trec) ≃

βGµ

3
(
trec

ti
)2/3 |x| ≤ R (6)

δT

T
≃ 0 |x| >> R (7)

where β is a parameter determining the length of string in a loop of radius
R (typically β ≤ 10). The time dependent growth factor takes into account
the accretion of CDM (as in the case of wakes).

2 Derivation of Spectrum

The above three mechanisms have specified four distinct types of seed func-
tions that need to be superimposed (in different ways) in order to construct
the CMB spectrum of string induced temperature fluctuations. The next
step is to give an expression of the spectrum in terms of these seed functions.
For simplicity we will focus on perturbations along a great circle on the sky.
By isotropy, our results for the correlation function and the spectrum P (k)
are valid for any such circle and the extension of our results to patches will
be shown to be straightforward.

Consider a seed function fΨ
1 (θ) of size proportional to Ψ, superimposed

at random positions θn and with variable amplitude an, N times on a circle
(−π ≤ θ < π). The resulting function is

f(θ) =
N∑

n=1

anfΨ
1 (θ − θn) =

1

2π

N∑
n=1

an

+∞∑
k=−∞

f̃Ψ
1 (k)eik(θ−θn) (8)
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where

f̃Ψ
1 (k) ≡

∫ +π

−π
dθfΨ

1 (θ)e−ikθ (9)

is the Fourier transform of f1(θ). The Fourier transform of f(θ) is

f̃(k) = f̃Ψ
1 (k)

N∑
n=1

aneikθn (10)

The probability distribution of the phases of this pattern has been studied
previously (Perivolaropoulos 1993c). Here we focus on the power spectrum
of the resulting pattern which is

P0(k) ≡< |f̃(k)|2 >= N |f̃Ψ
1 (k)|2 < |an|

2 > (11)

where <> denotes ensemble average.
In a cosmological setup the role of seeds is played by topological defects

which obey a ‘scaling solution’ and therefore their size is a fixed fraction of
the horizon at any given time. As the comoving horizon expands by a factor
α, the size (total number) of superimposed seeds on the great circle will also
increase (decrease1) by the same factor. Therefore, after Q expansion steps
the resulting spectrum will be

PQ(k) =
Q∑

q=0

Pq(k) ≡
Q∑

q=0

N

αq
|f̃αqΨ

1 (k)|2 < |an|
2 > (12)

This is a general result that can be easily applied to any particular type of
seed function f1(θ) provided the following quantities are specified

1. The number of seeds N at the first expansion step. For a scaling defect
with M seeds per horizon scale we have N(ti) = M × 2π

Θ(ti)
where Θ(ti)

is the angular size of the horizon at the first expansion step. For H0 =
50km/(sec ·Mpc), (i.e. h=1/2) and Ω0 = 1 we have N(trec) ≃ 200 M
and N(teq) ≃ 450 M since Θ(trec) = 1.8◦ and Θ(teq) = 0.8◦.

2. The maximum and minimum size of superimposed seeds

(Ψmin(ti),Ψmax(ti)) ≡ (ξΘ(ti)/2, ξΘ(tf )/2). For initial and final times
of superposition (ti, tf ) = (trec, t0) (to be used for the Kaiser-Stebbins
effect) we have

(Ψmin,Ψmax) = (0.016ξ, πξ) (13)
1since the total number of horizons on the circle decreases
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while for (ti, tf ) = (teq, trec) (to be used for the scales of potential
perturbations) we have

(Ψmin,Ψmax) = (0.007ξ, 0.016ξ) (14)

The number of expansion steps is obtained simply as

Q =
log(Ψmax

Ψmin
)

log α
(15)

3. The comoving horizon expansion factor α. Taking each expansion
step when the physical horizon scales by δ in size leads to α = δ1/3.
Increasing α tends to increase each term in the sum (12) but this effect
is compensated by the decrease in Q due to (15). Thus for reasonable
values of δ (1.5 ≤ δ ≤ 3) our results are rather insensitive to the value
of α. In what follows we use δ = 2 which implies α = 1.26.

4. The magnitude of an and the form f1(θ) of the seed functions given
by equations (1), (2), (5) and (6).

We are now in position to determine the contribution to the power spec-
trum for each one of the three mechanisms by which strings can produce
temperature fluctuations on the CMB.

1. Kaiser-Stebbins effect: It is easy to see from (1) that in this case

fΨ
1 (θ) = −1 0 ≤ θ ≤ Ψ (16)

fΨ
1 (θ) = +1 0 ≥ θ ≥ −Ψ (17)

fΨ
1 (θ) = 0 otherwise (18)

while

an = 4πGµ(vsγs)n cos φn (19)

where cos φn = k̂ · (v̂s × ŝ)n. It is now easy to show that

f̃Ψ
1 (k) =

4 sin2(kΨ/2)

k
(20)

and

< |an|
2 >=

1

3
(4πGµ)2 < (vsγs)

2 > (21)
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Also, since (ti, tf ) = (trec, t0), (Ψmin,Ψmax) is given by (13), Q = 23
(from (15) with α = 1.26) and N = 200M . Thus, substituting in (12)
we obtain

PKS(k) = 4 × 104 (Gµ)2 b
Q=23∑
q=0

sin(0.008 ξ αq k)

αqk2
(22)

where b ≡ M < (vsγs)
2 >.

2. Potential perturbations:

(a) Wakes: We are interested in all the wakes present on the last scat-
tering surface thus causing potential perturbations on it. Those
wakes were formed at time ti, with teq ≤ ti ≤ trec (since per-
turbations start to grow at teq). All these wakes must be taken
into account with their growth factors. In the case of wakes, the
sum of equation (12) will run not on the epoch that the photon
was affected (as was the case for the Kaiser-Stebbins component
of the spectrum) but on the growth factor and the size of the
wake present on the last scattering surface. In this case, we have
(ti, tf ) = (teq, trec) which implies Q = 3.6 and N = 450M . Using
(5) and following the same steps as for the Kaiser-Stebbins effect
we obtain

Pw(k) = 1.3×102 (Gµ)2 b ξ4
4∑

q=0

1

α3q
(
sin g

g
−2(

sin g

g
)2)2(23)

where

g = 7 × 10−3 ξ k αq (24)

(b) Loops: Using (6), (7) and (12) with (ti, tf ) = (teq, trec) we obtain

Pl(k) = 5.6 β2 (Gµ)2 Ml

4∑
q=0

sin2(0.014 k ξl αq)

α5qk2
(25)

where Ml is the cubic root of the number of loops per horizon
scale (i.e. the number of loops that intersect a horizon size arc
on the sky) and ξl is typical size of loops as a fraction of the
horizon scale. The exact values of the parameters β, ξl and Ml are
unimportant for our calculations, since it will be seen that for all
values of parameters which are consistent with string simulations,
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the term Pl(k) is orders of magnitude smaller than the other terms
contributing to the power spectrum for k ≤ 104 (θ ≥ 1 arcmin).
For definiteness we will use β = 10, Ml = 40 and ξl = 10−3 (values
which tend to overestimate the contribution of loops). Even with
these values it will be seen that loops are unimportant.

3. Doppler effect: Since velocity perturbations on the plasma do not grow
before recombination we will only consider the contribution of strings
present at the time of recombination. Using (2) and (12) with ti =
tf = trec we obtain

PD(k) = 1.2 × 104λ2(Gµ)2b
sin2(0.016 ξ k)

k2
(26)

The total spectrum is therefore given by

P (k) = PKS(k) + Pw(k) + Pl(k) + PD(k) (27)

3 Parameter Fixing-Scale Invariance

Before being able to make predictions about ongoing CMB experiments we
must determine the only free parameter Gµ as well as the parameters b, λ
and ξ. String simulations (Bennett & Bouchet 1988; Allen & Shellard 1990)
indicate that M ≃ 10 while (vsγs)rms ≃ 0.15−0.2 implying b ≃ 0.24 and λ ≃
6. We will verify these values by directly fitting our spectrum with partial
CMB spectra obtained by simulations on large angular scales. Bouchet,
Bennett and Stebbins (hereafter BBS) have used numerical simulations to
calculate the term PKS(k) for a single expansion step. Their result for the
total power on angular scales smaller than θ∗ with ti = trec, tf ≃ 2 trec is

PBBS(θ ≤ θ∗,Θi = Θrec) =

∫ ∞

2π/θ∗

d2k

(2π)2
PBBS(k)

= (6Gµ)2(
θ1.7
∗

0.0012 + θ1.7
∗

)0.7 (28)

Our analysis, focusing on a line across the sky rather than a patch predicts

Pan(θ ≤ θ∗,Θi = Θrec) = 2

∫ ∞

2π/θ∗

dk

(2π)
PQ=0

KS (k) (29)

In Figure 1 we show Pan(θ∗) for b = 0.237 and ξ = 0.45 (continous line)
superimposed on PBBS(θ∗) (dashed line). We also show the 1σ errors to
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Pan(θ∗) obtained from the variance of a2
n (dotted lines). The values b = 0.237

and ξ = 0.45 were chosen in order to obtain the best fit to PBBS but they
are in very good agreement with the expected values (obtained for M ≃ 10,
(vsγs)rms ≃ 0.15 and string radius of curvature about half the horizon scale).

Figure 2a shows a superposition of the components of the spectrum
(equations (22), (23), (25) and (26)) with the above choice of parame-
ters. The sums were performed using Mathematica (Wolfram 1991). Clearly
the Kaiser-Stebbins term (continous line) dominates on large angular scales
(θ > 4◦) while the Doppler term (long dashed line) is dominant on smaller
scales. The contribution of potential perturbations by wakes (dotted line)
is less important but is clearly not negligible especially on scales of a few
arcmin (k ≃ 1500). Finally, the contibution of loops (short dashed line) is
negligible on all scales larger than 2-3 arcmin (k ≤ 8000). Figure 2b shows
the product kP (k) fot the total spectrum (equation (27)) with 1σ errors
denoted by the dotted lines.

One of the most interesting questions that may be addressed using the
spectrum of Figure 2b is ‘What is the effective power spectrum index n,

predicted by cosmic strings on COBE angular scales?’. Previous studies
(Bennett, Stebbins & Bouchet 1992; Perivolaropoulos 1993a) have addressed
this question without taking into account the effects of potential and Doppler
perturbations. The correlation function C1(θ) for perturbations along a
great circle is given in terms of P (k) as

C1(θ) =<
δT

T
(φ)

δT

T
(θ + φ) >φ=

1

(2π)2

k=+∞∑
k=−∞

P (k)eikθ (30)

For 2d maps the corresponding equation is (l ≫ 1) (Efstathiou 1989)

C2(θ) ≃
1

(2π)2

∫
d2l Cl e

i~l·~θ (31)

By isotropy we must have C1(θ) = C2(θ). It may also be shown that l2Cl ∼
ln−1 where n is the power spectrum index. Since both k and l are Fourier
conjugate of θ we have k ≃ l. Also (30) and (31) imply that P (k) ≃ πlCl

and therefore

kP (k) ∼ kn−1 (32)

Figures 3a and 3b show the best linear fit of the log-log plot kP (k) vs
k, for 5 ≤ k ≤ 20 and 5 ≤ k ≤ 100 respectively. The best fits give n = 1.35
(Figure 3a) and n = 1.48 (Figure 3b). This result indicates that cosmic
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strings favor values of n somewhat larger than 1 in agreement with recent
indications from the Tenerife experiment and the second year data of COBE
(Bennett et. al. 1994) which favor n ≃ 1.5. In contast it is much harder for
inflationary models to explain such high values of n (Lyth & Liddle 1994;
Steinhardt 1993).

There is a simple analytic way to show that in the sector of the power
spectrum where the Kaiser-Stebbins effect dominates, a scale invariant (n ≃
1) spectrum should be expected. For f̃Ψ

1 (k) ∼ Ψf̃Ψ=1
1 (kΨ) (as in the case

of the Kaiser-Stebbins seed functions), (12) may be writen as

P (k) =
Q∑

q=0

Pq(k) =
Q∑

q=0

αqP0(α
qk) ≃ αP (αk), Ψ−1

max ≤ k ≤ Ψ−1
min(33)

Therefore

kP (k) ∼ const (34)

which indicates a scale invariant spectrum for the Kaiser-Stebbins term in
the angular scale range θ ≥ 2◦ (k ≤ Ψ−1

min). The Kaiser-Stebbins term
plotted in Figure 2a (continous line) is in agreement with this result (the
best fit for this component of the spectrum is obtained for n = 1.12).

4 Predictions-Conclusion

It is now straightforward to use the derived power spectrum with the ap-
propriate filter functions in order to make predictions about ongoing exper-
iments. The predicted rms temperature fluctuations ∆T

T rms
for an experi-

ment with window function W (k) is

∆T

T rms
= (C(0))1/2 = [

1

2π2

∞∑
k=0

P (k)W (k)]1/2 (35)

For COBE we have ∆T
T rms

≃ 1.1 × 10−5 and W (k) ≃ e−k2/182

. Thus (35)
may be used to fix the single free parameter Gµ. The result is

Gµ ≃ 1.6 (36)

in agreement with previous analyses (Bennett, Stebbins & Bouchet 1992;
Perivolaropoulos 1993a) valid on the COBE angular scales (θ ∼ 10◦). This
result, combined with the fit to the BBS simulation, completely fixes the
predicted power spectrum P (k) and the corresponding correlation function
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C(θ). Figure 4 shows this correlation function smoothed by the COBE filter
function, superimposed with the COBE data (Smoot et. al. 1992; Wright
et. al. 1992).

Using W (k) = e−(k−k0)2/∆k2

and fixing k0, ∆k for some of the ongoing
experiments (TEN: Watson et. al. 1992; SP91: Gaier T. et.al. 1992; SP91:
Schuster et. al. 1993; MSAM: Cheng et. al. 1993; SK: Wollack et. al. 1993;
MAX: Meinhold et. al. 1993; MAX: Gunderson et. al. 1993; WD: Tucker
et. al. 1993; OVRO: Readhead et.al. 1989) we are in position to predict the
corresponding value of ∆T

T rms
thus testing the cosmic string model. These

predictions with 1σ errors coming from the variance of a2
n are shown in Table

1. We also show some of the detections and upper limits existing to date
as well as the predictions of inflationary models for 0.8 ≤ n ≤ 1.0, Λ = 0
(Bond et. al. 1994). At this time both inflationary models and cosmic
strings appear to be consistent with detections at the 1σ level. However, as
the quality of observations improves, this may very well change in the near
future.

Table 1:Detections of ∆T
T rms

× 106 and the corresponding predictions
of the string and inflationary models (0.8 ≤ n ≤ 1.0, Λ = 0) normalized on
COBE.

Experiment k0 ∆k Detection Strings Inflation

COBE 0 18 11 ± 2 11 ± 3 11 ± 2

TEN 20 16 ≤ 17 13 ± 3 9 ± 1

SP91 80 70 11 ± 5 20 ± 5 12 ± 2

SK 85 60 14 ± 5 19± 4 12 ± 3

MAX 180 130 ≤ 30 (µPeg) 21 ± 5.5 16 ± 5

MAX 180 130 49 ± 8 (GUM) 21 ± 5.5 16 ± 5

MSAM 300 200 16 ± 4 19 ± 4 24 ± 6

OVRO22 600 350 - 13 ± 4 17± 7

WD 550 400 ≤ 12 17.5 ± 4.5 7 ±2

OVRO 2000 1400 ≤ 24 13.5 ± 3.5 7 ± 3

In conclusion, we have demonstrated, using a simple analytical method,
that the CMB spectrum predicted by the cosmic string model can be calcu-
lated in a straightforward way including all the relevant sources of pertur-
bations. We have also shown that our results are consistent with numeri-
cal simulations even though their validity extends beyond the resolution of
present simulations. Finally we showed that the predicted power spectrum
index is slightly larger than 1 (neff ≃ 1.4) and that the predicted rms tem-
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perature fluctuations ∆T
T rms

are consistent with detections to this date on
all angular scales larger than 2-3 arminutes.

Our analysis has assumed standard recombination and values of cosmo-
logical parameters (Ω0 = 1, h = 1/2, CDM, Λ = 0). It is important to
extend our results to less standard cases including reionization or presence
of Hot Dark Matter. Work in this direction is in progress.
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6 Figure Captions

Figure 1:The total power on scale less than θ∗ produced by cosmic
strings during one expansion step starting at trec.

Figure 2a: The four components of the power spectrum of CMB
perturbations induced by cosmic strings

Figure 2b: The total power spectrum of string perturbations along a
great circle on the sky.

Figure 3a: The best linear fit to the total power spectrum for 5 ≤ k ≤ 20.

Figure 3b: The best linear fit to the total power spectrum for
5 ≤ k ≤ 100.

Figure 4: The cosmic string predicted correlation function smoothed on
COBE scales. Superimposed are the first year COBE data.

13



References

Allen B. & Shellard E. P. S. 1990, Phys.Rev.Lett. 64, 119.
Albrecht A. & Stebbins A. 1993. Phys. Rev. Lett. 69, 2615.
Bardeen J., Steinhardt P. & M.Turner M. 1983, Phys.Rev. D28, 679.
Bennett C. L. et. al. 1994, Cosmic Temperature Fluctuations from Two

....Years of COBE DMR Observations, submitted to Ap. J.

....(ASTROPH-9401012).
Bennett D. & Bouchet F. 1988, Phys.Rev.Lett. 60, 257.
Bennett D., Stebbins A. & Bouchet F. 1992, Ap.J.(Lett.) 399, L5.
Bond R., Crittenden R., Davis R., Efstathiou G. & Steinhardt P. 1994,
....Phys. Rev. Lett. 72, 13.
Bouchet F. R., Bennett D. P. & Stebbins A. 1988, Nature 335, 410.
Bouchet F. R. 1988, in ‘The Formation and Evolution of Cosmic Strings’,
....ed. by Gibbons G., Hawking S. & Vachaspati T. (Cambridge Univ.
....Press), p 359.
Brandenberger R. 1992, ’Topological Defect Models of Structure Formation
....After the COBE Discovery of CMB Anisotropies’, Brown preprint
....BROWN-HET-881 (1992), publ. in proc. of the International School of
....Astrophysics ”D.Chalonge”, 6-13 Sept.1992, Erice, Italy, ed.
....N.Sanchez (World Scientific, Singapore, 1993).
Brandenberger R., Kaiser N., Shellard E. P. S., Turok N. 1987. Phys.Rev.
....D36, 335.
Brandenberger R. & Turok N. 1986, Phys. Rev. D33, 2182.
Cheng E. S. et. al. 1993,A Measurement of the Medium Scale Anisotropy

....in the CMB, preprint MSAM-93A.
Coulson D., Ferreira P., Graham P. & Turok N. 1993, Π in the Sky? CMB

....Anisotrtopies from Cosmic Defects, PUP-TH-93-1429,

....hep-ph/9310322.
Efstathiou G. 1989, in ’Physics of the Early Universe’, SUSSP 36, 1989, ed.
....J.Peacock, A.Heavens & A.Davies (IOP Publ., Bristol, 1990).
Gaier T. et.al. 1992, (SP91), Ap. J. Lett. 398, L1.
Gott R. 1985, Ap. J. 288, 422.
Gott J. et. al. 1990, Ap.J. 352, 1.
Guth A. & Pi S. -Y. 1982, Phys.Rev.Lett. 49, 110.
Gunderson J. et. al. 1993, (MAX), Ap. J. Lett. 413, L1.
Hara T. & Miyoshi S. 1993, Ap. J. 405, 419.
Hawking S. 1982, Phys.Lett. 115B, 295.

14

http://arXiv.org/abs/hep-ph/9310322


Hindmarsh M. 1993, Small Scale CMB Fluctuations from Cosmic Strings,
....DAMTP-93-17, astro-ph 9307040.
Kaiser N. & Stebbins A. 1984, Nature 310, 391.
Kibble T. W. B. 1976, J.Phys. A9, 1387.
Luo X. 1993, The Angular Bispectrum of the CMB, CFPA-93-TH-42,
....astro-ph 9312004.
Lyth D. & Liddle A. 1994,Observational Constraints on the Spectral Index,
....Contribution to the 1993 Capri CMB Workshop. SUSSEX-AST
....93/12-1, astro-ph/9401014
Meinhold P. et. al. 1993, (MAX), Ap. J. Lett. 409, L1.
Moessner R., Perivolaropoulos L. & Brandenberger R. 1993, A Cosmic

....String Specific Signature on the CMB, Ap. J. in press,

....astro-ph/9310001.
Perivolaropoulos L. 1993a, Phys.Lett. B298, 305.
Perivolaropoulos L. 1993b, Phys. Rev. D48, 1530.
Perivolaropoulos L. 1993c, The Fourier Space Statistics of Seed-like

....Cosmological Perturbations, M.N.R.A.S. in press, CfA-3591,

....astro-ph/9309023.
Perivolaropoulos L. & Vachaspati T. 1993,Peculiar Velocities and

....Microwave Background Anisotropies from Cosmic Strings, Ap. J. Lett.

....in press, CfA-3590, astro-ph/9303242.
Perivolaropoulos L., Brandenberger R. & Stebbins A. 1990, Phys.Rev.
....D41, 1764.
Readhead A.C.S. et.al. 1989, (OVRO), Ap. J. 346, 556.
Sachs R. & Wolfe A. 1967, Ap. J. 147, 73.
Schuster J. et. al. 1993, (SP91), Ap. J. Lett. 412, L47.
Smoot G. et. al. 1992, (COBE), Ap. J. Lett. 396, L1.
Starobinsky A. 1982, Phys.Lett. 117B, 175.
Stebbins A. et. al. 1987, Ap. J. 322, 1.
Stebbins A. 1988, Ap.J. 327, 584.
Stebbins A. 1993, Ann. N.Y. Acad. Sci. 688 (Texas/PASCOS
Proceedings), 824.
Steinhardt P. 1993, private communication.
Traschen J., Turok N. & Brandenberger R. 1986, Phys. Rev. D34, 919.
Tucker G. S. et. al. 1993, (WD), Princeton preprint.
Turok N. and Brandenberger R. 1986, Phys. Rev. D33, 2175.
Vachaspati T. 1986, Phys. Rev. Lett. 57, 1655.
Vachaspati T. 1992a, Phys.Lett. B282, 305.
Vachaspati T. 1992b, Phys. Rev. D45, 3487.

15

http://arXiv.org/abs/astro-ph/9307040
http://arXiv.org/abs/astro-ph/9312004
http://arXiv.org/abs/astro-ph/9401014
http://arXiv.org/abs/astro-ph/9310001
http://arXiv.org/abs/astro-ph/9309023
http://arXiv.org/abs/astro-ph/9303242


Vachaspati T. & Vilenkin A. 1991. Phys. Rev. Lett. 67, 1057-1061.
Veeraraghavan S. & Stebbins A. 1990, Ap.J. 365, 37.
Vilenkin A. 1981, Phys.Rev. D23, 852.
Vilenkin A. 1985, Phys.Rep. 121, 263.
Vollick D. N. 1992, Phys. Rev. D45, 1884.
Watson R. A. et. al. 1992, (TEN), Nature 357, 660.
Wright E. L. et. al. 1992, Ap. J. Lett. 396, L5.
Wolfram S. 1991, Mathematica version 2.0, Addison-Wesley.
Wollack E. J. et. al. 1993, (SK), Ap. J. Lett. 419, L49.

16



This figure "fig1-1.png" is available in "png"
 format from:

http://arXiv.org/ps/astro-ph/9402024v1

http://arXiv.org/ps/astro-ph/9402024v1


This figure "fig2-1.png" is available in "png"
 format from:

http://arXiv.org/ps/astro-ph/9402024v1

http://arXiv.org/ps/astro-ph/9402024v1


This figure "fig1-2.png" is available in "png"
 format from:

http://arXiv.org/ps/astro-ph/9402024v1

http://arXiv.org/ps/astro-ph/9402024v1


This figure "fig2-2.png" is available in "png"
 format from:

http://arXiv.org/ps/astro-ph/9402024v1

http://arXiv.org/ps/astro-ph/9402024v1


This figure "fig1-3.png" is available in "png"
 format from:

http://arXiv.org/ps/astro-ph/9402024v1

http://arXiv.org/ps/astro-ph/9402024v1


This figure "fig2-3.png" is available in "png"
 format from:

http://arXiv.org/ps/astro-ph/9402024v1

http://arXiv.org/ps/astro-ph/9402024v1

