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Abstract

We continue the classification of the fermionic Z2 × Z2 heterotic string vacua with symmetric internal
shifts. The space of models is spanned by working with a fixed set of boundary condition basis vectors and
by varying the sets of independent Generalized GSO (GGSO) projection coefficients (discrete torsion). This
includes the Calabi–Yau like compactifications with (2,2) world-sheet superconformal symmetry, as well
as more general vacua with only (2,0) superconformal symmetry. In contrast to our earlier classification
that utilized a Monte Carlo technique to generate random sets of GGSO phases, in this paper we present
the results of a complete classification of the subclass of the models in which the four-dimensional gauge
group arises solely from the null sector. In line with the results of the statistical classification we find a
bell shaped distribution that peaks at vanishing net number of generations and with ∼15% of the models
having three net chiral families. The complete classification reveals a novel spinor-vector duality symmetry
over the entire space of vacua. The St ↔ V duality interchanges the spinor plus anti-spinor representations
with vector representations. We present the data that demonstrates the spinor-vector duality. We illustrate
the existence of a duality map in a concrete example. We provide a general algebraic proof for the existence
of the St ↔ V duality map. We discuss the case of self-dual solutions with an equal number of vectors and
spinors, in the presence and absence of E6 gauge symmetry, and presents a couple of concrete examples of
self-dual models without E6 symmetry.
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1. Introduction

In the framework of the free fermionic construction [1,2] of the heterotic string many three
generation realistic string models can be constructed in four dimensions with the correct quantum
numbers under the Standard Model gauge group [3]. In the orbifold language the free fermi-
onic models corresponds to an either symmetric or asymmetric, or freely acting, orbifolds. In
particular, a subclass of the free fermionic vacua corresponds to symmetric Z2 × Z2 orbifold
compactifications at enhanced symmetry points in the toroidal moduli space [4,5]. In this class of
orbifold models the chiral matter spectrum arises from twisted sectors and thus does not depend
on the moduli. This allows the development of a complete classification of Z2 × Z2 symmetric
orbifolds. The free fermionic construction provides the techniques which facilitate developing a
computerized classification algorithm for the twisted matter chiral spectrum. Thus, the free fermi-
onic formalism provides powerful tools for the systematic classification of symmetric Z2 × Z2

perturbative string orbifold models.
For type II string N = 2 supersymmetric vacua the general free fermionic classification tech-

niques were developed in Ref. [6]. The method was extended in Refs. [7–9] for the classification
of heterotic Z2 ×Z2 orbifolds. In this class of models the six-dimensional internal manifold con-
tains three twisted sectors. In the heterotic string each of these sectors may, or may not, a priori
(prior to application of the Generalized GSO (GGSO) projections), give rise to spinorial repre-
sentations. Generically we may classify the models as S3, S2V , SV 2 and V 3 classes of models,
with spinorial representations arising from three, two, one or none of the twisted sectors, re-
spectively. A priori it may be thought that the classification of the different classes of models
would require different sets of basis vectors. However, in Ref. [9] we demonstrated that the en-
tire sets of S3, S2V,SV 2 and V 3 classes of models are produced by working with the single
basis set of Ref. [7], according to specific choices of the one-loop Generalized GSO (GGSO)
projection coefficients (discrete torsions). This fact is of basic importance since it enables a sys-
tematic analysis of all the models and the representation of their main features, like the number
of spinorial, anti-spinorial and vectorial representations, in algebraic formulas.

The classification methodology that we developed allows us to scan a range of over 1016 mod-
els, and therefore obtain vital insight into the properties of the entire space of symmetric Z2 ×Z2

orbifold vacua. The space of vacua in this class of models arises from a set of independent binary
GGSO projection coefficients c

[ bi

bj

]
, which correspond to a matrix with elements taking values

±1. The independent elements of this matrix correspond to the upper block of this matrix. All
other elements are fixed by modular invariance and factorization of the partition function [1]. The
classification basis of Ref. [7] contains 12 vectors. Therefore, the number of independent GGSO
projection coefficients is 66. Requiring N = 1 space–time supersymmetry reduces the number
of independent phases to 55. Hence, prior to imposing further constraints the space of models
that we scan contains 255 different vacua. This space of models is still too large for a complete
computerized classification. Therefore, in Ref. [9] we resorted to a Monte Carlo technique to
generate random choices of phases. Our computer method checked that only new models are
recounted and in this manner we were able to explore a set of some 1010 distinct vacua.

The analysis in Ref. [9] revealed a bell shape distribution that peaks at vanishing net number
of chiral families, with about 15% of the models having three net chiral families. The statistical
analysis also revealed an additional symmetry in the distribution of Z2 × Z2 string vacua under
exchange of vectorial, and spinorial plus anti-spinorial, representations of SO(10). This sym-
metry is akin to mirror symmetry which exchanges spinorial with anti-spinorial representations.
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The symmetry is observed by noting that the same number of models are generated under the
exchange.

In this paper we continue the study of the classification with particular focus on the exploration
of the new symmetry under the exchange of spinorial and vectorial representations. In particular,
for this purpose we modify the method of analysis. Rather than using Monte Carlo generation of
random sets of GGSO phases sets, we perform a complete classification of a restricted class of
models. The restricted class is selected by imposing that the only space–time vector bosons that
arise in the models are those that are obtained from the untwisted Neveu–Schwarz sector. Vector
bosons that may arise from other sectors are projected out by the specific choice of GGSO pro-
jection coefficients. This is achieved by restricting the choices of GGSO projection coefficients
and hence restricting the space of models, and enables a complete computerized classification
of the subclass of vacua. This restricts the four-dimensional gauge group in these models to be
SO(10) × U(1)3 × SO(8) × SO(8), and eliminates enhancements SO(10) × U(1) → E6 as well
as all enhancements of the SO(8) × SO(8).

The complete classification of this restricted class again reveals the symmetry under exchange
of the total number of spinors plus anti-spinors with the number of vectors in the space of string
vacua. Furthermore, we note that the symmetry operates on each of the three twisted sectors
of the Z2 × Z2 orbifold. We note that the symmetry under this exchange is evident when the
SO(10) symmetry is enhanced to E6, in which case #(16+16) = #(10). We demonstrate that the
symmetry persists also when there is no enhancement to E6. We further show the existence of
self-dual vacua in which #(16 + 16) = #(10), but in which the SO(10) symmetry is not enhanced
to E6.

Our paper is organized as follows: in Section 2 we review the method of classification for
completeness. In Section 3 we elaborate on the counting method of SO(10) spinorial and vec-
torial representations. In Section 4 we discuss the conditions imposed on the four-dimensional
gauge group and their implementation in the classification method. In Section 5 we discuss the
results of the classification in comparison to the statistical classification of Ref. [9]. In Section 6
we discuss the spinor-vector duality. In Section 7 we provide an analytic proof of the spinor-
vector duality. In Section 8 we demonstrate the existence of vacua that are self-dual under the
spinor-vector interchange, but in which the SO(10) symmetry is not enhanced to E6. Section 9
concludes the paper.

2. Review of the classification method

In the free fermionic formulation the 4-dimensional heterotic string, in the light-cone gauge,
is described by 20 left-moving and 44 right-moving two-dimensional real fermions [1,2]. A large
number of models can be constructed by choosing different phases picked up by fermions
(fA,A = 1, . . . ,44) when transported along the torus non-contractible loops. Each model corre-
sponds to a particular choice of fermion phases consistent with modular invariance that can be
generated by a set of basis vectors vi , i = 1, . . . , n,

vi = {
αi(f1), αi(f2), αi(f3), . . .

}
describing the transformation properties of each fermion

(2.1)fA → −eiπαi(fA)fA, A = 1, . . . ,44.
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The basis vectors span a space Ξ which consists of 2N sectors that give rise to the string spec-
trum. Each sector is given by

(2.2)ξ =
∑

Nivi, Ni = 0,1.

The spectrum is truncated by a GGSO projection whose action on a string state |S〉 is

(2.3)eiπvi ·FS |S〉 = δSc

[
S

vi

]
|S〉,

where FS is the fermion number operator and δS = ±1 is the space–time spin statistics index.
Different sets of projection coefficients c

[ S
vi

] = ±1 consistent with modular invariance give rise
to different models. Summarizing: a model can be defined uniquely by a set of basis vectors vi ,
i = 1, . . . , n, and a set of 2N(N−1)/2 independent projections coefficients c

[ vi

vj

]
, i > j .

The two-dimensional free fermions in the light-cone gauge (in the usual notation [1–3]) are:
ψμ, χi, yi , ωi , i = 1, . . . ,6 (real left-moving fermions) and ȳi , ω̄i , i = 1, . . . ,6 (real right-
moving fermions), ψ̄A, A = 1, . . . ,5, η̄B , B = 1,2,3, φ̄α , α = 1, . . . ,8 (complex right-moving
fermions). The class of models under investigation, is generated by a set V of 12 basis vectors

V = {v1, v2, . . . , v12},
where

v1 = 1 = {
ψμ,χ1,...,6, y1,...,6,ω1,...,6

∣∣ȳ1,...,6, ω̄1,...,6, η̄1,2,3, ψ̄1,...,5, φ̄1,...,8},
v2 = S = {

ψμ,χ1,...,6},
v2+i = ei = {

yi,ωi
∣∣ȳi , ω̄i

}
, i = 1, . . . ,6,

v9 = b1 = {
χ34, χ56, y34, y56

∣∣ȳ34, ȳ56, η̄1, ψ̄1,...,5},
v10 = b2 = {

χ12, χ56, y12, y56
∣∣ȳ12, ȳ56, η̄2, ψ̄1,...,5},

v11 = z1 = {
φ̄1,...,4},

(2.4)v12 = z2 = {
φ̄5,...,8}.

The vectors 1, S generate an N = 4 supersymmetric model, with SO(44) gauge symmetry. The
vectors ei , i = 1, . . . ,6, give rise to all possible symmetric shifts of the six internal fermionized
coordinates (∂Xi = yiωi, ∂̄Xi = ȳi ω̄i ). Their addition breaks the SO(44) gauge group, but pre-
serves N = 4 supersymmetry. The vectors b1 and b2 define the Z2 × Z2 orbifold twists, which
break N = 4 to N = 1 supersymmetry, and define the SO(10) gauge symmetry. The z1 and z2 ba-
sis vectors give rise to the SO(8)× SO(8) gauge group. It is important to note here that the above
choice of V is the most general set of basis vectors, compatible with an SO(10) Kac–Moody
level one algebra.

Without loss of generality we can fix some of the associated GGSO projection coefficients

c

[
1
1

]
= c

[
1
S

]
= c

[
S

S

]
= c

[
S

ei

]
= c

[
S

bA

]
= −c

[
b2
S

]
= c

[
S

zn

]
= −1,

leaving 55 independent coefficients,

c

[
ei

ej

]
, i � j, c

[
b1
b2

]
, c

[
z1
z2

]
,

c

[
ei

z

]
, c

[
ei

b

]
, c

[
bA

z

]
, i, j = 1, . . . ,6, A,B,m,n = 1,2,
n A n
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since all of the remaining projection coefficients are determined by modular invariance [1,2].
Each of the 55 independent coefficients can take two discrete values ±1 and thus a simple count-
ing gives 255 (that is approximately 1016.6) distinct models in the class of superstring vacua under
consideration.

The vector bosons from the untwisted sector generate an SO(10) × U(1)3 × SO(8)2 gauge
symmetry. Depending on the choices of the projection coefficients, extra gauge bosons may arise
from

(2.5)x = 1 + S +
6∑

i=1

ei + z1 + z2 = {
η̄123, ψ̄12345},

which enhances the gauge group SO(10) × U(1) → E6. Additional gauge bosons can arise as
well from the sectors z1, z2 and z1 + z2 and enhance the hidden gauge group SO(8)2 → SO(16)

or even SO(8)2 → E8. Indeed, as was shown in Ref. [7], for particular choices of the projection
coefficients a variety of gauge groups is obtained. The classification in this paper is restricted
to the case in which all the gauge bosons from the sectors x, z1, z2 and z1 + z2 are projected
out. Hence, in the entire space of vacua the four-dimensional gauge group is SO(10) × U(1)3 ×
SO(8)2.

The matter spectrum from the untwisted sector is common to all models and consists of six
vectors of SO(10) and 12 states that are singlets under the non-Abelian gauge groups. The chiral
spinorial representations arise necessarily from the following 48 twisted sectors

B1
1

3
1
4

1
5

1
6
= S + b1 + 1

3e3 + 1
4e4 + 1

5e5 + 1
6e6,

B2
2

1
2
2

2
5

2
6
= S + b2 + 2

1e1 + 2
2e2 + 2

5e5 + 2
6e6,

(2.6)B3
3

1
3
2

3
3

3
4
= S + b3 + 3

1e1 + 3
2e2 + 3

3e3 + 3
4e4,

where 
j
i = 0,1; b3 = b1 + b2 + x = 1 + S + b1 + b2 + ∑6

i=1 ei + ∑2
n=1 zn and x is given in

Eq. (2.5).
The states that arise from the sectors in (2.6) are spinorials of SO(10) and one can obtain at

most one spinorial (16 or 16) per sector and thus totally 48 spinorials. The states in the vector
representation of SO(10) arise necessarily from the x-mapped twisted sectors Bi

i
3

i
4

i
5

i
6
+ x (i =

1,2,3), accompanied always by six singlets under SO(10) × SO(8) × SO(8).
The string vacua generically may contain additional hidden matter states that transform un-

der the hidden sector gauge group. These arise generically from the sectors Bi

i
3

i
4

i
5

i
6

+ x,

Bi

i
3

i
4

i
5

i
6
+ x + z1, and Bi

i
3

i
4

i
5

i
6
+ x + z2, where (i = 1,2,3). The hidden sector matter states

appear in general in vector representations, and may be chiral with respect to the unbroken U(1)

symmetries, defined by the η̄1, η̄2 and η̄3 world-sheet fermions. Our analysis here focuses on
the observable sector states and neglects the hidden sector matter states. An investigation that
includes the hidden matter states is of interest, in particular in regard to the modular properties
of this space of vacua, but their inclusion is left for future work.

This construction therefore separates the fixed points of the Z2 × Z2 orbifold into different
sectors. This enables the analysis of the GGSO projection on the spectrum from each individual
fixed point separately. Hence, depending on the choice of the GGSO projection coefficients we
can distinguish several possibilities for the spectrum from each individual fixed point. For exam-
ple, in the case of enhancement of the SO(10) symmetry to E6 each individual fixed point gives
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rise to spinorial, as well as vectorial representation of SO(10), which are embedded in the 27
representation of E6. When E6 is broken each fixed point typically will give rise to either spino-
rial or vectorial representation of E6. However, there exist also rare situations, depending on the
choice of GGSO phases, where a fixed point can yield a spinorial as well as vectorial representa-
tion of SO(10) without enhancement. The crucial point, however, is that the GGSO projections
can be written as simple algebraic conditions, and hence the classification is amenable to a com-
puterized analysis.

3. Counting the twisted matter spectrum

The counting of spinorials proceeds as follows. For each SO(10) spinorial from a twisted
sector Bi

pqrs defined in (2.6) we can write down the associated projector P i
pqrs = 0,1, in terms

of the GGSO projection coefficients. The explicit expressions for the 48 projectors are

P
(1)

p1q1r1s1 = 1

4

(
1 − c

[
e1

B
(1)

p1q1r1s1

])(
1 − c

[
e2

B
(1)

p1q1r1s1

])

× 1

4

(
1 − c

[
z1

B
(1)

p1q1r1s1

])(
1 − c

[
z2

B
(1)

p1q1r1s1

])
,

P
(2)

p2q2r2s2 = 1

4

(
1 − c

[
e3

B
(2)

p2q2r2s2

])(
1 − c

[
e4

B
(2)

p2q2r2s2

])

× 1

4

(
1 − c

[
z1

B
(2)

p2q2r2s2

])(
1 − c

[
z2

B
(2)

p2q2r2s2

])
,

P
(3)

p3q3r3s3 = 1

4

(
1 − c

[
e5

B
(3)

p3q3r3s3

])(
1 − c

[
e6

B
(3)

p3q3r3s3

])

(3.1)× 1

4

(
1 − c

[
z1

B
(3)

p3q3r3s3

])(
1 − c

[
z2

B
(3)

p3q3r3s3

])
.

When P i
pqrs = 1 there is a surviving spinorial (16 or 16). For the surviving spinorial (P i

pqrs = 1)

the chirality (16 or 16) is determined from the associated chirality coefficient Xi
pqrs = ±1, where

X
(1)

p1q1r1s1 = c

[
S + b2 + (1 − r1)e5 + (1 − s1)e6

B
(1)

p1q1r1s1

]
,

X
(2)

p2q2r2s2 = c

[
S + b1 + (1 − r2)e5 + (1 − s2)e6

B
(2)

p2q2r2s2

]
,

X
(3)

p3q3r3s3 = c

[
S + b1 + (1 − r3)e3 + (1 − s3)e4

B
(3)

p3q3r3s3

]

(3.2)= c

[
S + b2 + (1 − p3)e1 + (1 − q3)e2

B
(3)

p3q3r3s3

]
.

These formulas are dictated by the vector intersections

S + b2 + (
1 − r1)e5 + (

1 − s1)e6 ∩ B
(1)

p1q1r1s1

= S + b1 + (
1 − r2)e5 + (

1 − s2)e6 ∩ B
(2)

2 2 2 2
p q r s
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= S + b1 + (
1 − r3)e3 + (

1 − s3)e4 ∩ B
(3)

p3q3r3s3

= S + b2 + (
1 − p3)e1 + (

1 − q3)e2 ∩ B
(3)

p3q3r3s3

= {
ψ̄12345}.

Using the above results, we can easily calculate the number of spinorials/anti-spinorial per
sector

(3.3)S
(i)
± =

∑
pqrs

1 ± X
(i)

piqi ri si

2
P

(i)

piqi ri si , i = 1,2,3.

The counting of SO(10) vectorials can proceed in a similar way. For each vectorial generating
sector (Bpqrs)

i +x the associated projector (P̃pqrs)
i is obtained from (3.1) using the replacement

(Bpqrs)
i → (Bpqrs)

i + x. Since there is no chirality in this case the number of vectorials per
sector is just the sum of the projectors

(3.4)V (i) =
∑
pqrs

(P̃pqrs)
(i).

The total number of vectors (V ), the total number of spinors plus anti-spinors (St ), and the
net number of spinors minus anti-spinors (Sc) are given by

(3.5)V =
3∑

i=1

V (i),

(3.6)St =
3∑

i=1

S
(i)
+ + S

(i)
−

and

(3.7)Sc =
3∑

i=1

S
(i)
+ − S

(i)
− ,

respectively.
The mixed projection coefficients entering the above formulas can be decomposed in terms of

the independent phases c
[ vi

vj

]
, i > j . After some algebra we come to the conclusion that for the

counting of the spinorial/anti-spinorial and vectorial SO(10) states the phases c
[ ei

ei

]
, i = 1, . . . ,6,

c
[ zA

zA

]
, A = 1, . . . ,2, c

[ bI

bI

]
, I = 1, . . . ,2 as well as c

[ e3
b1

]
, c

[ e4
b1

]
, c

[ e1
b2

]
, c

[ e2
b2

]
are not relevant.

Moreover the phase c
[ b1

b2

]
is related to the total chirality flip. This leaves a set of 40 independent

phases which is still too large for a manageable computer analysis.
To reduce the number of independent GGSO phases further, we restrict the classification to

the space of models in which the four-dimensional gauge group arises solely from the untwisted
sector. This fixes some additional phases, as we detail below. With respect to this subclass of
four-dimensional solutions the classification is complete.

We can get more information regarding the possible spinorial and vectorial multiplicities per
plane by rewriting the projectors (3.1) in the form of a system of equations. Introducing the
notation

(3.8)c

[
ai

a

]
= eiπ(ai |aj ), (ai |aj ) = 0,1
j
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with the properties

(3.9)(ai |aj + ak) = (ai |aj ) + (ai |ak) ∀ai :
{
ψμ

} ∩ ai = ∅,

(3.10)(ai |aj ) = (aj |ai) ∀ai, aj : ai · aj = 0 mod 4,

where #(ai ·aj ) ≡ #[ai ∪aj −ai ∩aj ]. The projectors can be written as system of equations (one
per plane)

(3.11)Δ(I)U
(I)
16 = Y

(I)
16 , Δ(I)U

(I)
10 = Y

(I)
10 , I = 1,2,3,

where the unknowns are the fixed point labels

(3.12)U
(I)
16 =

⎡
⎢⎢⎢⎣

pI
16

qI
16

rI
16

sI
16

⎤
⎥⎥⎥⎦ , U

(I)
10 =

⎡
⎢⎢⎢⎣

pI
10

qI
10

rI
10

sI
10

⎤
⎥⎥⎥⎦

and

Δ(1) =
⎡
⎢⎣

(e1|e3) (e1|e4) (e1|e5) (e1|e6)

(e2|e3) (e2|e4) (e2|e5) (e2|e6)

(z1|e3) (z1|e4) (z1|e5) (z1|e6)

(z2|e3) (z2|e4) (z2|e5) (z2|e6)

⎤
⎥⎦ ,

Δ(2) =
⎡
⎢⎣

(e3|e1) (e3|e2) (e3|e5) (e3|e6)

(e4|e1) (e4|e2) (e4|e5) (e4|e6)

(z1|e1) (z1|e2) (z1|e5) (z1|e6)

(z2|e1) (z2|e2) (z2|e5) (z2|e6)

⎤
⎥⎦ ,

(3.13)Δ(3) =
⎡
⎢⎣

(e5|e1) (e5|e2) (e5|e3) (e5|e4)

(e6|e1) (e6|e2) (e6|e3) (e6|e4)

(z1|e1) (z1|e2) (z1|e3) (z1|e4)

(z2|e1) (z2|e2) (z2|e3) (z2|e4)

⎤
⎥⎦ ,

(3.14)Y
(1)
16 =

⎡
⎢⎣

(e1|b1)

(e2|b1)

(z1|b1)

(z2|b1)

⎤
⎥⎦ , Y

(2)
16 =

⎡
⎢⎣

(e3|b2)

(e4|b2)

(z1|b2)

(z2|b2)

⎤
⎥⎦ , Y

(3)
16 =

⎡
⎢⎣

(e5|b3)

(e6|b3)

(z1|b3)

(z2|b3)

⎤
⎥⎦ ,

(3.15)Y
(1)
10 =

⎡
⎢⎣

(e1|b1 + x)

(e2|b1 + x)

(z1|b1 + x)

(z2|b1 + x)

⎤
⎥⎦ , Y

(2)
10 =

⎡
⎢⎣

(e3|b2 + x)

(e4|b2 + x)

(z1|b2 + x)

(z2|b2 + x)

⎤
⎥⎦ , Y

(3)
10 =

⎡
⎢⎣

(e5|b3 + x)

(e6|b3 + x)

(z1|b3 + x)

(z2|b3 + x)

⎤
⎥⎦ .

Using standard linear algebra results, we find that the systems of Eqs. (3.11) have solutions
when the rank of the matrix Δ(I) equals to the rank of the associated augmented matrices:
[Δ(I), Y

(I)
16 ] for spinorials and [Δ(I), Y

(I)
10 ] for vectorials. In our case the number of solutions

and thus the total number of spinorials and vectorials per orbifold plane are given by

(3.16)S(I) =
{

24−rank(Δ(I)), rank(Δ(I)) = rank[Δ(I), Y
(I)
16 ],

0, rank(Δ(I)) < rank[Δ(I), Y
(I)
16 ],

I = 1,2,3,

(3.17)V (I) =
{

24−rank(Δ(I)), rank(Δ(I)) = rank[Δ(I), Y
(I)
10 ],

0, rank(Δ(I)) < rank[Δ(I), Y
(I)
10 ],

I = 1,2,3.

The results of the application of formulas (3.16), (3.17) are presented in Table 1.
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Table 1
Total number of SO(10) spinorial and vectorial representations in a given orbifold plane I = 1,2,3 for all possible ranks

of the projection matrices (Δ(I)), [Δ(I), Y
(I)
16 ], and [Δ(I), Y

(I)
10 ]

rank(Δ(I)) rank[Δ(I), Y
(I)
16 ] rank[Δ(I), Y

(I)
10 ] # of spinorials # of vectorials

4 4 4 1 1

3 4 4 0 0
3 4 2 0
4 3 0 2
3 3 2 2

2 3 3 0 0
2 3 4 0
3 2 0 4
3 3 4 4

1 2 2 0 0
1 2 8 0
2 1 0 8
1 1 8 8

0 1 1 0 0
0 1 16 0
1 0 0 16
0 0 16 16

4. The four-dimensional gauge group

For all models generated by the basis set (2.4) the gauge bosons of the null sector give rise to
a gauge symmetry

(4.1)G = SO(10) × U(1)3 × SO(8)1 × SO(8)2.

Additional gauge bosons may arise from the sectors

x, z1, z2, z1 + z2

that can lead to enhancements of the observable and/or the hidden gauge group. These enhance-
ments are model dependent, and hence depend on specific choices of GGSO phases. These
enhancements include:

(I) The x-sector gauge bosons give rise to SO(10) × U(1) → E6 enhancement when

(4.2)(ei |x) = (zk|x) = 0 ∀i = 1, . . . ,6, k = 1,2.

(II) The (z1 + z2)-sector gauge bosons can lead to SO(8)2 → SO(16) enhancement when

(4.3)(ei |z1) = (ei |z2) ∀i = 1, . . . ,6, (bm|z1) = (bm|z2) ∀m = 1,2.

(III) The zk-sectors (k = 1,2), enhancements involve right-moving fermionic oscillators and
belong in two classes depending on the value of (z1|z2):
(a) for (z1|z2) = 1 we obtain gauge bosons that involve z1 and/or z2 oscillators, namely

{φ̄1...8}. These lead to hidden group enhancements, and particularly to SO(8)2 →
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SO(16) when

(4.4)(z1|z2) = 1, (ei |zk) = (bm|zk) = 0 ∀i = 1, . . . ,6;
(b) for (z1|z2) = 0 we obtain gauge bosons that involve oscillators not included in z1, z2

and lead thus to gauge bosons that mix SO(8)1 or/and SO(8)2 with other group factors
in (4.1). These include

(4.5)(z1|z2) = 0, (ei |zk) = 0 ∀i = 1, . . . ,6,

for k = 1 or/and k = 2. In this case the gauge group enhancement includes several
possibilities, depending on the (bm|zk) we can obtain

SO(10) × SO(8)k → SO(18), SO(8)k × U(1) → SO(10),

or

SO(8)2 × U(1)2 → SO(10)2.

Moreover for (z1|z2) = 0 and particular choices of (ei |zk) and (bm|zk) we can have
SO(8)k → SO(9) enhancements.

Mixed combinations of the above are possible when the conditions on the associated GGSO
coefficients are compatible. For example combination of gauge bosons (II) with those in (III)(b)
can lead to SO(10) × SO(8)2 → SO(26) enhancement.

In the present work we restrict to models where all the additional gauge bosons from the
sectors x, z1 + z2 and zk sectors are absent. This is achieved for appropriate choice of the GSO
phases such that the above requirements (4.2)–(4.5) are not satisfied.

5. Results

We classify the string vacua, under the no-enhancement restrictions described above, according to the
numbers of spinors S+, anti-spinors S− and vectors V . The results of this classification does not differ
substantially from the random model generation search that was done in Ref. [9]. The distribution of the
models with respect to the net number of chiral families Sc = S+ − S−, and the percentage of models with
a given Sc , are displayed in Figs. 1 and 2, respectively, and can be compared with the corresponding figures
in Ref. [9]. The new figures are denser and represents a scan of a larger set of models, but their qualitative
appearance is similar to those generated by the statistical analysis of Ref. [9].

A statistical analysis approach to the study of string vacua has been of contemporary interest [10]. Our
results in this respect may be viewed as providing encouragement that the statistical analysis approach may
indeed provide some insight into the properties of large classes of string compactifications. As in Ref. [9] we
observe a bell shape distribution that peaks for vanishing net number of generations. Similarly to Ref. [9]
models with a net number of 7, 9 11, 13, 14, 15, 17, 18, 19, 21, 22, 23 chiral generations are not found
in the distribution. The results of the statistical analysis of Ref. [9] conquer with the complete method of
classification of the current analysis.

The distribution exhibits a symmetry with respect to the exchange of spinor S+ and anti-spinors S−.
The symmetry is not identical to the mirror symmetry on Calabi–Yau manifolds with E6 symmetry [11].

Indeed in our models there exist an overall chirality phase c
[ b1
b2

] = ±1, which is fixed in our analysis.
This overall chirality phase corresponds to the discrete torsion in the N = 1 partition function and fixes
the overall chirality of the models. The change of this phase, according to some arguments in the literature
[11], corresponds to the mirror symmetry transformation on Calabi–Yau manifolds with E6 symmetry and
(2,2) superconformal compactifications. The S+ ↔ S− exchange symmetry of the vacua that we classify
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Fig. 1. Scatter plot of the logarithm of the number of models versus the net number of chiral families, Sc .

in this work corresponds necessarily to a new mirror like symmetry, which is independent of the discrete

torsion associated with the overall chirality phase c
[ b1
b2

]
. Further studies of the origin of the new mirror like

symmetry arising naturally in (2,0) superconformal compactifications related to the vacua examined here
will be reported in future publications.

In Fig. 3 we demonstrate that the distribution of the number of models as a function of the net number of
chiral families in not well fitted with a Gaussian curve, as suggested in Ref. [12]. The distribution is fitted
better with a sum of two Gaussian functions as illustrated in Fig. 3.

More interestingly we find that the space of Z2 × Z2 orbifold models exhibits a novel symmetry under
the exchange of the total number of vectorial representations V and the total number of spinorial plus anti-
spinorial representations St . Thus, for any given model with a total number of SO(10) V -representations,
there exists a corresponding model in which the total number of SO(10) St -representations is the same.
Below we turn to investigate this symmetry in some detail.

6. Spinor-vector duality

The existence of a V ↔ St duality exchange symmetry is apparent when the SO(10) symmetry
is enhanced to E6. In this case the chiral matter states arise from the 27 and 27 representations
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Fig. 2. Percentage of models with a net number of generations, Sc .

Fig. 3. Total number of models as a function of net chirality. The gray line corresponds to the sum of Gaussians

f = Ae−αx2 + Be−αx2/4 where A = 1.64 × 1011, B = 4.39 × 108 and α = 9.13 × 10−2.
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Table 2
Examples of spinor-vector duality on the first twisted plane. The total number of models with a given number of spinors
plus anti-spinors is equal to the total number of models with the same number of vectors. The total number of models
with a given number of spinors plus anti-spinors is obtained by summing over the different distributions of spinors and
anti-spinors

First plane Second plane Third plane # of models

s s̄ v s s̄ v s s̄ v

2 0 0 0 0 0 0 0 0 1325963712
0 2 0 0 0 0 0 0 0 1340075584
1 1 0 0 0 0 0 0 0 3718991872

0 0 2 0 0 0 0 0 0 6385031168

4 0 0 0 0 0 0 0 0 111944544
3 1 0 0 0 0 0 0 0 250947136
2 2 0 0 0 0 0 0 0 1059624448
1 3 0 0 0 0 0 0 0 251936192
0 4 0 0 0 0 0 0 0 113437024

0 0 4 0 0 0 0 0 0 1787889344

0 8 0 0 0 0 0 0 0 535280
2 6 0 0 0 0 0 0 0 8084480
4 4 0 0 0 0 0 0 0 34050304
6 2 0 0 0 0 0 0 0 8053760
8 0 0 0 0 0 0 0 0 529040

0 0 8 0 0 0 0 0 0 51252864

0 16 0 0 0 0 0 0 0 272
4 12 0 0 0 0 0 0 0 9792
6 10 0 0 0 0 0 0 0 26112
8 8 0 0 0 0 0 0 0 84000

10 6 0 0 0 0 0 0 0 26112
12 4 0 0 0 0 0 0 0 9792
16 0 0 0 0 0 0 0 0 272

0 0 16 0 0 0 0 0 0 156352

of E6, which decompose under SO(10) as

27 ≡ 16 ⊕ 10 ⊕ 1,

(6.1)27 ≡ 16 ⊕ 10 ⊕ 1.

From Eq. (6.1) it is seen that in this case the total number of spinorial 16 ⊕ 16 SO(10) represen-
tations is equal to the total number of vectorial 10 representations, and such models are self-dual
under the exchange. Thus, V ↔ St duality is trivial in the case of (2,2) Calabi–Yau compactifi-
cations. However, over the space of (2,0) vacua that we scan in this work, the SO(10) symmetry
is not enhanced to E6 symmetry. Nevertheless, the distribution of vacua still exhibits this sym-
metry. Furthermore, we find that the V ↔ St duality holds separately for each twisted plane. In
Table 2 we illustrate the V ↔ St duality on the first plane. The duality is observed by noting that
for a fixed number of representations, summing over the number of models with a total number
of spinor plus anti-spinor representations produces the identical number of models with the same
number of vector representations. Thus, for example, summing over the number of models in the
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Fig. 4. Total number of spinors plus anti-spinors, St , versus the number of vectors, V , occurring in the scanned space of
vacua.

first three rows produces the number of models in the fourth row. Considering that the integral
numbers involved are quite high, the resulting equalities are quite astounding!

In Fig. 4 we display the total number of spinors plus anti-spinors versus the number of vectors
occurring in the scan. The figure is clearly symmetric under the exchange of the two axis, which
illustrates that for any model with a given number of spinors, anti-spinors and vectors, there is a
corresponding model in which the number of vectors is swapped with the number of spinors plus
anti-spinors.

In Fig. 5 we display in a matrix form the number of models for a given number of vectors and
spinors plus anti-spinors. The indices of the raws and columns of the matrix indicate the number
of respective representations in the models, whereas the entries are the number of models. In
each entry we sum over different configurations by which the spinors, anti-spinor and vector
representations are arranged in the three twisted planes and fixed point sectors. Therefore, the
entries represent nontrivial sums over different configurations. Examining the matrix in Fig. 5
it is seen that it is a symmetric matrix reflecting the invariance under exchange of vectors with
spinors plus anti-spinors.

Fig. 6 is a graphic representation of Fig. 5 and shows a density plot of the number of models.
The axis of the plot are the number of vectors and the number of spinors plus anti-spinors. The
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a given number of spinors and vectors. The symmetry of
Fig. 5. Matrix of spinor plus anti-spinor versus vectors. The entries of the matrix are the total number of models with
the matrix manifest the spinor-vector duality.
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Fig. 6. Density plot of the number of models versus the number of vectors and spinors plus anti-spinors.

layout of the plot is similar to that of Fig. 4. The density of the number of models, represented
by the gray coloration, exhibits the invariance under exchange of vectors and spinors plus anti-
spinors.

The V ↔ St duality symmetry reflects some modular properties of the N = 1 partition func-
tion. This symmetry arises from a non-trivial discrete torsion induced by reversing some of the
GGSO projection coefficients. To illustrate this discrete exchange we consider the simplified
model produced by the set of basis vectors

v1 = 1 = {
ψμ,χ1,...,6, y1,...,6,ω1,...,6

∣∣ȳ1,...,6, ω̄1,...,6, η̄1,2,3, ψ̄1,...,5, φ̄1,...,8},
v2 = S = {

ψμ,χ1,...,6},
v3 = z1 = {

φ̄1,...,4},
v4 = z2 = {

φ̄5,...,8},
v5 = x = {

ψ̄1,...,5, η̄1,2,3},
v6 = b1 = {

χ34, χ56, y34, y56
∣∣ȳ34, ȳ56, η̄1, ψ̄1,...,5},

(6.2)v7 = b2 = {
χ12, χ56, y12,ω56

∣∣ȳ12, ω̄56, η̄2, ψ̄1,...,5}
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with the set of one-loop GGSO coefficients

(6.3)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 S z1 z2 x b1 b2

1 −1 1 −1 −1 −1 −1 −1

S 1 1 −1 −1 −1 1 1

z1 −1 −1 −1 −1 −1 −1 −1

z2 −1 −1 −1 −1 1 1 1

x −1 −1 −1 1 1 −1 1

b1 −1 −1 −1 1 1 −1 1

b2 −1 −1 −1 1 −1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The gauge group of this model is SO(12) × SO(10) × U(1)3 × SO(8) × SO(8) and arises
solely from the null sector. The gauge bosons arising from all other sectors are projected out. In
this model the number of the SO(10) spinorial representations #S+ = 8 arising from the sector

b3 ≡ 1 + z1 + z2 + b1 + b2.

There are no more spinorial representations from the b1 sector nor from the b2 sector. The sectors
b3 + x and b1,2 + x + z1 each, produce eight multiplets that transform in the 8 representation of
the hidden SO(8)1 gauge group, whereas the sectors b1,2,3 +x+z2 each, produce eight multiplets
that transform in the 8 representation of the hidden SO(8)2 gauge group. The sector z2 produces
a single state that transforms as 8v ⊗ 8c under SO(8)1 ⊗ SO(8)2.

Switching on a discrete torsion defined by the phase change

(6.4)c

[
z1
b1

]
= +1 → c

[
z1
b1

]
= −1,

the eight SO(10) spinorial representations from the sector b3 are now projected out, whereas
the sector b3 + x generates eight vectorial 10 representation of SO(10) plus additional 8 × 6
SO(10) singlets. The remaining observable spectrum, which is charged under SO(10), is identical
in these two models, with and without discrete torsion. Hence, the discrete torsion defined in
Eq. (6.4) induces the duality transformation that exchanges the SO(10) spinorial and vectorial
representations. Additionally, the hidden sector matter spectrum is also modified. Indeed, in the
presence of torsion the sectors b2 +x and b1 +x+z2 each produce eight multiplets that transform
in the 8 representation of the hidden SO(8)2 gauge group, whereas the sectors b1,2 +x + z1 each,
produce eight multiplets that transform in the 8 representation of the hidden SO(8)1 gauge group.
The sector z2 produces a single state that transforms as 8v ⊗ 8c under SO(8)1 ⊗ SO(8)2.

In the next section we present a general proof, based on the solutions of Eqs. (3.11), for the
V ↔ St duality symmetry over the space of vacua.

7. Analytic proof of spinor-vector duality

In Section 3 a system of the projection equations (3.11)–(3.17) that determines the number
of spinor and vector representations per twisted plane in algebraic form. This involves the 4 × 4
binary matrices Δ(I) of Eq. (3.13) and the augmented matrices [Δ(I), Y

(I)
16 ] and [Δ(I), Y

(I)
10 ].

Since the V ↔ St duality interchanges spinors and vectors and since the number of the spinor
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and vector states relates to the rank of these matrices, as given in Eqs. (3.16) and (3.17), we
will show that the V ↔ St interchange takes place plane by plane. The number of vectorials and
spinorials originating from a specific orbifold plane I are interchanged when the ranks of the
associated Y -vectors are interchanged

(7.1)rank
[
Δ(I), Y

(I)
16

] ↔ rank
[
Δ(I), Y

(I)
10

]
,

as follows from Eqs. (3.16) and (3.17). In order to prove the existence of V ↔ St duality we
have to demonstrate the existence of a universal map that preserves the ranks of the matrices,
while exchanging Y I

16 ↔ Y I
10. Since the rank of the augmented matrix does not change by adding

to the Y I
10 a linear combination of the columns of ΔI the most general transformations of the

GSO phases that realizes the above interchange, modulo the rank preserving transformations, are
given by

(ek|b1) → (ek|b1 + x) +
∑

i=3,4,5,6

λ1
i (ek|ei), k = 1,2,

(7.2)(zm|b1) → (zm|b1 + x) +
∑

i=3,4,5,6

λ1
i (zm|ei), m = 1,2,

(ek|b2) → (ek|b2 + x) +
∑

i=1,2,5,6

λ2
i (ek|ei), k = 3,4,

(7.3)(zm|b2) → (zm|b2 + x) +
∑

i=1,2,5,6

λ2
i (zm|ei), m = 1,2,

(ek|b3) → (ek|b3 + x) +
∑

i=1,2,3,4

λ3
i (ek|ei), k = 5,6,

(7.4)(zm|b3) → (zm|b3 + x) +
∑

i=1,2,3,4

λ3
i (zm|ei), m = 1,2,

where λ
j
i = 0,1 are arbitrary coefficients. The freedom of adding these coefficients amounts

to reorganizing the matter spectrum of the vector representations on each twisted plane. Adding
these coefficients is necessary, as we show below, in order to prove the existence of a duality map
on all three twisted planes. Indeed, the duality map on the first and second planes can be induced
by choosing the independent phases (e1,2|b1,2) and (z1,2|b1,2) arbitrarily, without affecting the
ΔI matrices. In the third plane, however, i.e. for b3 which is composed in terms of b1 and b2,
this freedom a priori is not apparent. Replacing b3 = b1 + b2 + x in Eq. (7.4) we obtain

(7.5)(ek|b3) → (ek|b1) + (ek|b2) +
∑

i=1,2,3,4

λ3
i (ek|ei), k = 5,6,

(7.6)(zm|b3) → (zm|b1) + (zm|b2) +
∑

i=1,2,3,4

λ3
i (zm|ei), m = 1,2.

The transformation in Eq. (7.5) is trivially realized by using the freedom in the phases (e5|b1) and
(e6|b2). Turning to the transformation in Eq. (7.6), there is no remaining freedom in the choice
of the GGSO coefficients (zm|b1) and (zm|b2) since these are used in the transformations on the
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first two planes. Using the duality transformations in Eqs. (7.2)–(7.4) we may rewrite Eq. (7.6)
as

(zm|b3) → (z1|b3 + x) +
[
(z1|z2) + 1 +

∑
i=1,2

(
λ2

i + λ3
i + 1

)
(zm|ei)

(7.7)+
∑
i=3,4

(
λ1

i + λ3
i + 1

)
(zm|ei) +

∑
i=5,6

(
λ1

i + λ2
i + 1

)
(zm|ei)

]
,

where m = 1,2 and the identity

(7.8)(zm|x) =
(

zm

∣∣∣1 + S + z1 + z2 +
6∑
1

ei

)
= 1 + (z1|z2) +

6∑
1

(zm|ei)

is used to obtain Eq. (7.7). To show the existence of the duality map on the third twisted plane it
is sufficient to demonstrate that the term in the square brackets in Eq. (7.7) can be either 0 or 1
for appropriate choice of λ

j
i coefficients. This possibility exists provided that at least one of the

(z1|ei) and one of the (z2|ei) is non-vanishing. This is indeed the case in the class of models that
we classify here, being the no gauge group enhancement condition discussed in Section 4.

8. Self-dual solutions without enhanced symmetry

In this section we discuss the self-dual solutions. The existence of such self-dual solutions is
evident from the matrix in Fig. 5 and the density plot in Fig. 6. The diagonal elements in the
figure and the corresponding matrix are the self-dual solutions, in which the total number of
(16 ⊕ 16) spinorial representations is equal to the total number of (10) vectorial representations
of SO(10). This self-duality is obvious when the SO(10) symmetry is enhanced to E6. Indeed, in
this case the 27 contains the 16+10+1, whereas the 27 contains the 16+10+1. Hence, in an E6

vacuum with a given number of 27 and 27 the total number of 16⊕16 spinorial representations is
necessarily equal to the total number of 10 vectorial representations. However, in the models that
we classify here the gauge bosons that enhance the SO(10) × U(1) symmetry to E6 are always
projected out by the GGSO projections. Nevertheless, as illustrated in Figs. 5 and 6, there exist
in the space of vacua, models that preserve the self-duality.

In the case that the symmetry is enhanced to E6, a given sector B , on a given twisted plane,
may give rise to a 16 or 16 representation of SO(10), and necessarily an accompanying 10 vector-
ial representation from the sector B +x, to supplement the representation to the 27 representation
of E6. However, once the E6 symmetry is broken we expect that the given sectors B and B + x,
give rise to either a massless spinor or vector, but not to both, and hence that the equality is
removed. Furthermore, as the E6 symmetry is broken we anticipate that the Abelian U(1) sym-
metry in E6 → SO(10)×U(1) becomes anomalous. While this expectation is in general correct,
there exist models in the space of vacua in which the total numbers of spinor and vectors re-
distribute themselves among the twisted sectors in a way that maintains the equality of the total
number of (16 ⊕ 16) and 10 multiplets. In the space of SO(10) vacua classified in our work,
these models are self-dual under the spinor-vector duality. Furthermore, in some of these self-
dual solutions the Abelian U(1) symmetries are anomalous, whereas in others all the Abelian
U(1) symmetries are anomaly free. Below we exhibit two examples of models in this class.
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8.1. A three generation self-dual model

This model is generated by the basis vectors {v1, . . . , v12} of (2.4) and the GGSO coefficients
c
[ vi

vj

] = exp[(vi |vj )], i, j = 1, . . . ,12, where

(vi |vj ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 S e1 e2 e3 e4 e5 e6 b1 b2 z1 z2

1 1 1 1 1 1 1 1 1 1 1 1 1

S 1 1 1 1 1 1 1 1 1 1 1 1

e1 1 1 0 1 0 0 1 0 1 0 0 1

e2 1 1 1 0 1 0 1 0 0 0 0 0

e3 1 1 0 1 0 0 0 1 0 0 0 0

e4 1 1 0 0 0 0 1 0 0 1 1 1

e5 1 1 1 1 0 1 0 1 1 1 1 1

e6 1 1 0 0 1 0 1 0 1 0 1 0

b1 1 0 1 0 0 0 1 1 1 0 1 1

b2 1 0 0 0 0 1 1 0 0 1 1 1

z1 1 1 0 0 0 1 1 1 1 1 1 1

z2 1 1 1 0 0 1 1 0 1 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The properties that characterize the model are:

• the gauge group is SO(10) × SO(8)2 × U(1)3;
• three SO(10) spinorials (one from each plane) arising from the points

S + b1 + e3 + e5, S + b2 + e5, S + b3 + e2 + e4;
• three SO(10) vectorial representations (one from each plane) arising from

S + b1 + e3 + x, S + b2 + x and S + b3 + e3 + x;
• eight octets charged under the first SO(8) arising from

S + b3 + e1 + z2, S + b3 + e1 + e3 + e4 + x,

S + b2 + e2 + e5 + e6 + z1 + x, S + b2 + e2 + e6 + x,

S + b1 + e3 + e4 + e6 + z1 + x, S + e3 + e4 + b1 + z1 + x,

S + b1 + e3 + e6 + x, S + b2 + e5 + z1 + x;
• eight octets charged under the second SO(8) arising from

S + b3 + e3 + e4 + z2 + x, S + b3 + e4 + e5 + e6 + x,

S + b3 + e1 + e2 + e3 + z2 + x, S + b2 + e1 + e5 + x + z2,

S + b2 + e1 + x, S + b1 + e3 + e4 + e6 + x,

S + b1 + e4 + e5 + e6 + x + z2, S + b2 + x + z2.

A number of non-Abelian group singlets is also present in the model’s spectrum. All three
Abelian factors are anomaly free.
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8.2. A six generation self-dual model

This model is generated by the basis vectors v1, . . . , v12 of (2.4) and the GGSO coefficients
c
[ vi

vj

] = exp[(vi |vj )], i, j = 1, . . . ,12, where

(vi |vj ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 S e1 e2 e3 e4 e5 e6 b1 b2 z1 z2

1 1 1 1 1 1 1 1 1 1 1 1 1

S 1 1 1 1 1 1 1 1 1 1 1 1

e1 1 1 0 0 0 1 0 1 1 0 0 1

e2 1 1 0 0 1 1 0 0 0 0 0 0

e3 1 1 0 1 0 1 1 0 0 1 1 1

e4 1 1 1 1 1 0 0 0 0 1 1 0

e5 1 1 0 0 1 0 0 1 0 1 1 1

e6 1 1 1 0 0 0 1 0 0 1 1 0

b1 1 0 1 0 0 0 0 0 1 0 1 0

b2 1 0 0 0 1 1 1 1 0 1 1 0

z1 1 1 0 0 1 1 1 1 1 1 1 1

z2 1 1 1 0 1 0 1 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The properties that characterize the model are:

• the gauge group is SO(10) × SO(8)2 × U(1)3;
• six SO(10) spinorials (2 from each plane) arising from the points

S + b1 + e6, S + b1 + e3 + e4 + e5, S + b2 + e2 + e6,

S + b2 + e1 + e5, S + b3 + e3 + e4, S + b3 + e2 + e3 + e4;
• six SO(10) vectorials (2 from each plane) arising from

S + b1 + e3 + e4 + e6 + x, S + b2 + e1 + e6 + x,

S + b2 + e2 + e5 + x, S + b2 + e5 + x,

S + b3 + e1 + e3 + e4 + x, S + b3 + e1 + e2 + e3 + e4 + x;
• six octets charged under the first SO(8) arising from

S + b3 + e1 + e3 + x, S + b3 + e1 + e2 + e3 + x,

S + b2 + e1 + x, S + b2 + e2 + e5 + e6 + x,

S + b1 + e3 + e4 + e5 + e6 + x + z1, S + b1 + x + z1;
• six octets charged under the second SO(8) arising from

S + b3 + e1 + e4 + x + z2, S + b3 + e1 + e2 + e4 + x + z2,

S + b2 + e1 + e5 + e6 + z2, S + b2 + e2 + z2,

S + b1 + e3 + e4 + x + z2, S + b1 + e5 + e6 + z2.

A number of non-Abelian gauge group singlets is also present in the model’s spectrum. All
three Abelian factors are anomaly free.
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9. Conclusions

In this paper we continued the classification of fermionic Z2 × Z2 heterotic string vacua,
which was started in Ref. [7]. It was restricted in [7] to the models dubbed S3 class models,
in which all twisted planes may a priori produce spinorial representations. Extensions to S2V ,
SV 2 and V 3 classes of models by modifying the set of boundary condition basis vectors were
investigated in Ref. [8]. However, as discussed in Ref. [9] the entire space of S3, S2V , SV 2 and
V 3 classes of models is generated by using the single set of basis vectors given in Eq. (2.4) and
modifying the one-loop GGSO projection. This result follows from theta-functions identities
which render the vector basis modification equivalent to certain choices of GGSO projection
coefficients in the enlarged basis set (2.4). This equivalence therefore facilitates the classification
of this class of string vacua, as one can work with a single basis and the classification entails
the variation of the binary GGSO projection coefficients. Counting the number of independent
GGSO phases therefore corresponds to a space of 255, or approximately 1016.6, independent
choices. In Ref. [9] we resorted to a random generation of GGSO phases to scan a space of
∼ 1010 independent models, with SO(10) × U(1)3 × hidden gauge group. The hidden gauge
group in that case was not restricted, and the enhancements of SO(8) × SO(8) to SO(16) and E8

were allowed.
In the work reported here we restricted the classification to models in which the hidden gauge

group is not enhanced, and is SO(10)×U(1)3 × SO(8)× SO(8) over the entire space of models.
This restriction reduced the number of independent phases, and therefore allows the complete
classification of this space of vacua, and consequently produces exact results. The classification
then reveals a bell shape distribution that peaks at vanishing net number of chiral families, and
∼ 15% of models with three net chiral families. These results are in accordance with the statis-
tical results of Ref. [9]. This outcome lends credence to recent attempts [10] at using statistical
methods to extract phenomenological information on ensembles of string vacua.

The complete classification revealed a novel duality symmetry over the entire space of scanned
vacua under the exchange of spinorial plus anti-spinorial representations of SO(10) with vectorial
representations. This duality symmetry implies that for every model with a given number of
spinors (plus anti-spinors) and vectors there exist another model in which they are interchanged,
and reflects a symmetry under the discrete exchange of some GGSO projection coefficients. We
exhibited this discrete exchange in one concrete example and provided a general algebraic proof.

It is important to note that over the space of Z2 × Z2 heterotic string vacua that we study
here the St ↔ V duality map operates on the Z2 × Z2 twisted planes, plane by plane. As the
Z2 × Z2 twisted planes preserve N = 2 space–time supersymmetry this fact implies that the
St ↔ V duality already exists at the N = 2 level. It is of interest therefore to explore whether the
St ↔ V duality also exists in other classes of string compactifications that do not contain N = 2
preserving sectors.

The existence of the duality symmetry over the entire space of vacua is of fundamental signif-
icance. It reflects the existence of a common structure that underlies the entire space of models.
Just as in the case of ten-dimensional string theories and eleven-dimensional supergravity, the
existence of nontrivial duality relations suggests the existence of an underlying theoretical for-
malism, traditionally dubbed M-theory, the spinor-vector duality indicates a common structure
that underlies the entire space of fermionic Z2 × Z2 vacua. Thus, the view of this space of string
models as consisting of disconnected vacua is premature, and they may in fact be connected by
a yet unknown physical mechanism.
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It is of further interest to develop a geometrical correspondence of the spinor-vector duality
that we uncovered in the free fermionic, or orbifold, limit. In this respect the spinor-vector du-
ality may be viewed as a generalization of the mirror symmetry [13], which exchanges spinors
with anti-spinors. In the geometrical picture, just as mirror symmetry indicated the existence of
topology changing transitions between Calabi–Yau manifolds with a mirror Euler characteris-
tic, but equal in absolute value [14], the spinor-vector duality might indicate the existence of
topology changing transitions between heterotic string vacua with different Euler character. The
geometrical picture in this case, however, might prove more intricate to explore as one must also
take account of the vector bundle that accounts for the heterotic string gauge degrees of freedom.
Nevertheless, the feasibility of such transitions, afforded by the observation of the spinor-vector
duality over the entire space of fermionic Z2 × Z2 vacua, suggests that the models in this space
are connected by a yet unknown mechanism rather than disconnected.
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