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Abstract

We elaborate on the recently discovered spinor–vector duality in realistic free fermionic heterotic vacua.
We emphasize the interpretation of the freely-acting orbifolds carried out on the six internal dimensions
as coordinate-dependent compactifications; they play a central role in the duality, especially because of
their ability to break the right-moving superconformal algebra of the space–time supersymmetric heterotic
vacua. These considerations lead to a simple and intuitive proof of the spinor–vector duality, and to the
formulation of explicit rules to find the dual of a given model. We discuss the interest of such a duality,
notably concerning the structure of the space of vacua of superstring theory.
© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Heterotic string theory [1] is a preferred candidate to build realistic string theories. Indeed, its
structure allows a large variety of gauge groups, derived from the breaking of the original SO(32)

or E8 × E8 10-dimensional gauge group upon compactification [2]. These groups include usual
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grand unification groups such as SO(10) or SU(5), usually arising from the breaking of the E6
gauge group present in a N = (2,2) Calabi–Yau compactification of heterotic string theories.

One expects a realistic theory to have N = 1 (which is further spontaneously broken) four-
dimensional supersymmetry. In our framework, this is achieved by compactifying the six internal
dimensions on a T 6/Z2 × Z2 orbifold. This procedure initially breaks supersymmetry from
N = 4 to N = 1. The last breaking N = 1 → N = 0 is assumed to be realized either by non-
perturbative phenomena or by (geometric or non-geometric) fluxes [3]. The T 6/Z2 ×Z2 orbifold
framework also has the advantage to have three N = 2 twisted sectors, which can lead naturally
to a realization of models with three generations [4–8].

The models we are going to be interested in are built using the so-called fermionic construc-
tion [5], where the Weyl anomaly is cancelled by inclusion of free fermionic degrees of freedom
on the world-sheet. Over the years, several string-derived realistic models have been constructed
using this formalism [6]. It is known [7,8] that such models reproduce a wide variety of com-
pactifications, toroidal or more generally Calabi–Yau, at special points of their moduli space.
A particular model is specified by a basis of sets of fermions, or more precisely by summation
over a set of spin structures authorized for the fermions. In this procedure, standard Z2 freely-
acting and non-freely acting orbifolds are encoded in a very natural way, which arises from the
properties of fermionization when the internal manifold is at the extended symmetry point, re-
ferred to as the fermionic point. Placing ourselves at this specific point of the moduli space of
the theory is not very restrictive: indeed, if one chooses to deform these models in order to move
away from this point, the form of the twisted sectors, and therefore the chiral matter content of
the model, is unchanged as these sectors are insensitive to the geometry of the compactification
manifold [4,8,9]. The T 6/Z2 × Z2 orbifold breaking the supersymmetry to N = 1 is realized by
means of the introduction of two sets of fermions, that we will call b1 and b2. We finally have
to specify the value of various discrete torsion coefficients, defining the action of the generalized
GSO projections present in the construction; this specification, among other things, encodes the
precise effect of all the orbifoldings that have been introduced.

In this paper, we will focus on a duality that has been pointed out in a recent work [4], where
several properties of all possible heterotic Z2 × Z2 models have been detailed, by means of
a computerized statistical study of their massless spectra. This study has been restricted to a
subclass of models closely resembling the usual three generation realistic string models, where
the gauge group yielded by the free fermions include a factor SO(10). This duality exchanges,
within the three twisted sectors of the orbifold, the number of vectorial representations of SO(10)

with the number of spinorial plus anti-spinorial representations of SO(10). Starting from obvi-
ously self-dual cases, namely the cases where the SO(10) gauge is extended to E6, which can
be linked to the usual N = (2,2) compactifications on Calabi–Yau surfaces, we will be able to
project out some of the representations of SO(10) by suitable freely-acting orbifolds, therefore
explicitly creating dual pairs of models in a straightforward way. We will be able to construct the
dual model of some generic model, which will prove the duality. As noted in previous work, this
duality is realized internally in each twisted sector. Consequentially, the duality has been shown
to hold in N = 2 theories as well (as N = 2 supersymmetry is conserved in each of the twisted
sectors). The mechanism of the proof can be adapted in a straightforward way to this case.

The main ingredient of the construction will be to consider the effect of freely-acting orb-
ifolds. These orbifolds, when carried out in the simplest way, correspond to the modding out of
a half-shift symmetry X → X + πR on an internal boson X. In this case, the generated twisted
sectors are massive; without further hypotheses, the mass shift does not depend on the various
representations to which the states belong. However, in a particular framework, the freely-acting
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orbifold can break a symmetry by lifting the mass degeneracy between the symmetry partners.
This happens if, in addition to the translation, we consider modding out a parity operator, discrim-
inating states having different charges under a symmetry group. As a result, states with different
charges will undergo different mass shifts, leading to a spontaneous breaking of symmetry. This
mechanism is the stringy generalization [3] of the field-theoretic Scherk–Schwarz compactifi-
cation [10]; it can be used to spontaneously break supersymmetry, when the parity operator is
chosen to be the space–time helicity of the string state [3]. More generally, various patterns of
spontaneous SUSY breaking are obtained by choosing an arbitrary R-symmetry charge (see for
example [11] for a recent cosmological application of these constructions).

This enables us also to break an internal superconformal algebra, relating vectorial and spino-
rial representations of some gauge group of the theory. The current transforming the spinorial
representation into the vectorial one and vice-versa is part of the right-hand side of the N = (2,2)

superconformal algebra present in the model in the case of an unbroken E6. By doing a Scherk–
Schwarz compactification of an internal direction coupled to the helicity associated to the differ-
ent representations of the gauge group, one is then able to break this superconformal symmetry,
discriminating vectorial and spinorial representations by creating a mass gap.

In the first part of this paper, we will review the free fermionic setup used to construct the
class of models we will be interested in. Then we will detail how one can implement freely-
acting orbifolds with the sets we introduced, how these freely-acting orbifolds can be used for the
spontaneously breaking of some symmetry, and how it can, in our case, lift the mass degeneracy
between the spinorial/anti-spinorial representations of SO(10) and the vectorial representations
of SO(10). In a third part, we will focus on one twisted plane (that is, one family of twisted
sectors) of the theory. We will start by considering one specific model in the first twisted plane,
and detail its massless spectrum. Then, we will enunciate the rules to construct the (St ↔ V )-dual
of a model, and apply them on the model we just constructed. We will also give some tools to
perform this duality directly on the partition function of the theory. Finally, we will conclude by
some remarks on the significance of this duality, especially regarding the structure of the vacua
of N = 1 heterotic string theories.

2. Free fermionic construction

2.1. N = 1 and N = 2 parity set basis and partition function

Starting for a four-dimensional superstring theory made out of free fermions [5], the 20 left-
moving fermions are noted, following Refs. [9,12]

(2.1)
{
ψμ,χ1...6, y1...6,ω1...6}

and the 44 right-moving ones

(2.2)
{
ȳ1...6, ω̄1...6, ψ̄1...5, η̄1...3, φ̄1...8}

where the ψ̄ ’s, η̄’s and φ̄’s are complex fermions. These notations fixed, we are considering the
sets

F = {ψμ,χ1...6, y1...6,ω1...6
∣∣ȳ1...6, ω̄1...6, ψ̄1...5, η̄1...3, φ̄1...8},

S = {ψμ,χ1...6}, ei = {yi,ωi |ȳi , ω̄i
} [i = 1 . . .6],

b1 = {χ3...6, y3...6
∣∣ȳ3...6, ψ̄1...5, η̄1},
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b2 = {χ1,2,5,6, y1,2,5,6
∣∣ȳ1,2,5,6, ψ̄1...5, η̄2},

(2.3)z1 = {φ̄1...4}, z2 = {φ̄5...8}.
Noting additively the usual composition law of the free fermionic formalism, we will use that

(2.4)x = {ψ̄1...5, η̄1,2,3}= F + S +
∑

i

ei + z1 + z2

and

(2.5)b3 = b1 + b2 + x = {χ1...4, y1...4|ȳ1...4, ψ̄1...5, η̄3}
are part of the vacua of the theory. Note that the case of a N = 2 theory is treated by considering
the previous set, amputated of b2. This has the effect of considering a T 4/Z2 × T 2 orbifold
instead of a T 6/Z2 × Z2. The duality also holds in this case, as we will see from the mechanism
of construction that the duality holds separately in each twisted sector; and within a twisted
sector, N = 2 supersymmetry is preserved.

The generic form of this partition function is quite lengthy but useful. We note, as an index of
the various blocks, the corresponding degrees of freedom. Noting for brevity h3 = −h1 − h2, it
reads:

ZN =1 =
∫
F

d2τ

τ 2
2

τ−1
2

η12η̄24

1

22

×
∑
hi ,gi

(
1

2

∑
a,b

(−)a+b+abϑ

[
a

b

]
ϑ

[
a + h1
b + g1

]
ϑ

[
a + h2
b + g2

]
ϑ

[
a + h3
b + g3

])
ψμ,χ

×
(

1

2

∑
ε,ξ

ϑ̄

[
ε

ξ

]5

ϑ̄

[
ε + h1
ξ + g1

]
ϑ̄

[
ε + h2
ξ + g2

]
ϑ̄

[
ε + h3
ξ + g3

])
ψ̄1...5,η̄1,2,3

×
(

1

2

∑
H1,G1

1

2

∑
H2,G2

(−)H1G1+H2G2 ϑ̄

[
ε + H1
ξ + G1

]4

ϑ̄

[
ε + H2
ξ + G2

]4
)

φ̄1...8

(2.6)×
(∑

si ,ti

Γ6,6

[
hi |si
gi |ti

])
(yωȳω̄)1...6

eiπΦ(γ,δ,si ,ti ,ε,ξ,hi ,gi ,H1,G1,H2,G2),

where the internal twisted/shifted (6,6) lattice is given by

Γ6,6

[
hi |si
gi |ti

]
= 1

26

∑
γi ,δi

(∣∣∣∣ϑ
[

γ1 + h1
δ1 + g1

]∣∣∣∣
∣∣∣∣ϑ
[

γ1
δ1

]∣∣∣∣(−)γ1t1+δ1s1+s1t1

)
(yωȳω̄)1

×
(∣∣∣∣ϑ

[
γ2 + h1
δ2 + g1

]∣∣∣∣
∣∣∣∣ϑ
[

γ2
δ2

]∣∣∣∣(−)γ2t2+δ2s2+s2t2

)
(yωȳω̄)2

×
(∣∣∣∣ϑ

[
γ3 + h2
δ3 + g2

]∣∣∣∣
∣∣∣∣ϑ
[

γ3
δ3

]∣∣∣∣(−)γ3t3+δ3s3+s3t3

)
(yωȳω̄)3

×
(∣∣∣∣ϑ

[
γ4 + h2
δ4 + g2

]∣∣∣∣
∣∣∣∣ϑ
[

γ4
δ4

]∣∣∣∣(−)γ4t4+δ4s4+s4t4

)
(yωȳω̄)4

×
(∣∣∣∣ϑ

[
γ5 + h3
δ5 + g3

]∣∣∣∣
∣∣∣∣ϑ
[

γ5
δ5

]∣∣∣∣(−)γ5t5+δ5s5+s5t5

)
5
(yωȳω̄)
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(2.7)×
(∣∣∣∣ϑ

[
γ6 + h3
δ6 + g3

]∣∣∣∣
∣∣∣∣ϑ
[

γ6
δ6

]∣∣∣∣(−)γ6t6+δ6s6+s6t6

)
(yωȳω̄)6

.

Here eiπΦ is a global phase whose effect is to implement the various GGSO projections acting
on the spectrum of this theory. Following the formalism of [5], these GGSO projections are
equivalently defined by the coefficients C(vi |vj ) ≡ [vi |vj ], where vi and vj are the vectors of
(2.3).

This phase is required to satisfy modular invariance constraints, that is, it must be invariant
under the following transformations:

τ → τ + 1 ⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a, b) → (a, a + b + 1),

(γi, δi) → (γi, γi + δi + 1),

(ε, ξ) → (ε, ε + ξ + 1),

(hi, gi) → (hi, hi + gi),

(Hi,Gi) → (Hi,Hi + Gi),

(si , ti) → (si , si + ti ),

(2.8)τ → −1/τ ⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a, b) → (b, a),

(γi, δi) → (δi, γi),

(ε, ξ) → (ξ, ε),

(hi, gi) → (gi, hi),

(Hi,Gi) → (Gi,Hi),

(si , ti ) → (ti , si).

Here we may make some remarks.

• The global phase Φ does not depend on the spin structure of the space–time fermions, (a, b).
This is necessary to preserve N = 1 supersymmetry; otherwise supersymmetry is sponta-
neously broken, as the gravitini acquire a mass. We will not consider this mechanism here.
Note however that the construction of a realistic model also requires such a breaking.

• We want to emphasize the physical meaning of the parameter ε in the expression (2.6).
As the ψ̄ block corresponds to the representations of SO(10), ε is the associated chirality:
spinorials of SO(10) have ε = 1, whereas vectorials have ε = 0. We will relate this later
to the right-moving SCFT of the model; breaking this SCFT will be done by assuming a
non-trivial dependence of the global phase Φ of the spin-structure (ε, ξ).

• The inclusion of (si , ti) performs additional shifts on the six (fermionized) internal dimen-
sions compactified on T 6/Z2 × Z2. These shifts correspond to the presence of the sets (ei)

in the parity basis; similarly, the twisting parameters (Hi,Gi) account for the presence of
the sets zi . Coupling these parameters to various spin structures by a suitable form of the
phase Φ will generate the Scherk–Schwarz symmetry breakings we will consider.

2.2. SO(10) models as Gepner-map duals of Type II models

The model we have considered above is in fact obtained directly from a Type II model by
a map introduced in [13]. This map defines a correspondence between a heterotic model and a
Type II model by the following construction.
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If we label Bλ=1,2,3,4 the four characters of SO(8) O8,V8, S8,C8, one can write a generic
Type II partition function in the following form

(2.9)ZII = 1

τ 4
2 η8η̄8

∑
λ,λ̄

BλB̄λ̄Zλ,λ̄.

Here, Zλ,λ̄ account for the spin–statistics of the model and, in the case of compactified theories,
for the internal lattices. The general procedure2 is then to replace the SO(2d) characters of the
right-moving side of the theory by SO(8 + 2d) × E8 characters, so that the modular properties
of the partition function are preserved. The product only involves the singlet character of E8,
whereas the map for the SO(2d) characters is done as follows:

(2.10)Ō2d → V̄2d+8, V̄2d → Ō2d+8, S̄2d → −S̄2d+8, C̄2d → −C̄2d+8.

In particular, for the usual IIA and IIB space–time fermions blocks, d = 4 and the replacement
is done by

(2.11)
1

2

∑
ā,b̄

(−)ā+b̄ϑ̄

[
ā

b̄

]4

→
[

1

2

∑
ā,b̄

(−)āb̄ϑ̄

[
ā

b̄

]8
]

× 1

2

∑
γ̄ ,δ̄

ϑ̄

[
γ̄

δ̄

]8

,

(2.12)
1

2

∑
ā,b̄

(−)ā+b̄+āb̄ϑ̄

[
ā

b̄

]4

→
[

1

2

∑
ā,b̄

ϑ̄

[
ā

b̄

]8
]

× 1

2

∑
γ̄ ,δ̄

ϑ̄

[
γ̄

δ̄

]8

.

We see that the reversal of the sign of the fermionic characters breaks the usual spin–statistics,
so that, from a space–time point of view, this operation has traded a supersymmetric sector for a
purely bosonic sector. Following our notations for the free fermionic degrees of freedom and their
obvious extension to Type II models, the mapping Type II → Heterotic is done by replacing the
free fermions of Type II {ψ̄μ, χ̄1...6} by the free fermions of the heterotic {ψ̄1...5, η̄1,2,3, φ̄1...8}.
Also note that in both Type IIA and Type IIB cases, the obtained block is in fact a second copy
of the singlet of E8, which signals an enhancement of SO(16) to E8.

Carrying out the Z2 × Z2 orbifold on both of these models, we see that the heterotic model
we consider in this paper is no other than the Gepner-map of a Type II N4 = 2 model, via the
mapping

1

2

∑
ā,b̄

(−)ā+b̄+āb̄ϑ̄

[
ā

b̄

]
ϑ̄

[
ā + h1
b̄ + g1

]
ϑ̄

[
ā + h2
b̄ + g2

]
ϑ̄

[
ā + h3
b̄ + g3

]

(2.13)−→
[

1

2

∑
ā,b̄

ϑ

[
ā

b̄

]5

ϑ̄

[
ā + h1
b̄ + g1

]
ϑ̄

[
ā + h2
b̄ + g2

]
ϑ̄

[
ā + h3
b̄ + g3

]]
× 1

2

∑
γ̄ ,δ̄

ϑ̄

[
γ̄

δ̄

]8

.

One recognizes the block of (2.6) corresponding to the ψ̄ ’s and η̄’s. The second block accounts
for an E8 gauge group formed by the complex fermions φ̄1...8; generically, this group will be
broken due to the inclusion of the sets z1 and z2 in our construction.

Out of the two four-dimensional supersymmetries of the Type II model, only the left-moving
one is still present in the heterotic; however, the right-moving superconformal algebra survives
the mapping. This is nothing but the embedding of the spin connection of Type II models into the

2 There exists a second solution, which is the replacement by SO(32) characters.



T. Catelin-Jullien et al. / Nuclear Physics B 812 (2009) 103–127 109
connection of the corresponding heterotic ones. Then, this superconformal algebra does not give
birth to a space–time SUSY, but relates spinors to vectors, belonging to representations which
are now of the internal SO(10) spanned by the ψ̄ ’s. The survival of this symmetry will guarantee
the existence at the massless level of what were formerly right-moving gravitinos and are now
gauge bosons in a spinorial of SO(10): then, SO(10) × U(1)3 gets enhanced to E6 × U(1)2.
This enhancement comes as no surprise from the Calabi–Yau point of view: the general embed-
ding of spin-connection into gauge connection singles out a subalgebra SU(3) inside the first
E8, corresponding to the holonomy of the compactification manifold. The anomaly cancellation
mechanism [14] then requires that we switch on background values for this SU(3), and the sur-
viving gauge group is E6, coming from the embedding SU(3)×E6 ⊂ E8. Of course, the Cartans
of SU(3) still define a gauge group U(1)2, so that, in the presence of a right-moving N = 2 SCFT,
we indeed find a gauge group E6 × U(1)2 × E8. This is realized explicitly in our constructions.

Note that this procedure underlines the naturalness of the appearance of a gauge group SO(10)

in N = 1 realistic theories: the Type II right-moving fermionic block made out of S, V , C

representations of the Lorentz group SO(8) is traded for a block made out of E8 characters. The
Z2 × Z2 orbifold required to break the four-dimensional supersymmetry N = 4 → 1 is forced
by consistency to act on this E8, generically breaking it to E6 × U(1)2.

We will now enumerate the sectors from which we will be able to build massless states, and
identify their interpretation as twisted sectors of the N = 4 → N = 1Z2 × Z2 orbifold.

3. Spectrum of the model; superconformal x-map and its spontaneous breaking

3.1. Z2 × Z2 twisted sectors

It is pretty straightforward to check that the N = 1 supersymmetric partner of a state built
on some vacuum |α〉 will come from the vacuum |α + S〉. Here, we will therefore restrain our
enumeration to the bosonic vacua. Apart form the pure NS vacuum, states can be built from the
following sets:

• the 16 twisted sectors |B1
λ3λ4λ5λ6

〉 = |b1 +∑6
i=3 λiei〉, where λi = 0 or 1;

• the 16 twisted sectors |B2
λ1λ2λ5λ6

〉 = |b2 +∑i=1,2,5,6 λiei〉, where λi = 0 or 1;

• the 16 twisted sectors |B3
λ1λ2λ3λ4

〉 = |b3 +∑4
i=1 λiei〉, where λi = 0 or 1;

• the sectors |α + x〉, where α is any of the sectors described above;
• the sectors |z1〉, |z2〉, |z1 + z2〉.

To properly distinguish a particle from its anti-particle, it will be handy to consider instead
the fermionic sectors B ≡ S + B, so as the space–time chirality appears in a clear way. We
will then restrain ourselves to considering positive ψμ-helicity states. In the following, we will
denote |B1〉 (and similarly for |B2〉, |B3〉) a generic sector |B1

λ1λ2λ3λ4
〉, and more generally |B〉 an

arbitrary twisted sector. The |B〉 sectors are in one-to-one correspondence with the fixed points
of the Z2 × Z2 orbifold transformation.

Let us make some comments:

• In the following, we will pay no attention to the sectors |z1〉, |z2〉, |z1 + z2〉, which can
lead to additional gauge bosons. The minimal gauge group is SO(8) × SO(8); as pointed
out in [4], appropriate choice of the GGSO phases ensures that this gauge group is not
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enhanced, and that no mixed3 massless states appear. In the following, we will assume
these no-enhancement hypotheses, which state that there exists ei and ej , i 	= j , such as
[ei |z1] = −1 and [ej |z2] = −1. This choice projects out any would-be gauge bosons that
would enhance SO(8) × SO(8) → SO(16); the largest enhancement one can have in that
case is a SO(8) → SO(9), which can also be eliminated by allowing one more i such as
[ei |z1] = −1; at any rate, there is no mixing between the “observable” gauge and the “hid-
den” gauge.

• The spinor–vector duality finds its root from the fact that if |α〉 is a relevant vacuum to
build massless states, so is |α + x〉. This correspondence is the superconformal “x-map”
|B〉 
→ |B + x〉 pointed out in [15]. It is obvious that if (the excitations of) |α〉 are in the
vectorial of the SO(10) induced by the 5 complex fermions ψ̄1...5, then |α + x〉 will belong
to a spinorial of the same group; the x-map being an involution, the converse is also true.
What is at stake is then to find, given a set of GGSO projections, which sectors will survive;
and for each theory, describe the dual theory in terms of the effects of its various GGSO
projections.

• An important case of figure brings a self-dual case. When preserving the N = (0,2) super-
conformal field theory, the SO(10)ψ̄ ×U(1)η̄ , where U(1)η̄ is the diagonal U(1) induced by

η̄1,2,3, is lifted to E6. In this case, the vectorial 10 and the spinorial 16 of SO(10) (resp. the
anti-spinorial 16) are grouped in the fundamental 27 (resp. 27) of E6, which decomposes as
27 → 10 ⊕ 16 ⊕ 1 (resp. 27 → 10 ⊕ 16 ⊕ 1).

3.2. The x-map and superconformal algebra in representations of SO(10)

To begin with, we will restrain ourselves to consider only one twisted sector, namely B1
0000 =

S + b1. We will note the associated ground state |B1
0000〉. Our results will easily be extended to

any of the 48 twisted sectors detailed above. The untwisted sector, built out of the pure Neveu–
Schwarz ground state, gives the gauge bosons of the gauge group, but not the spinorial/vectorial
representations we are interested in.

The B1
0000 vacuum is then written as

(3.1)B1
0000: Spin

(
ψμ,χ1,2, y3...6)⊗ Spin

(
ȳ3...6, ψ̄1...5, η̄1)

and the addition of the sector x brings the vacuum

(3.2)B1
0000 + x: Spin

(
ψμ,χ1,2, y3...6)⊗ Spin

(
ȳ3...6, η̄2,3).

Here, one may make a few remarks, which will be valid for any of the 48 twisted sectors. Firstly,
due to the presence of 8 left-moving and 16 right-moving real fermions obeying Ramond bound-
ary conditions, the sector |B1

0000〉 is massless by itself, and contains spin-fields made out of the
SO(10) fermions ψ̄ ; it therefore induces a spinorial of SO(10). On the other hand, the sector
|B1

0000 + x〉 has 8 left-moving and 8 right-moving Ramond real fermions, so that its ground
energies read

M2
L = 0, M2

R = −1

2
.

3 By mixed states, we mean states charged under both the “observable” SO(10) or E6 and the “hidden” gauge group
containing the SO(8) × SO(8).
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A massless state will then be reached when exciting this ground state by a weight 1/2 right-
moving fermionic oscillator. If we wish to consider states charged under SO(10), this excitation
has to be taken to be ψ̄ i

−1/2, and the resulting state lies in a vectorial representation of SO(10).
Therefore, the x-map links vectorials to spinorials of SO(10). Obviously, the x-map arises as
the right-moving part of the N = (2,2) superconformal field theory that is still present after the
Type II → Heterotic Gepner-map, and acts inside the gauge group, due to the embedding of the
spin connection into the gauge connection.

As in the case of spontaneous breaking of supersymmetry, a spontaneous breaking of the x-
map will amount to projecting out from the spectrum spinorial or vectorial representations of
SO(10), giving different masses to the two partners. In terms of the free fermionic construction,
this situation is reflected in the fact that states from the massless sector |B〉 (resp. |B + x〉) will
be projected out, whereas states from the sectors |B + ei〉 (resp. |B + x + ei〉) will be preserved.
These sectors are massive and are naturally interpreted as the twisted sector of the freely-acting
orbifold based on the half-shift of the coordinate Xi . We see that the net effect of this action is
that the sectors |B〉 (resp. |B + x〉) will get a mass, whereas the sectors |B + x〉 (resp. |B〉) will
remain massless. We carry out an explicit example of such a mass lift in the next subsection; as
one can expect, it crucially relies on a careful choice of the GGSO projections.

3.3. Implementing the ei -generated freely-acting orbifolds

In this subsection, we briefly recall some useful results about twisted/shifted lattices. The
usual equivalence between a compact boson taken at the fermionic point and two left-moving
plus two right-moving real fermions is easily extended to orbifold partition functions of each
theory.

When we consider two internal dimensions, the ϑ -function form of a zero-mode lattice Γ2,2,
taken at the enhanced symmetry (or fermionic) point (denoted f.p.)

(3.3)Γ2,2
∣∣
f.p.

=
(

1

2

∑
γ,δ

∣∣∣∣ϑ
[

γ

δ

]∣∣∣∣2
)2

is generalized to the orbifold version of the theory. When one implements the non-freely-acting
Z2 orbifold X1,2 → −X1,2, whose twisting parameters will be denoted (h, g), as well as the
two freely-acting Z2 orbifolds X1,2 → X1,2 + π , whose shifting parameters will be noted
(s1, t1, s2, t2), the lattice sum is modified as

Γ2,2

[
h|s1, s2
g|t1, t2

] ∣∣∣∣
f.p.

= 1

4

∑
γ1,2,δ1,2

(−)γ1t1+δ1s1+s1t1(−)γ2t2+δ2s2+s2t2

(3.4)×
∣∣∣∣ϑ
[

γ1 + h

δ1 + g

]
ϑ

[
γ1
δ1

]
ϑ

[
γ2 + h

δ2 + g

]
ϑ

[
γ2
δ2

]∣∣∣∣.
Therefore, implementing in the above partition function the freely-acting orbifolds (in this case,
half-way shifts) corresponding to the sets ei only amounts to inserting the phases (−)γ t+δs+st .
For now, we have just shifted the internal Γ6,6 lattice, independently of the rest of the spectrum.
The corresponding orbifold is the Z2-translation along each circle of the internal space.

If we wish to couple this shift to other states of the theory, we must introduce a phase re-
lating the shift parameters (si , ti ) to the spin structures of the states we want to act on. Such a
freely-acting orbifold takes the form (−)Q · T i , where T i is the Z2-translation of the ith coor-
dinate Xi 
→ Xi + πRi , and (−)Q is the parity operator associated to the spin structure we are
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considering (generalizing the usual fermion counting operator (−)F , which would correspond to
coupling to the spin-structure of the space–time fermion spin structure (a, b)).

One can carry out the calculation of the partition function corresponding to this orbifold, by
inserting the projection operator in the computation of the trace over physical states and adding
the contribution of the twisted sector. The result is that this orbifold is done by simply adding a
cocycle in the partition function. As an example, if we consider a Γ1,1 lattice coupled to some
spin structure (ε, ξ), the modification is made as follows:

Z = [· · ·] R√
τ2

∑
m̃,n

exp

[
−πR2

τ2
|m̃ + nτ |2

]

−→ [· · ·] × 1

2

∑
h,g

(−)εg+ξh+gh R√
τ2

∑
m̃,n

exp

[
−πR2

τ2

∣∣∣∣
(

m̃ + g

2

)
+
(

n + h

2

)
τ

∣∣∣∣2
]

(3.5)= [· · ·] ×
∑
h,g

(−)εg+ξh+ghΓ1,1

[
h

g

](
R

2

)
,

where Γ1,1
[ h

g

]
is the shifted Γ1,1 lattice

(3.6)Γ1,1

[
h

g

]
= R√

τ2

∑
m̃,n

exp

[
−πR2

τ2

∣∣(2m̃ + g) + (2n + h)τ
∣∣2]

and the overall [· · ·] refers to all the other blocks of the partition function, which are unchanged
in the process.

Setting RSS = R/2, we recover the well-known fact that this mechanism is equivalent to
performing a stringy Scherk–Schwarz compactification, which is done by coupling the internal
dimension to the SO(10) helicity current [3]∮ (

ψ̄1)†ψ̄1.

Such a task is achieved by inserting in the concerned partition function block the cocycle

(3.7)(−)εm̃+ξn+m̃n,

where now m̃ and n are the momentum/winding numbers of the string state along the radius RSS
[3]. Looking at the expressions (3.4) and (3.5), one sees that, since the internal shift parameters
of the internal dimensions are no other than (si , ti ) that the coupling of the internal shifted lattice
to the SO(10) spin-structure (ε, ξ) will be done by inserting a phase of the form

(3.8)(−)εti+ξsi+si ti .

It is worth noting that this coupling indeed lifts the mass of the states according to their chirality
ε: by considering the insertion of the Scherk–Schwarz cocycle (3.7), a Poisson resummation of
the modified lattice

(3.9)
RSS√

τ2

∑
m̃,n

(−)εm̃+ξn+m̃n exp

[
−πR2

SS

τ2
|m̃ + nτ |2

]

shows that the string states now have momentum and winding numbers

(3.10)

(
m − ε − n

,n

)

2 2
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which signals a mass lifting in the ε = 1 sector. This procedure is of course encoded in the basic
form of the fermionic construction and does not require further elaboration: it is related to the
values of the discrete torsions [ei |B] and [ei |B + x], where B is an arbitrary twisted sector of the
theory.

3.4. Breaking the x-symmetry with the freely-acting orbifold ei

We start by considering the two sectors already written above, which read, in terms of spin-
fields

B1
0000: Spin

[(
ψμ
)
+,
(
χ12)

ε2
,
(
y34)

ε3
,
(
y56)

ε4

]
(3.11)⊗ Spin

[(
ȳ34)

ε̄1
,
(
ȳ56)

ε̄2
,
(
ψ̄1...5)

ε̄3
,
(
η̄1)

ε̄4

]
,

B1
0000 + x: Spin

[(
ψμ
)
+,
(
χ12)

ε2
,
(
y34)

σ3
,
(
y56)

σ4

]
(3.12)⊗ Spin

[(
ȳ34)

σ̄1
,
(
ȳ56)

σ̄2
,
(
η̄2)

σ̄3
,
(
η̄3)

σ̄4

]
,

where the εi , ε̄i , σi , σ̄i are the helicities of the spin-fields.
As discussed above, the physical states of the sector B1

0000 +x we are interested in are obtained
by exciting the vacuum with a weight 1/2ψ̄ oscillator:

(3.13)

Spin
[(

ψμ
)
+,
(
χ12)

ε2
,
(
y34)

σ3
,
(
y56)

σ4

]⊗ [ψ̄ i
−1/2

]
Spin

[(
ȳ34)

σ̄1
,
(
ȳ56)

σ̄2
,
(
η̄2)

σ̄3
,
(
η̄3)

σ̄4

]
.

The relevant GGSO projections to carry out in this example as those arising from the sets S,
S + b1, b2, (ei)i=1...6. The F -projection is redundant with the (S + b1)-one. The zi -projections
do not change the features of the spectrum in the sector B1

0000 as soon as we assume that they do
not project the whole sector out; we will, for now, neglect them.

Equivalently, we will find it handy to consider instead, on a sector B1
λ3λ4λ5λ6

the projections
induced by the sets

(3.14)S, S + b1, b̃2 = S + b2 + (1 − λ5)e5 + (1 − λ6)e6, (ei)i=1...6.

Recall that, as |B1
λ3λ4λ5λ6

〉 are fermionic sectors, the constraints to be met are (−)α =
−(α|B1

λ3λ4λ5λ6
), where α is one of the sets above.

Initially, the sectors B1
λ3λ4λ5λ6

have 212 degrees of freedom. Carrying out the S, S + b1, b̃2,

(e3...6) projections cut the number of physical states down to 25 = 32. Noticing that

(3.15)b̃2 ∩ B1
λ3λ4λ5λ6

= {ψμ
∣∣ψ̄1...5},

we see that, as the ψμ helicity has been fixed, this GGSO projection implies that the spectrum
of states inside the sectors B1

λ3λ4λ5λ6
is chiral with respect to the group SO(10). Such a feature

crucially depends on the presence of the set b2 in our construction; this is consistent with the fact
that the presence of a chiral matter spectrum requires N = 1 space–time supersymmetry.

Now we look at the effect of the e1 and e2 projections, first restricting our attention to B1
0000.

The latter survives the e1 projection if [e1|B1
0000] = −1; otherwise the entire sector |B1

0000〉 is
projected out. However, in the latter case, as mentioned earlier, one has to consider the massive
sector |B1

0000 + e1〉. The spin field accounting for this Ramond ground now has an initial degen-
eracy of 214; carrying out the S, S + b1, b̃2, (e1,3...6) projections cut the number of degrees of
freedom to 26. This time, the various projections are not able to fix the SO(10)-chirality of the
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massive state, since

(3.16)b̃2 ∩ (B1
λ3λ4λ5λ6

+ e1
)= {ψμ,ω1|ω̄1, ψ̄1...5}.

This is consistent with the fact that when fixing the space–time spin, we still have a degeneracy
in the representations 16 and 16 of SO(10), which is mandatory for these representations to be
massive.

The superconformal partner of |B1
0000〉 is |B1

0000 + x〉; this sector contains vectorial represen-
tations of SO(10). Let us recall that, from the usual constraints of the free fermionic models, the
discrete torsion coefficients we are interested in obey, for i = 1,2:

(3.17)
[
B1 + x|ei

]= [B1
∣∣ei

][x|ei].
Therefore, if we set [x|ei] = 1, the sector |B1

0000 + x〉 will behave in the same way as |B1
0000〉

with respect to the ei projections. If [B1
0000|ei] = 1, the twisted sector will be projected out as a

whole, regardless of the spinorial/vectorial character of the representations; if [B1
0000|ei] = −1,

both spinors and vectors will survive.
Up to now, we have thus not been able to discriminate between spinorial and vectorial rep-

resentations of SO(10) lying in the same twisted sector. As one can expect, this will be done
by acting on the value of the discrete torsion [x|ei]. Indeed, let us again place ourselves in the
twisted sector |B1

0000〉, and its vectorial counterpart |B1
0000 + x〉. The same reasoning as before,

and the use of Eq. (3.17), yields the following rules of survival (we recall that δB = −1 for any
fermionic twisted sector):

• when [B1
0000|ei] = −1 and [x|ei] = 1, both sectors |B1

0000〉 and |B1
0000 + x〉 survive at the

massless level;
• when [B1

0000|ei] = 1 and [x|ei] = 1, both sectors |B1
0000〉 and |B1

0000 + x〉 are projected out;
• when [B1

0000|ei] = −1 and [x|ei] = −1, |B1
0000〉 survives and |B1

0000 + x〉 is projected out;
• when [B1

0000|ei] = 1 and [x|ei] = −1, |B1
0000〉 is projected out and |B1

0000 + x〉 survives.

Now that we know how to manipulate each twisted sector, we can start to explore the duality.
Note that the list of ingredients at our disposal is quite simple and handy.

We are dealing with three twisted planes, in which four left-moving and four right-moving
fermions picked among the fermionized coordinates (yiωi)(ȳi ω̄i) are in Ramond boundary con-
ditions. These fermions carry indices (i1, i2, i3, i4) = (3,4,5,6) for the B1 family, (1,2,5,6) for
the B2 family, and (1,2,3,4) for the B3 family. We can act on these twisted sectors by making
the freely-acting orbifold generated by the set ei act in a non-trivial way on them. Then one sees
that, to be able to project out states, one must consider the action of the sets ei and ej , where i

and j are different from i1...4; otherwise, the ei -projection’s effect is to choose the internal chi-
ralities of the corresponding spin-field. Moreover, if i is one of the four indices i1...4, the sector
B + ei is not massive, but rather another twisted sector of the same plane.

Then two projections have to be considered for each twisted plane. In the following, we will
be interested in the B1 plane, so that we will consider the orbifolds induced by e1 and e2. This
fact is not surprising: in the B1 plane, the physics is independent of the volume of the four inter-
nal coordinates corresponding to the fermions (yω|ȳω̄)3456; therefore, a spontaneous breaking of
symmetry in this plane must be constructed out of the two last internal coordinates, as the value
of the mass gap will depend on the size of these coordinates. Of course, in this paper we will en-
counter no such dependence, as all moduli are set at the fermionic point; however, a deformation
of these models would make this feature clear.
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Finally, to compute the action of the orbifolds e1 and e2 on one arbitrary sector of the first
twisted plane |B1

λ3λ4λ5λ6
〉, we remark that the usual constraints of the fermionic construction

impose

(3.18)
[
B1

λ3λ4λ5λ6
|ei

]= [b1 + S|ei]
6∏

j=3

[ej |ei]λj , i = 1,2.

Knowing all the coefficients [ei |ej ], which are part of the definition of the model, we are then
able to repeat the above reasoning to deduce the action of e1 and e2 projections on |B1

λ3λ4λ5λ6
〉

and |B1
λ3λ4λ5λ6

+ x〉.

3.5. The zi projections

The case of the zi projections is in many ways similar to the case of the ei ’s. This time, as we
have, for any twisted sector B of the theory B ∩ z1 = B ∩ z2 = ∅, any non-trivial discrete torsion
turned on for the z sets will have an effect on the three twisted planes. One can derive all the rules
in a similar way as for the ei ’s: the zi projections can be taken to break the x superconformal CFT
or not, and various combinations of hypotheses on the GGSO yields various cuts in the spectrum
of the theory. As this case is identical to the e1,2 orbifolds, the rules of the previous subsection
apply.

We will often omit the zi projections, to which most of the rules we derive for the (ei) pro-
jections similarly apply. We will actually specifically need them to perform further cuts in the
spectrum, giving us the possibility to restrain the number of representations present in our mod-
els.

4. Construction of dual pairs of models

4.1. A class of self-dual models: the E6 models

As we mentioned previously, since in E6 models the spectrum arranges itself in fundamental
representations 27 and 27, these models are trivially self-dual.

The gauge group E6 is present in a model if and only if the x-map is unbroken. This is
equivalent to requiring that the freely-acting orbifolds do not break the right-moving part of the
N = (2,2) superconformal algebra of the initial model. In terms of discrete torsion coefficients,
this condition is encoded in the equality

(4.1)∀i = 1 . . .6, [x|ei] = 1, [x|z1,2] = 1.

From the considerations of the previous section, it is then obvious that if the above equalities are
met, in any twisted sector |B〉, the representations (S,V ) ⊂ 27 and (S̄,V ) ⊂ 27 will be either
simultaneously conserved or simultaneously destroyed, depending on the value of the GGSO
coefficients [B|ei], [B|zi]. Explicitly building the spectrum and counting the states surviving
after the application of the various GGSO projections confirms the self-duality; we find that a
given twisted sector |B〉 possesses one SO(10)-spinor (chiral or anti-chiral, its chirality being
fixed by the b̃2-projection), one SO(10)-vector and one singlet under SO(10), but charged with
respect to the additional U(1) of SO(10) × U(1) ⊂ E6:

(4.2)|B〉: (S,V ) ⊂ 27 or (S̄,V ) ⊂ 27.
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When the action of all zi -induced and ei -induced freely-acting orbifolds are trivial on the twisted
sectors, we find therefore that the model possesses N+ 27 and N− 27E6 representations, with
N+ +N− = 48. As the various orbifolds act, they are able to cut in each twisted sector, either the
vectorial, or the spinorial, or the whole sector. As an example, we consider the twisted sectors
|B1

λ3λ4λ5λ6
〉. Depending on the values of the GGSO coefficients [b1|ei], i = 1,2, and [ej |ei],

i = 1,2, j = 3,4,5,6, we are able, thanks to the identities

(4.3)
[
B1

λ3λ4λ5λ6

∣∣ei

]= [B1
0000

∣∣ei

] 6∏
j=3

[ej |ei]λj ,

(4.4)
[
B1

λ3λ4λ5λ6

∣∣ei

]= [B1
0000

∣∣zi

] 6∏
j=3

[ej |zi]λj ,

to determine the effect of the ei - and zi -projections on each one of the twisted sectors of the B1

plane. In particular, if [ek|ei] = −1, one sees that the ei -projection has opposite effects on the
sectors |B1

λ3λ4λ5λ6
〉 and |B1

λ3λ4λ5λ6
+ ek〉.

4.2. Duality inside the N = 2 sectors

As the classification in [4,9] shows, one can create several kinds of non-self-dual models, in
which, in a given twisted plane generated by the sectors |B1〉 and |B1 + x〉, one has either only
spinorials of SO(10) (with either positive or negative chirality; moreover, the number of spinors
and antispinors do not have to be equal) or only vectorials. For a non-self dual model, as the
x-superconformal map is broken, there exists at least one i ∈ {1 . . .6} such that [x|ei] = −1 or
(inclusive) one i ∈ {1,2} such that [x|zi] = −1.

Let us start by considering a breaking by ei . First we argue that the condition [x|ei] = −1
is able to break the self-duality only in the sectors where the freely-acting orbifold ei has the
possibility to project out entire representations of SO(10): namely i = 1,2 for B1 sectors, i = 3,4
for B2 sectors, and i = 5,6 for B3 sectors. Indeed, let us suppose that [x|e1] = −1 while the
others [x|ei] = 1, and investigate the consequences on the spectrum. In the B1 sectors, we have
seen in a previous section that this breaking of x-map can project out spinors and/or vectors of
SO(10). However, in B2 and B3 sectors, due to the intersections

(4.5)∀λi ∈ {0,1}, B2
λ1λ2λ5λ6

∩ e1 = (B2
λ1λ2λ5λ6

+ x
)∩ e1 	= ∅

and

(4.6)∀λi ∈ {0,1}, B3
λ1λ2λ3λ4

∩ e1 = (B3
λ1λ2λ3λ4

+ x
)∩ e1 	= ∅

the e1-projection only kills helicities, having a similar action in the sectors B2,3 and their super-
conformal partners B2,3 + x; it is not able to annihilate entire representations. Then the duality
spinor–vector is still valid in these sectors.

With this in mind, we focus on a case where the x-map is only broken in the first plane, that is
by e1 and/or e2. The duality map is then the following: the (St ↔ V )-dual of a model where the
x-map is broken only in the first twisted plane is constructed by reversing the signs of the discrete
torsion coefficients [B1

0000|ei] and [B1
0000|zj ] for every ei , i = 1,2, satisfying [x|ei] = −1, and

for every zj satisfying [x|zj ] = −1. This procedure is easily seen to be in agreement with the
rules given in [4], where the general form of the duality transformation is formulated as the
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exchange of the ranks of the matrices [Δ(1), Y
(1)
16 ] and [Δ(1), Y

(1)
10 ]; this particular set of rules

actually exchanges the vectors Y
(1)
16 and Y

(1)
10 .

To prove this, let us suppose that [x|e1] = −1 and consider the action of the e1 projection on
a given sector |B1

λ3λ4λ5λ6
〉.

• Since one has

(4.7)
[
B1

λ3λ4λ5λ6

∣∣e1
]= [B1

0000

∣∣e1
]× [e3|e1]λ3 [e4|e1]λ4 [e5|e1]λ5 [e6|e1]λ6︸ ︷︷ ︸

=ε

,

we conclude that the sector B1
λ3λ4λ5λ6

survives the e1 projection iff [B1
0000|ei] = −ε, and is

projected out iff [B1
0000|ei] = ε.

• Then, since [x|e1] = −1, we see that the sector B1
λ3λ4λ5λ6

+x survives iff [B1
0000|ei] = ε, and

is projected out iff [B1
0000|ei] = −ε.

• Therefore, the case [B1
0000|ei] = ε corresponds to keeping only the spinorial of SO(10) aris-

ing from B1
λ3λ4λ5λ6

, whereas [B1
0000|ei] = −ε preserves only the vectorial representation

from this sector.
• Then, it is obvious to see that reversing the sign of [B1

0000|e1] will bring the dual model,
since the factor ε = [e3|e1]λ3 [e4|e1]λ4 [e5|e1]λ5[e6|e1]λ6 has not been changed in the process.

One must also look at the case where both e1 and e2 are breaking the x-map. It is easy to con-
vince oneself that one must reverse the two discrete torsions [B1

0000|e1] and [B1
0000|e2] to get the

dual model. Indeed, supposing that we start from a configuration where only the spinorial repre-
sentation survive from the sector B1

λ3λ4λ5λ6
after the two projections, one sees that reversing only

one of the two GGSO coefficients annihilates the whole sector B1
λ3λ4λ5λ6

; whereas reversing both
coefficients brings back the vectorial of the sector.

Using similar arguments, one shows that, in the case of a breaking of the x-map by a set zi ,
the dual model is obtained by also switching the sign of the corresponding GGSO coefficient
[B1

0000|zj ]. Indeed, the zi are never, in all three planes, part of the spin-fields giving the vacuum,
and then we can derive rules for them which are similar to the rules we have for e1,2 when acting
on the first plane, e3,4 on the second plane and e5,6 on the third plane. We note that, since the
coefficients (S|ei) and (S|zi) are set to preserve N = 1 supersymmetry, we may replace in the
above rules [B1

0000| . . .] by [b1| . . .]. We recover the fact that the spinor–vector duality is realized
within each N = 2 twisted plane B1,2,3.

Note that the rule we gave for the duality is not unique. One can check that, if we perform
the duality in the first plane, a dual model can be obtained by reversing the sign of [B1

0000|ei]
for every i, i = 1, . . . ,6, satisfying [x|ei] = −1 (that is, we do not restrain ourselves to the two
“relevant” projections in the first twisted plane which are e1 and e2). As a consequence, a given
model admits more than one dual. We will give additional arguments to this point at the end of
this section.

When the x-map is broken in more than one plane, some subtleties arise, that require finer
details. Consider a x-map-breaking set α, that is, [α|x] = −1. α may be one of the ei or one of
the zi . The duality operation has to be carried out in the three planes, by reversing the GGSO
coefficients [b1|α], [b2|α], and [b3|α]. However, the third twisted plane is not independent from
the two others, since b3 = b1 + b2 + x. Having carried out the two first steps of the duality, we
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see that the two reversals

(4.8)[b1|α] → −[b1|α], [b2|α] → −[b2|α]
entail, since [b3|α] = [b1|α] · [b2|α] · [x|α]:

(4.9)[b3|α] → [b3|α].
This situation arises if a set α is able to break the spinor–vector duality in all three planes. This
is not the case for the ei ’s: as we have seen, e1 and e2 can only break the duality in the first plane
B1, e3 and e4 in the second plane B2, and e5 and e6 in the third plane B3.

It is however problematic when α is equal to z1 and z2. In that case, the duality is restored if
we assume the existence of ei and ej , i 	= j , such as:

(4.10)[ei |z1] = −1 and [ej |z2] = −1.

These conditions are precisely the no-enhancements hypotheses we assumed to define the class
of models in which we demonstrate the duality.

Indeed, when (4.10) is verified, the transformation (4.8) for α = z1 entails4

(4.11)[b3|z1] → −[b3 + ei |z1].
This feature has the following effect. In the two first twisted planes, the transformations (4.8)
imply that if, in a model, the sector |B1

λ3λ4λ5λ6
〉 contains a spinorial representation, it will con-

tain a vectorial representation in the dual model. However, due to the transformation (4.11),
we learn that if, in a model, the sector |B3

λ1λ2λ3λ4
〉 contains a spinorial representation, the sector

|B3
λ1λ2λ3λ4

+ei〉 will contain a vectorial representation in the dual model. Then, in the third plane,

we have a modified the x-map: instead of linking a sector |B3
λ1λ2λ3λ4

〉 to |B3
λ1λ2λ3λ4

+x〉, we have

linked it to |B3
λ1λ2λ3λ4

+ (x + ei)〉. In this respect, the duality in the third plane can also be viewed
as being a sector-by-sector correspondence.

This also points out that the duality operation is not unique: one can choose to modify the
x-map α 
→ α + x into α 
→ α + x + ei in the two first planes, for appropriate sets ei , i.e. such as
α + ei is massless, and ei satisfies a condition of the type (4.10). This observation is connected
to the fact that the duality operation is viewed in [4] as an exchange of the rank of the matrices

(4.12)rank
[
Δ(I), Y

(I)
16

]↔ rank
[
Δ(I), Y

(I)
10

];
this rank being constant under linear combinations on the columns of Δ(I).

Also note that when we will detail in Section 4.4 the duality procedure, in the no-enhancement
framework, in terms of cocycle insertions, it will be sufficient to insert cocycles relative to the
twist parameters h1 and h2; the effect on the third plane will automatically follow.

4.3. Explicit realization of the duality in the first twisted plane

We consider a model given by the following discrete torsion coefficients:

(4.13)
[
B1

0000

∣∣e1
]= 1, [x|e1] = 1, [x|e2] = −1;

and

4 We suppose here that ei 	= e5, e6. If not, one adapts the proof in the straightforward way by exchanging the roles of
b1, b2, b3.
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[.|.] e1 e2

e3 −1 1
e4 1 −1
e5 1 1
e6 −1 1

Then the action of e1 and e2 projections on the B1 twisted plane and the resulting spectrum are
summarized in Table 1. This table gives, for a model and its dual, the discrete torsion accounting
for the effect of the projections e1 and e2 for each of the 16 sectors of the first twisted plane, and
the corresponding surviving representations. The left part of the table assumes [B1

0000|e2] = 1
while the right part is for [B1

0000|e2] = −1. As we discussed, a coefficient 1 relatively to e1

projects out spinors and vectors altogether; a coefficient 1 with respect to e2 projects out spinors
and a −1 projects out vectors

Note that in fact, this model is already self-dual; however, the duality operation is non-trivial,
as it exchanges spinorial and vectorial representations inside each twisted sector B1

λ3λ4λ5λ6
, and

we find it more instructive to detail the duality procedure in this model rather than in a purely
vectorial or purely spinorial model (recall from [4] that in one twisted plane, one has either a
purely vectorial, purely spinorial/anti-spinorial or half-vectorial half-spinorial – i.e., self-dual –
spectrum). Obviously, under a duality transformation, a model having only spinorial representa-
tions (which can be specifically obtained, for example, by setting [e3,4,5,6|e2] = 1) will be related
to a model having only vectorial representations, the transformation being done sector by sector.
We present an explicit example of such a duality transformation in Appendix A.

Table 1
GGSO coefficients for the first twisted plane and corresponding surviving representation, for the choice of coefficients
(4.13).

[.|.] e1 e2 rep. e1 e2 rep.

B1
0000 1 1 ∅ 1 −1 ∅

B1
0001 −1 1 V −1 −1 S

B1
0010 1 1 ∅ 1 −1 ∅

B1
0100 1 −1 ∅ 1 1 ∅

B1
1000 −1 1 V −1 −1 S

B1
1100 −1 −1 S −1 1 V

B1
1010 −1 1 V −1 −1 S

B1
1001 1 1 ∅ 1 −1 ∅

B1
0101 −1 −1 S −1 1 V

B1
0110 1 −1 ∅ 1 1 ∅

B1
0011 −1 1 V −1 −1 S

B1
1110 −1 −1 S −1 1 V

B1
1101 1 −1 ∅ 1 1 ∅

B1
1011 1 1 ∅ 1 −1 ∅

B1
0111 −1 −1 S −1 1 V

B1
1111 1 −1 ∅ 1 1 ∅
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We have not mentioned here the chirality of the spinorial representations; these depend on the
b̃2 projection, which in turn depends on the discrete torsions

(4.14)
[
B1

0000

∣∣b̃2]; [ei |b̃2], i = 3,4,5,6.

We will fix [B1
0000|b̃2] = −1 and consider two cases of figure for the other four GGSO coeffi-

cients:

(1):

[.|.] b̃2

e3 1
e4 1
e5 1
e6 1

and (2):

[.|.] b̃2

e3 1
e4 −1
e5 1
e6 −1

Extracting the spinorial representations from the previous model, we find that for case (1), before
and after duality, all SO(10) spinors have positive chirality. For case (2), we find that, before and
after duality, we have 2 chiral and 2 anti-chiral spinors.

Note that to put in evidence more features of the construction, we have taken non-trivial
values for the coefficients [e3,4,5,6|e1,2]. Had we not done this, the remaining model would have
had more generations. One sees that within a twisted plane, arbitrary values of the coefficients
[e3,4,5,6|ei], where ei does not break the x-map, are only able to project out half of the twisted
sectors; only 8 sectors out of 16 contribute, giving either a purely spinorial, purely vectorial, or
half-vectorial and half-spinorial spectrum.

Further projections in the spectrum can then be performed by acting with the orbifolds gener-
ated by z1 and z2. Indeed, we can obtain the formula

(4.15)
[
B1

λ3λ4λ5λ6

∣∣z1,2
]= [B1

0000

∣∣z1,2
]× 6∏

i=3

[ei |z1,2]λi

and the survival condition of the sector |B1
λ3λ4λ5λ6

〉 is

(4.16)
[
B1

λ3λ4λ5λ6
|z1,2

]= −1.

Setting, for some (i, j) ∈ {3,4,5,6} × {1,2}, some discrete torsions

(4.17)[ei |zj ] = −1

gives one access to models in which only 4 sectors or only 2 sectors out of the 16 survive at the
massless level.

To conclude this subsection, let us note that the explicit model we constructed above is self-
dual; however the E6 gauge symmetry has been broken. Breaking E6 → SO(10) × U(1), as it
makes an Abelian factor U(1) appear in the gauge group, is generally believed to lead to anoma-
lies. However, in a class of self-dual models, U(1) anomalies can be evaded when summing on
the contribution of the three twisted planes. We provide an explicit example of this property in
the Appendix B.

4.4. Plane by plane insertions of discrete torsion coefficients, and their overall effects

In this subsection, we want to indicate how these constructions can be translated in terms of
modifications of the overall phase Φ introduced in the general form of the partition function (2.6).
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Again, we focus on the first twisted plane; the generalization for the simultaneous action on
the three planes will be addressed at the end of this subsection. We are then considering the
internal dimensions ei , i = 1,2. The term of the partition function representing the first twisted
plane is obtained when the four space–time fermions χ3,4,5,6 are twisted: therefore, h1 = 0 and,
h2 = h3 = h is the relevant twisting parameter.

Remembering that the freely-acting orbifolds are conveniently represented by the insertion of
cocycles in the partition function, we find the following rules.

First, in the absence of superconformal symmetry breaking, one is able to project out a whole
sector of the twisted plane (that is, both the spinorial and the vectorial coming from this sector)
by adding a phase

(4.18)(−)hti+gsi , (−)hGi+gHi ,

depending on the breaking being done by a ei or a zi projection. As we discussed earlier, such a
coupling renders the h = 1 sectors massive, which is the case in the plane that we are considering.
Furthermore, as we have explained before, the effect the different sectors of the plane is dictated
by the values of the coefficients (ei |ej ). These discrete torsions are controlled by the insertion of
the cocycles

(4.19)(−)si tj +sj ti .

One is then able to construct a variety of self-dual models using these rules. Similarly, one is able
to control the value of the coefficient (ei |zj ) by means of the insertion of

(4.20)(−)siGj +Hj ti .

The superconformal x-map is broken as soon as we couple a freely-acting orbifold to the SO(10)

spin-structure (ε, ξ). In the first twisted plane, such a breaking requires the action of at least one
of the sets (e1, e2, z1, z2); the corresponding cocycles to be inserted then read, respectively:

(4.21)(−)εti+ξsi+si ti , i = 1,2, (−)εGi+ξHi+HiGi , i = 1,2.

Coupling the two previous effects now allow us to control which representation (spinorial or
vectorial) survives at the massless level in the model. Starting from a case where both spinors
and vectors survive, the addition of one of the SCFT-breaking phases (4.21) lifts the spinorials
of SO(10), so that only the vectorials survive. If instead we start from a case where the whole
sector has been projected out, by the insertion of a cocycle of the form (4.18), adding a cocycle
(4.21) recovers the spinorials, while the vectorials remain massive. The phase we inserted in this
case is then the product of (4.18) and (4.21). We may summarize the possibilities as follows:

• no cocycle introduced: S and V stay at the massless level;
• (−)hti+gsi : both S and V become massive;
• (−)εti+ξsi+si ti : S becomes massive, V stays massless;
• (−)(ε+h)ti+(ξ+g)si+si ti : S stays massless, V becomes massive.

Of course, if one considers a breaking by zi , one has to replace (si , ti) by (Hi,Gi).
We then learn how to engineer the duality map directly on the partition function. We have

stated that it has to be done by reversing the GGSO projections [B1|ei], [B1|zi] for each x-
breaking projections ei , zi . But these values are encoded in cocycles

(4.22)(−)hti+gsi , (−)hGi+gHi ,



122 T. Catelin-Jullien et al. / Nuclear Physics B 812 (2009) 103–127
where h is the orbifold parameter relevant for the plane we are interested in. Therefore, to carry
out the duality map, one has to insert a cocycle (4.18) for each projection breaking the x-map
(i.e. such that a cocycle of the form (4.21) is present in the partition function).

5. Conclusion and discussion

In this paper, we gave a new demonstration of the spinor–vector duality that was shown to
hold among the N = 2Z2 and the N = 1,Z2 × Z2 heterotic-string vacua obtained via the free
fermionic construction. We interpreted the freely-acting orbifolds present in the model in terms
of stringy Scherk–Schwarz mechanisms; these have been used to give a non-vanishing mass
to some sectors of the theory, and/or to perform a spontaneous breaking of the right-moving
superconformal algebra (also called x-map) which is responsible of the gauge enhancement
SO(10) × U(1) → E6. Such a breaking creates non-self-dual models, where we do not have
the same number of spinorial and vectorial representations of SO(10) at the massless level of the
theory. We described the procedure used to construct the dual of a given model. Moreover, we
explicitly constructed self-dual models in which E6 gauge is broken.

Such models may, or may not, be free from all Abelian and mixed anomalies. The cases in
which the self-dual models are particularly interested, as in such models one does not need to
resort to field theory arguments to shift the vacuum to a stable supersymmetric vacuum. Finally,
we have given rules on how to perform this duality directly on the expression of the 1-loop
partition function of the model.

One may ask what are the implications of such a duality. Firstly, we can see it as a symmetry
in the space of vacua of string theory, whose study has been of great interest over the past years
[16]. Furthermore, the duality is exhibited in the space of free fermionic models that have also
given rise to some of the most realistic string models constructed to date. The geometrical struc-
ture underlying the free fermionic models is that of the Z2 × Z2 orbifold, and a natural question
is whether it extends to other orbifolds. The spinor–vector duality can be thought of as being of
the same kind as mirror symmetry [17]. Indeed, mirror symmetry is manifest in this model as
the symmetry exchanging spinorials of SO(10) into anti-spinorials of SO(10). This is due to the
Type II ↔ Heterotic correspondence being related to the embedding of the spin-connection in
the gauge connection. Therefore, changing the chirality of the SO(10) spinors amounts, on the
Type II side, to change the GSO projection on the right-hand side of the theory. This Type IIA
↔ Type IIB switch is known [18] to be equivalent to the substitution of the compactification
manifold by its mirror. Our constructions displays this mirror symmetry: this relies on the choice
of the coefficients [b1|b̃2] and [ei |b̃2], as we have shown that the b̃2 projection imposes the chi-
rality of the massless spinorial representations (if any). The mirror symmetry implies a change in
the topology of the compactification manifold, as the Euler characteristic is taken to its opposite.
Spinor–vector duality can, as well, be thought of as another topology-changing duality. Note that
its range of application is wider than the mirror case. Here, non-self-dual points correspond to
N = (2,0) compactifications. Just as mirror symmetry can be thought of as a manifestation of
T -duality [18] also the spinor–vector duality may be regarded as such, but with the added action
on the bundle representing the gauge degrees of freedom of the heterotic string, induced by the
breaking of the N = 2 world-sheet superconformal symmetry on the right-moving bosonic side
of the heterotic string. Thus, just as mirror symmetry have led to the notion of topology changing
transition between mirror manifolds, the spinor–vector duality suggests that the web of connec-
tions is far more complex, and further demonstrating that our understanding of string theory is
truly only rudimentary. Furthermore, what we may find is that the distinction of particles into
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spinor and vector representation is a mere low energy organisation. What the string truly cares
about is its internal consistency, characterized by the modular invariance of the partition func-
tion. One should note, however, that from the point of view of the effective field theory limit of
the string vacua, the spinor–vector duality map is between two different theories, with differing
spectra. Therefore, it is clear that dual pairs are not equivalent in the field theory approximation.
Nevertheless, as we demonstrated here there exist a map between them. As regards the couplings,
we may anticipate, in general in a stringy set up, some relations between couplings in respective
dual pairs. Such possible stringy relations are naturally of further interest and we hope to address
such issues in the future.
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Appendix A. A dual pair of models with spectrum in the first twisted plane

We consider the model given by the following GGSO coefficients matrix:

(A.1)[vi |vj ] = eiπ(vi |vj )

(A.2)(vi |vj ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 S e1 e2 e3 e4 e5 e6 b1 b2 z1 z2

1 1 1 1 1 1 1 1 1 1 1 1 1

S 1 1 1 1 1 1 1 1 1 1 1 1

e1 1 1 0 1 0 0 0 1 0 0 1 1

e2 1 1 1 0 0 0 1 1 0 0 0 0

e3 1 1 0 0 0 0 0 0 0 0 0 0

e4 1 1 0 0 0 0 0 0 0 1 1 1

e5 1 1 0 1 0 0 0 0 0 0 1 0

e6 1 1 1 1 0 0 0 0 1 1 1 0

b1 1 0 0 0 0 0 0 1 1 0 0 1

b2 1 0 0 0 0 1 0 1 1 1 0 0

z1 1 1 1 0 0 1 1 1 0 0 1 0

z2 1 1 1 0 0 1 0 0 1 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

As far as the SO(10) representations are concerned, this model contains two vectorials 10,
one in the sector S + b1 + e5 + x, and one in the sector S + b1 + e3 + e5 + x. The spectrum is
therefore contained in the first twisted plane; we will only need to carry out the duality in this
plane.

We apply the duality procedure as follows.



124 T. Catelin-Jullien et al. / Nuclear Physics B 812 (2009) 103–127
First, we notice that, since

x = 1 + S +
6∑

i=1

ei + z1 + z2,

we have

(x|e1) = 0, (x|e2) = 1, (x|e3) = 0,

(x|e4) = 0, (x|e5) = 0, (x|e6) = 1,

(x|z1) = 1, (x|z2) = 1.

The method we exposed then consists in reversing the GGSO coefficients (b1|e2), (b1|z1) and
(b1|z2). The resulting matrix is therefore (the coefficients we changed are in bold):

(A.3)(vi |vj ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 S e1 e2 e3 e4 e5 e6 b1 b2 z1 z2

1 1 1 1 1 1 1 1 1 1 1 1 1

S 1 1 1 1 1 1 1 1 1 1 1 1

e1 1 1 0 1 0 0 0 1 0 0 1 1

e2 1 1 1 0 0 0 1 1 1 0 0 0

e3 1 1 0 0 0 0 0 0 0 0 0 0

e4 1 1 0 0 0 0 0 0 0 1 1 1

e5 1 1 0 1 0 0 0 0 0 0 1 0

e6 1 1 1 1 0 0 0 0 1 1 1 0

b1 1 0 0 1 0 0 0 1 1 0 1 0
b2 1 0 0 0 0 1 0 1 1 1 0 0

z1 1 1 1 0 0 1 1 1 1 0 1 0

z2 1 1 1 0 0 1 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

When explicitly computing the spectrum of this new model, we find indeed that two spinors
16 of SO(10) arise from the first plane, in the sectors S + b1 + e5 and S + b1 + e3 + e5. We see
then that in this simple case, the duality transformation occurs sector by sector in the first twisted
plane, like described in Section 4.

Appendix B. A self-dual, anomaly-free model without E6 enhancement

We are considering the model given by the matrix which coefficients (vi |vj ) ∈ {0,1} are
defined by

(B.1)[vi |vj ] = eiπ(vi |vj ),
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(B.2)(vi |vj ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 S e1 e2 e3 e4 e5 e6 b1 b2 z1 z2

1 1 1 1 1 1 1 1 1 1 1 1 1

S 1 1 1 1 1 1 1 1 1 1 1 1

e1 1 1 0 0 0 0 0 1 1 0 0 1

e2 1 1 0 0 1 1 1 1 1 0 0 0

e3 1 1 0 1 0 1 1 0 0 0 0 0

e4 1 1 0 1 1 0 1 1 0 1 1 0

e5 1 1 0 1 1 1 0 1 0 0 1 1

e6 1 1 1 1 0 1 1 0 1 0 0 1

b1 1 0 1 1 0 0 0 1 1 0 1 1

b2 1 0 0 0 0 1 0 0 1 1 1 0

z1 1 1 0 0 0 1 1 0 1 1 1 0

z2 1 1 1 0 0 0 1 1 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We see that since (z1|x) = (z1|1) + (z1|S) +∑6
i=1(z1|ei) + (z1|z1) + (z1|z2) ≡ 1 mod. 2, the

gauge group E6 is broken. Moreover, the conditions (e1|z2) = (e4|z1) = 1 ensure that the “hid-
den” gauge group is minimal and the full gauge group is SO(10) × U(1)3 × SO(8) × SO(8).
The spectrum of this model contains (we note as an index the three charges under the U(1)η̄i ,
i = 1,2,3):

• three spinors 16 of SO(10), one for each twisted plane,

16(1/2,0,0), 16(0,−1/2,0), 16(0,0,−1/2),

• three vectors 10 of SO(10), one for each twisted plane,

10(0,1/2,1/2), 10(−1/2,0,1/2), 10(−1/2,1/2,0),

• six non-Abelian gauge group singlets, two for each twisted plane,

1(1,−1/2,−1/2),1(1/2,1,−1/2),1(1/2,−1/2,1),

1(−1,−1/2,−1/2),1(1/2,−1,−1/2),1(1/2,−1/2,−1).

By verifying the identities
∑

qi =∑q3
i = 0 for the three Abelian factors of the gauge group, we

see that the observable spectrum is anomaly-free. Note that this anomaly does not occur plane
by plane, but results from a cancellation between the three planes.

One can also check that in this model, the contributions of the (8,1) and (1,8) multiplets of
SO(8) × SO(8) to the U(1) anomalies cancel.
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