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Abstract

Classification of the N = 1 space—time supersymmetric fermionic Zy x Z; heterotic-string vacua with
symmetric internal shifts, revealed a novel spinor-vector duality symmetry over the entire space of vacua,
where the S; <> V duality interchanges the spinor plus anti-spinor representations with vector representa-
tions. In this paper we demonstrate that the spinor-vector duality exists also in fermionic Z; heterotic string
models, which preserve N = 2 space—time supersymmetry. In this case the interchange is between spinorial
and vectorial representations of the unbroken SO(12) GUT symmetry. We provide a general algebraic proof
for the existence of the S; <> V duality map. We present a novel basis to generate the free fermionic models
in which the ten-dimensional gauge degrees of freedom are grouped into four groups of four, each generat-
ing an SO(8) modular block. In the new basis the GUT symmetries are produced by generators arising from
the trivial and non-trivial sectors, and due to the triality property of the SO(8) representations. Thus, while
in the new basis the appearance of GUT symmetries is more cumbersome, it may be more instrumental in
revealing the duality symmetries that underly the string vacua.
© 2008 Elsevier B.V. All rights reserved.

1. Introduction

String theory provides a unique phenomenological probe to explore the unification of grav-
ity and all other interactions including gauge and Yukawa couplings. String theory achieves this
by providing a perturbatively self-consistent calculational framework for quantum gravity, while
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simultaneously giving rise to the gauge and matter structures that are observed in high-energy ex-
periments. Furthermore, the gauge and matter sectors are imposed by the theory self-consistency
constraints. Given this unique status a pivotal challenge is to construct string models that repro-
duce the phenomenological subatomic data. In turn such models are to be used to explore the
properties of string theory and its dynamics.

For over two decades the free fermionic construction of the heterotic string [1,2] provided the
tools to develop phenomenological string models [3]. Three generation models with the correct
Standard Model charge assignments, as well as the canonical SO(10) embedding of the weak hy-
percharge, were constructed. Various issues pertaining to the phenomenological Standard Model
data and grand unification were further explored in the framework of these models.

The existence of quasi-realistic free fermionic constructions justifies the effort to better under-
stand the properties of these models and the global structures that underly them. In the orbifold
language the free fermionic construction correspond to symmetric, asymmetric or freely acting
orbifolds. A subclass of them correspond to symmetric Z, x Z, orbifold compactifications at
enhanced symmetry points in the toroidal moduli space [4,5]. Also the chiral matter spectrum
arises from twisted sectors and thus does not depend on the moduli. This facilitates the complete
classification of the topological sectors of the Z, x Z, symmetric orbifolds. For type II string
N = 2 supersymmetric vacua the general free fermionic classification techniques were developed
in Ref. [6]. The method was extended in Refs. [7-9] for the classification of heterotic Z> x Z»
orbifolds. In this class of models the six-dimensional internal manifold contains three twisted
sectors. In the heterotic string each of these sectors may, or may not, a priori (prior to application
of the generalised GSO (GGSO) projections), give rise to spinorial representations.

The classification of heterotic N = 1 vacua revealed a symmetry in the distribution of Z» x Z»
string vacua under exchange of vectorial, and spinorial plus anti-spinorial, representations of
SO(10) [9], which is akin to mirror symmetry [10,11] that exchanges spinorial with anti-spinorial
representations. The symmetry under the exchange of spinorial plus anti-spinorial representa-
tions with vectorial representations is evident when the SO(10) symmetry is enhanced to Eg, in
which case #(16+ 16) = #(10). We demonstrated in Ref. [9] that the symmetry persists also when
there is no enhancement to Eg, and the existence of self-dual vacua in which #(16 + 16) = #(10),
but in which the SO(10) symmetry is not enhanced to Ej.

The existence of the spinor-vector duality over the entire class of symmetric Z» x Z; orbifolds
indicates a global structure that underlies this entire space of vacua. It was noted in Ref. [9] that
the symmetry operates separately on each of the three twisted sectors of the Z x Z, orbifold.
Since each of the twisted sectors of the Z, x Z, orbifold preserves N = 2 space—time supersym-
metry, the spinor-vector duality should already exist at the level of N = 2 vacua. That is it should
exist also in models in which the N =2 space—time supersymmetry is not broken to N = 1.
This fact is an important clue in trying to understand the origin of the spinor-vector duality and
the global structures that underly the free fermionic models, as well as the Z, x Z; orbifold
constructions.

In this paper we show the existence of the spinor-vector duality in N = 2 vacua. This is
demonstrated by generating the complete space of N = 2 vacua, as well as by presenting an
algebraic proof of the duality map. In the first instance the N = 2 models can be generated by
removing from the basis set of Ref. [9] the basis vector that breaks N = 2 space—time supersym-
metry to N = 1. To further elucidate the existence of the duality symmetry we will use for our
construction a new basis to generate the space of free fermionic Z x Z, orbifolds. In the new
basis the untwisted gauge symmetry is reduced to SO(12) x SO(8)% x SO(2)*. In the new basis
the GUT SO(10) symmetry is obtained by enhancement of an SO(8) x SO(2) untwisted group
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factor with additional vector bosons from non-trivial sectors. Thus, the existence of a GUT sym-
metry is obscured in this new basis. On the other hand the existence of a map between spinors
and vectors becomes more transparent, as it is generated by the U (1) current of a “would-be
N =2 world-sheet supersymmetry” in the non-supersymmetric side of the heterotic-string.

Our paper is organised as follows: in Section 2 we discuss the method of classification of
the N = 2 space—time supersymmetric vacua. In Section 4 we present an algebraic proof of the
spinor-vector duality in the case of N =2 free fermionic vacua. In Section 5 we present a new
basis to generate the space of free fermionic vacua. In the new basis the GUT symmetries are
generated from trivial and non-trivial sectors. The primary feature of the new basis is the division
of the gauge degrees of freedom of the heterotic string into four blocks of SO(8) characters. Thus,
while the origin of the GUT symmetries is obscured, the duality properties of the heterotic string
vacua are more transparent in the new basis. Section 6 concludes the paper.

2. N =2 model classification

In the free fermionic formulation the 4-dimensional heterotic string, in the light-cone gauge,
is described by 20 left-moving and 44 right-moving two-dimensional real fermions [1,2]. A large
number of models can be constructed by choosing different phases picked up by fermions ( f4,
A =1,...,44) when transported along the torus non-contractible loops. Each model corresponds
to a particular choice of fermion phases consistent with modular invariance that can be generated
by a set of basis vectors v;, i =1,...,n,

vi = {ei (f1), i (f2), i (f3) ...}
describing the transformation properties of each fermion
fa— =TI £ A=1, ..., 44, (2.1)

The basis vectors span a space & which consists of 2V sectors that give rise to the string spec-
trum. Each sector is given by

S:ZNiv,-, N;=0,1. (2.2)

The spectrum is truncated by a GGSO projection whose action on a string state |.S) is

Vi Es| 8y = 8¢ c[US}m, (2.3)

where Fg is the fermion number operator and §s = =1 is the space—time spin statistics index.
Different sets of projection coefficients c[ lf] = %1 consistent with modular invariance give rise
to different models. Summarising: a model can be defined uniquely by a set of basis vectors
vi,i =1,...,n and a set of 2V¥=1D/2 jndependent projections coefficients c[;j; ].i>j.

The two-dimensional free fermions in the light-cone gauge (in the usual notation [1-3])
are: yH, Xi, yi, w,i=1,...,6 (real left-moving fermions) and yf, &,i=1,...,6 (real right-
moving fermions), ¥4, A=1,...,5, 7%, B=1,2,3,¢% a=1,...,8 (complex right-moving
fermions). The class of models under investigation, is generated by a set V of 11 basis vectors

V={vi,v2,...,v11},

where

1,...,6 . 1,...,6 1,.,6 | =1,....6 -1,....,6 -1,2,3 1,...,5 71,...8
vp=1={y" x" 0y g0 b0 723 s gl8Y
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= 5= {0},
vii=ea={y, oy, o'}, i=1,...6,

34 56 .34 56|534 556 -1 L,...,5
U9=b1={X s XY Y ’y » Y .1 Y ’}’

v =22 ={¢>8}. (2.4)

The minimal gauge group is
SO(12) x SU(2)1 x SU(2)2 x SO(8)1 x SO(8)5.

Various extensions are possible since extra massless states can arise from x, z1, z2, z1 + z2, where
the anti-holomorphic x set is

6 2
x=14+S+Y e+ Y a={i"" ¢} (2.5)
i=1 k=1

Among these massless states there are also space—time vector bosons, which extend the four-
dimensional gauge symmetry group, possibly also mixing the observable and hidden sectors
gauge groups. As we discuss further below a choice GGSO projection coefficients exists which
avoids such mixings.

Spinorial representations of the SO(12) GUT group are in the (32, 1, 1), (32, 1, 1) of the
SO(12) x SU(2)1 x SU(2), observable gauge group. These representations arise from the twisted
sector

Bpsqsrsss =S+b;+ pSe3 + qSe4 + rses + sse6, (2.6)

where pS, ¢5, rS, s = {0, 1}. In this sectors the six complex world-sheet fermion {y 1+, 71}
are periodic, and there are no oscillators acting on the non-degenerate vacuum in this sector.
Spinorial representations of the hidden SO(8); (i =1, 2), arise from the sectors

Hisys 55 =S+bi+x+zi+kles+les+mies+nies, i=12. 2.7)

In these sectors the corresponding {¢"*} or {¢> 8} are periodic and again there are no
oscillators acting on the non-degenerate vacuum in these sectors. States in the vectorial rep-
resentations of the SO(12) GUT group, i.e. in the (12, 2, 1) and (12, 1, 2), of the observable
SO(12) x SU(2) x SU(2) gauge group, as well as states in the vectorial representations of the
hidden SO(8); gauge groups arise from the sector

Vpvgvrvgy = Bpvgv,vgy +x

=S5S+b +x+pve3 +qve4+rve5 +sve(, (2.8)
in this sector the world-sheet complex fermions {7723} are periodic. The massless states are
obtained by acting with a fermionic oscillator on the non-degenerate vacuum. Following the
methodology of Ref. [9] the GGSO projections are translated to a set of algebraic equations.

The number of observable spinorials S and vectorials V, as well as the number of hidden sector
spinorials Sy, $> and vectorials Vi, V; are determined by the solutions of the equations

AUs =Yg,
AUy =Yy,
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AUE=YE i=1,2,

AU, =Y, i=1,2, (2.9)
where the unknowns are the fixed point labels
p: "
us=|% | =19 |, U= :ff . U= ,f;iiv : (2.10)
53 sV ns nV

In what follows it is convenient to introduce the phases (a;|a ), which are defined via the GGSO
projection coefficients as

c[aii| — imlaila)) (ailaj)=0,1 (2.11)
aj
with the properties
(ailaj + ar) = (ailaj) + (ailax), Vai : {y"}Na; =9, (2.12)
(ailaj)z(aj|ai), Vai,aj :a,-~aj=0 mod4 (2.13)

where #(a; - aj) = #[a; Ua; — a; Naj]. On the left-hand side of the algebraic GGSO equa-
tions (2.9) the A operators are binary matrices composed of the relevant GGSO phases.

(e1lez) (eirles) (eiles) (eiles)
(e2lez) (ezles) (ezles) (ezles)
(z1le3) (ziles) (ziles) (z1lee)
(z2le3) (z2leq) (z2les) (z2leq)

(e1le3) (erles) (erles) (erles)
A1=|: ]

A=

(e2le3) (exles) (ezles) (e2les)
(z2le3) (z2]les) (z2les) (z2les)
(e1les) (erles) (erles) (erles)
Ay = [(62|63) (e2les)  (e2les) (€2|€6)] ; (2.14)
(z1lez) (ziles) (ziles) (ziles)
whereas the right-hand sides of the GGSO projection equations are composed of one column
vectors appropriate for the respective sectors,

(e1lb1) (e1lb1 +x)
Yo = (e21b1) Yy = (e2]b1 +x)
(z11b1) (z1lb1 +x) |’
(z21b1) (z21b1 +x)
_ _ e1lby +x) 7
M (exlbr +x +21) ) Ee;:biﬂ;
Yo' =] (e2lbi +x+2z1) |, Yy = )
(z1|b1 +x) + 1
L (z2]b1 +x +z1) (alb1 +x)
_ _ e1lby +x) 7
@) (exlbr +x +22) @) Ee;:biﬂ;
Yo' =| (e2albi +x+22) |, Yy, = (z11b1 +x) (2.15)
L b i
@ilbr+x+2) L zalbr 4+ x) 41
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Table 1
Typical enhanced gauge groups and associated projection coefficients for a generic model generated by the basis (2.4)
(coefficients not included equal to +1 except those fixed by space—time supersymmetry and conventions)

0 T I T 5 0 FRC o) B 9

+

el

c[zz] Gauge group

U2 x S0(12) x SO(18)
SO(12) x SO(4) x SO(10)2

U(1) x S0(12)2 x SO(10)
U(1)? x SO(28) x SO(4)

U(1)? x E7 x SUQ) x Eg
U(1)? x E7 x SU(2) x SO(16)
U(1)2 x S0(12) x SO(4) x Eg
U(1)? x S0(12) x SO(4) x SO(8)>

|+ + + +

|
+H 0+ +
+H+++ 0+ ++
T R
L+t
|+ + + +
I+ 4+ +++ 1+

I+ + + + + +

We note that the A matrices of the observable SO(12) spinorial and vectorial representations
are identical, and that the two column vectors Yg and Yy are “mapped” by the addition of the
vector x. Following the methods developed in [9] the number of N = 2 hypermultiplets in the
SO(12) spinorial (S) and vectorial (V') representations are given by

S— 24-rank(A), rank(A) = I‘ank[A, YS], (216)
0, rank(A) < rank[A, Yg],

V— 24-rank(A)’ rank(A) = I‘ank[A, YV], (217)
0, rank(A) <rank[A, Yy ],

where the respective [A, Y] are the augmented matrices. Similar results hold for the counting of
SO(8)y, k = 1,2 representations.

2.1. The four-dimensional gauge group

For all the models generated by the basis set (2.4) gauge bosons arise from the following four
sectors:

G ={0,z1,22,21 + 22, x}.

The null sector gauge bosons give rise to the gauge symmetry
U(1)? x SO(12) x SU(2)* x SO(8)*. (2.18)

The first two U (1)’s arise from the world-sheet complexified fermions ¢/ =1/ fz(yf +iwh)
(i =1,2), whereas the two SU(2)’s arise from the complex world-sheet fermions 77 (i =2, 3).
The remaining group factors arise from the world-sheet fermions {13, ij'}, ¢'>~* and >3,
respectively.

The x gauge bosons when present lead to enhancements of the SO(12)) gauge group, while the
71 4 z2 sector can enhance the hidden sector (SO(8)2). The z1, zo sectors accept oscillators that
can also give rise to mixed type gauge bosons and completely reorganise the gauge group. The
appearance of mixed states is in general controlled by the phase c[ ;2'] The choice c[ ;‘] =+1
allows for mixed gauge bosons and leads to the gauge groups presented in Table 1.

The choice c[g] = —1 eliminates all mixed gauge bosons and there are a few possible

enhancements: SO(12) x SU(2) — E7 and/or S0(8)2 — {SO(16), Eg}. The additional gauge
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bosons that may arise from the sectors

X, 21, 22, Z21+22

can lead to enhancements of the observable and/or the hidden gauge group. These enhancements
are model dependent, and hence depend on specific choices of GGSO phases. These enhance-
ments include:

(I) The x-sector gauge bosons give rise to SO(12) x SU(2) — E7 enhancement when
(eilx) =(zxlx) =0 Vi=1,...,6, k=1,2. (2.19)
(II) The z1 + z2-sector gauge bosons can lead to SO(8)2 — SO(16) enhancement when

(eilz1) = (eilz2) Vi=1,...,6, (bi|z1) = (b1l|z2). (2.20)

(III) The zg-sectors (k = 1,2), enhancements involve right-moving fermionic oscillators and
belong in two classes depending on the value of (z1]z2):
(a) for (z1]z2) = 1 we obtain gauge bosons that involve z; and/or z oscillators, namely
{qSl'"g}. These lead to hidden group enhancements, and particularly to S0(8)2 — S0(16)
when

(z1lz2) =1, (eilze) = (brlzx) =0 Vi=1,...,6 (2.21)

(b) for (z1]z2) = 0 we obtain gauge bosons that involve oscillators not included in z1, z» and
lead thus to gauge bosons that mix SO(8); or/and SO(8), with other group factors in (2.18).
These include:

The case (zx|b1) = 1 selects vector bosons that enhance the SO(12) x SO(8); depending
on the choices of (z1le;) (i =1,...,6). The basis vectors e 2 acts as projectors on these
states. Setting (zx|e1) = (zx|e2) = 0 keeps the states in the spectrum, whereas (zx|e;) = 1
and/or (zr|ez) = 1 projects them out. The remaining (zx|e;) phases select particular states
according to:

(zkles,a,5,6) =0— (12, 8), (2.22)
(zkle) =1 & (zklejr1) =0— (1,8), (2.23)
(zrleij) =1 & (zilery) =0— (1, 1), (2.24)
(zkleijo) =1 & (zkle) =0— (1,1p), (2.25)
(zklei je) =1 — (1, 1p), (2.26)

with {i #j#k#1}={3.,4,5,6).

Case (2.22) enhances the SO(12) x SO(8) symmetry to SO(20). Case (2.23) enhances the
SO(12) x SO(8) symmetry to SO(12) x SO(9). Cases (2.24), (2.25) and (2.26) project the
additional vector bosons from the sectors zx, and leave the SO(12) x SO(8) symmetry

unenhanced.
The case (zx|b;) = 0 selects vector bosons that enhance the U(1)2 x SO(4) x SO(8)
symmetry depending on the choices of (zxle;) (i = 1,...,6). The (zx|e;) phases select

particular states according to:

(zxle12,34,56) =0— (0,4, 8p), 2.27)
(zkle) =1 & (zklejkimn) =0— (£1;,04,1,8), (2.28)



26 A.E. Faraggi et al. / Nuclear Physics B 799 (2008) 19-33

with {i#£jl=1 or 2#{k#l#m#n}={3,4,5,6},

(zkle) =1 & (zklejusmn) =0—> (0% 1,8p), (2.29)
with {i}={3,4,5,6}#{j #k#l#m#n}=1{1,2,3,4,5,6},

(zrlei)=1 & (zlexs)=0— (0%, 1,1p), (2.30)

(leij) =1 & (zklermn)=0— (0%, 1,1p), (2.31)

Gileija) =1 & (zlemn) =0— (0%,1,1p), (2.32)

(leijoim) =1 & (zxlermn) =0— (0%, 1, 1z), (2.33)

(zxlei,jktmn) =1 — (07,1, 1), (2.34)

with {i#j#k#l#m#n}={1,2,3,4,5,6)

for k = 1 or/and k = 2. In this case the gauge group enhancement includes several possibil-
ities, depending on the (b1|zx) we can obtain:

Case (2.27) enhances the U(1)> x SO(4) x SO(8); symmetry to U(1)> x SO(12).
Case (2.28) enhances the U(1); x U(1); x SO(4) x SO(8); symmetry to U(1l); x
SO4) x SO(10). Case (2.29) enhances the SO(8); symmetry to SO(9)x. Cases (2.30),
(2.31), (2.32), (2.33) and (2.34) project the additional vector bosons from the sectors z,
and leave the U (1)2 x SO(4) x SO(8)x symmetry unenhanced. Depending on the separate
enhancements of SO(8); for k = 1,2 we can obtain for example:

S0(12) x SO(8); — SO(20),
SO4) x SO(8), — SO(12),
SO®), x U(1) = SO(10);, or
SO8)* x U(1)> — S0(10)>.

Moreover for (z1]|z2) = 0 and particular choices of (e;|zx) and (b1|zx) we can have
SO(8);, — SO(9) enhancements.

Mixed combinations of the above are possible when the conditions on the associated GGSO
coefficients are compatible. For example combination of gauge bosons (II) with those in (IIIb)
can lead to SO(12) x SO(8)> — SO(28) enhancement.

In the present work we restrict to models where all the additional gauge bosons from the
sectors x, z1 + z2 and zj sectors are absent. This is achieved for appropriate choice of the GGSO
phases such that the above requirements are not satisfied.

3. Results

Using the results of Section 2, we can calculate the number of SO(12) spinorials (S) and
vectorials (V) as well as the numbers of SO(8);, k = 1, 2 spinors and vectors for a given set of
GSO projection coefficients. They turn out to depend on 26 parameters, namely (eile;), (ez2]e;),
(z1lej), (z2lej), j=3,...,6, (e1le2), (e1lzk), (e2lzk), (ex|b1), (zklb1), k = 1,2 and (z1]z2) giv-
ing rise to 22° distinct models. The full set of models can be classified with the help of a computer
programme following the methods developed in [9]. As far as the total number of twisted SO(12)
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01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16

40% | - - 40%
30% -130%
20% +420%
10% 41 10%
0% w I N T S T T S ST SR ')
01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16

Fig. 1. Percentage of models versus the number of N =2 SO(12) spinorial/vectorial multiplets.

spinorials or vectorials is concerned we find that only models with S,V =0, 1,2, 4, 8, 16 are al-
lowed. A graphical representation of the percentage of distinct models versus the number of
SO(12) spinorials/vectorials is presented in Fig. 1. These results were obtained by a Monte Carlo
analysis that generates random choices of the GGSO phases. In this sense the results shown in
Fig. 1 are based on a statistical polling. We note that analysis of large sets of string vacua has
also been carried out by other groups [12].

4. Analytic proof of spinor-vector duality

As seen from Eqs. (2.9)—(2.15) the number of SO(12) vectorial and spinorial representations
are interchanged when the ranks of the associated Y-vectors are interchanged (Ys <> Yy)

rank[A, Yg] < rank[A, Yy], 4.1)

as follows from Egs. (2.16) and (2.17). In order to prove the existence of V <« S; duality we
have to demonstrate the existence of a universal map that preserves the ranks of the matrices,
while exchanging Ys <> Yy . Since the rank of the augmented matrix does not change by adding
to the Yy the sum of the columns of A we can rewrite Yy as follows

(e1lby) + (erlex +z1 + 22) (e1lex +z1 +22)
(e21b1) + (ezler +z1 +22) (e2ler +z1+22)
Yy = =Y 4.2
VI @b + (ziler +e2 +22) + 1 ST Giler +ex+22) + 1 “42)
(z2|b1) + (z2ler +e2 +z1) + 1 (z2]le1 +ex+2z1) + 1

The last vector in the above equation contains six independent phases that do not appear in A
namely (e1lez), (e1]z1), (e1]z2), (e2]z1), (e2]z2), (z1]z2). Four of them can always be used to re-
alize the V < § exchange.

5. A novel basis

We present a new basis for generating the free fermionic models that may shed new light on
the structure of heterotic-string unification, on its relation to the low energy data and to other
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limits of string theory. The new basis is obtained by splitting the gauge degrees of freedom of
the uncompactified ten-dimensional theory into four equivalent subgroups. In effect, this entails
that the untwisted vector bosons produce the generators of SO(8)* gauge group. This is achieved
by introducing the four basis vectors z{,1,2,3; into the basis. Each of the z; contains four non-
overlapping periodic fermions from the set {7123 @183} In the new basis we rename
v =i

To illustrate the origin of the spinor-vector duality in the new basis we will consider first
a class of models that are generated by a minimal set of seven basis vectors, excluding the
geometrical coordinate sets e;, of the basis in Eq. (2.4). The remaining 8 holomorphic and 32
anti-holomorphic world-sheet fermions are divided into five non—overlapping groups of eight
real fermions. Such a division in ten dimensions [1,2,13] is unique and independently of GGSO
projection coefficients always produces in the space—time supersymmetric case either SO(32) or
Eg x Eg, and not any other gauge groups. Although, naively one may expect that other gauge
groups, like SO(8)4, 50(16)2 or SO(8) x SO(24) may arise, the chiral modular properties of
the partition function forbid the other possible extensions in the supersymmetric case. In terms
of the particular SO(8) characters this property follows from the triality structure of the indi-
vidual SO(8) character. Namely, the equivalence of the 8y, 85 and 8¢ SO(8) representations.
This equivalence enables twisted constructions of the Eg x Eg or SO(32) gauge groups. This
phenomena will appear in the models generated by the new basis introduced below.

The non-holomorphic SUSY breaking vector b; generates a Z, projection which breaks
N =4 to N = 2 space-time supersymmetry, and breaks one of the SO(8) groups to SO(4) x
SO(4) = SU(2)*.

The class of free fermionic models under investigation is generated by a set V of 7 basis
vectors

V={vi,v2,...,v7},

where

<
=)
|
I
=)
I
pg]

34 56 .34 56| =34 =56 -0 =1
vi=br={x* %y 0 | 3 3000 0, (5.1

where 7' = /. The models generated by the basis (5.1) preserve N = 2 space—time super-
symmetry, as only one Z SUSY breaking projection is induced by the basis vector by. The
models that preserve only N = 1 space—time supersymmetry are easily incorporated by includ-
ing a second Z, SUSY breaking projection given by a second basis vector b, (see e.g. Ref. [9]
and references therein). Here we focus only on the N = 2 preserving vacua. The second func-
tion of the second Z; basis vector b; is to break the observable symmetry gauge group from
SO(12) x SO(4) to SO(10) x U (1)3. Here the spinor-vector duality is therefore seen in terms of
SO(12), rather than SO(10), representations.
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Table 2
The configuration of the gauge group of the N = 4 theory
20 20 20 Z1 4] 22
C[Zl] C[Zz] 0[13] C[zz] 0[13] C[m] Gauge group G
+ + + + + + S0(44)
- + + + + + SO(28) x Eg
_ _ + + + + SO(20) x SO(24)
+ + — — + + SO(12) x Eg x Eg
_ + — — + + SO(12) x SO(16) x SO(16)

S0(12) x SO(32)

The gauge groups arising with the new set of basis vectors Eq. (5.1). The sectors contributing
to the gauge group are the 0-sector and the 10 purely anti-holomorphic sets:

G ={0,
20,21, 22, 23,
20+ 21,20+ 22,20 + 23,21 + 22,21 + 23,22 + 23} (5.2)

where the 0-sector requires two oscillators acting on the vacuum in the gauge sector; the z;-
sectors require one oscillator; and the z; + z; require no oscillators. We first analyse the N =4
gauge group arising prior to the inclusion of the basis vector by, which reduces N =4 to N =2
space—time supersymmetry. The b; basis vector does not give rise to additional enhancement
sectors, and therefore merely reduces the N = 4 gauge group to a subgroup.

The 0-sector gauge bosons give rise to the gauge group

[s0(12)] x SO(8)* (5.3)

where the SO(12) group factor arises from the 12 right-moving world-sheet fermions {7, @},
which defines the internal lattice at the free fermionic SO(12) enhanced symmetry point, and the
SO(8)3.0.1.2 group factors arise respectively from: i 14, 701,23 gl 458 The appear-
ance of the lattice SO(12) gauge group in four dimensions that can extend the ten-dimensional
SO(32) and Eg x Eg gauge groups, depending on the choices of GGSO projection coefficients,
which may correlate the characters of the SO(12) lattice characters with those of the four SO(8)’s.
The notation used in this division adheres to the conventional notation used in the free fermionic
constructions and the quasi-realistic heterotic-string models in the free fermionic formulation.
The additional sectors in Eq. (5.2) can give rise to space—time vector bosons that enhance the
four-dimensional gauge group given in Eq. (5.3). The enhancements depend on the GGSO phases

[ sz,] with i # j. All vacua contain N = 4 space-times supersymmetry, which fixes the c[ ;: ]

phases. Hence, there may be a priori 2° possibilities for the four-dimensional gauge group, some
of which may be repeated. Identical manifestations of the gauge groups arise from to the twisted
realisation of the group generators, using the triality property of the SO(8) representations. This
is the four-dimensional manifestation of the twisted generation of gauge groups already noticed
in the ten-dimensional case. We list a few of the possibilities in Table 2.

5.1. A simple example of the spinor-vector duality

Including the basis vector b; reduces N =4 — N = 2 space-times supersymmetry. To illus-
trate the spinor-vector duality in the N = 2 vacua of the new basis, akin to the spinor-vector
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duality discussed in Ref. [9], and in Section 2, we choose the initial N = 4 vacuum with
[SO(12)] x SO(16) x SO(16) gauge group. This case is realised with the GGSO projection co-
efficient to be:

c 20 —c 20 —c 71 - ¢ 20 - ¢ 71 - ¢ 22 =1 (54)
2] Lzl Lzl lz)T Lzl Lzl 7 '

with this choice the additional sectors, beyond the 0-sector, giving rise to extra space—time vector
bosons are only z; and z3. The additional projection induced by the basis vector b; reduces the
gauge symmetry arising from the 0-sector to

[SO8) x SO@)]; x [SO(8)3 x SO4) x SO@)],, x [SO®)1 x SO®)2],,.- (5.5)

The lattice gauge group is reduced to [SO(8) x SO(4)],. We define as the observable gauge
group arising from the 0-sector to be [SO(8)3 x SO(4) x SO(4)]p, and the [SO(8)1 x SO(8)2]1n
is the hidden gauge group. This labelling of observable and hidden gauge groups will be clarified
below. Both observable and hidden sector gauge groups are enhanced. The hidden gauge group
is enhanced to [SO(16)]y due the extra vector bosons arising from the sector z,. The extra vector
bosons from the sector z3 enhance the observable [SO(8)3 x SO(8)plo to [SO(16)]p atthe N =4
level. While at the N = 2 level the b; projection reduces [SO(16)]p — [SO(12) x SO4)]o =
[SO(12) x SU(2)g x SU(2)1]10. Now we are in the position to define the N = 2 spinor-vector
duality in terms of the SO(12) representations of the observable sector. Explicitly, the exchange
of the vectorial 12 representation of SO(12) with the spinorial 32 representation. To illustrate the
duality we construct two different models in which these representations are interchanged due to
the choices of the GGSO projection coefficients.
Consider first the choice of the extra phases to be:

b] _ b] _
C[I’ZO}_ C[S,Zl,zz,za] L. (5.6)

This choice defines a model with 2 multiplets in the (1,27 + 2r,12,1,2,1) and 2 in the
(8,21 +2g, 1,2, 1, 1) representations of [SO(8) x SO(4)], x [SO(12) x SU (2)o x SU(2)1]o %
[SO(16)]y. In this case the sectors contributing to the vectorial 12 representation of SO(12) are
the sectors by and by + z3, where the sector b1 produces the (1,2, 2) representation and the sec-
tors b1 + z3 produces the (8g, 1, 1) under the decomposition [SO(12)]g — [SO(8) x SO(4)]p =
[SO(8) x SU(2) x SU(2)]o. All other states are projected out. Therefore, there are a total of
eight multiplets in the vectorial representation of the observable SO(12) in this model. These
states also transform as doublets of the observable SU(2).
The second choice given by

b1 _ b1 _
C|:1,Z0,le|_ C|:S,ZQ,Z3]_ L 5.7)

This choice defines a model with 2 multiplets in the (1,27 + 2r,32,1,1,1), and 2 in the
(1,21 +2g, 1,1, 2, 16), representations of [SO(8) x SO(4)] x [SO(12) x SU (2)o x SU (2)1]0 %
[SO(16)]y. In this case the sectors contributing to the spinorial 32 representation of [SO(12)]¢p
are the sectors by + zo and by + z3 + zg, where the sector by + zo produces the (8y,2,1)
representation and the sectors b1 + z3 + zo produces the (8¢, 1,2) under the decomposition
[SO(12)]p — [SO(B) x SO4)]o =[SO(8) x SU(2) x SU(2)]o. The sectors contributing to the
vectorial 16 representation of the hidden SO(16) gauge group are the sectors by and by + 73,
where the sector b; produces the (8y, 1) representation and the sector by 4+ z> produces the
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(1, 8¢) representation under the decomposition [SO(16)]y — [SO(8)1 x SO(8)2]y . The hidden
16 representations transform as doublets of the observable SU(2); group. All other states are
projected out. Therefore, there are a total of eight multiplets in the spinorial 32 representation of
the observable [SO(12)]o in this model.

We see that in the first example the vectorial 12 representation of the observable [SO(12)]o
is constructed as 12 = (8s, 1, 1) @ (1, 2, 2), while in the second example the spinorials are con-
structed as 32 = (8y,2, 1) @ (8¢, 1, 2) under the decomposition SO(12) — SO(8) x SU(2) x
SU(2). Due to the triality of the SO(8) representations we may “rename” 85 <> 8y <> 8¢. Re-
naming thus the SO(8) representations we recover the canonical decomposition of SO(n +m) —
SO(n) x SO(m) as V" = (V" 1)@ (1, V™), and S"T" = (§", §™) @ (C"*, C™), for the vecto-
rial and spinorial representations of SO(n + m), respectively.” We therefore note that the triality
of the SO(8) representations enables the twisted realisations of the GUT gauge group and repre-
sentations, being SO(12) in the N = 2 models studied here, and SO(10) in N = 1 models. This
observation offers a novel insight into the realisation of the GUT symmetries in heterotic string
models, and in particular, on possible relations to other string limits.

The map between the two models, (5.6) and (5.7), is induced by the discrete GGSO phase
change

c[bl:|=+l—>c|:bl:|=—1. (5.8)
21 71

Similar to the x-map of Refs. [9,14] the map from sectors that produce vectorial representations
of the observable SO(12) group to sectors that produce spinorial representations in the models
utilising the basis of Eq. (5.1) is obtained by adding the basis vector zo. Appropriate choice of the
discrete GGSO phases can project the vectorial states and maintain the spinorial states and visa
versa. The discrete phase change from (5.6) to (5.7) indeed induces the spinor-vector duality map
in the N = 2 model. The role of the basis vectors z> and z3 in the models of (5.6) and (5.7) is to
generate the twisted realisation of the gauge symmetry enhancement of the SO(8) gauge groups
arising from the null sector. The space of N = 2 free fermionic heterotic string models, which
is generated by the basis (2.4) can now be spanned by adding the e; vectors to (5.1). Similarly,
the space of N = 1 vacua classified in [7,9] can be generated by supplementing (5.1) with the
second Z, breaking vector b,.

6. Conclusions

In this paper we demonstrated that the spinor-vector duality observed in Ref. [9] in Z3 x Z;
free fermionic N = 1 space—time supersymmetric vacua exists also in Z, free fermionic N =2
vacua, i.e. prior to the inclusion of a second supersymmetry breaking Z, twist. In the case of
N =2 vacua the duality map is between the total number of (32, 1, 1) and (32/, 1, 1) spinorial
representations of the observable SO(12) x SU(2) x SU(2) versus the total number of (12, 2, 1)
and (12, 1, 2) vectorial representations. The N = 2 vacua contain a single twisted sector, which
facilitates the algebraic proof given in Section 4.

We further demonstrated the duality by introducing a novel basis, Eq. (5.1) to generate the free
fermionic models. The earlier basis, used in Section 2 follows the usual division used in the litera-
ture of the quasi-realistic free fermionic models. This division reflects the two key characteristics

2 The vector 4 representation of SO(4) decomposes as (2, 2) under SU(2) x SU(2).
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of these models, being: (a) their relation to Z> x Z, orbifold compactifications; (b) the SO(10)
GUT symmetry generated by the complex world-sheet fermions ¥ . In the new basis given
in Eq. (5.1) the underlying SO(10) symmetry is no longer manifest. An SO(10) GUT symmetry
can arise with the new basis for appropriate choices of the GGSO phases due to enhancements
from additional sectors. This is an important distinction for several reasons:

1. The rank 16 gauge group is now even more symmetric. The gauge degrees of freedom are
grouped into four groups of four, each generating an SO(8) modular block. The enhancement of
one SO(8) x SO(2) (or SO(8) x U (1)) to SO(10) is obtained for a particular choice of the GGSO
phases. But any one of three SO(8)’s can be enhanced. In fact, all three SO(8)s can be enhanced
simultaneously yielding a model with SO(10)® gauge symmetry. The SO(10) symmetry is gen-
erated by grouping states from the trivial and non-trivial sectors. The character of the SO(10)
representations, i.e. whether it spinorial or vectorial and its chirality, resides in the U (1) charges.
The new manner in which the SO(10) symmetry is obtained may shed new light on the origin of
the GUT symmetries in heterotic string theory and its relation to other limits.

2. The new division of the world-sheet fermions of the rank 16 gauge degrees of freedom is
well known in the classification of the ten-dimensional heterotic string of Refs. [1,2,13]. The only
supersymmetric vacua in 10 dimensions are the SO(32) and Eg x Eg vacua. However, there are
different ways to generate this symmetry in terms of the basis generators {zo, z1, 22, z3} of (5.1),
all of which produce equivalent symmetries. This is a reflection of the triality property of the
8y, 8s and 8¢ SO(8) representations. In four dimensions other enhancements are possible due to
the symmetries arising from the compactified six-dimensional lattice at the enhanced symmetry
point, which is reflected in Table 2.

3. The Z; supersymmetry breaking vector by in (5.1) breaks one and only one of the four
untwisted SO(8)s to SO(4) x SO(4). One of the remaining SO(8)s may be combined with one
of these SO(4)s to form an SO(12) symmetry group. The triality characteristic of the enhanced
SO(8) representation is lost, as is now reflected in the spinor-vector duality. Thus the spinor-
vector duality has it roots in the modular properties of the original SO(8) modular blocks.

4. To date the heterotic Eg x Eg and occasionally the heterotic SO(32) has held a special
position in terms of attempts to relate string vacua to experimental particle data. The results of
this paper, however, suggest that this supreme position should be examined, and that the more
fundamental role may be played by the SO(8) characters. This view opens up many interesting
questions for investigation.
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