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Abstract

Ž .We reconsider the Next to Minimal Supersymmetric Standard Model NMSSM as a natural solution to the m-problem
and show that both the stability and the cosmological domain wall problems are eliminated if we impose a ZZ R-symmetry2

on the non-renormalizable operators. q 1999 Elsevier Science B.V. All rights reserved.

The Ns1 supersymmetric extension of the Stan-
dard Model provides a well defined framework for

w xthe study of new physics beyond it 1 . The low
energy data support the unification of gauge cou-
plings in the supersymmetric case in contrast to the
standard case. The Minimal Supersymmetric exten-

Ž .sion of the Standard Model MSSM is defined by
promoting each standard field into a superfield, dou-
bling the Higgs fields and imposing R-parity conser-
vation. The most viable scenario for the breaking of
supersymmetry at some low scale m , no larger thans

;1 TeV, is the one based on spontaneously broken
supergravity. Although this scenario does not employ
purely gravitational forces but could require the ap-
pearance of gaugino condensates in some hidden
sector, it is usually referred to as gravitationally
induced supersymmetry breaking. The resulting bro-
ken theory, independently of the details of the under-
lying high energy theory, contains a number of soft

Ž .supersymmetry susy breaking terms proportional to
powers of the scale m . Probably the most attractives

feature of the MSSM is that it realizes a version of

‘‘dimensional transmutation’’ where radiative correc-
tions generate a new scale, namely the electroweak
breaking scale M . This is a highly desirable, butW

also non-trivial, property that is equivalent to deriv-
ing M from the supersymmetry breaking scale asW

opposed to putting it by hand as an extra arbitrary
parameter. Unfortunately, a realistic utilization of

w xradiative symmetry breaking 2 in MSSM requires
the presence of the so called m-term coupling di-
rectly the Higgs fields H and H , namely mH H ,1 2 1 2

with values of the theoretically arbitrary parameter m

close to m or M . This nullifies all merits ofs W

radiative symmetry breaking since it reintroduces an
extra arbitrary scale from the back door. Of course,
there exist explanations for the values of the m-term,

w xalas, all in extended settings 3 .
At first glance, the most natural solution to the

m-problem would be to introduce a massless gauge
singlet field S, coupled to the Higgs fields as

Ž .lSH H , whose vacuum expectation value vev1 2

would turn out to be of the order of the other scales
floating around, namely m and M . This leads tos W

0370-2693r99r$ - see front matter q 1999 Elsevier Science B.V. All rights reserved.
Ž .PII: S0370-2693 98 01493-2



( )C. Panagiotakopoulos, K. TamÕakisrPhysics Letters B 446 1999 224–227 225

the simplest extension of the MSSM the so called
w x‘‘Next to Minimal’’ SSM or NMSSM 4 with a

Ž .cubic renormalizable superpotential
k

3 Žu. cWW slSH H q S qY QU Hren 1 2 13

qY Žd .QDcH qY Že.LEcH . 1Ž .2 2

Unfortunately, the above scenario runs into diffi-
culties. As can be readily seen the NMSSM at the
renormalizable level possesses a discrete non-anoma-
lous ZZ global symmetry under which all super-3

fields are multiplied by e2p i r3. The discrete symme-
try is broken during the phase transition associated
with the electroweak symmetry breaking in the early
universe and cosmologically dangerous domain walls
are produced. These walls would be harmless pro-
vided they disappear effectively before nucleosyn-
thesis which, roughly, requires the presence in the
effective potential of ZZ -breaking terms of magni-3

tude
4 y12 4d VRO 1 MeV ;10 GeV .Ž .

Such an estimate is not very different from the more
w xelaborate one 5

d VR10y7Õ3M 2 rM ,W P

where Õ is the scale of spontaneous breaking of the
discrete symmetry and M ,1.2=1019 GeV is theP

Planck mass. The above magnitude of ZZ -breaking3

seems to correspond to the presence in the superpo-
tential or in the Kahler potential of ZZ -breaking¨ 3

operators suppressed by one inverse power of the
Planck mass. However, these ZZ - breaking non-re-3

normalizable terms involving the singlet S were
w xshown 5 to induce quadratically divergent correc-

tions 1 which give rise to quadratically divergent
w xtadpoles for the singlet 6 . Their generic form, cut-off

at M , isP

j m2 M SqS) , 2Ž . Ž .s P

where m is the scale of supersymmetry breaking ins

the visible sector. The value of j depends on the

1 These non-renormalizable terms appear either as D-terms in
the Kahler potential or as F-terms in the superpotential. The¨
natural setting for these interactions is Ns1 Supergravity sponta-
neously broken by a set of hidden sector fields.

Žloop order of the associated graph two or three in
.this case which, in turn, depends on the particular

non-renormalizable term that gives rise to the tad-
pole. Such terms lead to a vev for the light singlet S
much larger than the electroweak scale. Thus, it
seems that the non-renormalizable terms that are able
to make the walls disappear before nucleosynthesis
are the ones that destabilize the hierarchy.

The purpose of the present article is to address the
two problems of domain walls and destabilization
that arise in the NMSSM and show that, despite the
impass that the previous arguments seem to indicate,
there is a simple way out rendering the model a
viable solution to the m-problem. The crucial obser-
vation is that due to the divergent tadpoles a ZZ -3

breaking operator could have a much larger effect on
the vacuum than its dimension naively indicates.
Thus, it is conceivable that non-renormalizable terms
suppressed by more than one inverse powers of MP

are able to generate linear terms in the effective
potential which are strong enough to eliminate the
domain wall problem although, at the same time,
they are too weak to upset the gauge hierarchy.
Clearly, it would be very helpful to obtain a better
understanding of both the symmetries that could be
imposed on the model and the magnitude of destabi-
lization that the various non-renormalizable opera-
tors generate.

The renormalizable part of the NMSSM superpo-
Ž .tential 1 possesses the following global symme-

tries:
1 1 1c c cU 1 :Q , U y , D y , L 0 , E 0 ,Ž . Ž . Ž .Ž . Ž . Ž .B 3 3 3

H 0 , H 0 , S 0Ž . Ž . Ž .1 2

U 1 : Q 0 , U c 0 , Dc 0 , L 1 , Ec y1 ,Ž . Ž . Ž . Ž . Ž . Ž .L

H 0 , H 0 , S 0Ž . Ž . Ž .1 2

U 1 : Q 1 , U c 1 , Dc 1 , L 1 , Ec 1 ,Ž . Ž . Ž . Ž . Ž . Ž .R

H 1 , H 1 , S 1Ž . Ž . Ž .1 2

Žwhere in parenthesis is given the charge of the
.superfield under the corresponding symmetry . The

Ž .last U 1 is an anomalous R-symmetry under which
the renormalizable superpotential WW has charge 3.ren

The soft trilinear susy-breaking terms break the con-
Ž .tinuous R-symmetry U 1 down to its ZZ subgroupR 3

that we mentioned earlier which, however, is not a
R-symmetry. We see that the renormalizable part of
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the model possesses a genuinely discrete symmetry
whose spontaneous breakdown produces domain
walls.

Of cource, one does not have to impose all the
above continuous symmetries in order to obtain the
renormalizable superpotential WW of the NMSSM.ren

The same WW can be obtained if we impose aren

discrete symmetry. There are various choices among
which it is useful to consider two interesting possi-
bilities:

. M P M Pa ZZ =ZZ . The matter parity ZZ is gener-2 3 2

ated by

ZZ M P : Q,U c , Dc , L, Ec ™y Q,U c , Dc , L, Ec ,Ž . Ž .2

H , H ,S ™ H , H ,SŽ . Ž .1 2 1 2

and the ZZ symmetry by3

ZZ : Q,U c , Dc , L, Ec , H , H ,SŽ .3 1 2

™e2p i r3 Q,U c , Dc , L, Ec , H , H ,S .Ž .1 2

Ž .Note that ZZ ;U 1 , as already mentioned. Both3 R
M P Ž .ZZ and ZZ are not R-symmetries WW™WW .2 3
. M P ŽR. M Pb ZZ =ZZ . The matter parity ZZ genera-2 4 2

tor is defined as in the previous case. The ZZ4
ŽR. Ž .R-symmetry ZZ ;U 1 generator is defined by4 R

ZZ ŽR. : Q,U c , Dc , L, Ec , H , H ,SŽ .4 1 2

™ i Q,U c , Dc , L, Ec , H , H ,S , WW™yiWW .Ž .1 2

Although it makes no difference which of the
above symmetries are imposed on the renormalizable
superpotential, we should make sure that the ZZ3

symmetry, or any other symmetry containing it, is
not a symmetry of the non-renormalizable operators.
If ZZ invariance is imposed on the complete theory3

the domain walls will not disappear. In contrast, the
ZZ ŽR. symmetry can be imposed on the non-renormal-4

izable operators and no domain walls associated with
its breaking will form because the soft susy-breaking
terms break ZZ ŽR. completely.4

Let us now move to the other important issue that
has to be addressed in the presence of the gauge
singlet superfield S, namely the destabilization of the
electroweak scale due to quadratically divergent tad-
pole diagrams involving non-renormalizable opera-
tors which generate in the effective action linear

Ž .terms of the type 2 . As mentioned, such terms lead
to a vev for the light singlet which, in general, is

w xmuch larger than the electroweak scale. Abel 7 has

shown that the potentially harmful non-renormaliz-
able terms are either eÕen superpotential terms or
odd Kahler potential ones. Such terms are easily¨
avoided if we impose on the non-renormalizable
operators a ZZ R-symmetry ZZ ŽR. under which the2 2

superpotential as well as all superfields flip sign.
Ž .This symmetry is a subgroup of both U 1 andR

ZZ ŽR.. Therefore, one could impose on all operators4

the symmetry ZZ M P =ZZ ŽR. which ensures the form2 4
Ž .1 of the renormalizable superpotential WW of theren

NMSSM and solves the stability problem of the
model at the same time. Alternatively, we could
impose the full ZZ M P =ZZ ŽR. symmetry group on the2 4

renormalizable superpotential and solve the stability
problem by imposing on the non-renormalizable op-
erators its ZZ ŽR. subgroup only.2

Notice that the non-renormalizable terms allowed
by ZZ ŽR. or ZZ ŽR., although not harmful to the gauge2 4

hierarchy, are still able to solve the ZZ -domain wall3

problem since they generate in the effective action
through n-loop tadpole diagrams linear terms of the
form

yn2 3 )d V; 16p m SqS .Ž . Ž .s

These terms are small to upset the gauge hierarchy
but large enough to break the ZZ symmetry and3

eliminate the domain wall problem. For example, the
presence of the term S7rM 4 in the superpotential,P

allowed by both symmetries ZZ ŽR. and ZZ ŽR., is able2 4

to generate at four loops such a harmless linear term,
w xas shown by Abel 7 .

Combining all the above we see that by adopting
Ž .the renormalizable superpotential 1 of the NMSSM

and imposing on the non-renormalizable operators
just a ZZ R-symmetry ZZ ŽR. we are able to solve2 2

both the cosmological and the stability problems of
the model 2. Thus, NMSSM can be finally regarded
as a solution to the m-problem of the MSSM.
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