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We discuss the properties of Lorentzian wormholes in dilatonic Einstein-Gauss-Bonnet theory in four

spacetime dimensions. These wormholes do not need any form of exotic matter for their existence. A

subset of these wormholes is shown to be linearly stable with respect to radial perturbations. We perform a

comprehensive study of their domain of existence, and derive a generalized Smarr relation for these

wormholes. We also investigate their geodesics, determining all possible particle trajectories, and perform

a study of the acceleration and tidal forces that a traveler crossing the wormhole would feel.
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I. INTRODUCTION

Black holes are by far the most celebrated class of
solutions derived from Einstein’s field equations. Being
among the first types of solutions to be found almost a
century ago, they have undergone an extensive investiga-
tion over the years. Their existence conditions, forms of
solutions, and set of properties have been studied in the
context of both traditional general relativity and general-
ized gravitational theories admitting either four or more
dimensions.

The most well-known example of such a generalized
gravitational theory in four dimensions is provided by the
low-energy heterotic string effective theory [1,2]. In this
theory, the scalar curvature term of Einstein’s theory is
only one part of a more complex action functional where
higher-curvature gravitational terms as well as kinetic and
interaction terms of a variety of additional fields (axions,
fermions, and gauge fields) make their appearance. The
dilatonic Einstein-Gauss-Bonnet theory is a minimal ver-
sion of the aforementioned theory and contains the scalar
curvature term R, a scalar field called the dilaton, and a
quadratic curvature term, the Gauss-Bonnet (GB) term,
given by R2

GB ¼ R����R
���� � 4R��R

�� þ R2. The GB

term in four dimensions can be expressed as a total deriva-
tive term and, normally, makes no contribution to the field
equations; however, the exponential coupling to the dilaton
field, which emerges in the context of the dilatonic
Einstein-Gauss-Bonnet theory, ensures that the GB term
is kept in the theory.

In the framework of the dilatonic Einstein-Gauss-
Bonnet theory, new types of black hole solutions emerged
that are endowed with nontrivial dilaton hair (for an in-
dicative list of works on this topic, see [3–8]). The presence
of the GB term in the theory caused the circumvention of
the traditional no-hair theorems as it bypassed the condi-
tions for their validity. In reality, the existence of the
dilatonic black holes violated only the ‘‘letter’’ of the

no-hair theorems, and not the ‘‘essence’’ of them since
the dilaton charge was of a ‘‘secondary’’ type. However, it
became evident that in the context of this type of general-
ized gravitational theory, solutions with a much richer
structure and a modified set of properties, compared to
the ones in general relativity, can emerge.
Another class of gravitational solutions whose proper-

ties are strictly set by the general theory of relativity are
wormholes. They were first discovered in 1935 as a feature
of Schwarzschild geometry [9] and named the ‘‘Einstein-
Rosen bridge’’ as they connect two different universes.
Their importance was realized in full when Wheeler
[10,11] showed that such a bridge, or wormhole, can con-
nect also two distant regions of our own Universe thus
opening the way for fast interstellar travel. However, it was
soon demonstrated that this is not possible for the follow-
ing reasons: (i) the Schwarzschild wormhole is hidden
inside the event horizon of the corresponding black hole,
therefore, is not static but evolves with time; as a result, the
circumference of its ‘‘throat’’ is not constant but opens and
closes so quickly that not even a light signal can pass
through [12,13], (ii) even if a traveler could somehow
pass the throat, she would be bound to exit the wormhole
through the past horizon of the Schwarzschild geometry;
this horizon was shown to be unstable against small per-
turbations and that it would change to a proper, and thus
nontraversable, horizon at the mere approaching of the
traveler [14–16].
In [17], a new class of wormhole solutions was found

that possess no horizon and could, in principle, be travers-
able. However, some form of exotic matter whose energy-
momentum tensor had to violate all (null, weak, and
strong) energy conditions was necessary in order to keep
the throat of the wormhole open. Several studies have
considered a phantom field, i.e., a scalar field with a
reversed sign in front of its kinetic term, as a candidate
for such a form of matter [18–22].
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It was demonstrated in [4] that the GB term leads to an
effective energy-momentum tensor that also violates the
energy conditions. It is in fact this violation that causes the
circumvention of the no-hair theorem, forbidding the ex-
istence of regular black holes with nontrivial scalar hair. It
was noted recently in [23], too, that the presence of the GB
term in the context of a scalar-tensor theory has the prop-
erty to evade the various no-go theorems of general rela-
tivity. Indeed, various wormhole solutions were found in
the context of gravitational theories with higher-curvature
terms [24–27]. In the presence of the Gauss-Bonnet term,
in particular, wormhole solutions were found in the context
of higher-dimensional gravitational theories [28–36].

In this work, we will investigate the properties of worm-
hole solutions that arise in the context of the four-
dimensional dilatonic Einstein-Gauss-Bonnet theory, first
reported in [37]. The presence of the higher-curvature GB
term, which follows naturally from the compactification of
the 10-dimensional heterotic superstring theory down to
four dimensions, suffices to support these types of solu-
tions without the need for phantom scalar fields or other
forms of exotic matter.

The outline of our paper is as follows: In Sec. II, we
present the theoretical context of our model and discuss the
asymptotic forms of the sought-for wormhole solutions at
the regions of radial infinity and the regular throat. Based
on the latter, we derive the embedding diagram and study
the violation of the energy conditions. We also present a
Smarr relation for the wormhole solutions. In Sec. III, we
present the results of our numerical analysis that reveal the
existence of wormhole solutions in the dilatonic Einstein-
Gauss-Bonnet theory, and discuss their properties. We
demonstrate the stability with respect to radial perturba-
tions of a subset of these solutions in Sec. IV. In Sec. V we
discuss the junction conditions. The geodesics in these
wormhole spacetimes are presented in Sec. VI. We calcu-
late the magnitude of the acceleration and tidal forces that
a traveler traversing the wormhole would feel in Sec. VII,
and conclude in Sec. VIII.

II. EINSTEIN-GAUSS-BONNET-DILATONTHEORY

A. Action

We consider the following effective action [4,38,39]
motivated by the low-energy heterotic string theory [1,2]:

S¼ 1

16�

Z
d4x

ffiffiffiffiffiffiffi�g
p �

R�1

2
@��@��þ�e���R2

GB

�
; (1)

where� is the dilaton field with coupling constant �,� is a
positive numerical coefficient given in terms of the Regge
slope parameter, and R2

GB ¼ R����R
���� � 4R��R

�� þ
R2 is the GB correction.

The dilaton and Einstein equations are given by

r2� ¼ ��e���R2
GB; (2)

G��¼ 1
2½r��r��� 1

2g��r	�r	����e���

�½H��þ4ð�2r��r����r�r��ÞP�����; (3)

with

H�� ¼ 2½RR�� � 2R��R
�
� � 2R����R

��

þ R���	R�
��	� � 1

2g��R
2
GB; (4)

P���� ¼ R���� þ 2g�½�R��� þ 2g�½�R��� þ Rg�½�g���:
(5)

B. Ansatz and equations

Throughout this paper we consider only static, spheri-
cally symmetric solutions of the above set of equations.
Thus, we can write the spacetime line element in the
form [4]

ds2 ¼ g��dx
�dx�

¼ �e�ðrÞdt2 þ e�ðrÞdr2 þ r2ðd
2 þ sin2
d’2Þ: (6)

As was demonstrated in [4], the dilatonic-Einstein-
Gauss-Bonnet (EGBd) theory admits black hole solutions
whose gravitational background has the line element of
Eq. (6). It was also shown that further classes of solutions
emerge in the context of the same theory. One of them, in
particular, possesses no curvature singularity and no proper
horizon (with gtt being regular over the whole radial re-
gime). However, the grr metric component as well as the
dilaton field showed some pathological behavior at a finite
radius r ¼ r0, as seen from the expansion near r0 [4]

e��ðrÞ ¼ 	1ðr� r0Þ þ � � � ; (7)

�0ðrÞ ¼ �1ffiffiffiffiffiffiffiffiffiffiffiffiffi
r� r0

p þ � � � ; (8)

�ðrÞ ¼ �0 þ�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r� r0

p þ � � � : (9)

The absence of any singular behavior of the curvature
invariants at r0 signifies that the aforementioned pathologi-
cal behavior is merely due to the particular choice of the
coordinate system.
In [37] we have argued that this class of asymptotically

flat solutions can be brought to a regular form by employ-
ing the coordinate transformation r2 ¼ r20 þ l2. Then, the
metric becomes

ds2 ¼ �e2�ðlÞdt2 þ fðlÞdl2 þ ðl2 þ r20Þðd
2 þ sin2
d’2Þ:
(10)

The above form is regular and describes a wormhole
solution, where r0 is the radius of the throat. Indeed, in
terms of the new coordinate l, the expansion at l ¼ 0
assumes the form

fðlÞ ¼ f0 þ f1lþ � � � ; (11)
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e2�ðlÞ ¼ e2�0ð1þ �1lÞ þ � � � ; (12)

�ðlÞ ¼ �0 þ�1lþ � � � ; (13)

where fi, �i, and�i are constant coefficients, and shows no
pathology. Both metric functions and the dilaton field
remain finite in this asymptotic regime. Thus, these solu-
tions possess no horizon. In addition, all curvature invari-
ant quantities—including the GB term—turn out to be
finite at l ¼ 0, a result that demonstrates the absence of
any singularity.

The substitution of the metric Eq. (10) into the dilaton
equation (2) and Einstein equations (3) yields a coupled
system of ordinary differential equations (ODEs) for the
metric functions and the dilaton field

f0 þfðr2fþ l2�2r2Þ
lr2

¼ r2f�02

4l
þ2��

e���

lr2

�
2ðr2f� l2Þð��02��00Þ

þ�0
�
f0

f
ðr2f�3l2Þþ4lr20

r2

��
; (14)

�0 �r2f� l2

2lr2
¼�02r2

8l
þ2��

e���

lr2f
�0�0ðr2f�3l2Þ; (15)

�00 þ �02 þ �0ð2lf� r2f0Þ
2r2f

þ 2r20f� lr2f0

2r4f

¼ ��02

4
þ 2��

e���

r2f

�
2l½�0ð��02 ��00Þ

��0ð�02 þ �00Þ� þ �0�0
�
3lf0

f
� 2r20

r2

��
; (16)

�00 þ �0�0 þ�0ð4lf� r2f0Þ
2r2f

¼ 4��
e���

r4f

�
�2ðr2f� l2Þð�02 þ �00Þ

þ �0
�
f0

f
ðr2f� 3l2Þ þ 4lr20

r2

��
: (17)

Here r2 ¼ l2 þ r20 and the prime denotes the derivative

with respect to l. Equations (14)–(16) follow from the tt,
ll, and 

 components of the Einstein equations, respec-
tively, whereas the last equation (17) follows from the
dilaton equation. For the numerical computation we
‘‘diagonalize’’ Eqs. (14), (15), and (17) with respect to
f0, �0, and�00. The remaining equation, Eq. (16), involving
also second derivatives of � and �, is satisfied if the other
three equations are fulfilled. Thus, a system of ODEs must
be solved that consists of two first-order equations for the
metric functions f and � and a second-order equation for
the dilaton field.

C. Expansions

The expansion near the throat, Eqs. (11)–(13), once
substituted into the set of equations leads to a number of
recursive constraints that determine the higher-order coef-
ficients in terms of the lower ones. Looking at the lowest
order, we observe that f0, �0, and �0 are free parameters.
Also, the set of parameters of the theory includes the radius
of the throat r0 and the value of �. The value of the
constant � will be later fixed to 1 for simplicity.
However, not all of the above parameters are actually

independent. To start with, we observe that the field equa-
tions remain invariant under the simultaneous changes

� ! �þ��; ðr; lÞ ! ðr; lÞe����=2: (18)

In addition, the following transformation:

� ! k�; � ! �þ lnk

�
; (19)

is also a symmetry of the equations. In the light of the
above, we conclude that only one parameter out of the set
ð�; r0; �0Þ is independent. We may therefore choose to
have a zero asymptotic value of the dilaton field at infinity
which entails fixing the value of the dilaton field at the
throat�0. The remaining two parameters can be combined
to give a dimensionless parameter �=r20 that will be used

throughout our analysis. Finally, among the two parame-
ters associated with the metric functions, (�0; f0), again
only the latter is independent—it is only the derivatives of
the metric function � that appear in the field equations of
motion, therefore, we may use this freedom to fix the value
of �0 in order to ensure asymptotic flatness at radial
infinity. Thus, our class of wormholes is a two-parameter
family of solutions that, in the context of our analysis, have
been chosen to be f0 and �=r20.
When the expansion of the metric functions and dilaton

field near the throat (11)–(13) are substituted into the field
equations, we obtain a set of constraints on the higher-
order coefficients. The constraint on the value of the first
derivative of the dilaton field at the throat is particularly
interesting and takes the form

�2
1 ¼

f0ðf0 � 1Þ
2��2e���0½f0 � 2ðf0 � 1Þ �

r2
0

e���0� : (20)

As the left-hand side of the above equation is positive
definite, the same must hold for the right-hand side. We
may easily see that the expression inside the square brack-
ets in the denominator remains positive and has no roots if

�

r20
<

1

2
e��0 : (21)

This inequality is automatically satisfied for the set of
wormhole solutions presented in the next section, and gives
a lower limit on the size of the throat of the wormhole r0.
Then, the positivity of the right-hand side of Eq. (20)
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demands that f0 � 1. The solutions satisfying f0 ¼ 1
comprise a boundary in the phase space of the wormhole
solutions and their physical significance will be discussed
in the next section.

As already discussed above, at the asymptotic regime of
radial infinity, i.e., as l ! 1, we demand asymptotic flat-
ness for the two metric functions and a vanishing value of
the dilaton field. Then, the asymptotic expansion at infinity
takes the form

�!�M

l
þ��� ; f!1þ2M

l
þ��� ; �!�D

l
þ��� :

(22)

In the above, M and D are identified with the mass and
dilaton charge of the wormhole, respectively. We remind
the reader that in the case of the black hole solutions [4],
the parametersM andDwere related, and that rendered the
dilatonic hair as ‘‘secondary.’’ However, in the case of the
wormhole solutions these parameters are not related; this
result, together with the fact that the number of indepen-
dent parameters near the throat is also two, confirms the
classification of this group of solutions as a two-parameter
class of solutions.

D. Wormhole geometry

A general property of a wormhole is the existence of a
throat, i.e., a surface of minimal area (or minimal radius for
spherically symmetric spacetimes). Indeed, this property is
implied by the form of the line element (10) above, with
fð0Þ and �ð0Þ finite. To cast this condition in a coordinate
independent way, we define the proper distance from the
throat in the following way:

� ¼
Z l

0

ffiffiffiffiffiffi
gll

p
dl0 ¼

Z l

0

ffiffiffiffiffiffiffiffiffiffi
fðl0Þ

q
dl0: (23)

If we impose the condition for a minimal radius R ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ r20

q
at l ¼ 0, this translates to

dR

d�

��������l¼0
¼ 0;

d2R

d�2

��������l¼0
>0: (24)

It is easily seen that the first condition is indeed satisfied.
For the second condition we find

d2R

d�2

��������l¼0
¼ 1

r0f0
> 0: (25)

This gives a coordinate independent meaning to the pa-
rameter f0,

f0 ¼
�
R
d2R

d�2

��������l¼0

��1
: (26)

A particularly useful concept with which we may exam-
ine the geometry of a given manifold is the construction of
the corresponding embedding diagram. In the present case,

we consider the isometric embedding of a plane passing
through the wormhole. Because of the spherical symmetry
of the solutions, we may simplify the analysis and choose

 ¼ �=2. Then, we set

fðlÞdl2 þ ðl2 þ r20Þd’2 ¼ dz2 þ d�2 þ �2d’2; (27)

where fz; �;’g are a set of cylindrical coordinates in the
three-dimensional Euclidean space R3. Regarding z and �
as functions of l, we find

�ðlÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ r20

q
;

�
dz

dl

�
2 þ

�
d�

dl

�
2 ¼ fðlÞ: (28)

From the last equation it follows that

zðlÞ ¼ �
Z l

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðl0Þ � l02

l02 þ r20

s
dl0: (29)

Hence, f�ðlÞ; zðlÞg is a parametric representation of a slice
of the embedded 
 ¼ �=2 plane for a fixed value of ’. We
observe that the curvature radius of the curve f�ðlÞ; zðlÞg at
l ¼ 0 is given by R0 ¼ r0f0. Thus, f0 has a geometric
meaning: f0 ¼ R0=r0 is the ratio of the curvature radius to
the radius of the throat.

E. Energy conditions

As was already mentioned in the Introduction, the
existence of the wormhole solution relies on the violation
of the null energy condition. The null energy condition
holds if

T��n
�n� � 0 (30)

for any null vector field n�. In the particular case of
spherically symmetric solutions, and if we employ the
Einstein equations, this condition can be expressed as

�G0
0 þGl

l � 0 and �G0
0 þG



 � 0: (31)

If one or both of the above conditions do not hold in some
region of spacetime, then the null energy condition is
violated. By making use of the expansion of the fields
near the throat (11)–(13), we find that, close to r0,

½�G0
0 þGl

l�l¼0 ¼ � 2

f0r
2
0

< 0; (32)

provided e2�ð0Þ � 0, i.e., in the absence of a horizon. Thus,
for the wormhole solutions there is always a region close to
the throat where the null energy condition is violated.
On the other hand, from the asymptotic expansion of the

solutions at infinity, we find

�G0
0 þGl

l !
D2

2

1

l4
þOðl�5Þ; (33)

�G0
0 þG



 ! 20�MD
1

l6
þOðl�7Þ: (34)

We observe that, for solutions with a positive dilaton
chargeD (and a positive massM) the null energy condition
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is satisfied in the asymptotic region. However, if the dilaton
charge is negative, the null energy condition is violated
also in that asymptotic region. Note that D � 0 for the
black hole solutions, where it was given by a positive-
definite combination of ð�;M;�1Þ [4]. However, D � 0
does not necessarily hold for all of the wormhole solutions.

F. Smarr relation

To derive the Smarr-like mass formula for the wormhole
solutions we start with the definition of the Komar mass

M ¼ Mth þ 1

4�

Z
�
R���

�n�dV

¼ Mth � 1

4�

Z
R0
0

ffiffiffiffiffiffiffi�g
p

d3x; (35)

where �� is the timelike Killing vector field, � is a space-
like hypersurface, n� is a normal vector on�, and dV is the
natural volume element on �. Here Mth denotes the con-
tribution of the throat,

Mth ¼ 1

2
Ath



2�
; (36)

where Ath is the area of the throat, and  is the surface
gravity at the throat,

2 ¼ �1=2ðr���Þðr���Þ;  ¼ e�0ffiffiffiffiffi
f0

p �0ð0Þ: (37)

To obtain the mass formula we express R0
0 in terms of the

effective stress-energy tensor,

R0
0¼T0

0�
1

2
T�
� ¼T0

0�
1

2
T�
�þ 1

2�
½r2����e���R2

GB�;
(38)

where we have added a zero in the form of the dilaton
equation. Multiplication by

ffiffiffiffiffiffiffi�g
p

yields

R0
0

ffiffiffiffiffiffiffi�g
p ¼

�
T0
0 �

1

2
T�
� � 1

2
�e���R2

GB

� ffiffiffiffiffiffiffi�g
p

þ 1

2�
@�ð ffiffiffiffiffiffiffi�g

p
@��Þ: (39)

Substitution of the metric yields a total derivative for the
right-hand side of the above equation. Thus, after integra-
tion, we find

� 1

4�

Z
R0
0

ffiffiffiffiffiffiffi�g
p

d3x

¼ � D

2�
þ 4

e�0ffiffiffiffiffi
f0

p �e���0�0ð0Þ þ 1

2�

e�0ffiffiffiffiffi
f0

p r20�
0ð0Þ

�
�
1þ 4

��2

r20
e���0

�
: (40)

Now substitution into Eq. (35) gives the Smarr-like
formula,

M ¼ 2Sth


2�
� D

2�
þ 1

8��

�
Z ffiffiffiffiffiffiffi�g

p
gll

d�

dl
ð1þ 2��2e��� ~RÞd2x; (41)

with

Sth ¼ 1

4

Z ffiffiffi
h

p ð1þ 2�e��� ~RÞd2x: (42)

Here h is the induced spatial metric on the throat, ~R is the
scalar curvature of h, and the integral is evaluated at l ¼ 0.
Defining the normal vector n�0 on the surface l ¼ 0, the
mass formula becomes

M ¼ 2Sth


2�
� D

2�
þDth

2�
; (43)

with

Dth ¼ 1

4�

Z ffiffiffi
h

p
e�0n

�
0 @��ð1þ 2��2e��� ~RÞd2x: (44)

According to the above, the Smarr-like mass formula for
wormholes is obtained by replacing the horizon properties
by the corresponding throat properties in the known EGBd
mass formula for black holes [4,8]. In addition, an extra
contribution appears that may be interpreted as a modified
throat dilaton charge, while the GB modification is of the
same type as the GB modification of the area (or entropy in
the case of black holes).

III. NUMERICALWORMHOLE SOLUTIONS

For the numerical calculations we use the line element
(10), since the functions are well behaved at r0. For the
representation of the numerical results we employ the
metric (6) as well.
To solve the ODEs numerically, we introduce the com-

pactified coordinate x ¼ l=ð1þ lÞ, thus mapping the semi-
infinite range of l to the finite range of x, i.e., 0 � x � 1.
We cover the parameter range 0:002 � � � 0:128 and
1:0001 � f0 � 20:0, keeping r0 ¼ 1 fixed. Also we set
� ¼ 1.

A. Metric and dilaton functions

Let us start the discussion of the solutions by recalling
the boundary conditions for the system of equations, con-
sisting of two first-order and one second-order ODEs. At
the throat l ¼ 0 regularity requires�

�02 � fðf� 1Þ
2��2e���½f� 2ðf� 1Þ �

r2
0

e����
�
l¼0

¼ 0: (45)

This boundary condition has to be supplemented by fð0Þ ¼
f0 or �ð0Þ ¼ �0 in order to obtain a specific solution. We
note that the asymptotic condition f ! 1 for l ! 1 is al-
ways satisfied. This can be seen from the asymptotic form of
Eq. (14), f0 þ fðf� 1Þ=l ¼ 0, which has the general solu-
tionf ¼ l=ðlþ constÞ. This leaves the asymptotic boundary
conditions at radial infinity
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lim
l!1

� ¼ 0; lim
l!1

� ¼ 0: (46)

Wormhole solutions can be found for every value of�=r20
below �=r20 	 0:13. This upper bound on �=r20 translates

into a lower bound on the radius of the throat r0 (for a given
�). Thus, the radius of the throat r0 can be arbitrarily large.

In Figs. 1(a)–1(c), we show the metric functions fðlÞ and
�ðlÞ and the dilaton function �ðlÞ, respectively, for an
indicative set of wormhole solutions. We also exhibit the
scaled GB term �R2

GB in Fig. 1(d). Close to the throat the

functions show a distinct dependence on both parameters,
f0 and �=r20. However, for intermediate values of l, the
functions fðlÞ, and likewise the functions �ðlÞ, correspond-
ing to the same value of �=r20, approach each other and

form clusters. For larger values of l, solutions obtained for
different values of �=r20 also merge together. The same

behavior is observed for the GB term whereas for the
dilaton function �ðlÞ the same tendency also exists but
becomes pronounced at slightly larger values of l.

In Fig. 2 we visualize the geometry of the wormhole
solutions. In particular, we present as a typical example in
Fig. 2(a) the isometric embedding of the solution with

�=r20 ¼ 0:02 and f0 ¼ 1:1 [37]. Here also the curvature

radius at the throat, R0 ¼ r0f0, is shown. Also for �=r20 ¼
0:02, the curves z versus � near the throat are shown in
Fig. 2(b) for several values of f0.
We may also define the profile function bðrÞ via the

equation

e��ðrÞ 
 1� bðrÞ
r

: (47)

We note that, at the throat, the profile function b=r0 goes to
one and, thus, grr vanishes. For small values of f0, the
value of the metric function � at the throat keeps decreas-
ing as f0 ! 1. Therefore, in the limit f0 ! 1, the metric
function gtt tends to zero and a horizon emerges, thus
recovering the class of dilatonic black hole solutions [4].

B. Domain of existence

Let us now explore the domain of existence of these
wormhole solutions. To that endwe construct a set of families
ofwormhole solutions, where for each family thevalue of the
parameter �=r20 is fixed, while the second parameter f0
varies within a maximal range of 1< f0 <1. The values
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FIG. 1 (color online). (a) The metric function fðlÞ, (b) the metric function �ðlÞ, (c) the dilaton function �ðlÞ, and (d) the scaled GB
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of the parameter�=r20 cover the range 0<�=r20 < 0:13. For
larger values of �=r20 no wormhole solutions are found.

In Fig. 3 we present the domain of existence of the
wormhole solutions. Figure 3(a) shows the scaled area of
the throat A=16�M2 versus the scaled dilaton charge
D=M. The domain of existence is mapped by the families
of solutions obtained for a representative set of fixed values
of �=r20. We observe that the domain of existence of the

wormhole solutions is bounded by three curves indicated
by asterisks, crosses, and dots. The boundary indicated by
asterisks coincides with the EGBd black hole curve [4] and
corresponds to the limit f0 ! 1. The limit f0 ! 1 on the
other hand is indicated by crosses. At the third boundary,
marked by dots, solutions are encountered that are charac-
terized by a curvature singularity.

Before discussing the three limiting cases in more detail,
let us consider further the boundary conditions at the throat.
We illustrate themetric functionf0 at the throat for the same
set of families of wormhole solutions in Fig. 3(b). For fixed
values of �=r20 below the limiting value for EGBd black

holes, �=r20jbh ¼ 0:0507 [4], f0 covers the full range 1<
f0 <1. Beyond this critical value, however, the minimal
value of f0 increases with increasing�=r

2
0.We note that, for

a certain intermediate range of �=r20, f0 is not monotonic.

In Fig. 3(c) we show the dilaton field �0 at the throat
versus the scaled dilaton charge D=M for the same set of
solutions. Clearly, the domain of�0 is bounded. Again, we
observe that in the limit f0 ! 1 the black hole values are
obtained. Inspection of the redshift function �0 at the
throat, exhibited in Fig. 3(d), reveals that �g00ðr0Þ tends
to zero as f0 ! 1. Thus, a horizon emerges in this limit.

1. Black hole limit

To study the black hole limit in more detail let us
consider a sequence of wormhole solutions approaching
the black hole solution. We demonstrate this limiting

behavior for solutions with � ¼ 0:02 in Fig. 4. Here, we
exhibit a sequence of solutions with values of f0 tending to
one. Clearly, the profile function bðrÞ [Fig. 4(a)] and the
dilaton function �ðrÞ [Fig. 4(b)] tend fast to the limiting
black hole solutions. For f0 ¼ 1:0001 the wormhole func-
tions and their black hole counterparts are already very
close. The redshift functions � are not distinguishable for
this set of solutions except very close to the throat, where
�0 diverges in the limit.

2. Large f0 limit

Next we consider the limit of large f0, indicated by
crosses in Figs. 3. As f0 ! 1, the mass M and the dilaton
charge D assume finite values. The same holds for the
redshift function �0 and the dilaton field �0 at the throat,
although the derivative of the dilaton field �0

0 with respect

to the coordinate l diverges like
ffiffiffiffiffi
f0

p
, as seen from the

boundary condition Eq. (45).
As an example, we exhibit the function fðlÞ in Fig. 5(a)

for two values of �=r20 and increasing values of f0. We

observe that for a given value of �=r20, the functions fðlÞ
deviate from each other only for small values of l close to
the throat, but coincide for larger l. Moreover, the region
where the functions coincide increases with increasing
values of f0. Thus, the solutions approach a limiting solu-
tion for f0 ! 1, which depends on �=r20.
This limiting behavior is even more pronounced in the

scaled GB term �R2
GB, a curvature invariant which is

exhibited in Fig. 5(b) for the same set of parameters.
Extrapolating the value of �R2

GB at the throat for large f0
indicates that �R2

GB remains finite for f0 ! 1.

3. Singularity limit

Finally we turn to the third boundary curve, indicated
by dots in Fig. 3. This boundary emerges when branches
of solutions with fixed �=r20 terminate at singular
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FIG. 2 (color online). (a) Isometric embedding of the wormhole solution for �=r20 ¼ 0:02 and f0 ¼ 1:1 (taken from [37]),
(b) z versus � for �=r20 ¼ 0:02 and f0 ¼ 1:1; 2:0; 20:0.
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FIG. 3 (color online). (a) Scaled area A=16�M2 of the throat versus the scaled dilaton charge D=M for several values of �=r20.
The boundaries represent EGBd black holes (asterisks), limiting solutions with f0 ! 1 (crosses), and solutions with curvature
singularities (dots). (b) Metric function f0 at the throat (determining the curvature radius R0 ¼ r0f0) versus the scaled dilaton
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configurations. We demonstrate that these singular con-
figurations possess a curvature singularity at a critical
value of l; lcrit, in Fig. 6(a). Here the scaled GB term
�R2

GB is shown versus l for �=r20 ¼ 0:1 for a sequence of

solutions approaching the singular configuration. We
observe a sharp peak in the vicinity of lcrit, which increases
in size and diverges as the singular configuration is
approached.
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To elucidate this emergence of a curvature singularity at
some finite critical value of l, we show in Fig. 6(b) the
metric function fðlÞ, in Fig. 6(c) its derivative f0ðlÞ, and in
Fig. 6(d) the derivative of the dilaton function �0ðlÞ for a
fixed value of �=r20 ¼ 0:1 and increasing values of f0
approaching the singular configuration. We note that all
functions are continuous, but as the singular configuration
is approached, their derivatives develop a discontinuity at
some point lcrit outside the throat. In fact the derivative of
the function f has a pole at lcrit.

C. Energy conditions

We now turn to the energy conditions, Eq. (31). We
demonstrate the violation of the null energy condition in
Fig. 7. Here we show ‘‘normalized’’ quantities in order to
emphasize the change of sign. The normalization factor is

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT0

0Þ2 þ ðTl
lÞ2 þ 2ðT



 Þ2
q

: (48)

This normalization is responsible for the steep rise ob-
served in the figures for f0 ¼ 1:1, which occurs when all
quantities are close to zero.
Thenull energy condition is violated close to the throat for

all wormhole solutions, as seen explicitly from Eq. (32) and
demonstrated for the set of solutions of Fig. 7(a). However,
for large values of f0 and at the same time small values of
�=r20 the dilaton chargeD can become negative. In this case,

the null energy condition is violated also in the asymptotic
region, as seen fromEq. (34). In fact, we observe that for the
larger values of f0 in Fig. 7(b) the combination�T0

0 þ T


 is

negative everywhere. Thus, in this case the null energy
condition is violated in the whole spacetime.

D. Smarr relation

Let us finally turn to the Smarr-likemass relation,Eq. (43).
This mass relation is a perfect check for the numerical
accuracy and thus for the quality of the solutions. We dem-
onstrate theSmarr relation inFig. 8 by comparing themassM
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obtained from the asymptotic falloff of the metric functions
with the mass MSmarr obtained by evaluating the various
terms in the Smarr relation Eq. (43).

The Smarr-like formula is well satisfied for all sets of
solutions. In Fig. 8(a), we keep � ¼ 1 as in the main body
of the paper and exhibit the massesM andMSmarr versus f0
for �=r20 ¼ 0:1. The relative error in this case is below

3� 10�5 (for �=r20 ¼ 0:05 it is below 10�5, and for

�=r20 ¼ 0:02 it is below 5� 10�6).

In Fig. 8(b) we have fixed �=r20 ¼ 0:02, f0 ¼ 1:4 and

varied � to address the � dependence of the mass formula
for a set of solutions. Also, for these solutions the relative
error is small and, in particular, it is below 4� 10�5.

To gain a better understanding of the quantities contrib-
uting in the Smarr formula, we now consider the various
throat properties. First, we exhibit in Fig. 9(a) the scaled
throat quantity Sth=4�M

2 versus the scaled dilaton charge
D=M for the full domain of existence of the wormhole
solutions. Sth=4�M

2 resembles in its structure the entropy

of black holes, since it contains the same correction term to
the throat area Ath as in the black hole case to the horizon
area. In the black hole limit, Sth assumes the meaning of the
black hole entropy.
The scaled entropy-analogue throat quantity Sth=4�M

2

is always greater than one. Only in the Schwarzschild black
hole limit, where the dilaton vanishes, it assumes precisely
the value one. A comparison with Fig. 3(a) shows, that the
quantity Sth=16�M

2 is always larger than the scaled throat
area A=16�M2. This was observed before for black holes
[4,8]. The color coding of Fig. 9(a) is related to the stability
of the solution, discussed in the next section.
The scaled surface gravity r0 at the throat of the worm-

hole solutions is exhibited in Fig. 9(b). It is bounded, with
its lower boundary given by the black hole values, which
remain close to the Schwarzschild value of 1=2. The
product of the quantities Sth and  represents the first
term of the Smarr formula, up to numerical factors. We
exhibit this first term, divided by the mass, in Fig. 9(c).
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FIG. 9 (color online). (a) Scaled entropy-analogue throat quantity Sth=4�M
2 versus the scaled dilaton chargeD=M for several values

of �=r20. The boundaries represent EGBd black holes (asterisks), limiting solutions with f0 ! 1 (crosses), and solutions with

curvature singularities (dots). The shaded areas indicate linear stability (lilac or lower), instability (red or upper), undecided yet (white)
with respect to radial perturbations (Sec. IV). (b) Scaled surface gravity r0 at the throat versus the scaled dilaton charge D=M;
(c) scaled first term of the mass formula; (d) scaled third term of the mass formula.
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Since the first term is always greater than one (except for
the Schwarzschild case), the remaining pieces of the mass
formula must contribute negatively to cancel this excess.

The second term in the mass formula �D=2� is nega-
tive, except for the small region with large f0 and small
�=r20. Its contribution to the scaled mass formula can be

read off the horizontal axis of Fig. 9(c). We exhibit the third
term of the scaled mass formula in Fig. 9(d). It contains the
scaled throat dilaton charge Dth, which is modified by
the GB term, analogous to the modification of the area
by the GB term. As expected, this contribution is negative
for the wormhole solutions. It vanishes for the black holes,
which represent the upper limit for Dth.

IV. STABILITY

Our starting point for the study of the stability is the line
element for spherically symmetric solutions,

ds2¼�e2~�dt2þ ~fdl2þðl2þr20Þðd
2þsin2
d’2Þ: (49)

Here we consider only the pulsation modes. Thus, we allow
the metric and dilaton functions to depend on the radial
coordinate l and the time coordinate t,

~� ¼ ~�ðl; tÞ; ~f ¼ ~fðl; tÞ; ~� ¼ ~�ðl; tÞ: (50)

For the study of the stability behavior of our solutions,
we also need the time-dependent Einstein and dilaton
equations. These were presented in [40] in the context of
the stability analysis of the dilatonic black hole solutions,
and thus we refrain from repeating them here [41]. Next,
we decompose the metric and dilaton functions into the
unperturbed functions and the perturbations

~�ðl; tÞ ¼ �ðlÞ þ ���ðlÞei�t; (51)

~fðl; tÞ ¼ fðlÞ þ ��fðlÞei�t; (52)

~�ðl; tÞ ¼ �ðlÞ þ ���ðlÞei�t; (53)

where we assume a harmonic time dependence of the
perturbations and � is considered as small. Now we sub-
stitute the perturbed functions into the Einstein and dilaton
equations and linearize in �. This yields a system of linear
ODEs for the functions ��ðlÞ, �fðlÞ, and ��ðlÞ, where the
coefficients depend on the unperturbed functions and their
derivatives. We use the unperturbed equations to eliminate
�0, �00, f0, and �00.

The tl part of the Einstein equations yields �f in terms
of �� and ��0. Thus, �f and �f0 can be eliminated from
the rest of the ODEs. The dilaton equation and the 

 part
of the Einstein equations can be diagonalized with respect
to ��00 and ��00. Finally, ��0 can be eliminated from the
dilaton equation by adding the rr part of the Einstein
equations with a suitable factor. Thus, we end up with a
single second-order equation for ��,

��00 þ q1��
0 þ ðq0 þ q��

2Þ�� ¼ 0; (54)

where the coefficients q1, q0, and q� depend on the un-
perturbed solution.
The coefficient q� tends to one asymptotically and is

bounded at l ¼ 0. The coefficients q1 and q0 tend to zero
asymptotically, however, they diverge at l ¼ 0 as 1=l.
Thus, to obtain solutions which are regular at l ¼ 0 suit-
able boundary conditions are needed. Since the perturba-
tions are assumed to be normalizable, �� has to vanish
asymptotically. In order to obtain a unique solution, we
also fix �� at l ¼ 0. Thus, we are left with three boundary
conditions for a second-order ODE, which can be satisfied
only for certain values of the eigenvalue �2.
We can avoid the singularity of q1 and q0 at l ¼ 0, by

employing the transformation �� ¼ FðlÞc ðlÞ, where FðlÞ
satisfies F0=F ¼ �q1ðlÞ=2. This yields

c 00 þQ0c þ �2q�c ¼ 0; (55)

where the coefficient Q0 ¼ �q01=2� q21=4þ q0 is
bounded at l ¼ 0. We note that FðlÞ diverges like 1=l at
l ¼ 0. Thus, for acceptable solutions we have to impose the
boundary condition c ¼ 0 at l ¼ 0. In addition c has to
vanish asymptotically to ensure normalized solutions.
However, these boundary conditions do not lead to unique
solutions, since the ODE (55) is homogeneous. Therefore,
we supplement Eq. (55) with the auxiliary ODE N0 ¼ c 2

and impose the boundary conditions Nð0Þ ¼ 0 and N ! 1
asymptotically. These conditions give exactly the normal-
ization

R1
0 c 2dl ¼ 1. Again, solutions exist only for cer-

tain values of the eigenvalue �2.
The ODE (55) can be written as a Schrödinger equation

by introducing the new coordinate y via dy=dl ¼ ffiffiffiffiffiffi
q�

p
, and

eliminating the first derivative dc =dy as above. This yields

d2�

dy
� Veff�þ �2� ¼ 0; (56)

where

� Veff ¼ 1

2
ffiffiffiffiffiffi
q�

p
�

1ffiffiffiffiffiffi
q�

p
�00 � 1

4

��
1ffiffiffiffiffiffi
q�

p
�0�2 þQ0

q�
;

and � is related to c . The new potential Veff is bounded for
all y.
Note that the derivation of Eq. (56) holds only if the

function q� is positive for all l. However, if q� < 0 on
some interval, one cannot rely on the rule that the smallest
eigenvalue corresponds to the eigenfunction without knots.
Indeed, we found, in some cases, two different eigenfunc-
tions c 1; c 2 without knots which satisfy the orthogonality
condition

R
q�c 1c 2dl ¼ 0.

In order to determine the change of stability, we consider
families of wormhole solutions with fixed �=r20. The ODE
(54) is then solved together with the normalization con-
straint for varying values of f0. In Fig. 10(a) we show the
eigenvalue �2 versus f0 for several values of �=r20. We
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observe that solutions for negative values of �2 exist for
large values of f0, corresponding to an instability of the
wormhole solutions. For these solutions the function �,
respectively c , decays exponentially. Thus, these solutions
correspond to bound states of the equivalent Schrödinger
equation. As f0 decreases, the eigenvalue increases and

tends to zero for some critical value f0 ¼ fðcrÞ0 , which

depends on �=r20. No solutions were found for f0 < fðcrÞ0 .

Solutions of Eq. (54) with positive �2 would oscillate in
the asymptotic region, and are not normalizable.

The interpretation is that the instability mode vanishes at

some critical value fðcrÞ0 . Hence, we conclude that the

wormhole solutions are stable for f0 < fðcrÞ0 . However,

this holds only if q� > 0 for all l. Otherwise, one cannot
be sure that �2 is the smallest possible eigenvalue.
Therefore, eigenfunctions with negative eigenvalues can-
not be excluded even if �2 ¼ 0. Consequently, if q� is not
positive for all l the question of stability cannot be decided

by considering the standard equivalent Schrödinger eigen-
value problem.
Numerically, we found that q� is positive for all worm-

hole solutions with �=r20 � 0:05; but wormhole solutions

where q� is negative on some interval exist if�=r20 � 0:05.
In Fig. 10(b) we show the stability region in the domain of
existence [37]. Also shown is the line where the eigenvalue
�2 changes sign. The instability region (red or upper) is
characterized by negative �2, whereas the stability region
(lilac or lower) is characterized by the absence of negative
eigenvalues and positive q�. In the remaining (white)
region the question of stability is not yet decided.

V. JUNCTION CONDITIONS

Up to this point, we have discussed the behavior of
the metric functions and of the dilaton field in only half
of the wormhole spacetime, i.e., the part with l > 0. Our
solutions should naturally be extended to the second
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asymptotically flat part of the manifold (l ! �1). If this is
performed by demanding that the derivatives of the metric
and dilaton functions are continuous, we observe a singular
behavior corresponding to curvature singularities. This is
demonstrated in Fig. 11 for the wormhole solution with
parameters �=r20¼0:02, f0¼1:1, and �¼1.

However, wormhole solutions without curvature singu-
larities can be constructed when we extend the wormhole
solutions to the second asymptotically flat part of the
manifold in a symmetric way. In this case, jumps appear
in the derivatives of the metric and dilaton functions at
l ¼ 0. The jumps can be attributed to the presence of
matter located at the throat of the wormhole. The corre-
sponding junction conditions are of the form

hG�
��T�

�i¼ s��; hr2����e���R2
GBi¼ sdil; (57)

where s�� is the stress-energy tensor of the matter at the

throat, and sdil the corresponding source term of the
dilaton field. The left-hand side of the junction conditions
can be derived in a standard way by integrating the
Einstein and dilaton equations across the boundary l ¼ 0,
i.e., hG�

��T�
�i¼ 1

2limL!0

R
L
�LðG�

��T�
�Þdl. This yields

hG0
0 � T0

0i ¼ � 8��e���0�0
0ffiffiffiffiffi

f0
p

r20
; (58)

hGl
l � Tl

li ¼ 0; (59)

hG


 � T



 i ¼ 2
�0
0ffiffiffiffiffi
f0

p ; (60)

hG’
’ � T’

’ i ¼ hG


 � T



 i; (61)

hr2�� ��e���R2
GBi ¼

�0
0ffiffiffiffiffi
f0

p þ 8
��e���0ffiffiffiffiffi

f0
p

r20
�0
0; (62)

where the subscript 0 indicates evaluation at l ¼ 0.
Next, we assume that the matter at the throat takes the

form of a perfect fluid with energy density � and pressure p
and a dilaton charge �dil. We also introduce the action,

S� ¼
Z
ð	1 þ 	02�e

��� �RÞ
ffiffiffiffiffiffiffi
� �h

p
d3x; (63)

at the throat, where �hab denotes the ð2þ 1Þ-dimensional
induced metric on the throat, �R the corresponding Ricci
scalar, and 	1; 	2 are constants. Inserting the metric, this
brings the nontrivial junction conditions, Eqs. (58)–(62), to
the form

8��e���0

r20

�0
0ffiffiffiffiffi
f0

p ¼ �� 	0

4�e���0

r20
� 	1; (64)

2�0
0ffiffiffiffiffi
f0

p ¼ pþ 	1; (65)

�
�0

0 þ
8��e���0

r20
�0
0

�
1ffiffiffiffiffi
f0

p ¼ 	0

4��e���0

r20
þ �dil

2
: (66)

Using these equations �, p, and �dil can be expressed in
terms of the metric and dilaton functions and the constants
	0; 	1. In Fig. 12 we give an example for 	0 ¼ 	1 ¼ 1 and
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� ¼ 1. We note that the stable wormhole solutions possess
positive energy density �.

Let us also consider the special case p ¼ 0 (i.e., dust)
and choose the dilaton charge density �dil at the throat to be
twice the dilaton charge density of the wormhole in the
‘‘bulk’’, �dil ¼ 2�0

0=
ffiffiffiffiffi
f0

p
. This yields

	1 ¼ 	0 ¼ 2�0
0ffiffiffiffiffi
f0

p ; (67)

� ¼ 2�0
0ffiffiffiffiffi
f0

p
�
1þ 4�e���0

r20

�
þ 8��e���0

r20

�0
0ffiffiffiffiffi
f0

p

¼ 2�0
0ffiffiffiffiffi
f0

p þ 8�e���0

r20
ð�0

0 þ ��0
0Þ

1ffiffiffiffiffi
f0

p : (68)

Interestingly, 	0 ¼ 	1 and � are positive for all wormhole
solutions, as shown in Fig. 13.

Next, we consider perturbations of the wormhole solu-

tions in the form ~fðl; tÞ ¼ fðlÞ þ �fðlÞei�t, etc. For sym-
metric wormholes the derivatives of the perturbations also
have a jump at �. Introducing perturbations of the energy
density ��ei�t, pressure �pei�t, and dilaton charge
��dile

i�t we find

�� ¼ 4�e��0

r20
ffiffiffiffiffi
f0

p
�
��0

0 � 2
�f0
f0

�0
0 � ð2�0

0 þ 	0

ffiffiffiffiffi
f0

p Þ��0

�
;

(69)

�p ¼ 2
��0

0ffiffiffiffiffi
f0

p � �f0
f0

�0
0ffiffiffiffiffi
f0

p � 4	0�e
��0�2e�2�0��0; (70)

��dil ¼ ��0
0 þ

8�e��0

r20
��0

0 �
�f0
2f0

�
�0

0 þ
8�e��0

r20
�0
0

�

þ 4�e��0

r20
ð ffiffiffiffiffi
f0

p
	0 � 2�0

0Þ��0: (71)

Thus, these equations give the perturbations of the en-
ergy density, the pressure, and the dilaton charge on the

throat. Thus, for any perturbation in the bulk, we can
find the corresponding perturbation on the throat.
Consequently, the stability of the solutions is not affected
by the matter on the throat.

VI. GEODESICS

The study of the orbits of test particles and light is
essential to fully understand the properties of a spacetime.
The motion of test particles in an EGBd wormhole space-
time with metric g��, Eq. (10), and dilaton field � is

governed by the Lagrangian

L ¼ 1
2e

�2��g�� _x
� _x�; (72)

where the dot denotes the derivative with respect to the
affine parameter �, and � is a constant (� ¼ 1=2 for

heterotic string theory). The conjugate momenta p� ¼
@L
@ _x� are found to be

pt ¼ �e�2��e2� _t; pl ¼ e�2��f _l;

p
 ¼ e�2��ðr20 þ l2Þ _
; p’ ¼ e�2��ðr20 þ l2Þsin2
 _’:

(73)

First integrals of motion are given by

pt ¼ const: ¼ �E; p’ ¼ const: ¼ L: (74)

We refer to E as the energy of the test particle and to L as
its angular momentum.
The affine parameter can be chosen such that 2L ¼ ̂,

with ̂ ¼ �1 for timelike geodesics and ̂ ¼ 0 for null
geodesics. Since we are considering spherically symmetric
spacetimes we may choose 
 ¼ �=2, which implies _
 ¼ 0.
Employing Eq. (74) the Lagrangian then reduces to

2L ¼ e2��e�2�

�
�E2 þ e2�

�
e�4��f _l2 þ L2

r20 þ l2

��
¼ ̂:

(75)
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FIG. 13 (color online). (a) Energy density � and (b) 	 ¼ 	0 ¼ 	1 versus �0 for dust.
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Let us first consider timelike geodesics. For ̂ ¼ �1 we
obtain

_l 2 ¼ e4��e�2�

f
½E2 � V2

effðl; LÞ�; (76)

where we introduced the effective potential

V2
effðl; LÞ ¼ e2�

�
�̂e�2�� þ L2

r20 þ l2

�
()V2

effðr; LÞ

¼ e2�
�
�̂e�2�� þ L2

r2

�
: (77)

The effective potential Veff is a suitable quantity to discuss
qualitatively the trajectories of test particles. We note that
the effective potential approaches the value of one asymp-
totically. Thus, it follows from Eq. (76) that unbound
trajectories are only possible if E � 1. The turning points
ri of trajectories for a given energy E and angular momen-
tum L are determined by the condition,

E ¼ Veffðri; LÞ: (78)

We note that, in contrast to black hole spacetimes, the
wormhole spacetimes do not possess an event horizon.
Consequently, particles cannot disappear behind an event
horizon. Instead they can travel through the throat of the
wormhole from one asymptotically flat part of the mani-
fold to the other.

To discuss the various types of trajectories in these
wormhole spacetimes, we consider as an example the
wormhole solution with parameters � ¼ 0:05 and f0 ¼
1:1. We exhibit the corresponding effective potential
Veffðr; LÞ in Fig. 14 for several values of the angular
momentum L. In particular, we first discuss the depen-
dence of the shape of the effective potential on the angular
momentum L of the test particle, and next consider the

different types of trajectories with their dependence on the
energy E of the test particle.
In the case L ¼ 0 the effective potential is a monotoni-

cally increasing function of r, assuming its minimum at the
throat r ¼ r0 and tending to one asymptotically. When the
angular momentum is increased, the effective potential
remains monotonic until it develops a saddle point for
some critical value Lcrit. For L > Lcrit the effective poten-
tial is no longer monotonic, since a local maximum
VmaxðLÞ and a local minimum VminðLÞ occur. If L is larger
than a certain value, L1 (say), the maximum VmaxðLÞ ex-
ceeds the asymptotic value of the effective potential, and
thus it becomes the global maximum. We note that the
essential features of the effective potential Veffðr; LÞ are the
same for all the wormhole solutions considered.
Concerning the types of orbits of test particles, we note

that there are two kinds of trajectories. For trajectories of
the first kind, the particles remain on a single asymptoti-
cally flat manifold, whereas for trajectories of the second
kind, the particles travel from one asymptotically flat part
of the manifold to the other, passing through the throat.
Trajectories of the first kind exist only if the effective

potential is nonmonotonic, i.e., for L> Lcrit. Bound orbits
exist for VminðLÞ � E< 1, e.g., E2 in Fig. 14, whereas
unbound orbits exist for 1<E< VmaxðLÞ, e.g., E3 in
Fig. 14. For unbound orbits we need L> L1, thus
VmaxðLÞ must be the absolute maximum.
Trajectories of the second kind exist for all values of E

above the minimum of the effective potential Veffðr0; LÞ.
The particles move on bound orbits if Veffðr0; LÞ � E<
maxf1; VmaxðLÞg, e.g., E1; E2; E3 in Fig. 14. Thus, for E ¼
Veffðr0; LÞ the particles move on circles at the throat.
Radial trajectories are obtained for L ¼ 0. In this case,

the particles oscillate about the throat. In the limit E0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Veffðr0; 0Þ

p
they possess the minimal possible energy and
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are at rest at the throat. On the other hand, if E>
maxf1; VmaxðLÞg, e.g., E4 in Fig. 14, the particles travel
along unbound orbits, starting at infinity on one asymptoti-
cally flat part of the manifold, passing through the throat
and reaching infinity on the other asymptotically flat part of
the manifold.

In Fig. 15 we exhibit the minimal possible energy E0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Veffðr0; 0Þ

p
versus D=M for several values of �=r20. Note

that E0 approaches zero in the black hole limit. The black
line on the left, highlighted in the inset, indicates the
stability change of the wormhole solutions.

In order to calculate the trajectories we consider

d’

dl
¼ _’

_l
¼ �L

e�

r20 þ l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f

E2 � V2
eff

s
;

from which we find

’ðlÞ ¼ ’0 � L
Z l

l0

e�

r20 þ l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f

E2 � V2
eff

s
dl0; (79)

where l is restricted to intervals where E2 � V2
eff � 0 and

’0 is an integration constant. The trajectories are then
displayed in the xy plane, where

xðlÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20þ l2

q
cosð’ðlÞÞ; yðlÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20þ l2

q
sinð’ðlÞÞ: (80)

In Fig. 16, we show examples of bound orbits of test
particles with angular momentum L ¼ 2 and several values
of the energyE for thewormhole solutionwith�=r20 ¼ 0:05
and f0 ¼ 1:1. For an energy of E ¼ E1 ¼ 0:9 [Fig. 16(a)]
there exists only a bound orbit of the second kind.
This is highlighted in the figure by using different colors
(line styles) for the two asymptotically flat manifolds, when
projecting into the xy plane. In contrast, for E ¼ E2 ¼ 0:98
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(b) E ¼ 0:98 in the wormhole spacetime with �=r20 ¼ 0:05 and f0 ¼ 1:1. The colors red (solid) and blue (dotted) indicate motion

on the first and the second asymptotically flat part of the manifold, respectively. The throat of the wormhole is shown by the black
circle. The right panel of (a) shows the orbit on the isometric embedding of the wormhole.
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[Fig. 16(b)] there exists, in addition, a bound orbit of
the first kind. Examples for unbound orbits are shown in
Fig. 17(a) for energiesE ¼ E3 ¼ 1:02 andE ¼ E4 ¼ 1:05.

Let us now consider the null geodesics in these worm-
hole spacetimes. Setting ̂ ¼ 0 in Eq. (75) we find

_l 2 ¼ e4��e�2�

f

�
E2 � L2 e2�

r20 þ l2

�

¼ E2 e
4��e�2�

f

�
1�

�
L

E

�
2 e2�

r20 þ l2

�
: (81)

We define an effective potential Veffðl; L=EÞ by

V2
effðl; L=EÞ ¼

�
L

E

�
2 e2�

r20 þ l2
¼

�
L

E

�
2
v2
effðlÞ: (82)

We note that for the discussion of the null geodesics it is
more convenient to consider the ‘‘normalized’’ effective
potential veffðlÞ ¼ e�ffiffiffiffiffiffiffiffiffi

r2
0
þl2

p , since it is independent of L=E.

As an example, we show the normalized effective poten-
tial veff for the parameter values �=r20 ¼ 0:05 and f0 ¼ 1:1
in Fig. 17. The normalized effective potential possesses a
local minimum vmin at the throat, a maximum vmax at some
distance from the throat and tends to zero asymptotically.

As for the timelike geodesics, there are two kinds of
trajectories: either the massless test particle remains on
one of the asymptotically flat parts of the manifold, or it
passes through the throat fromone asymptotically flat part to
the other. The first kind of (unbound) trajectory exists only if
the ratioE=L is smaller than themaximumof the normalized
effective potential. The second kind of trajectory includes
unbound geodesics if E=L > vmax and bound geodesics if
vmin � E=L < vmax. Circular orbits exist for E=L ¼
vmin ¼ veffðl ¼ 0Þ (and unstable ones for E=L ¼ vmax).

VII. ACCELERATION AND TIDAL FORCES

Following the formalism of [17], we will now calculate
the magnitude of the acceleration and tidal forces that a
traveler traversing the wormhole would feel. For this pur-
pose, it is particularly convenient to make two changes of
reference frames: first, starting from the standard reference
frame with basis vectors ðet; el; e
; e’Þ, in which the line

element takes the form of Eq. (10), we change to an
orthonormal reference frame with

e t̂¼e��et; el̂¼
1ffiffiffi
f

p el; e
̂¼
1

r
e
; e’̂¼ 1

rsin

e’;

(83)

in terms of which the metric tensor assumes the form:
g�̂ �̂ ¼ e�̂ � e�̂ ¼ ��̂ �̂. Alternatively, we may write the

set of equations in (83) as e�̂ ¼ L�̂
�e�, with

L�̂
� ¼

e�� 0 0 0
0 1=

ffiffiffi
f

p
0 0

0 0 1=r 0
0 0 0 1=ðr sin
Þ

2
6664

3
7775: (84)

The above allows us to write the transformation law of the
components of the Riemann tensor as

R�̂
�̂ �̂ �̂

¼ L�
�̂L

�̂
�L�̂

�L
�̂
�R�

���; (85)

with L�
�̂ ¼ ðL�̂

�Þ�1. Next, we introduce the orthonormal

reference frame of the traveler which is related to the
previous one by a Lorentz transformation

e~t¼�et̂��
v

c
el̂; e~l¼��el̂þ�

v

c
et̂; e~
¼e
̂; e~’¼e’̂;

(86)

with � ¼ ½1� ðv=cÞ2Þ��1=2 and v ¼ �ð ffiffiffi
f

p
dl=e�dtÞ the

radial velocity of the traveler at radius l as measured by
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FIG. 17 (color online). (a) Same as Fig. 16 for unbound orbits of massive test particles and energies E ¼ 1:02, 1.05. (b) Normalized
effective potential veff for massless test particles versus log10ðr=r0Þ for the wormhole solution with �=r20 ¼ 0:05 and f0 ¼ 1:1.
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a static observer there. As before, we may write e~� ¼
�~�

�̂e�̂, with

�~�
�̂ ¼

� ��ðv=cÞ 0 0
�ðv=cÞ �� 0 0

0 0 1 0
0 0 0 1

2
6664

3
7775; (87)

so that

R~�
~� ~� ~�

¼ ��̂
~��~�

�̂�~�
�̂�~�

�̂R�̂
�̂ �̂ �̂: (88)

We note that e~t � e~t ¼ �1, and thus e~t can be naturally
considered as the traveler’s normalized vector of four-
velocity u. For the magnitude of u to be fixed in the rest
frame of the traveler, the four-acceleration a ¼ du=d�
should be orthogonal to the four-velocity, i.e. a � u ¼ 0,
and therefore a ¼ ð0; aiÞ—if we further assume that the
traveler moves radially, then a ¼ ae~l. For a traveler mov-
ing along their worldline, in which the tangent vector is
e~t ¼ u, the acceleration is given by the formula a ¼ ruu

or a ~� ¼ u
~�
;~au

~ac2. In order to compute the magnitude of the

acceleration that the traveler feels, we work in the follow-
ing way: we calculate the at component in the ðt; l; 
; ’Þ
coordinate frame first according to the formula

at
c2

¼ ut;au
a ¼ ut;au

a � �	
tau	u

a

¼ ut;lu
l � �t

tlutu
l � �l

ttulu
t ¼ ��

v

c

1ffiffiffi
f

p ðe��Þ0; (89)

where we have assumed that the four-velocity is a function
of the radial variable l and rewritten its expression as

u ¼ �e��et � �
v

c

1ffiffiffi
f

p el 
 utet þ ulel: (90)

However, it also holds that

at ¼ a � et ¼ ðae~lÞ � et ¼ a�
v

c
e��ðet � etÞ ¼ �a�

v

c
e�:

(91)

Combining the above two results for at, we find that the
magnitude of the acceleration is

jaj ¼ c2
��������e�� 1ffiffiffi

f
p ðe��Þ0

��������: (92)

For the wormhole to be traversable, the above quantity
must remain always finite and, if possible, take a small
value.

In [17], it was also demanded that the gravitational
acceleration should be small at the location of the stations
where the trip starts and ends. Demanding that the time
needed to complete the whole trip should not be too large,
the stations should be fairly close to the throat. Both of
these conditions are satisfied in our case, since an asymp-
totically flat regime is reached fairly quickly.

The above also means that the traveler, starting from the
stations, does not need to travel with a relativistic velocity

in order to approach the wormhole in a reasonable time.
Then, if v � c, � ’ 1, and the acceleration (92) reduces to

jaj ¼ c2
j�0jffiffiffi
f

p : (93)

In Fig. 18, we depict the dimensionless acceleration â ¼
jaj=ðc2=r0Þ at the throat as a function ofD=M. We observe
that â ranges roughly between 10 and 100 for a set of
wormhole solutions with parameter �=r20 ranging between

0.128 and 0.01. In the context of superstring theory, �
‘2P, therefore, for the above solutions r0  10‘P and the
magnitude of the acceleration turns out to be
ð1051–1052Þg�, where g� is the acceleration of gravity at
the surface of the Earth. Since there is no upper limit for r0
in our solutions, one may be tempted to increase the size of
the throat of the wormhole so that jaj is of the order of g�;
this would demand a throat radius of the order of at least
10–100 light years. The aforementioned result could per-
haps have been anticipated since our analysis is performed
within the context of superstring theory, a theory whose
fundamental scale is tied to the Planck scale.
Next, we turn to the tidal acceleration that a traveler

feels between two parts of her body as the wormhole is
crossed. Let w be the vector separation between these two
parts, which in the reference frame of the traveler is purely
spatial,w ¼ ð0; wiÞ. Then, the tidal acceleration is given by
the expression [17]

�a ~� ¼ �c2R ~�
~� ~� ~�u

~�w~�u~� ¼ �c2R ~�
~t ~~tw

~; (94)

where ~ takes on only spatial values and where we
have used that u~a ¼ �~a

~t . But since the metric is diagonal

and the Riemann tensor is antisymmetric in the first two
indices, the superscript ~� should also take only spatial
values. Then, the nonvanishing components of the tidal
acceleration are
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FIG. 18 (color online). The dimensionless acceleration â ¼
jaj=ðc2=r0Þ that a traveler would feel traversing the wormhole
as a function of D=M for a variety of values of �=r20.
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�a
~l¼�c2R

~l
~t~l~t
w

~l; �a
~
¼�c2R

~

~t ~
~t
w

~
;

�a~’¼�c2R~’
~t ~’~tw

~’: (95)

The transformation laws (84) and (87) allow us to compute
the components of the Riemann tensor in the orthonormal
frame of the moving observer in terms of the ones in the
ðt; l; 
; ’Þ coordinates. We then obtain

�a
~l¼c2w

~lRt̂
l̂ t̂ l̂
¼c2w

~l 1

f
Rt

ltl¼c2w
~l 1

f

�
f0�0

2f
��02��00

�
:

(96)

Similarly, we find

�a
~
 ¼ �a~’ ¼ �c2w

~


�
�2R
̂

t̂ 
̂ t̂
þ �2 v

2

c2
R
̂

l̂ 
̂ l̂

�

¼ �c2w
~
�2

�
e�2�R


t
t þ
v2

c2f
R


l
l

�

¼ � c2w
~
�2

r20 þ l2

�
l�0

f
þ v2

c2f

�
lf0

2f
� r20

r20 þ l2

��
: (97)

As in the case of the acceleration, we should demand that
the magnitude of the above components should be small,
i.e., of the order of the acceleration of gravity at the surface
of the Earth. Using the fact that jwj ’ 2m, the above
constraints may be written as

1

f

��������f0�0

2f
� �02 � �00

��������� g�
c2ð2 mÞ ¼

1

ð1010 cmÞ2 ; (98)

�2

r20þ l2

��������l�
0

f
þ v2

c2f

�
lf0

2f
� r20
r20þ l2

���������� g�
c2ð2mÞ¼

1

ð1010 cmÞ2 :

(99)

The second inequality involves the velocity with which the
traveler moves and thus may be considered as a constraint
on this quantity. The first inequality restricts again the
profile of the metric functions—a similar analysis to the
one above leads to the same results regarding the magni-
tude of the tidal forces and the necessary size of the throat
in order to bring these down to a reasonable value.

VIII. CONCLUSIONS

The existence of traversable wormholes in the context of
general relativity relies on the presence of some form of
exotic matter. However, in the framework of a string-
inspired generalized theory of gravity, the situation may
be completely different. Here we have investigated worm-
hole solutions in EGBd theory, which corresponds to a
simplified action that is motivated by the low-energy het-
erotic string theory. Indeed, as we have demonstrated,
EGBd theory allows for stable, traversable wormhole so-
lutions, without the need of introducing any form of exotic
matter. The violation of the energy conditions, which is

essential for the existence of the wormhole solutions [42],
is realized via the presence of an effective energy-
momentum tensor generated by the quadratic-in-curvature
Gauss-Bonnet term.
We have determined the domain of existence of these

wormhole solutions and shown that it is bounded by three
sets of limiting solutions. The first boundary consists of the
EGBd black hole solutions of [4]. The second boundary is
approached asymptotically, when the curvature radius at
the throat of the wormhole diverges (the f0 ! 1 limit).
Finally, at the third boundary, solutions with a curvature
singularity at a finite distance from the throat are
encountered.
We have investigated the properties of these EGBd

wormholes and derived a Smarr-like mass relation for
them. In this, the horizon properties in the black hole case
are replaced by the corresponding throat properties of the
wormholes; thus, the area and surface gravity here refer to
the ones at the throat. Moreover, as is well known for black
holes in EGB theories, their entropy does not correspond
merely to their horizon area but it receives a GB correction
term. Similarly, we find that the mass formula for the
wormhole solutions includes an analogous GB correction
term; in addition, another term, that vanishes in the black
hole case, appears that represents the GB corrected dilaton
charge at the throat. We have demonstrated that the Smarr
relation is satisfied very well by the numerical solutions.
We have also investigated the stability of the solutions.

We have shown that a subset of our wormhole solutions,
the one that lies close to the border with the linearly stable
dilatonic black holes in the domain of existence, is also
linearly stable with respect to radial perturbations. While
we have also shown that another subset is unstable, we
have concluded that the study of the standard equivalent
Schrödinger equation cannot determine the stability for the
full domain of existence. We hope to resume the question
of the existence of an alternative method for the study of
the stability of all of our wormhole solutions at some future
work.
When the wormhole solutions are extended to the sec-

ond asymptotically flat region, this extension must be made
in a symmetric way, since otherwise a singularity is en-
countered. As a consequence of this symmetric extension,
the derivatives of the metric and dilaton functions become
discontinuous at the throat. This discontinuity demands the
introduction of some matter distribution at the throat. We
have shown that this may be realized by the introduction of
a perfect fluid at the throat whose energy density is positive
for the subset of stable wormhole solutions.
Next, we have studied and classified the geodesics of

massive and massless test particles in these wormhole
spacetimes. Depending on the respective effective poten-
tial, there are two general kinds of trajectories for these
particles. The particles may remain on bound or escape
orbits within a single asymptotically flat part of the
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spacetime, or they may travel from one asymptotically flat
part to the other on escape orbits, and travel back and forth
on bound orbits.

In addition, we have calculated the acceleration and tidal
forces which travelers traversing the wormhole would feel.
We find that their magnitude may be small for fairly large
values of the size of the throat of the wormhole. According
to our findings, the radius of the wormhole throat is
bounded from below only, therefore, the wormholes can

be indeed arbitrarily large. Astrophysical consequences
will be addressed in a forthcoming paper as well as the
existence of stationary rotating wormhole solutions in the
EGBd theory.
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