
l l m s  
ELSEVIER Nuclear Physics B 540 (1999) 87-148 

String threshold corrections in models with 
spontaneously broken supersymmetry* 

E. Kiritsis a, C. Kounnas a'l, RM. Petropoulos a,h'2, J. Rizos a,c 
a Theory Division, CERN, 1211 Geneva 23, Switzerland 

b Institut de Physique Th~orique, Universitd de Neuch~tel, 2000 Neuchdtel, Switzerland 
c Division of Theoretical Physics, Physics Department, University of Ioannina, 45110 loannina, Greece 

Received 13 August 1998; accepted 16 October 1998 

Abstract 

We analyse a class of four-dimensional heterotic ground states with N = :2 space-time super- 
symmetry. From the ten-dimensional perspective, such models can be viewed as compactifications 
on a six-dimensional manifold with SU(2) holonomy, which is locally but not globally K3 x T 2. 

The maximal N = 4 supersymmetry is spontaneously broken to N = 2. The masses of the two 
massive gravitinos depend on the (T, U) moduli of T 2. We evaluate the one-loop threshold cor- 
rections of gauge and R 2 couplings and we show that they fall in several universality classes, in 
contrast to what happens in usual K3 × T 2 compactifications, where the N = 4 supersymmetry 
is explicitly broken to N = 2, and where a single universality class appears. These universality 
properties follow from the structure of the elliptic genus. The behaviour of the threshold correc- 
tions as functions of the moduli is analysed in detail: it is singular across several rational lines 
of the T 2 moduli because of the appearance of extra massless states, and suffers only from loga- 
rithmic singularities at large radii. These features differ substantially from the ordinary K3 x T 2 
compactifications, thereby reflecting the existence of spontaneously broken N = 4 supersymmetry. 
Although our results are valid in the general framework defined above, we also point out several 
properties, specific to orbifold constructions, which might be of phenomenological relevance. 
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1. Introduction 

In four dimensions the maximal number of  possible space-time supersymmetries is 

N = 8. This upper limit on N follows from the requirement that no massless states with 
spin greater than 2 exist in the theory. In a realistic world, and for energies above the 

electroweak scale, E > Mz,  we need chiral matter, and among supersymmetric theories 
only the N = 1 possess chiral representations. There is a general belief that in field 
theory spontaneous breaking of an N > 1 supersymmetric theory necessarily produces a 

non-chiral spectrum. This impeded attempts [ 1 ] to use N > 1 supersymmetric theories 
in order to describe physics beyond the electroweak scale. In string theory, this question 

does not apply. In Ref. [2] it was shown that there are perturbative heterotic ground 
states where supersymmetry is spontaneously broken from N = 2 down to N = 1, which 

possess a chiral four-dimensional spectrum. This opens more possibilities in string 
model-building, and obviously a more careful investigation is required when N > 1 is 

spontaneously broken to chiral N = l models. 
In general, we can assume that there might be a sequence of supersymmetry-breaking 

transitions, N = 8 --~ 4 ~ 2 ---, 1, that occur at intermediate-energy scales, Au. We 

can also assume that the final scale, corresponding to the N = 1 ---, 0 supersymmetry 
breaking, is relatively low, AN=I ~'~ O(1)  Yeg, while Ms ~ O (1017) TeV > AN>I > 

O ( I )  TeV. This scenario provides a solution to the hierarchy problem, and, depending 

on the value of the intermediate scales AN, AN=I can be pushed higher by no more than 
a few orders of  magnitude. In this framework, it is important to estimate the physical 

consequences of  the existence of other supersymmetry-breaking scales, AN=8, AN=4 and 
AN=2. To do this, we need to analyse the behaviour of  the couplings in string theory, 
and in particular their threshold corrections as a function of the compactification moduli 

and the supersymmetry-breaking scales A N. 
The origin of  A s  (including Au=I ) can be either perturbative or non-perturbative [ 2 ]. 

The recent remarkable progress in understanding the non-perturbative structure of  string 

theories gives us the possibility to study some of the non-perturbative aspects of  partial 
breaking at scales AN, by performing perturbative calculations in dual string theories. 

We are thus led to reconsider "spontaneous" versus "explicit" supersymmetry-breaking 

beyond perturbation theory. Indeed, in perturbative string theory there exist two qual- 
itatively different ways of reducing the number of supersymmetries. In the language 
of orbifold compactification, some of the original gravitinos are projected out from the 
spectrum. We would like to distinguish the freely acting orbifolds (spontaneous break- 
ing) from the non-freely acting ones (explicit breaking). A free orbifold action is the 
one that has no fixed points (strictly speaking, it should not be called orbifold), whereas 
in a non-free action there are fixed points and some extra twisted states are added in 
the theory. Such a definition relies on a geometrical interpretation of a given ground 
state. It can, however, be extended to non-geometric ground states. I f  the orhifold action 
that breaks supersymmetry is free, then the associated non-invariant gravitinos are not 
projected out but become massive. This is a stringy generalization [3,4] of  the Scherk-  
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Schwarz idea [ 5 ] of  breaking supersymmetry 3 in the context of  Kaluza-Klein theories. 

The low-energy behaviour of  the couplings of  these two classes is markedly different. 

In the non-freely acting case (explicit breaking) [8-15,20] ,  the low-energy theory has 

no memory of  the original supersymmetry, while in the freely acting case (spontaneous 

breaking) it does [2] .  This was verified by explicit calculation in several classes of  

ground states with spontaneously broken supersymmetry: N = 4 to N = 2 [21] ,  N = 8 

to N = 6 [22] as well as N = 8 to N = 3 [23] ; furthermore the non-perturbative aspects 

of  this problem have been studied utilizing the heterotic/type II duality [2,24].  

String ground states with spontaneously broken supersymmetry have very peculiar 

high-energy properties that might be desirable: a logarithmically growing gauge and 
gravitational thresholds at large moduli despite the existence of  towers of  charged states 

below the Planck mass, and a possibly special behaviour of the vacuum energy. Obvi- 

ously, this issue is of  crucial importance in choosing string models that should represent 

the real low-energy world. 

In this paper our approach is more modest. One of  our goals will be to understand in 

more detail the generic properties of  low-energy couplings in heterotic models, where 

supersymmetry is spontaneously broken from N = 4 to N = 2, relevant for the physics at 

energy scales E ~ AN=4.  In situations where supersymmetry is further reduced, it turns 

out that the dependence of  the low-energy couplings on the volumes of  the internal 

manifold can also be obtained from the calculations presented here. In a sense this 

paper is a generalization of  [21] to a much wider class of  heterotic ground states with 

spontaneously broken N = 4 to N = 2 supersymmetry. 

The heterotic ground states that will be considered in the following have 8 unbro- 

ken supercharges. These can be thought of  as compactifications of  the ten-dimensional 
heterotic string on a six-dimensional manifold with SU(2) holonomy, which is locally 

but not globally of  the K3 × T 2 type. They are characterized by a set of shift vectors 

w that act on the two-torus. Some of  these models can be constructed starting from the 

heterotic string o n  T 6 = T 4 × T 2 and orbifolding by a symmetry that involves translations 

on T 2 and non-freely acting transformations o n  T 4. Another orbifold construction that 

belongs to the above class is the following: orbifold a standard K3 × T 2 compactification 

by using a symmetry that is non-freely acting on K3, but preserves the hyper-K~ihler 

structure and acts as a translation on the two-torus. It is important to stress, however, 

that these examples do not exhaust all the possibilities: our analysis is valid beyond any 

orbifold construction. 

We will restrict ourselves to the simplest translation on the two-torus, namely Z2. In 
this case the shift is a half-lattice vector of  the T 2 Narain lattice. We will be quite general, 

making no detailed assumptions on the structure of  internal (4,0) superconformal theory. 
As will be clear from our discussion below, our techniques are directly applicable to 
a general translation group on the two-torus. In the entire class of  models we will be 

3 There are two other mechanisms for breaking the supersymmetry. The first is gaugino condensation 161, 
while the second uses internal magnetic fields [7], None of them seems to fit in the stringy Scherk-Schwarz 
context. 
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dealing with, the original N = 4 supersymmetry is spontaneously broken to N = 2, and 
the two massive gravitinos have masses that depend on the two-torus moduli. 

We will focus on threshold corrections to the gauge and R 2 couplings. In the presence 

of N = 2 space-time supersymmetry, it is known that the only perturbative corrections to 
such couplings come from one loop. Moreover, the only massive states that contribute 

at one loop are BPS multiplets, since the threshold is proportional to the supertrace of 

the helicity squared. Thus, such thresholds depend on the elliptic genus of the internal 
(4,0) superconformal field theory. This property is essential and it implies, along with 

modular invariance, that the thresholds possess certain universality properties and depend 
only on some low-energy data. This was already demonstrated for standard K3 × T 2 
compactifications in [ 19,20]. Here, the thresholds will be shown to depend on the lattice 

shift vector w, the beta-function coefficients bi, the levels ki of the associated current 

algebras, and the jumps of the beta functions ~hbi and 6,,bi at special submanifolds 
of the moduli space of the two-torus, where extra massless states appear (but where 

gauge symmetry is not necessarily enhanced). We will show in particular that the usual 
decomposition for the gauge threshold corrections, which holds, for instance, in the 
standard K3 x T 2 compactification, is not valid any longer and must be replaced by 

A w = b i AW(T, U)  4- t~hb i HW(T, U)  + ~,,b i VW(T, U)  4- k i yW(T, U ) .  

The moduli-dependent functions A w, H w and V w are universal: they only depend on the 
shift vector w. On the other hand, yw depends also on the gravitational anomaly of the 
model: yw = ylw + bgrav Y2 w, with y w universal. 1,2 

The models under consideration in this paper have type II duals. The easiest way to 
see this is to employ the construction of the heterotic ones as freely acting orbifolds of 
the heterotic string on T 6. Since the heterotic string on T 6 is dual (via S <-~ T inter- 
change) to the type II string on K3 × T 2, freely orbifolding both sides will produce a 

new dual pair. In [2] heterotic/type II duality was utilized to study some aspects of this 
problem. In particular, it was shown that heterotic ground states with N = 4 supersymme- 

try spontaneously broken to N = 2 and massive gravitinos in the perturbative spectrum 
are sometimes dual to type II models without massive gravitinos in the perturbative 

spectrum. Thus, at the perturbative level, supersymmetry in the type II context seems 
explicitly broken. The massive gravitinos are BPS multiplets of the unbroken N = 2 
supersymmetry. They can therefore be identified in the type II description to monopoles 
whose mass is of order 1/g~I, where gn is the type II string coupling. In particular 
they become very light at strong type II coupling, thereby enhancing the supersymme- 
try. This might indicate the possibility that in string theory supersymmetry is always 
spontaneously broken, either perturbatively, or non-perturbatively. There is another pos- 
sibility, though. In both theories of the dual pair there are potential non-perturbative 
corrections. It is thus possible that an analogue of the Seiberg-Witten non-restoration 
of gauge symmetry is happening here: non-perturbative effects do not enable supersym- 
metry restoration at strong coupling. A more careful study of this problem is necessary, 
which we leave for the future. 
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As we pointed out previously, the appearance of non-perturbative corrections to the 

gauge and R 2 couplings cannot be excluded in general. In N = 2 ground states, we 

always have the appropriate Higgs expectation value that cuts off the infra-red. Thus, all 
non-perturbative effects are expected to be due to instantons. Moreover, since the F 2 and 
R 2 couplings are of the BPS-saturated type [ 15,25-27] only supersymmetric instantons 

(that preserve one out of the two supersymmetries) are expected to contribute. Thus, in 

the four-dimensional heterotic ground states we expect instanton corrections due to the 
heterotic five-brane wrapped around the compact internal six-dimensional manifold. 

More information about the perturbative and non-perturbative contributions is reached 

by decompactifying one of the directions of the two-toms to obtain a five-dimensional 
theory. Here, there are two possibilities: (i) the five-dimensional model has 16 su- 
percharges, and in this case the five-dimensional perturbative thresholds are zero, as 
implied by the extended supersymmetry; (ii) the five-dimensional model has only 8 
supercharges and now the perturbative thresholds are non-zero. In both cases, however, 

there are no non-perturbative instanton corrections: the six-dimensional world-volume 
of the Euclidean heterotic five-brane cannot be wrapped around the internal space and 

have finite action. 

The structure of this paper is as follows. In Section 2 we present a general description 
of N = 2 heterotic ground states in terms of their helicity-generating partition function. 

The latter is expressed in terms of the elliptic genus corresponding to the internal 

manifold. This is very useful for the determination of threshold corrections. Moreover, it 
allows us to define the class of models that we will be analysing throughout the paper, 
by giving the generic form of their elliptic genus. 

In Section 3 we briefly recall the general procedure that is used for computing gauge 
and gravitational threshold corrections in supersymmetric string vacua. We also present 

the basic properties of these corrections in N = 2 heterotic compactifications, where a 
two-torus is factorized. These models play an important role in our subsequent analysis, 

because they turn out to share some decompactification limits with the models where 

the two-torus undergoes a shift and where supersymmetry is promoted to spontaneously 
broken N = 4. 

Section 4 is devoted to the description of the class of models where the two-toms 
is not factorized. Here we stress the role of the shift on the T 2, which is interpreted 
as a stringy Sherk-Schwarz mechanism. Depending on the kind of shift vector, several 

decompactification scenarios appear. In models where the norm ,~ of the shift vector 
vanishes, two possible decompactification limits exist in the (T, U) plane: with and 
without restoration of N = 4 supersymmetry. When ,~ = l (the only relevant alternative), 

N = 4 supersymmetry is always restored. This is in agreement with the partial breaking 
of the target-space duality group, which makes several directions in the moduli space 
inequivalent. 

In Section 5 we proceed to the computation of threshold corrections. This is achieved 
by advocating general holomorphicity and modular-covariance properties. Most of the 
model and moduli dependence is lost at the level of the thresholds, which turn out to 
depend only on the two-toms moduli (T, U) as well as on several rational parameters 
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(discrete Wilson lines) related to some low-energy data of  the model. These are bi and 

ki but also Obi, the discontinuities of  the beta-function coefficients along some specific 

lines in the two-torus moduli space, where additional vector multiplets and/or  hyper- 

multiplets become massless. Across these lines, the thresholds diverge logarithmically. 

We also observe that in the class of  models under consideration, the above low-energy 

parameters are in fact related in a very specific way. This leaves some arbitrariness in 

the splitting of  the gauge threshold corrections into gauge-factor-dependent and gauge- 

factor-independent pieces, even though we demand the latter contribution to be regular 

in the (T, U) space. Moreover, some model dependence survives in the group-factor- 

independent term Y'(T,  U),  which is not fully universal. A similar model dependence 

appears in the gravitational thresholds. These features are to be contrasted to what 

happens in models in which a two-torus is factorized: the gauge threshold is uniquely 

defined as a sum of two terms, one being universal and the other group-factor dependent, 

and both regular; the gravitational threshold corrections are model independent. Finally, 

the behaviour of  the thresholds at various decompactification limits is analysed, and 

turns out to agree with what is expected on general grounds based on the restoration of  

N -- 4 supersymmetry. Again the results strongly depend on whether the norm ,~ of  the 

shift vector equals 0 or 1. The existence of  a common decompactification limit in these 

models and in models with a factorized two-toms is also observed in the behaviour of  

the thresholds. 

As an application, we examine in Section 6 the subclass of  Z2 orbilblds. In this 

case, more can be said about the nature of  the extra massless states appearing along 
the rational lines of  the T 2 moduli space. In fact, a priori, these can be either vector 

multiplets or hypermultiplets depending on the specific model at hand and on the shift 

vector acting on the two-toms. In the case of  orbifolds, only extra hypermultiplets  

become massless, except for the lines T = U and T = - l / U ,  present systematically, 

where either hypermultiplets or vector multiplets may appear, depending on the shift 

vector. This information might be of  some phenomenological relevance. The last part 

of  Section 6 is devoted to some specific orbifold examples for both the situations ,~ = 0 

and ,~ = 1. We construct in particular four-dimensional ground states whose gauge group 

contains factors such as Es x Es, SO(40) or even E8 realized at level 2. 
Most of  the technicalities are presented in appendices. In Appendix A we give an 

overview of  Z2-shifted (2 ,2 )  lattice sums. Rational lines and asymptotic behaviours 

of  the latter are also analysed there. Appendices B and C contain the machinery used 

for the determination of  gauge and gravitational corrections. Finally, in Appendix D, we 

perform explicitly the general integrals over the fundamental domain, which are involved 

in our expressions for the thresholds. We also analyse their singularities and asymptotic 

behaviours. 
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2. General description of N = 2 heterotic ground states 

In this section we will give a brief description of the heterotic ground states that we 
will be studying in the following. They will be best described by writing their (four- 
dimensional) helicity-generating partition functions. Indeed, our motivation is eventually 
to compute couplings associated with interactions such as FnR m. Therefore, we need in 

general to evaluate amplitudes involving operators like i(x ~ 0" x ~ + 2 ~bS'~,~)7 k, where 
- - k  . . . . .  
J is an appropriate right-moving current and the left-moving factor corresponds to the 
left-helicity operator. We will not expand here on the various procedures that have been 
used in order to calculate exactly (i.e. to all orders in a '  by properly taking into account 
corrections due to the gravitational back-reaction, and without infra-red ambiguities) 
these correlation functions; details on the determination of the amplitude-generating 
functions relevant for gauge and gravitational couplings can be found in [ 16-18,20]. 
We will restrict ourselves to the helicity-generating partition functions (which are also 
very useful in the analysis of S-duality issues), defined as 

Z ( v, 0) = Tr' q ~ -  ~ 0 L°- ~4 e 2~i ( ~,a - ~ )  , ( 2.1 ) 

where the prime over the trace excludes the zero-modes related to the space-time coor- 
dinates (consequently Z (v, ~)I,,=c,--o = ~'2Z, where Z is the vacuum amplitude), and a, 
stand for the left- and right-helicity contributions to the four-dimensional physical he- 
licity. Various helicity supertraces are finally obtained by taking appropriate derivatives 
of (2.1). More on these issues can be found in Appendix G of [28]. 

For four-dimensional heterotic N = 4 solutions with maximal-rank gauge group (r  = 
22) (2.1) reads 4 

NN=4(U'U)- Ir/I 4 2 Z (--1)a+b+at' [b] (v) ((v) ((O)Z6,22 
a,b=O r/ 

_ 1 0 ~ ( (v )  ~(0) Z6,22 (2.2) 
1714 ' 

where 

r I  ~--qn)2 n e -sinTrvO'l(0) 
~:(v) = ( 1 - q  "e-T'')2 ~ = q  e-  ~riv) ~ -  01(v----) 

n=l 

counts the helicity contributions of the space-time bosonic oscillators, and Z6,22 =-- 
F6,22/r/6¢/22 denotes the partition function of six compactified coordinates as well as 
of sixteen right-moving currents; it depends generically on 132 moduli, namely 36 
internal background metric and antisymmetric tensor fields, and 96 internal background 
gauge fields (Wilson lines). It is possible to continuously connect several extended- 
symmetry points such as U(1) 6 × E8 × E8, U(1) 6 × SO(32) or SO(44). The (4,0)  

4We use the short-hand notation O[~,] (v) for O[;] (v[~'), and O[;] for O[;] (01~'). 
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supersymmetry is read off automatically from expression (2.2), which has a fourth-order 

zero at u = 0. Theories with lower-rank gauge group and the same supersymmetry can 

be easily constructed by modding out discrete symmetries, which correspond to outer 

automorphisms and act without fixed points on the lattice [24,29]. 

Supersymmetry can be reduced to N = 2 in various ways. Generically, the helicity- 
generating function reads 

I 

a , b=O 

(2.3) 

where C6,22 [~] (u) are traces in the internal superconformal field theory. We have kept 

explicit the O-function contribution of  the left-moving fermions of  the two transverse 

space-time coordinates as well as those of  the internal two-dimensional free theory. The 

(6, 22) internal field theory has cR = 22 on the right sector, while on the left sector 

cc = 8. This sector has a two plus four split: the two-dimensional part of  it is free, 

with central charge c = 2, while the four-dimensional one is N = 4 superconformal with 

= 4 [30].  Space-time supersymmetry can be used again to write (2.3) as 

N=2 [.O, ~ T] £(U) ~(/~) C6,22 , (2.4) 

where 

C6,22 [1] 
is the (generalized) elliptic genus of  the internal conformal field theory. The standard 

elliptic genus [ 31,32 ], relevant for the gravitational threshold corrections is obtained at 

r = 0. The charge J0 is the sum of the internal U(1)-current  zero-modes of the N = 2 
and N = 4 internal superconformal algebras. 

An interesting class of  models is provided when the ten-dimensional theory is gener- 

ically compactified to six dimensions in a way that preserves 8 supercharges out of  

16, and is toroidally compactified further down to four dimensions. In that case, the T 2 

contribution factorizes completely. We obtain 

C6,22[:1 ( 2 )  =C4,2o ( 2 )  Z2,2, (2.5) 

where C4,20(v/2) is a (left-helicity-generating) conformal block with two left and no 
right world-sheet supersymmetries, and central charges ~c = 4, CR = 20. It accounts for 
the compactification from ten to six dimensions, and actually defines the generalized 
elliptic genus for the four-dimensional compact manifold plus a gauge bundle on it with 
instanton number 24. This conformal block depends in particular on several moduli 

(other than the two-torus ones). On the other hand, Z2, 2 ~ /'2.2/I/']14 is the partition 
function of  the two-torus (A.1),  whose complex moduli are T and U. It is invariant 
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7zT~U More details under the full target-space duality group SL(2, Z) r x SL(2, Z)t  j x ~2 • 

about lattice sums can be found in Appendix A. 
The above N = 2 construction (2.5) captures many compactifications such as K3 or 

orbifold models. For example, (symmetric or asymmetric) Z2 twists acting at the level 
of the N -- 4 model (2.2) leave invariant a single complex plane corresponding to a 

T 2 compactification from six to four dimensions. They therefore belong to the above 

class of N = 2 ground states. Their helicity-generating function is given by Eqs. (2.4) 

and (2.5) with 

~_~ ,,~l,+hl ,-h [ ]  
co b 1 = Z h 

4,20 2 7~ ~ 4,20 g , 
h ,g=0 

where Z4,20[~ ] ~__ F4,20[~]/r/4 r) 2° summarize the bosonic orbifold blocks; in particu- 

lar the untwisted partition function that describes the right-moving currents and the 

four compactified coordinates is Z4,2o[ °] = Z4,2o; it depends on 80 moduli. The Z2- 
twisted contributions are moduli independent. They can be constructed in many con- 

sistent ways, provided they satisfy the periodicity and modular-invariance requirements 
(see Eqs. (4.2), (4.3) with ,~ = 0). 

The best-known example of the orbifold construction is the symmetric Z2 orbifold, 

which turns out to belong also to the K3 moduli space. This model is achieved by going 
to a point of the (4,20)  moduli space, where a four-torus is factorized. 5 The gauge 

group is E8 x E 7 × SU(2) x U(1) 2. Thus Nv = 386, while NH =628 (Nv and NH are 

the number of vector multiplets and hypermultiplets, respectively). 
The gravitational and gauge couplings of the N = 2 heterotic ground states with a 

factorized two-torus have been studied extensively. In the present paper, our goal is 
to analyse more general situations, where Eq. (2.5) does not hold any longer and is 
replaced by 

[11] (~'~ ,41 Z1 C4a,2o[hg] (2) w [ hI (2.7) 
h ,g=0 g 

Z w I-t,1 where 2,2 LgJ stands for the shifted partition function of the two-torus. Such a structure 
appears, for instance, in freely acting orbifolds that reduce N = 4 supersymmetry to 

N = 2, and act with a lattice shift on the two-torus. Eqs. (2.4) and (2.7) describe more 
general N = 2 ground states, which have always a U(1) 2 right-moving gauge group 
coming from the two-torus. They are obviously not of the factorized form K3 x T 2, but 

they correspond to compactifications on six-dimensional manifolds of SU(2) holonomy. 
In Section 4, where these models are described in detail, we will argue that N = 2 
supersymmetry is promoted to spontaneously broken N = 4. The corresponding threshold 
corrections will be computed in Section 5. 

5 Its (4, 20) lattice sum is actually given in (6,9), which provides also a relevant example in the framework 
of heterotic ground states where the T 2 is not factorized. 
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3. T h r e s h o l d s  in  g e n e r a l  a n d  toro ida l  e o m p a e t i f i e a t i o n s  f r o m  six d i m e n s i o n s  

3.1. Computation in generic heterotic supersymmetric string vacua 

Threshold corrections appear in the relation between the running gauge coupling 
gi(Id,) of the low-energy effective field theory and the string coupling constant gs, which 
is associated with the expectation value of the dilaton field. For supersymmetric ground 
states and non-anomalous U( l ) ' s ,  one can introduce, at the string level, an infra-red 
regularization prescription such that it becomes possible to match unambiguously string 
theory and low-energy effective-field-theory amplitudes [ 16-18,20], thus leading to the 
relation 

16 77 .2 16 77" 2 M 2 
gi2(]"£) - ki T + bi log 7 s  + Ai , (3.1) 

which is actually expected if one assumes the decoupling of massive modes [8-11 ]. In 
this expression, ~ is the infra-red scale, while Ms = 1 / ~  is the string scale. String 
unification relates the latter to the Planck scale Mp = 1 / ~  and to the string 
coupling constant. At the tree level this relation reads 

Ms = gs Mp ; (3.2) 

notice that for supersymmetric vacua (3.2) does not receive any perturbative correc- 

tion [ 19]. 
In the DR scheme for the effective field theory, the thresholds read [ 19,20] 

f d2r - -  (3.3) Ai= - - ( F i - b i ) + b i l o g  2el-r  
T 2 7"1"V/~ ' 

F 

where, in the presence of supersymmetry, the function Fi is defined by the following 
genus-one string amplitude: 

F/= (-,~2 (ff~ 4 k-J-/7.2 ) ) genus.one . (3.4) 

Here ,,l is the left-helicity operator introduced above, P i  is the charge operator of the 
gauge group Gi (for conventions see Refs. [ 16,17]), ki is the level of the ith gauge 
group factor, and bi are the full beta-function coefficients, 

bi = lim Fi. (3.5) 
"r2 ---+ OO 

Generically, we can express any N = 1 heterotic vacuum amplitude in the canonical 
form 

- - -  C , ( 3 .6 )  Z 7"2 t'r] 14 2 r/ a,b--O 



E, Kiritsis et al./Nuclear Physics B 540 (1999) 87-148 97 

where C [~,] are related to the various sectors of the internal six-dimensional partition 
function. By using this form, we can recast Eq. (3.4) as follows: 

Fi- 2- -1,714 ,7 4fr'r2 
a,b--O 

One can similarly introduce the function 

i 1 ~ 0~O[~] (E2 3 ) [b] Fgra v - - C , ( 3 . 8 )  
247r [7]14 17 "/7"7" 2 

a,b=-0 

where E2, is the nth Eisenstein series (see Appendix B). This function plays a similar 
role in the determination of the gravitational threshold corrections, which appear in the 
renormalization of the R 2 term [ 19] 

Agrav = f dZr-- (Fgrav - bgrav) (3.9) 
J 7" 2 
,-r 

(up to a constant term), where 

bgrav = lim (Fgrav+ ~ l =  "] (3.10) 
, / '2 ----~ O O  \ L z q /  

is the gravitational anomaly in units where a hypermultiplet contributes 1/12 [ 11 ]. 

3.2. The case o f  the N = 2 ground states with a factorized T 2 

Let us now concentrate on N = 2 ground states that come from toroidal compactifica- 
tion of generic six-dimensional N = 1 string theories. We recall here the determination 
of the gravitational and gauge couplings for these models [20], because it plays a signif- 
icant role in the analysis of the more general constructions presented in Section 4: those 
two classes of ground states turn out to share large-moduli limits (see Section 4.2). We 
will focus in particular on the couplings of group factors corresponding to the rank-20 
part 6 of the gauge group, which were already present in the six-dimensional theory and 
not on the corrections to the couplings of the U( 1 )'s originated from the two-torus (or 
the SU(2) 's  or SU(3) appearing at extended-symmetry points of the T, U moduli). In 
other words, the charge operator T~ will not act on the lattice sum F2,2. For the models 
at hand the helicity-generating function is given by (2.4) with (2.5). 

By comparing the latter (at c = 0) to (3.6), and using (3.7) and (3.8), we obtain 

Fi = - - ~  ff~ 4 ~ 2  ~ '  Fgrav - -  ,/7)24 1"2 4~'r2 ~ '  ( 3.11 ) 

6 Actually, this part of the gauge group is at most of rank 20. For convenience, we will, however, keep on 
referring to it as the "rank-20 component", in order to distinguish it from the two-toms contribution. 
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where 

- -  I ~ 2 0  
~'~ ~ - - 2  C4.201u_=0 . (3.12) 

A few remarks are in order here. The first one concerns the antiholomorphicity and 
universality properties of the function /2 defined in Eq. (3.12). Indeed, by analysing 
the relevant two-point amplitudes in six dimensions, it was shown in [33] that, for 
vanishing c, C4,20 is a purely antiholomorphic function, the elliptic genus. Put another 

way, C4,201,,=0 is essentially the supertrace of the left-helicity squared (see Eq. (3.4)),  
and thus it receives contributions from massless and massive BPS states only. Such 
states are necessarily of the form left-moving vacuum times right-moving excitations. 

Six-dimensional anomaly cancellation 7 forces the function C4,201~,--0 to be independent 
of the kind of compactification that has been used to go from ten to six dimensions. 
Following [ 19,20], we therefore conclude that for the models under consideration 8 

,(2= E 4 E 6 .  ( 3 . 1 3 )  

It is important to stress here that the above universality property applies exclusively 
to the elliptic genus and could not be promoted at the level of the full model. In other 
words, the data C4,201~.=0 = -2E4E6/fl 2° do not enable us to reconstruct the full function 
C4,20(v/2), which is in general model (and moduli) dependent. 

By using the above result (3.13), we can go further: if we advocate again holomor- 
phicity properties and demand (3.5) as well as the absence of tachyon contribution in 

- -2  
F/, we determine the action of the charge operator Pi with the result [ 15,17,19,20] 

Fi= ki (Fgrav q- F2,2 (~(~ - 8 4 )  ) q- bi F2,2 

) - 12 F2 '2  ~24 J + 1008  + bi 1"2,2, ( 3 . 1 4 )  

l where E2 stands for the modular covariant combination E2 - 3/~w'2 and j (r)  = q + 
744 + O(q), q = exp 21fir, is the standard j-function. Therefore one can write 

A i = b i ,4 - k i Y, (3.15) 

with 

A = / ~d2T (1"2,2 (T, U, T,-O ) - 1) + log 7"rv'~2 e'-Z' 

F 

= -- l og  (47"/-2 177(T)[4 I , ( U ) [ 4  T2 U2)  
d 

( 3.16) 

7 At the level of the four-dimensional spectrum, this constraint reads Nn - Nv = 242, at genetic points of the 
two-torus moduli space. It translates into bgrav = 22, since in our normalizations bgrav = (22 - NV + Ntt)/12.  
Along the enhanced-symmetry line T = U, NH -- Nv = 240; it can even reach the values 238 or 236 when 
T = U = i or T = U = p respectively. 

8 Notice that in the case of orbifolds, Eqs. (2.6) and (3.12) lead to the result (3.13) by direct calculation. 
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and 

1 f d 2 T  (ff.2E4E6 ) v= jur2,2(r,u, ,v)\U j+1008  (3.17) 

5r 

A further analysis of  this gauge-factorqndependent threshold can be found in [20].  

Our second comment  is related to the absence of  ~-pole in expression (3.14). If  such 

a pole were present, combined with the lattice sum /'2,2, it would generate an extra 

constant term in F/, at some special line of  the two-torus moduli space (such as T = U, 
T = U = i or T = U = p -- exp 2~i ] This would lead to a jump in the beta-function 

3 J '  

coefficients bi, proportional to ki and due to extra massless states charged under the 

ith gauge-group factor. It is clear from the above analysis that this phenomenon does 

not occur. In other words the extra massless states that do appear at extended-symmetry 

points carry no charge with respect to the rank-20 component of  the gauge group that 

is considered here. A straightforward consequence of this situation is the regularity of  

universal contributions Y (see Eq. (3.17))  all over the T 2 moduli space. As we will 

see in the following, this picture will change drastically in ground states where N = 2 

supersymmetry is realized as a spontaneous breaking of N = 4. Notice that, already in 

the case at hand, the gravitational anomaly receives an extra contribution 

6 
6t bgrav = - g , 6 = 1,2 or 3, (3.18) 

when T = U, T = U = i, or T = U = p, respectively. This is due to the appearance of 

6tNv = 26 extra vector multiplets, while 6tNH = O. 

The gravitational thresholds are given by (see (3.9), (3.11 ) and (3.13) ) 

Agen ----- 1 2 1 f  d2r {'- - -  7- 2 \ 12'2 ff~2 E4 E6 ~-~ ) -gray ~ + 264 (3.19) 
yr 

at generic points of  the T 2 moduli space and have a singular behaviour along the 

line T = U. For these values of  the moduli, it is necessary to properly subtract the 

full bgrav = 22 + 6tbgrav so as to avoid logarithmic divergences in the integral (3.19). 

Notice finally that the gravitational thresholds are identical for all N = 2 models with a 

factorized two-torus (as is the gauge-factor-independent term of  the gauge thresholds). 

The last observation we would like to make here concerns the determination of  /2 

defined in (3.12).  Although the solution given in (3.13) is the one that satisfies all 

the requirements (antiholomorphicity, regularity in the 7--plane . . . .  ), there is another 

possibility that one should not disregard, namely 12 = 0. In that case F /=  Fgrav = 0 and, 
as a consequence, all beta-function coefficients and the gravitational anomaly vanish: the 
ground state at hand actually possesses N = 4 supersymmetry. In that case, the two extra 

space-time supersymmetries appear as a conspiracy of  left-moving zero-modes originated 

from the (all = 4, CR = 20) conformal block (this can happen, e.g. in orbifolds, since 
in some cases two extra massless gravitinos can appear from the twisted sector). Such 
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models will appear in Section 5, sharing decompactification limits with N = 2 models 

where N - - 4  supersymmetry is broken spontaneously. 

4. Models  with spontaneously  broken N = 4 to N = 2 supersymmetry  

4.1. General models and helicity-generating function 

As was announced at the end of  Section 2, we will now construct different N = 2 

models in four dimensions, which can be represented as ground states where N = 4 

supersymmetry is spontaneously broken to N = 2. 

We will describe a representative orbifold construction [21],  which we will then 

generalize beyond orbifolds. Orbifolding consists in performing a Z2 rotation in the 

(4, 20) part of  the original N = 4 model (and which would project out two of  the 

four gravitinos) together with a Z2 lattice shift on the T 2. Here the orbifold group acts 

without fixed points. The two gravitinos that would have been projected out combine 

with a state carrying T 2 momentum (or winding depending on the lattice shift) and 

survive the orbifold projections. They are massive, however, and their mass is an easily 

computable function of the T 2 moduli. In these orbifolds, N = 4 supersymmetry is 

spontaneously broken to N = 2. 

The partition function for the orbifold models under consideration can be written in 

the [bllowing way: 

sp br 7"2171[ 4 2 ~,b=0 

± O O [:J [:] 
l Lb+gJ Lb--gJ Z4A20 2,2 • - z w ( 4 . 1 )  

x 2  ~1 7/ 
h,g=O 

F w Fh] appearing in (A.7) The shifted lattice sum 2,2LgJ 

Z~2  - 17114 

is given in (A.3) and (A.4).  It depends on two integer-valued two-vectors (see Ap- 

pendix A) a and b, whose components are defined modulo 2, and we use the short-hand 
notation w -- (a,  b). The modular properties are captured in a single 0 ( 2 ,  2, Z)-invariant 

parameter ,~ - ab, which allows us to distinguish two cases of  interest: A = 0 and ,~ = 
1. 9 

Modular invariance of  the full partition function can be advocated for determining how 
the Z2-twisted contributions Z a h 4,20 [g] should transform. By using Eqs. (A.8) and (A.9) 
we find 

9 It can be shown (see Appendix A) that other values of ~ are related to the above by lattice periodicity. 
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Z'l,20 ---+ e/~r(~+(l_a)~) Za h 
, 4,20 h + g  

1 Z4a' [;] e-iTr(l-a'hgZ'l [--gh] (4.3) T --"-> - -  -- , 20 ~ 4,20 " 
7- 

In the case A = 0, modular invariance allows us to use the same twisted partition 

functions Z4,20[~] as those appearing in N = 2 ground states with a factorized two- 
torus (Eqs. (2.4) and (2 .5) ) .  The case A = 1, however, necessitates the introduction 

of slightly different twists, since Z4a~ 1 [~] must now transform with different phases. 
Examples  will be worked out in Section 6, Eqs. (6 .9 ) - (6 .16) .  

Here we would like to pause and examine the possibility of  generalizing the con- 
struction presented so far to models where a Z2 acts freely on the two-torus whereas 

the compactification from ten to six dimensions is not necessarily an orbifold. This can 
be achieved by looking first at the helicity-generating function of the orbifold models 

with spontaneously broken N = 4 supersymmetry (4.1).  This function is actually given 
by (2.4) with 

co,,[~1](_~) , '  [;](_~)z. phl.. 6,22 2 Z t~ ° rb ' a  ( 4 . 4 )  : ~4,20 2 , 2 / g / '  
h ,g=O 

where 

c o r b ,  A I_l+g.I r,,1 
----- [ l - -g]  4,20 [g] " (4.5) 

4,20 9"] T] 

Expression (4.4) is actually the most adequate for further generalization. Indeed, instead 

of (4 .5) ,  we can use more general blocks C442o [~] (v /2 )  such that the internal (4, 20) 
theory has N = 4 left-moving superconformal symmetry. We can thereby construct the 

most general heterotic four-dimensional ground states with N = 2 supersymmetry, which 
can be enhanced to N = 4. For these, the helicity-generating function is (2.4) with (2.7),  

as advertised in Section 2. Modular covariance demands that 

"r-+'r-.-, v C" ' E " , , 4,~OLg j 
(4.6) 

[:]m [ lm 1 u a ( 4 . 7 )  7"---* v---* C ~ , 2 o  ___,_eilr(~+ahg) a 
_ _ _  , - -  , C 4 , 2 0  • 

7" 7" 

In general, the model-dependent functions C a rhl 4,20t~J (v /2 )  depend on several (contin- 

uous or discrete) moduli. The ( U  = 4)-sector contribution C4a,2o [o] (v /Z)  is in fact the 
one given in (4.5)for (h,g) = (0 ,0 )  [30],  namely 

and does not depend on the choice of  ,~ = 0, 1. The other sectors, however, might 
or might not be connected to some orbifold realization captured in (4.5).  At v = 0, 
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C~20 [o] vanishes because of the fermionic zero-modes and, as we will see later, for 
(h ,g)  --/: ( 0 , 0 ) ,  C a h 4.20 [g] ]~,--o are purely antiholomorphic functions. This last property 

puts severe constraints on C~20 [~] J,,=o and is responsible for the absence of continuous- 
moduli dependence inside the threshold corrections (see Section 5). 

4.2. Decompactification limits and restoration of N = 4 supersymmetry 

As we mentioned above, there are two possible values for the parameter A, which lead 

to fundamentally different ground states. In the case ,t = 0, any model with spontaneously 

broken N = 4 supersymmetry of the type (2.4) with (2.7) can be mapped onto a ground 
state with N = 2 supersymmetry of the type K3 x T 2 studied in Section 2. This mapping 

is achieved by defining the function C4,20(v/2), which appears in (2.5) in terms of the 
blocks C4a~° [~] (v /2 )  appearing in (2.7):  

( 2 )  = C4,20 ~ , ( 4 . 9 )  C4,20 2 ~ h=O U 

h ,g=O 

in agreement with all properties (modular  transformations . . . .  ) that these functions 
must satisfy. For A = 1 it is not possible to establish such a kind of mapping. 

This manipulation is actually deeper than a formal construction, the two models 
being closely related in their six-dimensional decompactification limit. In fact, as we 
point out in Appendix A (see Eq. (A.16) for the ,t = 0 shifted lattice sum I) any 

,t = 0 shifted lattice sum possesses a decompactification limit in which F~',2[~ ] are 
equal for all (h ,g)  (and in particular equal to the limit of  F2,2). By comparing (2.5) 
and (2.7),  we thus conclude that, in this six-dimensional limit, l0 the N = 2 ground 

state with spontaneously broken supersymmetry (i.e. with the shifted (2 ,2 )  lattice) 

and the ordinary N = 2 ground state (i.e. with the unshifted (2 ,2 )  lattice), which is 
mapped on the former through (4.9),  are in fact identical. It can also be argued that 

these two ground states, related through (4.9),  possess actually the same gauge group. 
Their matter content is, however, different. 

On the other hand, any A = 0 or A = 1 model with spontaneously broken space-time 
supersymmetry of the type (2.7) can be mapped onto an N = 4 model by keeping the [o] 

sector only. Indeed, as we mentioned above, this sector is the N = 4 sector of  the original 
model whose conformal block C a [0] (v/2) is given in (4.8).  The corresponding N = 4 4,20 
heterotic model (see (2 .2))  is therefore defined by a (6, 22) lattice factorized as 

Z6,22 ---+ Z4,20 Z2, 2 . (4.10) 

Again, this formal connection between an N = 2 model with shifted lattice and an 
N = 4 model can be made more concrete by observing that they do have a common 
six-dimensional limit. Indeed, either in A = 0 or in .t = 1 shifted sums, there is a 

Lo For this lattice sum I, this limit is T2 ~ 0, U2 = 1. 
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D =6 (or 5) common limit common limit 

l ) : 4  N : 2  N : 2  I [ N=4 
( mapping (4.9) ) (spont. broken N =4) ( mapping (4.10) ) 

Fig. 1. Decompactification scheme of generic models with ~ = 0 shifted (2, 2) lattice. 

D =6 (or 5) common limit 

/ 2  
D =4 (spont. broken N =4) (mapping (4.10)) 

Fig. 2. Decompactification scheme of models with ,t = 1 shifted (2, 2) lattice. 

decompactitication limit 11 where only F~, 2 [0 °] = F2,2 survives, thereby selecting the 

N - 4 sector of the model (2.7). Thus the original N = 2 ground state and the N = 4 

ground state obtained by using the above mapping are identical in that limit, provided 

the (T, U) moduli are appropriately rescaled in order to re-absorb the factor 1/2 present 

in (2.7) (for the lattices I and X, for example, we must perform T ---* 2T in the N = 2 

model). 

The previous observations show that N = 4 supersymmetry is restored in some appro- 

priate six-dimensional decompactification limit of the N = 2 model built up with shifted 

lattices. This is a manifestation of the underlying Scherk-Schwarz mechanism respon- 

sible for the spontaneous breaking of the N = 4 supersymmetry. The same conclusion 

can be reached by analysing the behaviour of the (T- and U-dependent) mass of the 

two gravitinos (see Refs. [2,21] ). For t = 0 ground states, there are two inequivalent 

limits in the (T, U) moduli where the masses of both gravitinos either vanish or become 

infinite. These two limits, when N = 4 supersymmetry is and is not restored, coincide 

respectively with the limits of some ordinary (i.e. with factorized two-torus) N = 4 and 
N = 2 models. When the shift vector of the (2, 2) lattice is of the type t = 1, the mass 

gap of two gravitinos always vanishes at the decompactification limit, and the N = 4 
supersymmetry is always restored in six dimensions. 

We have summarized the above results in Figs. 1 and 2. As a final remark, we would 

like to mention another possibility that can appear in N = 2 ground states constructed 

JL These limits are T 2 --* ~ and U2 = I for both models I (A = 0) and X (A = 1) (see Eqs. (A.15),  (A.19) 
and (A.20)) .  
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O : [J (o r  5) COIl1111OI1 l im i t  common l im i t  

/ 2 / 2  
with (,i,l I)) (st~nt. broken N =4) (mapping (4.10)) 

Fig. 3. Decompactification scheme for models with a ; 0 shifted (2, 2) lattice of class (ii). 

with (2, 2) lattices such that the shift vector satisfies ,~ = 0. As we will see in Section 5, 

it can happen that the ordinary N = 2 model obtained through the mapping (4.9) 

possesses the following property: 

1 

Z C4, 20a=0{:] ( t ; )  ~ 0 2  ' (4.11) 
h ,g=0 

The N -- 2 supersymmetry of  the latter model is actually promoted to N = 4 (see 

discussion at the end of  Section 3.2), therefore leading to the picture summarized in 

Fig. 3. Ground states that possess the property (4.11) will be referred to as belonging 

to class (ii), whereas generic ,t = 0 models (Fig. 1) will be of  class (i). 

5. Thresholds in models with spontaneously broken N = 4 supersymmetry 

Our starting point is now (2.4), (2.7). In that case (3.7) and (3.8) read respec- 

tively 12 

F?: F/ (5.1) 
(h,g) 

and 

w , w { : }  Fgra v : ~ F2, 2 fgra v , (5.2) 
(h,g) g 

where we focused, as previously, on the corrections to gauge couplings corresponding 

to the rank-20 factors of  the gauge group. We have also introduced 

1 
Fia [~] - ~24 (p~ 4 k-iT.2 ) ~4 [hg] (5.3) 

and 

F~av - f/24 E 4¢rr2 

12The prime summation over (h,g) stands for (h,g) = {(0, 1), (1,0), (1,1)}. 
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where 

a h 

(notice that ~a  [o] vanishes). 13 By using (5.4), one can recast (5.3) in the form 

Fi a = ki av + A i , (5.6) 

which involves the functions 

1 

The functions "~'~ [~] are antiholomorphic for the same reason that 12 in Eq. (3.12) 
is antiholomorphic in the case of N = 2 models that are toroidal compactifications 
of six-dimensional N = 1 theories; the same holds therefore for C a [~]1,,=0, 4,20 a s  w e  

advertised in Section 4, as well as for Aa [hi The modular-transformation properties of t LgJ' 

these functions are (see (4.6) and (4.7)): 

r - - -*z+ l  -~a[hg] e_i~.a@-~,~[ h ] --a[hg] e_i~ra@~h [ hg] 
' --~ h + g  ' A i  ~ i h +  ' 

(5.8) 

' [;] Z] 7" --+ -~a  ,~10 eilr.,lllg --~A - - - - ,  --+ , -'A ---+ ei~rAhg'-A . (5.9) 
T 

These transformation properties together with the singularity structure inside the z-plane 
allow us to determine the most general functions ~a  [~] that could be obtained starting 
from any consistent ground state of the type (2.4), (2.7). They turn out to depend 
on several discrete Wilson lines that appear in the functions C a fhl 4,20 lgJ v=0, but most of 
the model and moduli dependence present in Ca4,20 [~] (v/2) is lost. 14 In the following, 
we will present this analysis for the relevant cases (a = 0 and A = 1). We will show 
how these functions -~a [~1 can indeed be realized, and eventually evaluate A~, teJ'[h] We 
will therefore determine completely F/w in terms of several physical parameters of the 
model, among which the beta-function coefficients bi, much as we have reached (3.14) 
for N = 2 ground states with a factorized two-torus. 

In order to make the subsequent analysis more transparent, we introduce the functions 

13 In the c~lse of orbifold ITlodels, the functions ~, t  [hg I are given in (B . I )  in terms of the twisted lattices 

F A D] 
4.2O LgJ" 

L4 Similarly to Section 3.2, the knowledge of C a [hi 4,20 Lg] at v = 0 does not enable us to reconstruct the full 

functions C a [hi 4.20 kgJ (v/2). 
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and similarly for F a~+) The gauge and gravitational functions (5.1) and (5.2) now -grav • 
read 

F/W = F2W2 f~} F/A [~] ± r'w(+) F / a ( + ) -  --2,2 " + FW(-) F / a ( - ) 2 , 2  (5.10) 

and 

FgWav = Vw a rw(+) F a(+) + (5.11) 2,2 ~rav --2,2 - gray 2,2 - gray , 

. ~ w ( ± )  respectively t , e ,  2 is given in (A,10)) .  

5.1. The case h = O  

The threshold corrections in this case have been calculated in [21] for a specific 
model that corresponds to the Scherk-Schwarz version of the symmetric Z2 orbifold. 
Here we will present the results for the general case (see (2 .7) ) ,  when h = 0. 

The simplest way to derive the most general ~a ' s  for a given value of a is to extend 
the results of a particular model. In the case ,~ = 0, one could choose the symmetric Z2 
orbifold of  [21 ]. However, for simplicity, we shall consider the E8 x E8 x SO(8) x U( l )2 

.~=0 model presented in Appendix B, which leads to the functions/2(0 ) [~] given in Eq. (B.6).  
A natural generalization of  these functions is given by 

1 s2a=o [ 0 ] 
(o)[1 j ' 

~a--o = g ( x )  S2(o ) o ' 

[11 s'2a--° = g  ~(o) , (5.12) 

where x --= (02 /03 )  4. The function g ( x )  must satisfy the constraints 

required for modular covariance (see Eqs. (5.8) and (5 .9)) .  Unitarity now demands 
that s2 a=° [/,] have a regular expansion without poles inside the fundamental domain, ~g3 
except at 7- = icx~. It follows that g ( x )  can have poles at x = 0, 1 as well as at the 
roots of s2 a---° [g]. More details on the geometry and singularities on the three-punctured 
sphere can be found in [34].  Putting everything together, we obtain 

X 2 X 
g ( x )  =(1 (x 2 - x +  1) 2 + ( 2  X2 - - X +  1 + ( 3 .  (5.13) 

In this representation, the E8 × E8 × SO(8) × U(1)  2 ground state of  Appendix B 
corresponds therefore to sol = (2 = 0 and (3 = 1. It is clear from Eqs. (5.12) and (5.13) 
that 
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J?A=0[~ 1 1 (O~q-O4) (~:10~O8-t-(2 4 4 03 04 E4 + ¢3 E 2) --='~ 

~QA=O[Io] 1 (04_.~_04) ((1 8 8 4 4 
= O 2 03 , 0 2 0 3 + (2 E 4 --t- ~:3 E42) 

f2a=O [i ] 1(04 _ _ 0 4 ) ( ( 1 8 8  4 4  
= - -  0 2 0 4 , 0244 (2 G+(3E42) (5.14) 

which satisfy 

(h,g) 

The above result deserves a discussion. The functions g2a=°[~] (the same actually 
holds in the case A = l)  depend on three parameters only: ( (1 , (2 , (3)  ~ ~:, which, as 
we will see very soon, are subject to several constraints and can take only some discrete 
values. These parameters exhaust all moduli dependence of /2 a [~] and define a kind 

of universality classes. Consequently, despite the model dependence of C a h 4,20 [g] (V/2), 
which is a priori a function of a large number of moduli, C a rhl l,,=0 (see Eq. (5.5)) 4,20 I_g] 
is almost universal. 

Our goal is to compute threshold corrections for the gauge couplings. We must 
therefore determine the full gauge function Fi w (Eqs. (5.1) and (5.6)),  which implies 
the computation of the functions Aa [hl following (5.7). In the general case, however, 

t kgJ  ' 

it is difficult to proceed in this way, because the gauge group is unknown and so is the 
action of the covariant derivative. Thus we shall follow a different method. It consists 
in writing down the most general functions A a [hi compatible with modular covariance, 

i LgJ 

unitarity, etc., as we did for the/2's, and in determining the various free parameters that 
appear in those functions in terms of some low-energy physical quantities (i.e. related to 
the massless spectrum) such as the beta-function coefficients and the affine-Lie-algebra 
levels. This is exactly the method that was used in order to reach (3.14) in the case 
of N = 2 models that are toroidal compactifications from six to four dimensions. As a 
corollary of our analysis, the universality-class vector £ will also be expressed in terms 
of physical parameters of the ground state. 

A = 0  h We can find the most general functions A i [g] by following the same lines of thought 
as for the determination of the general O's given in (5.12) and ( 5 . 1 3 ) :  

Aa=O [~] _ fa--o( a--o [~] 
- i 1 - - x )  A ( 0 ) E  ~ , 

Aa=O[;]:f~---O(x). A(o)e8,~--'o [;]  , (5.16) 

Aai=O[ll]=f~i=o( x ) a--o [11] A(o)& ; 

here fi~(x) is the ratio of two polynomials of x, satisfying f~(x) = fiA(1/x), and 
h---O h A(o)E ~ [~] are given in Eq. (B.7). Following arguments similar to the ones advocated for 
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g(x) ,  we obtain 

f/a=O(x ) = Ai (x 6 ÷ 1) q- Bix2(x  2 + 1) ÷ C i x ( x  4 Av 1 )  -i- Oi x3 
(x 2 - x + l ) ( x ÷ l ) 2 ( x - 2 ) ( 2 x -  1) (5.17) 

The determination of the constants Ai, Bi, Ci, Di necessitates the introduction of 
several constraints, which involve various physical parameters. The relevant quanti- 

a=0 h Fa=°[ hI (Eqs. (5.4) and (5 .6)) .  By using ties for this analysis are Fgrav[g] and i L~,J 

Eqs. (5.12),  (5.13),  (5.16) and (5.17) in Eqs. (5.4) and (5.6),  we obtain explicit 
expressions for pa=o Fhl and F/a=° h • gray Lg] [g], which we can further expand in powers of c7. The 
results for these expansions are summarized in Eqs. (C .1 ) - (C .6 ) .  In order to determine 

the various parameters (namely Ai, Bi, Ci, Di and ~) appearing in these expressions in 
terms of low-energy quantities related to the model, we proceed as follows. 

We first observe that the tachyon, being the lowest-lying state, is not charged and, 

therefore, cannot contribute to the gauge function (5.10).  Taking into account the struc- 
ture of  the shifted lattice, namely the fact that the lattice sum FW2,2[°] is always of 

the form F~"2[0] = 1 ÷ . .  whereas r ' ( ± )  • , --2,2 never contain the unity (see Appendix A, 

Eqs. ( A . I I ) - ( A . 1 4 ) ) ,  we conclude that the coefficient of  the 1/0 term in F,:~--°[ °] 
of  (C . I )  must be zero. Moreover, as we notice in Appendix A, for any w, there is 
always a corner in the (T, U) moduli space where F~'2 [~] are equal for all (h ,g)  15 (up 

to exponentially suppressed terms). In that limit, the ~-pole present in F,: ~=°~+) of  (C.2) 

contributes as does the J-pole of  Fi a=° [0] of  (C . I ) ,  and its coefficient must then be set 

equal to zero. 
We now turn to constraints originated from the identification of the beta-function 

coefficients, according to (3.5).  For generic values of the two-torus moduli, the only 
contribution comes from the constant term of F, a=° [0], which has therefore to be iden- 
tified with bi. However, it is important to observe that there are regions of  the (T, U) 
moduli space where extra charged massless states (vector multiplets and/or  hypermul- 
tiplets) appear and contribute to the beta-function coefficients, which therefore become 
bi ~ bi ÷ ~bi; those must in particular be considered in expressions such as (3.3) in 

order to properly determine the thresholds. This enlargement of  the massless spectrum 
can occur at the decompactification limit, where F~'.2 [~] become equal for all (h, g) 

(see Eq. (A.16) for the case F t h 2,2 [g])' In this case only hypermultiplets might be- 
come massless (the gauge symmetry remains unchanged). The extra contribution to the 
beta-function coefficients will be denoted ~vbi, and will be identified with the constant 
term of Fi a=°~+) of  (C.2).  On the other hand, along the line T = f~'(U), extra vector 
multiplets and/or  hypermultiplets become massless. This enhancement of the massless 
spectrum is originated from the (2, 2) lattice, as is clear from Eqs. (A.14) and (C.3);  
we will have ~hbi, which has to be identified with twice the coefficient of the l / v / ~  

15 For example, for a shift vector w corresponding to model I in Table A.1, this happens indeed in the limit 
7"2 ~ 0, U2 = 1, as is clear from (A.16). 
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term of F/: ~--°<-) in (C.3). 16 

Finally, there are two constraints that are obtained by inspecting the gravitational 

function (5.11). The latter receives a tachyon contribution. At generic values of the 
rza=0 V 0] moduli (T, U),  this contribution is given by the coefficient of the 1/~ term in , gray LIJ 

of (C.4), which must then be equal to - 1 / 1 2  in our normalizations. Furthermore, 

the gravitational anomaly at generic values o f  the two-torus moduli, bgrav, has to be 
identified with the constant term of ~A=0 roq (see Eq. (3.10) and the structure of the • gray LIJ 
shifted lattice sums). We will come back later to the discontinuities bgrav --~ bgrav q--t~bgrav 
that occur along special lines. 

The seven constraints obtained so far are summarized in Appendix C, where we solve 

them in order to express the parameters Ai, Bi, Ci, Di and ~ in terms of bi, t~t, bi, (~hbi 

and bgrav. By inspecting expressions (C.12), (C.13) and (C.14), which give ~, we can 
draw a straightforward conclusion: the parameters bi, ~vbi and t~hb i a r e  related in the 

sense that the combination 2bi - 12~hbi -- t~,bi is necessarily proportional to ki and the 
latter captures the whole group-factor dependence. As we will see in the following, in 
the framework of ,~ = 0 models, the constant of proportionality can be determined in 

terms of bgrav only. 
Before we turn to the determination of the threshold corrections, several comments 

related to the above analysis are in order. 

We frs t  observe that in the models under consideration, where the two-torus undergoes 
a shift leading to a spontaneous breaking of N = 4 supersymmetry down to N = 2, there 

is room for discontinuities in the beta-function coefficients. This phenomenon, as we 
pointed out in Section 3, does not occur in ground states where a two-torus is factorized. 
Here it occurs along the line T = f ~ ( U ) ,  where extra massless states appear, charged 
under the rank-20 component of the gauge group. 

The beta-function coefficients also suffer from discontinuity at the decompactification 
limit where all F w rh] become equal (see (A.16) and left-hand part of Fig. l) .  j7 2,2 I gJ 
This is specific to A = 0 lattices and, as explained in Section 4.2, in this limit, the 

model at hand becomes identical to an N --- 2 model with factorized two-torus obtained 

through the mapping (4.9) (see Fig. 1); therefore bi + t~,bi is to be identified with the 
beta-function coefficient of the latter model (called bi in Ref. [21]) .  

More information about this N = 2 ground state with factorized two-torus, sharing 
a common limit with our N = 4 A = 0 model, can be obtained by analysing the 
corresponding functions Fgrav and Fi. According to the mapping (4.9) these read 

16 Note that at some isolated points of this line, as explained in Appendix A, the lattice multiplicity doubles 
and the beta-function coefficients become bi + 2~hbi instead of bi + ¢~hbi which is their value at a generic 
point along T = f~'(U). 
17 We also have a trivial discontinuity in the other decompactification limit, namely (A.15) depicted in the 

right-hand pan of Fig. I. In that limit N = 4 supersymmetry is restored and the full functions F/w and F~av 
vanish as a consequence of the exponential suppression of the lattice sums (see Eqs. (5.1) and (5.2)).  So do 
the beta functions and the gravitational anomaly. This discontinuity, however, does not introduce any further 
physical parameter. The same phenomenon actually appears in the unique decompactification limit (A. 19) of 
a = 1 models (see Fig. 2). 
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(h,g) 

F i =k i fgrav-} - l~2 ,2Z t ' - 'M=°[~]  A i 
(h,g) 

By using the solutions (C.8)-(C.13) of Appendix C, we can compute ~a---0 fh 1 • gray LgJ a s  well 
a=0 h as A i [g], and, thanks to (5.15), perform the summation with the result (we keep here 

the explicit dependence with respect to (3) 
A i m 

( 1 -- s¢:3 ) E2 E4 E6 
Fgrav - 12 F2,2 7=] 24 ( 5.18 ) 

and 

Fi -  ki(1 -s 3) (&E4E6 ) 12 F2,2 \ 3 + 1008 + (bi + a,,bi) F2,2, (5.19) 

which can be compared to the results for N = 2 models with factorized T 2 (Eq. (3.14)).  
Eq. (5.18) shows that in order for those limiting models to possess the correct tachyon 
contribution (normalization of the ~_-pole in Fg~av), the original ,~ = 0 models have either 

(3 = ~'0 class (i), 
1 class (ii); (5.20) t 

we refer to the classes of a = 0 models introduced in Section 4.2. 
The models in the first class remain genuine N = 2 in the limit under considera- 

tion, whereas those in class (ii) actually become N = 4 models: Fgrav vanishes and F/ 
must also vanish, implying t~vbi = -b i .  In this class the mapping (4.9) actually satis- 
fies (4.11), and we are in the situation represented in Fig. 3. By using Eq. (C.14), we 
can recast (5.20) in terms of physical parameters, which therefore satisfy 

4bi  - 24 6hbi  --  26, ,b i  = 9 k i  (bgrav - 6) , class (i) ,  
(5.21 ) 

8,,bi = - b i ,  2bi  - 86hb i  = 3k i  (bgrav + 2) , class (ii). 

These relations show that there always exists in the string ground states considered 
here, a combination of physical, gauge-group-dependent parameters (such as bi,  ~vbi  

and ~hbi), which depends only on the level of the affine Lie algebras. As we will see in 
the following, this implies that there is no unambiguous way of defining a group-factor- 
independent threshold correction Y as was the case in N = 2 models with a factorized 
two-torus (see Eq. (3.15)).  

Discontinuities like those discussed above also occur in the gravitational anomaly. 
A--0 The expansions (C.4), (C.5) and (C.6) of Fgrav [~], together with the enhancement 

properties of the massless spectrum and the large- or small-radius behaviours of the 
lattice sums FzW,2 [~] (see Eqs. (A.I 1)-(A.16))  show that there are several possibilities. 

In the limit that we have just analysed, where all F w Fh7 become equal (limit (A.16) 2,2 I_gJ 
for shifted lattice I), the gravitational anomaly acquires an extra piece ~vbgrav, which is 
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the constant term of (C.5) .  Eqs. (C.12),  (C.13),  (C.14) and (5.21) then allow us to 

recast this discontinuity as 

2 2 -  bgrav, class ( i ) ,  
¢~v bgrav = (5.22) 

-bgrav, class (i i) ,  

where it appears, as expected, that the limiting ground states of  class (i) are N = 2 

ground states with gravitational anomaly 22, whereas for class (ii) we reach N = 4 
models with vanishing gravitational anomaly. 

Along the line T = f~ ' (U) ,  as can be seen from Eqs. (A.14) and (C.6),  another 

discontinuity appears, ~hbgrav, which has to be identified with twice the coefficient of  
the l / x / ~  term of F~r~(-);  it can be expressed as 

1 ( 2 - 3bgrav, class ( i ) ,  

ghbgrav = ~ / - - 30 - -  3bgrav, class (ii) .  (5.23) 

Furthermore, in the case of  the gravitational anomaly, extra discontinuities appear 

along the rational lines T = U and T = - 1 / U  (see Eqs. (A.11) and (A.12) ) ,  which 

play no role in the beta-function coefficients of  the rank-20 component  of  the gauge 

group (~tbi = ~ttbi = 0) ,  because of the absence of tachyonic contribution in Fi. The 
same phenomenon also occurs in the ordinary N = 2 models, as discussed at the end of 

Section 3.2, although in that case the lines T = U and T = - 1 / U  are equivalent as a 
consequence of the S L ( 2 , Z ) T .  Here the ~-pole of  Fga,~ [0] (C.4) leads to 

6tbgrav = - ~ -  , at T = U (5.24) 

and 

6'tbgrav - ~1tw at T = __1 (5.25) 
6 ' U '  

where 

6~"= ( _ ) . ~ - b , ,  (5.26) 

which becomes ( - )"~-h~ + ( _ ) . : - b 2  when T = U = i. or 

(_).,-~, + (_)a2-~ ((_)a, + (_)b,) 

if T = U = p or - l / p ,  and 

~lw= (_).:-b:, (5.27) 

which becomes (_)a2-b2 + (_)al--b, ( ( _ ) a 2  ..}_ (_)b2) if T = - 1 / U  = p or - l / p .  As 

we will see in Section 6, both vector multiplets and hypermultiplets (uncharged under 
the rank-20 component  of  the gauge group) can in general become massless along these 
lines, whereas in N = 2 models with a factorized two-torus, only vectors appear (see 
Eq. (3. i 8 ) ) .  Therefore, symmetry is not necessarily enhanced. 
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Finally, in ground states belonging to class (ii), i.e. when so3 = 1, we also have 

a~,bgrav- I 
- g (5.28) 

at the line T = f,~,'(U), as is clear from Eqs. (C.5) and (A.13). Notice, however, that 
along this line 6[,bi = 0 because of the absence of 1-pole in F/a=°<+) of (C.2). This was 
one of the physical constraints imposed above, namely the absence of charged tachyon 
anywhere in moduli space. 

We now come to the computation of the threshold corrections. Collecting the re- 
sults (5.12)-(5.17) and (C.8)-(C.14) in Eqs. (5.1)-(5.6) ,  we can recast Eq. (3.3), 
for generic values of T and U, as was advertised in the introduction: 

W I~ W A i = b i AW(T, U) + /,b i H (T, U) + ~,,b i VW(T, U) + k i YW(T, U) (5.29) 

where 

; 62T(~--'~1 [:] ( 1 ff72 --3. [hg] [hg] -a  [hg] ) [ : ] )  ) 
AW(T, U) = /'2w2 ,O(o ) ~ga q- A(o)i 3 - 1 

J r2 12~ -~-4 u (h,g) 

2 e l - r  
+ log rr x/2-7 ' (5.30) 

/ f:]( [;] [:] d2r ~,,F2w2 1 ~72 --a -a h HW(T,U)= r--2- 12 ~-~ /2~°) hg g 
y (h,g) 

(5.31) 

w[;](, f;] I:]) 
VW(T, U) = J r2 Z /'2,2 12 #24 ,(2(0 ) tog + A(o)i t)) , 

..T" ( h,g ) 
(5.32) 

r--7- F2'2 12 ~ /2(°) Yg + A(°)i *) " 
,U ( h,g ) 

(5.33) 

a=0 a=o a=0 and a---0 The functions 8g,f, hg,f, Ug,f yg,f appearing in the above integrals are given in 
Eqs. (C.15). The integrals themselves can be evaluated by unfolding the fundamental 
domain and reducing the summations over the modular group orbits (the modular group 
now being reduced as explained in Appendix A) in the spirit of Refs. [9,15]. Some 
preliminary results were given in [ 12,21]. More complete formulas are presented in 
Appendix D. 

The functions AW(T, U) and yW(T, U) defined in (5.30) and (5.33) are finite all over 
the two-torus moduli space. However, the function/-/w (T, U) becomes singular along the 
line T = f~'(U), because of the extra constant contribution of the integrand in (5.31), 
which originates from extra massless states that lead to a logarithmic divergence (see 
Eqs. (D.31)).  Along this line, we must therefore substitute in Eq. (5.29) 
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HW(T, U) --~ H w ( f tT (U) ,  U) 

Z 72 g 
~- (h,g) 

I;l E;1 E;1 I;l; ) 
2 e 1-~ 

+ log , (5.34) 
, v77 

which accounts for the extra massless states by subtracting the contribution t~hbi. 

Eq. (5.29) now leads to the correct thresholds. 
The function VW(T, U) remains finite in the bulk of moduli space. On the other hand, 

it develops an extra logarithmic singularity in the decompactification limit (A. 16), where 
all F w h 2 2 [e] become equal. Then, by formally substituting 

W'(T,  U) ~ VW(~im, Ulim) 

i ( E' w = 7"--2- 2'2 Lg] (~im' Ulim) 
St-- (it,g) 

( 1 E2--a=o [;1 0a=o [hl+ ~(o)--o/[;] 5;=o [;])-l) 
x 12 ~-~ /'2(0) ~ [g] 

2 e '-~' 
+ log , (5.35) 

which again regularizes the extra massless contributions, the threshold (5.29) matches 
in this limit (see Eqs. (5.18) and (5.19)) the ordinary N = 2 thresholds 

,hi = (hi + 6,,bi ) A -- ki (1 - ¢3) Y, (5.36) 

where /t and Y are given respectively in (3.16) and (3.17). For T2 ~ 0 and U2 = 1 the 
latter behaves as (see Refs. [17,20]) 

Ai - ~  (bi -F t~,,bi) ~ + logT2 - log47r 2 I ' q ( i ) [  4 - -  ki (1 - ¢3) 47r + 20KT2 , 

(5.37) 

up to exponentially suppressed terms (K is given in (D.30)).  For class-(i) models, the 
dominant behaviour is linear with respect to the volume of the decompactifying manifold. 
If the model under consideration belongs instead to class (ii), the matching (5.36) shows 
that d~' vanish, which reflects the restoration of N = 4 supersymmetry. 

Actually, substitution of (5.35) is formal in the sense that the function VW(Tlim, Ulim) 
defined in (5.35) is divergent everywhere except for the limiting value Rim, Ulim (i.e. 
T2 --* 0, U2 = 1 for the lattice I). Without this substitution, za w given in (5.29) with 
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V" given in (5.32) possesses, for the models of class (ii), a logarithmic divergence 

in the limit considered here: A~ ~ -6,,bilogT2 = bilogT2 (more details about those 

limits, including subleading terms, can be found in Appendix D). Although the N = 
4 supersymmetry is restored, the accumulation of extra massless states not properly 

regularized in the infra-red (one subtracts bi in the integrals and not bi + ~vbi as one 

would to follow the formal prescription (5.35)) leads to that logarithmic behaviour. 

A proper treatment of this infra-red divergence necessitates the introduction of Wilson 

lines as explained in [21]. 

Finally, as we have already pointed out several times, in the ,~ = 0 models, there 
is another decompactification limit (T2 --+ oc, U2 = 1 in models with shifted lattice 
I) where N = 4 supersymmetry is always restored. In that limit, A w given in (5.29) 
diverges logarithmically (e.g. AJ ~ - b i  log T2), which is the same infra-red phenomenon 
as appeared in the previous case. 

Our last comment about the gauge corrections A~ ~' concerns the group-factor-indepen- 
dent thresholds yW(T, U) appearing in the decomposition (5.29). In N = 2 models with 
a factorized T 2 (see Section 3.2), the decomposition (3.15) is unique because there is 
no a priori relation between bi and ki. Moreover, Y (see (3.17)) is absolutely model 

independent, and this is also a consequence of anomaly cancellations in six dimensions. 
However, in ground states with spontaneously broken N = 4 supersymmetry under con- 

sideration, the various physical parameters appearing in the decomposition (5.29) are 
not independent. They are related through (5.21). We have therefore the freedom of 

adding to Y'"(T, U), defined in (5.33), any function that is regular everywhere in the 
moduli space, invariant under the relevant duality group, and properly behaved in the 
decompactification limits; then, by using (5.21), we compensate the other functions 
A"', H w and V w without disturbing the decomposition in terms of bi, ~hbi, (~vbi and ki. 
This arbitrariness cannot be reduced unless yW(T, U) is related to some other physi- 
cal quantities such as the one-loop correction to the K~hler potential in the spirit of 

Ref. [20], where this was done for ordinary N = 2 models. Furthermore, by using 
Eqs. (5.33) and (C.15), yW(T,U) is recast as follows: 

r w = ~"  + bgrav V~', (5.38) 

which shows that some model dependence, captured in the parameter bgrav and the shift 
vector w, is now left in the gauge-factor-independent threshold. Notice that the freedom 
in the decomposition (5.29) makes it possible to discard either Y~' or Y~', which are 
both regular everywhere in the moduli space. 

By repeating the above steps, we can proceed to the determination of the gravitational 
corrections (3.9). At generic points of the two-torus moduli space, they read 

Ag ray --~ d 7- 2 Z /'2,2 ~-~ d2(O ) g bgrav , (5 .39)  
.Y" ( h ,g ) 

where g[~] are given in (5.13). This threshold is not model independent as it was in 
ground states with a factorized two-torus (see (3.19)),  where anomaly cancellation in 
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six dimensions was advocated. Its model dependence is captured in the parameters ~:, 
in g[~], that can be expressed in terms of bgrav by using (C.12)-(C.14), appearing 

together with the result (5.21): 

1 __ 3 b g r a  v ¢3 = 0, class (i), ¢1 = ~2 -{- 3bg rav, ¢2 = ~ , (5.40) 
~:1 63 _3 b ¢2 = 63 3 = ~ + 64 gray, 32 g~bgrav, ¢3 = 1 ,  c l a s s  (ii). 

Since the gravitational anomaly (see (6.2)) is related to the number of massless vector 
multiplets and hypermultiplets, it is clear from the above expressions that the parameters 
~: can only take discrete rational values, as advertised previously. This defines several 
universality classes for the gravitational thresholds, which eventually read 

W w w 
dgrav = Agrav, l + bgrav Agrav.2 • (5.41) 

The actual expressions for AgWravA and AgWrav,: depend on whether the model belongs to 
the class (i) or (ii), but are universal within each of the two classes where they turn 
out to depend only on the shift vector w. 

The thresholds (5.39) diverge logarithmically along the lines T = U, T = - 1 / U ,  

T = f~ ' (U)  and T = f w ( u )  (see Eqs. (D.31)), where the subtraction of bgrav does 
not account for all massless contributions. The exact thresholds are obtained by re- 
placing bgrav with the actual value of the gravitational anomaly at the considered line 
(see Eqs. (5.22)-(5.25)).  In the decompactification limit (A.16), where an ordinary 
N = 2 model is matched, the gravitational thresholds diverge linearly for the class (i) 
and logarithmically for the class (ii) since, then, N = 4 is actually restored. In the 
decompactification limit (A. 15), where N = 4 supersymmetry is systematically restored, 
the divergence is always logarithmic. All these behaviours are summarized at the end of 
Appendix D. 

5.2. The case A= I 

We now turn to the determination of threshold corrections in models where the shifted 
lattice F w h __[gl is of the type ~ = 1. We must therefore determine the functions Oa=J [~] 2,2 

• Jca--J [hl and F/a=l [~] (Eqs. (5.4) and (5.6)). Our starting point and A/a=l [~] appearing in,  gray I.gJ 

will now be the model E8 × E8 × U( 1 )2 of Appendix B. We construct the generalized 
/2 a=l [~] and A/A=I [~] i nn  way similar to what was done in the previous section, using 

)t=l h A=I the f2(0 ) [g] and A(o)i[~ ] of (B.9) and (B.10), and Eqs. (5.12) and (5.16) with ,~ = 1 
instead of a = 0. Repeating the steps of the h = 0 calculation we find that g(x )  is again 
given by (5.13), which translates into 

= 0.3 1"94 0 .3 / . , 94 ( (  1 8 8 

= - - 0 2  0.3 0.2 0.3 -b (2  0 4 0.4 E4  _]_ (3  E4 2) , 
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__O2 O4 (~: 1 8 8 4 4 = o2 04 - ~2 02 04 E4 + ~'3 E42) ", (5.42) 

we also find that 

f i  a=j ( x )  = Ai  ( x4  -- x3 -~- x2 --  X -~- 1) + B i x ( x  2 - X q- 1) + C i x  2 
(x 2 - x + l ) ( x - 2 ) ( 2 x - 1 )  (5.43) 

The determination of  the constants A i, B i ,  Ci as well as of  the parameters ~: of  (5.13) 
in terms of physical parameters can be carried out as in the previous case. We first 

F~ =l [~] and Fgara~ [~] (see Appendix C).  By taking into account the structure of  expand 

the A -- 1 shifted lattice as explained in Appendix A (see Eqs. (A.11),  (A.12),  (A.17) 

and (A. 18)),  we can identify the coefficients of  the various negative or zero powers of  
c7 in expressions (C. 16) -  (C.21 ) with the physical parameters. 

The absence of charged tachyon requires the vanishing of the l / c  7 term in F/a=l [0]. 

The constant term of  F,: ~=l [0] must be identified with the beta-function coefficient at 

generic moduli  bi. The 1/~ 3/4 term in F/a=I(+) plays a role along the line T = f~w(u)  

where extra states become massless. Twice its coefficient will be therefore identified 
with ~t,b i. Similarly, twice the coefficient of  the 1/671/4 term in F/a=l(-) will be called 

~hbi ,  which represents the discontinuity of  the beta-function coefficient along the line 
T = .f~,'(U). 18 In contrast to what happens in A = 0 models, the two discontinuities of  
the beta-function coefficients arise at finite values of  the moduli, where in general either 
vector multiplets and/or  hypermultiplets appear. Remember  that for ,~ = 0, this happens 

only for ~hbi ,  since ~t,bi was the discontinuity at the N = 2 limit of  the moduli space. 
Here N = 4 supersymmetry is restored in both limits (see Fig. 2), with vanishing of 
all beta-function coefficients and gravitational anomalies, and without any new physical 
parameter. 

Two more constraints are needed in order to determine all the above parameters. 
A=I These are obtained by inspecting the expansion of Fgrav I °] (Eq. (C. 19)).  Normalization 

of the tachyon contribution in the gravitational corrections imposes the residue of the 
pole to be - 1 / 1 2 .  Furthermore, the constant term is the gravitational anomaly. 

The above constraints lead to six Eqs. (C.22),  the solution of which is given 
in ( C . 2 3 ) - ( C . 2 8 ) .  As we already mentioned in the A = 0 case, we observe that the com- 

bination bi - 26hbi -- 8 ~ b i  is necessarily proportional to ki. In contrast to the A = 0 case 
(see Eq. (5 .21)) ,  however, the proportionality constant cannot be expressed in terms of 
bg,-av only. It necessitates the introduction of a new parameter, although not independent, 
such as the discontinuity of  the gravitational anomaly along the line T = f , w ( u ) ,  ~,,bgrav, 
which is twice the coefficient of  the l/c] 3/4 term in F ~  (+) (C.20).  We therefore find 
the relation 

bi - 2 6j, bi - 8 ~ ,  bi = 3 ki ( 16 St, bgrav q- bgrav - 2 ) .  (5.44) 

" U  18 Note again that at some isolated points of the lines T = f~)'(U) or T = f~ ( ), the multiplicity of the 
relevant terms in the lattice sums can double and the beta-function coefficients become bi q-2•t, bi or bi + 2~hbi. 
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Note that the gravitational anomaly possesses another discontinuity t~hbgrav along the 

~a=l<-) (C.21) and expressed in terms of T = f~ ' (U) ,  which can be read off from ,g~av 
other physical parameters by using (C.26)-(C.28) and (5.44): 

t~hbgra v = - 2 8  t~t,bgrav - bgrav q'- ~ q .  (5.45) 

Further discontinuities ~tbgrav and P ~tbgrav arise along T = U and T = - I / U ,  respec- 
)t=l 

tively, due to the tachyon pole of Fgrav [0] combined with the FW2,2 t~J r°] lattice sum. These 
are the same as those appearing in the ,~ = 0 case, and are given in (5.24) and (5.25). 

The computation of the threshold corrections goes on as in the h = 0 situation. The 
gauge corrections can be decomposed as in (5.29) with all (T, U)-dependent functions 

.h=l A=I given in (5.30)-(5.33) and Sg,f . . . . .  yg,f  displayed in (C.29). Again due to the 
relation (5.44), the definition of the group-factor-independent contribution yw (T, U) is 
not unique, although it is taken to be regular everywhere; it is also model dependent 
through bg~av, and can be decomposed as in Eq. (5.38) (see (C.29)). 

Singularities appear at T = f)w (U), where HW(T, U) exhibits a logarithmic behaviour 
(see Eqs. (D.32)).  This can be cured on the line T = f ~ ( U )  by properly subtracting 
the full contribution of the massless states, i.e. by performing the substitution (5.34). 
The same phenomenon occurs across T = fi?'(U), where VW(T, U) diverges and where 
the substitution 

VW(T, U) --* V w (f,~,'(U), U) 

w[;; 
= - -  ( f T ( u ) , u )  

7"2 .~. \ ( h,g ) 

x - 12  4 24 /'2(0) 13g -t- A(o)i u f  - 1 

2 e l -v  
+ log ~ x / ~  (5.46) 

is compulsory in order for the thresholds A~" to make sense. Finally, at the limits (A.19) 
(see Fig. 2), where the N = 4 supersymmetry is restored and F,: ~=l vanishes, the thresh- 
olds (5.29) diverge logarithmically (e.g. d .x, ,,~ ±bi log T2, the minus sign corresponding 
to the large-T2 limit, see Appendix D); this is, as described previously, the consequence 
of an incomplete infra-red regularization. 

For the models at hand, gravitational corrections are still given in (5.39), where the 
parameters ~ appearing in g[~] (see Eq. (5.13)) are now taken in (C.26)-(C.28),  
which, thanks to (5.44), are expressed in the more convenient way 

¢1---- 3 27 3 3 b g r a  v 5 3 ~t~vbgrav q- 3 b g r a v  -I- 5 ,  ¢2 = --  -'}- ¢3 = • - -  g t~, bgrav 5-2 ' ~ ~t, bgrav 

(5.47) 

Here also we observe that only rational values are allowed for these parameters. However, 
the decomposition (5.41) must now be replaced with 
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A w w w w grav= Agrav,I -I- bgrav Agrav, 2 + ~vbgrav Agrav, 3 , (5.48) 

w where Agrav, i i = 1,2, 3 are universal (only shift-vector-dependent) functions. As far as 
the singularity of  the corrections is concerned, the same comments as before apply here; 
details can be found in Appendix D. 

6. The case of  orbifolds 

6.1. Some general results 

In Sections 4 and 5 we described a general class of  heterotic constructions with 

spontaneously broken N = 4 supersymmetry, for which we computed the gravitational 
and gauge threshold corrections. Those turn out to depend on moduli (T, U) as well 

as on several low-energy parameters of  the model, such as beta-function coefficients 
and the gravitational anomaly and their discontinuities across rational lines or on the 

border of  the moduli space. The gravitational thresholds, in particular, depend on a very 
specific combination of these low-energy data, namely on ~: (see (5.40) or (5 .47)) .  The 
latter are discrete Wilson lines and are the only parameters entering the elliptic genus 

(see (5.5) ,  (5.14) and (5 .42)) ,  which therefore exhibits the universality properties that 

we already discussed in Section 5. 
The above parameters (or equivalently the elliptic genus) do not contain enough 

information to reconstruct all properties of  the massless spectrum, such as the number 

of  vector multiplets and hypermultiplets. Only the differences Nv - NH or &Nv - 6NH 

can be determined through bgrav or ~bgrav. However, if we restrict ourselves to the 
subclass of  the Z2 orbifolds, more information can be reached. Indeed, for these models 
the function C a h 4,20 In] (v/Z) is given in (4.5),  and it is possible to explicitly compute the 
helicity supertrace B4. We can then extract the massless part of the latter, and identify 

it with the low-energy formula, which reads 

B40= 6 2 + 7 N v - N H  
4 ' (6.1) 

for heterotic ground states. By using the low-energy expression for the gravitational 

anomaly, 

22 - Nv + N n  
bgrav = 12 ' (6.2) 

we can determine Nv and NH as well as the discontinuities of  these numbers all over 

the moduli space. 
The helicity supertrace B4 = ((A + ~)4) is obtained at one loop by acting on Z ( v ,  ?~) 

(Eqs. (2.4) ,  (2.7) and (4 .5))  with ~ ( 0 , , - 0 ~ )  4 at v = ~ = 0. After some algebra 

(details can be found in Ref. [24] ) ,  we find 

B 4 -  4 ~ 2 " ' ' ' ' T ~  -t- ~ Z /'2,2 -F 2 - E2 ~a[~] ~24 ' (6.3) 
(h,g) 
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where 

Oil-h] ( 0 4 + 0 4  ( h , g ) = ( 0 , 1 ) ,  
H =--=0f log  = / - 0 4 - 0 4  ( h , g ) = ( 1 , O ) ,  

7rt r/ 0 4 - 0 4  (h ,g)  = (1, 1).  

Expression (6.3) is valid for Z2-orbifold constructions with spontaneously broken N = 
4 to N = 2 supersymmetry. The second term of (6.3) results from N = 2 sectors 

and possesses the same universality properties as those described previously for the 
gravitational threshold corrections: the model and moduli dependence has shrunk to 

(T, U) and ~; put differently, this term depends on the elliptic genus only. However, the 

first term of B4, originated from the N = 4 sector, spoils this universality: as expected 
from general considerations, it introduces a full dependence on the various moduli of 

/ '4,20. 

Let us now concentrate on the massless contributions to B4. By using the full ma- 

chinery introduced so far, we can compute B ° in terms of ~, and use (5.40) or (5.47) 
to trade the latter for the parameter bgrav. We find 

8o = ~Nr  + 5 4 -  12bgrav. (6.4) 

This formula is valid for any shift vector w (,~ = 0 or 1), at any generic point of the 
(T, U) moduli space. We also assumed that, at generic values of the other moduli, 19 

we have the behaviour:/'4,20 = 1 ÷ 2Nr?t + . . . .  This introduces a new parameter of the 
orbifold, which captures all the extra moduli dependence at the level of the massless 

spectrum. By using (6.1) and (6.2) we can recast (6.4) as N v + N H  = 2 2 + 2 N r ,  where 

Nv and NH are the number of vector multiplets and hypermultiplets at generic (T, U) 

moduli. In turn, these are given by 

Nv =22 + N r  - 6bgrav, (6.5) 

NH = N r  + 6bgrav. (6.6) 

We can go further and describe the behaviour of B ° across rational lines in the 
(T, U) moduli space. This can be achieved thanks to the various expansions and limits 

introduced in Appendices A and C for lattices and the gravitational functions F a [hi gray I_gJ " 
Notice that the actual value of N r  plays no role in this analysis. 

(a) The case h = 0 

• The decompactification limit where F w h 2,2 [g] become equal for all (h, g). 
In this limit, present for any shift vector w, the massless spectrum is enhanced and 

discontinuities 6,,bi and 8~,bgrav appear. In the situation (i) (see Section 4.2), namely 
when ~c3 = 0, this limit is also shared by an N = 2 model with factorized two-torus 

19 For truly generic values of the 80 moduli of F4,20, we would have/4,20 = 1+ non-integer values of q and 
iS/. However, orbifold constructions often necessitate some of the moduli to be fixed at specific values. 
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(mapping (4.9) ,  see Fig. 1), which has beta-function coefficients bi = bi + ~l,bi, and 

gravitational anomaly/~grav = bgrav 4- (3vbgrav. We find 

~,,B 0 = -3~vbgra v . 

This result can be recast in the form (see (5.22),  (6.1) and (6 .2) )  

6~Nv = 0 ,  ~,N,q = 264 - 2bgrav • 

The number of  vector multiplets remains constant, as was already stressed in the general 

case (see Section 5);  only extra hypermultiplets appear. 

When ~3 = 1 (class ( i i ) ) ,  in the limit under consideration, the model matches an N = 

4 orbifold with a factorized two-torus obtained through the mapping (4.9) with (4.11 ) 

(see Fig. 3).  We obtain now 

~vB 0 = - 18 - 36,,bgrav. 

In the limit at hand, N = 4 supersymmetry is restored and the number of  N = 2 vector 

multiplets and hypermultiplets has no longer any meaning. Instead the number of  N = 4 

vectors makes sense and turns out to be equal to the number of  N = 2 vector multiplets 

present before reaching the N = 4 limit, as can be seen from the result 

~ 3 B ° = B ° + ~,.B ° = 3 + ~ N v ,  

Nv given in (6 .5) .  In other words, the massless spectrum is reshuffled in such a way 

that the gauge group remains unchanged, as it should, when N = 4 supersymmetry is 

restored. 

• The line T = f)~'(U). 

Here we find for both situations ( i)  and (i i)  

6h84 ° = -3,~h/,g~av, 
which leads to (see (5 .23) ,  (6.1) and (6 .2) )  

-~bgrav + I , class ( i ) ,  
8hNv = 0 ,  8hNH = 3 

-~bgrav - 15, class ( i i ) .  

Now the absence of  extra vectors is specific to orbifolds. 

• The line T = f~ ' (U) .  

For models  of  class ( i)  no extra massless states appear along this line. In the case 

( i i ) ,  however, although the beta-function coefficients (o f  the rank-20 factor of  the gauge 

group) remain unchanged and the gauge thresholds are regular, extra massless states 

appear since the gravitational anomaly has a discontinuity (see (5 .28) ) .  Similarly 

t O _  1 
~l. B4 - - ~ ' 

and consequently 

~ .Xv  = O, ~,NH = 2.  

The extra hypermultiplets are singlets under the rank-20 component of the gauge group. 
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(b) The ease A = 1 

In this case N = 4 supersymmetry is restored in all decompactification limits, and 

there is not much to say about them. The interesting phenomena occur along the lines 

T = f ~ ' ( U )  and T = f~ , ' (U) ,  where we find 

6h,~,B 0 = --36h,t, bgrav, 

leading to 

6h.t,Nv = O, 6h,~,N H = 12 6h,l,bgrav 

(remember that in the situation A = 1, 6t, bgrav is considered as an input parameter together 

w i t h  bi, 6t, bi, 6hbi, and bgrav, whereas 6hbgra  v is related to the others through (5 .45)) .  
Again, the absence of  extra vectors is not to be considered as a generic feature of  

the class of  models analysed in this paper, but instead as a property of the orbifold 

constructions. 

(c) The lines T = U and  T = - U  - l  

These deserve a special treatment, because they appear both in models with sponta- 

neously broken N = 4 supersymmetry and in ordinary N = 2 models with a factorized 

two-torus (although in the latter they are equivalent). In all cases the beta-function co- 

efficients (o f  the rank-20 factor of  the gauge group) remain unchanged, 6tb i = 6ttbi = O, 

and the corresponding gauge threshold corrections are regular. This is a consequence of  

the absence of  any charged tachyon. The gravitational anomaly, however, receives extra 

contributions. For the models with a factorized two-torus, this is given in (3.18),  and 

accounts for the appearance of  2, 4 or 6 extra vector multiplets: the U( 1)2 factor of the 

two-torus becomes U(1)  x SU(2) ,  SU(2)  x SU(2) or SU(3) at T = U, T = U = i or 

T = U = p .  

In the case of  models with spontaneously broken N = 4 supersymmetry we are 

considering here, the discontinuities of  the gravitational anomaly are given in (5.24) 

and (5.25).  Moreover, for orbifold constructions, using (6.3) we find 

6rB ° = 3 6 -  126tbgrav, (6.7) 

which leads to 

6rNv = 6 + 6r' ,  6tNl4 = 6 - 6 t' (6.8) 

for the line T = U, and similarly for the line T = - I / U  with 6~" replaced with 6~t w. (6, 

6~' and 6't w are defined in Eqs. (3.18), (5.26) and (5.27), respectively). We observe 

that not only extra vector multiplets, but also extra hypermultiplets, singlets under the 

rank-20 component of  the gauge group, appear when T = U or T = - 1/U are reached. 
Since 6, ~' 4: 6¢t w, the spectrum of extra massless states is different along the two lines 

under consideration, which translates the breaking of the duality group. Moreover, it is 
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determined exclusively by the shift vector w and does not depend on any low-energy 

parameter of  the model (as, for instance, bgrav). 

6.2. Examples 

(a) The case /l = O, class (i) 

These models fit to the scheme presented in Fig. l. They can be seen as deformations 

of  the known six-dimensional Z2 orbifolds. This perspective has been adopted in [21],  

where a model was constructed as a deformation of  the symmetric 7,2 orbifold. This will 
be our first example. Following this procedure, more orbifold models can be constructed. 

The number of  possible models in this class is equal to the number of  ordinary Z2 N = 2 

orbifolds. They are related by the mapping (4.9).  
• Es × E7 × SU(2)  x U(1)  2. 

In the notation used here this model can be recovered with the lattice 

~,b=0 

where 

[00] /"4,4 (6.10) 
Z4,4  - Z4 ,4  - -  1~718 

is the partition function of four compactified bosons, which depends on 16 moduli while, 

for (h ,g)  4: ( 0 , 0 ) ,  

[h] /"4,4 [~] 161r/14 
(6.11) 

Z4,4 g ir/i 8 O [ ' + h ] o f l - ' q  2 LI gJ 
L 1 +gJ 

are the ordinary Zz-twisted contributions. Here N r  = 240. One can use Eqs. (B . I )  to 
determine the corresponding functions /2[~]; alter comparison with (5.14),  the latter 
give s c = (0, 1 ,0) .  This determines the universality class of  the model, and in particular 

bgrav = - 6 2 / 3 ,  6t,bgrav = 128/3 and ~hbgrav = 8/3. We find Nv = 386 and Nn = 
116, in agreement with the gauge group and the matter massless spectrum, which is 
( 1 , 5 6 , 2 )  + 4 × (1 ,1 ,  1), with b& = - 6 0 ,  bE7 = - 1 2  and bsu~2) = 52. We also find 
6,.NH = 512 extra hypermuitiplets in the N = 2 decompactification limit, originated from 

the twisted sector, and falling in 8 × (1, 56, 1) + 32 × (1, 1 ,2) .  They lead to 8,,bE8 = O, 
8t.bE7 = 96 and 8,,bsu~2~ = 32. Finally, we find 6hNtt = 32 extra hypermultiplets 
originating from the twisted sector in 16 × ( 1 , 1 , 2 ) ,  with 8hbe8 = O, 8hbE7 = 0 and 
8hbsu~2) = 16. Eq. (5.21) is verified by the above low-energy parameters. 

• S O ( 1 2 )  × S O ( 2 0 )  × U ( 1 )  2. 

In this case the (4, 20) lattice sum is 
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/'~,2=~[hg] =/,4,4 [hg] 1 ~ 06[~]  05[bWq_hg] O5[b-hg]. (6.12) 

a,b=o 

Now Nr = 240, ~: = (1 ,0 ,  0);  bgrav = 2/3 ,  6,,bgrav = 64/3 and 6hbgrav = 0. We find 
Nv = 258 and NM = 244, in agreement with the gauge group and the matter massless 

spectrum, which is here (12 ,20)  + 4 × (1, 1), with bso(I2) = 20 and bso~zo) = - 1 2 .  
We also find ~,,Nt/ = 256 extra hypermultiplets falling in 8 × (32, 1). They lead to 

~,,bso<lz~ = 64 and 6vbso~2o) = 0. Finally, we find 6hNH = 0, SO that nothing happens 
along T = f~,(U) (~hNv vanishes for all orbifold models) .  All low-energy parameters 
are consistent with Eq. (5.21).  

(b) The case A = O, class (ii) 

Let us now proceed to present two models where N = 4 supersymmetry is restored 

in both six-dimensional limits (see Fig. 3). This is related to the fact that they are 

constructed by a pure shift in the F2,2 lattice and no twist action in the F4,4 lattice. 
Since in both limits the shift action is effectively removed, and no twist action is present, 

supersymmetry is always restored to N = 4. 
• E8 x E8 x S O ( 8 )  x U ( 1 )  2. 

The simplest model is the one presented in Appendix B. It corresponds to the lat- 
tice (B.5) .  Notice that it is quite remarkable to find an E8 x E8 factor together with 
N = 2 supersymmetry in a four-dimensional construction. It has Nr = 252, ~: = (0, 0, 1 ) ; 

bgrav = - 4 2 ,  6~,bgrav = 42 a n d  ~hbgrav = 4. We find Nv = 526 and Nn = 0. There is no 

matter here and be8 = - 6 0 ,  bso<8) = - 1 2 .  We have S,,be8 = 60, 6~,bso¢8) = 12 because 
of the N = 4 restoration. We also find 6hNtt = 48 extra hypermultiplets along the line 

T = f~,'(U) falling in 6 x ( 1 , 1 , 8 ) .  They lead t o  ~hbE8 = 0 and Shbso(8 ) = 12, in 
agreement with Eq. (5.21).  

• SO(40 )  x U ( 1 )  z. 

This model is obtained with 

= + L b + g  j . (6.13) 
a.&=o 

It has the largest single group factor that can be obtained in this construction. We find 
N r  = 380, ~ = ( - 1 ,  1, 1); bgrav = - 1 9 0 / 3 ,  6vbgrav = 190/3 and ~ h b g r a v  = 20/3.  There 
is no matter here, Nv = 782 and bso¢4o~ = - 7 6 ,  6,,bso~4o) = 76. Now 8hNn = 80 extra 
hypermultiplets appear along the line T = f~(U) falling in 2 x (40) .  They lead to 
~hbso(40) = 4 ,  in agreement with Eq. (5.21).  

The enlargement of  the gauge group in the last two models is also a result of  the 
absence of  twist, which allows the/ '4,4 right-moving fermions to get gauged. 
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(c) The case /t = 1 

As explained in Section 5, ,t = 1 models fall in the situation depicted in Fig. 2. The 

two six-dimensional limits are equivalent (which was not true in the previous case) and 
therefore restore the N = 4 supersymmetry since the orbifold twist is removed. We will 
give three examples, one of these being the celebrated E8 level 2 construction. 

• E8 x E 8  × U ( 1 )  2. 
This is the simplest model of  this category and is the one presented in Appendix B. 

The (4 ,20)  lattice is given in (B.8).  It has Nr  = 240, ~ = (0 ,0 ,  1); bgrav = - 1 1 8 / 3 ,  

6,bgrav = 4 /3  and ~ h b g r a v  = 16/3. We find Nv = 498, and NH = 4 hypermultiplets, 
which are singlets of  the non-Abelian gauge group factor. The beta-function coefficient 

is ben = - 6 0 .  Moreover, along the rational lines T = i f ( U )  and T = f~ ' (U) ,  we find 

~,,NH = 16 and ~hNH = 64 extra hypermultiplets, singlets of the non-Abelian gauge 

group factor, leading to 6,,be8 = 0 and ~hbEs = 0. This is in agreement with Eq. (5.44).  
• S O( 16 )  × SO(16)  x U ( I )  2. 
Another model can be obtained by using the lattice 

h=l [~J [hg]l ~ 08 [~] 08 [ ~ + 2 ]  (6.14) 
F4,20 = / ' 4 ,  4 2 ÷ " 

~,b=O 

We now have N r  = 240, ~: = ( 1 , 0 , 0 ) ,  bgrav = 10/3, ~ebg rav  = 0 and ~hbgrav  = 0. We find 
Nv = 242 and NH = 260, in agreement with the gauge group and the matter massless 

spectrum, which is here (16, 16) + 4  x (1, 1), with bso(16) = 4. Finally 8,,.hNH = 0 and 

~,,hbso(16) = 0 ,  in agreement with Eq. (5.44).  
• E8 x U ( 1 )  2. 
This model has recently attracted much attention in the framework of heterotic/type 

II dual-pair construction [35].  On the /'0,16 lattice, the Z2 permutes the two Ea's. A 
single E8 current algebra survives, which is realized at level 2. Eventually, the (4, 20) 

lattice sum reads 

F4,20 = F4. 4 FEsI2 , 

where 

Ye,12 = E ( ¢ ) ,  FEsr: = E4(2~) , (6.16) 

and Fest2 [0 or1 l] are obtained by the modular transformations r ~ 7-+ 1 and r --* - r  - l  . 
In the model at hand, N r  = 240, ~: = ( 1 5 / 1 6 , 1 / 1 6 , 0 ) ;  bgrav = 2, 8,,bgrav = 0 

and ~ h b g r a v  = 4/3.  We find Nv = 250, and NH = 252 hypermultiplets, which are in 
(248) + 4 x (1) .  The beta-function coefficient is ben = 0. Moreover, along the rational 
line T = f f ' ( U ) ,  ~,,Nt4 = 0 and consequently 6~,bE8 = 0. On the other hand, ¢3hNit = 16 
hypermultiplets appear at T = f~ , (U)  and, being singlets of  E8, give 3hbe8 = 0. Again, 
beta-function coefficients fulfill Eq. (5.44).  
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7. Conelusions 

In this paper we have analysed threshold corrections to gauge and gravitational cou- 

plings in four-dimensional heterotic models where N = 4 space-time supersymmetry is 

spontaneously broken to N = 2. 
Such ground states can be viewed as obtained by compactifying the ten-dimensional 

heterotic string on a six-dimensional compact manifold of SU(2) holonomy. This man- 
ifold is locally but not globally of the product form K3 × T 2. In these models there 

are two massive gravitinos, whose masses are calculable functions of the torus moduli. 
These masses become vanishing, and thus supersymmetry is restored to N = 4, in an ap- 

propriate decompactification limit. The analysis of the decompactification limits exhibits 
three subclasses of models (,~ = 0 (i) and (ii), and A = 1). 

The properties mentioned above are expected to significantly affect the high-energy 
running of effective coupling constants; this was shown to be true in some sample 

ground states in [21 ]. 

Here we have derived explicit expressions for generic models of the above type 

without knowledge of their detailed structure. The important ingredients that appear in 
the expressions for the one-loop gauge and gravitational thresholds are properties of 

the massless and BPS spectrum; more precisely, beta-function coefficients and affine- 
Lie-algebra levels, as well as jumps of the beta-functions along submanifolds of the 

torus moduli space where extra BPS multiplets become massless. In fact, in contrast to 
what happens in models with a factorized two-torus, several rational lines appear, where 

the gauge threshold corrections are singular (singularities of the gravitational thresholds 
appear independently of the factorization of the two-torus). However, these lines do not 
necessarily correspond to an enhancement of gauge symmetry: 6Nv and 6NH are not a 
priori determined. 

We have thus found that the universality properties, observed in K3 × T2-1ike com- 

pactifications [ 19,20] as a consequence of six-dimensional anomaly cancellations, are 
slightly modified here, although they can still be traced to modular invariance and uni- 

tarity, and to the fact that the couplings studied are of the BPS-saturated type [ 25 ]. For 
the gravitational thresholds, the explicit expression exhibits a model dependence, which 
is captured in the shift vector w and the rational parameters ~ namely bgrav (and 6,,bgrav 
for ,~ = 1 ). The latter can be interpreted as discrete Wilson lines (or instanton numbers 
of the Z2-shift embedding), and define the various universality classes where all models 
under consideration fall. These are genuine classes in the sense that they contain more 
than a single representative. As far as the gauge threshold corrections are concerned, 
the usual decomposition in two terms no longer holds. A gauge-factor-independent term 
can still be defined. However, there is some arbitrariness in its definition due to a rela- 
tion between the various low-energy parameters involved. Moreover, this term depends 
explicitly on the value of the gravitational anomaly of the ground state. 

By using our expressions for the threshold corrections (for which we have also 
explicitly performed the integrals over the fundamental domain), we have analysed the 
behaviour at large radii of compactification. In agreement with the expected supersym- 
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metry-restoration properties, the thresholds are linearly or logarithmically divergent. In 

the second case, the N = 4 supersymmetry is restored, and the logarithmic divergence 

is actually an infra-red artefact due to an accumulation of massless states, which can be 

lifted by switching on appropriate Wilson lines. Indeed, the thresholds should vanish as 

expected when supersymmetry is extended to N = 4. 
For generic orbifold constructions falling in our general class of heterotic ground 

states, the enhancement of the massless spectrum along specific submanifolds of the 

moduli space can be unambiguously determined. Except for the lines T = U and T = 
- 1 / U ,  only hypermultiplets become massless. In the framework of orbifolds, we have 

also presented several specific constructions, where the gauge group contains factors 

such as E8 x Es, SO(40) or even E812 (in four dimensions). 
The results presented here are a priori applicable to N = 2 supersymmetric theories. 

In fact, they can serve for realistic N = 1 models that are orbifolds of the ground states 
studied in this paper. The internal moduli dependence of the couplings would be coming 

from N --- 2 sectors and will thus be given by the expressions we have derived above. 
The formalism we developed so far can also be useful for analysing the issue of 

non-perturbative phenomena in N = 2 type II dual models. The extra ~Nv and ~Nn 
massless states that appear on the rational lines will then correspond to monopoles or 

dyons ~ la Seiberg-Witten. Work in this direction will appear soon [36]. 
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Appendix A. Two-torus lattice sums 

In this appendix we give our notation and conventions for the usual and Z2-shifted 
(2, 2) lattice sums. We also analyse the behaviours of those sums all over the moduli 

space as well as in various decompactification limits. 

A. 1. Z2-shifted lattice sums 

The (2, 2) lattice sum is given by 
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F2,2 (T, U, T, U) = Z exp 2~ri~'ran - T -~  Irn, + rUn  + Urn, - m 2 l  2 

ra,nEZ 

(A.1) 

It is invariant under the full target-space duality group SL(2, Z)T x SL(2, Z)u × Z r~v.  
The Z2-shifted lattice sum of the two-torus FEW2 [~] depends on two integer-valued 

two-vectors (a, b) - w. Independently of the shift vector w, 

given in (A.1); for (h,g) -~ (0,0) ,  F w h 2,2 [g] is obtained from F2, 2 by inserting 

( -  1) ~(n"+mb) and shifting m ---* m + ah/2 and n ---, n + bh/2. There are many choices 
for the Z2 translation on the T 2. The choice of the vectors a and b determines the kind 
of states (winding and/or momentum) that are projected out by the orbifold. We find 

F2',2[~J=m,~nEZ(--1)g(na+mb)exp(27ri~'(m+ah) ( n + b h )  

~U2 T ( n ' + b ' h )  + T U ( n 2 + b 2 h )  

+ U ( m l + a l h ) _ ( m 2 + a 2 h  ) 2) (A.3) 

in the Hamiltonian representation, or 

Fw2,2 = 7"27.2 m,neZ ~ ei~ra(ng-mh-b~) exp -- r'~2 Zi,.i mi-1- bi~ -~ ni + bi 7" 

× (Gi.i + Bi.i) mi + bj -~ + n.i + bj ~ (A.4) 

in the Lagrangian representation, where as usual 

G = ~  , ~ = r 2  . (A.5) 

It is easy to check the periodicity properties (h, g integers) 

= F~2 =/'2,2 , (A.6) 2,2 g g + 2  

as well as the modular transformations that expression 

2,2 [g] ZW [hi /.w h 
2,2 [gJ -- 17/14 (A.7) 

obeys 
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Table A. 1 
The nine models with ,,/= 0 

Case a b 

I ( 0 , 0 )  ( 1 , o )  
II (0,0) (o, I) 
Iii (0, 0) ( 1, 1 ) 
IV ( l, O) (o, O) 
v (0, 1) (o, 0) 
Vl (I, 1) (o,0) 
Vll (1,o) (o, 1) 
VllI (0,  I ) ( 1, O) 
IX ( 1 , - I )  (1, 1) 

Table A.2 
The six models with A = I 

Case a b 

x (I,O) (I,O) 
Xl (1,o) (1, 1) 
Xll ( I , l )  (1,0) 
Xlll (0, I) (0, 1) 
XlV (0 ,  l )  ( I, 1) 
XV (1, 1) (0, 1) 

ZW [h] ---+ ei+rab @Zw [ h ] ( A . 8 )  
r - - + r +  1, 2,2[gJ 2,2 h + g  ' 

r - +  - - ,  2,2 ---+ "+ 2,2 - ( A . 9 )  
7" 

The re levant  pa ramete r  for these t ransformat ions  is 3+ = ab. 
We would  now like to give a few proper t ies  of  the shifted latt ice sums. It is c lear  

f rom express ion  ( A . 3 )  or ( A . 4 )  that the integers ai and bi are def ined modu lo  2, in the 

sense that  adding  2 to anyone  of  them amounts  at most  to a change  o f  sign in F~+',2 [Jl]" 

Such a modif ica t ion  is necessar i ly  compensa ted  by an appropr ia te  one in C~20[I] (see  

Eq. ( 2 . 7 ) )  in order  to ensure modu la r  invariance,  and thus we are left  with the same 

string g round  state. On the other  hand, adding  2 to ai or bi t ranslates into adding  a 

mul t ip le  of  2 to A. Therefore ,  a l though ,t can be any integer, only A = 0 and A = 1 

correspond to truly different situations. 
In Tables A. 1 and A.2,  we list all phys ica l ly  dist inct  mode l s  with A = 0 and A = l ,  

respect ively.  In each o f  these classes,  all the models  are related to one another  by 

t ransformat ions  that be long  to SL(2,  Z)  r x SL(2,  Z)ts  x Z r ~ v .  

Ano the r  issue that we would like to discuss here is that of  target-space dual i ty  in the 

presence  of  a Z2 translat ion.  The modul i  dependence  of  the two-torus  shifted sectors 
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(see Eq. (A.3)  or ( A . 4 ) )  reduces in general the duality group to some subgroup 2° of  

SL(2 ,  Z ) r ×  × r ~ u  SL(2 ,  Z ) v  Z 2 . Transformations that do not belong to this subgroup map 

a model  w = ( a ,  b) to some other model  w' = (a ' ,  b ' ) ,  leaving however A = ab = a'b'  

invariant. This plays an important role in string constructions such as those described 

in (2.4)  with (2 .7) ,  where a Z2 translation appears, giving a moduli-dependent  mass 

to half of  the gravitinos. Indeed, for such a model, decompactification limits that are 

related by transformations that do not belong to the actual duality group are no longer 

equivalent. Therefore, the spontaneously broken N = 4 supersymmetry might or might 

not be restored (see Section 4) .  

To be more specific, by using expression (A.3) ,  we can determine the transformation 
properties of  F w h 2,2 [g] under the full group SL(2 ,  Z) r × SL(2 ,  Z) u × Z ~ u :  

a / ( oo !l/a) SL(2 ,  2~)r a2 0 d - b  a2 
" - +  , a d  - b c  = l , 

bl 0 - c  a bl 

b2 c 0 0 b2 

a2 ~ - b '  d' 0 O0 a2 a'd'  - b'c' = 1 
S L ( 2 ' Z ) v  : bl 0 0 d' b' bt ' 

b2 0 0 C' a' b2 

and (a) (oo ) 
a2 0 1 0 a2 . 

N2r~u : bl --+ 1 0 0 bl 

b2 0 0 0 b2 

Thus, we can determine the duality group for a given model by demanding that the 

components  of  the vectors a and b remain invariant modulo 2. For example,  in the 

situation I (A = 0) defined by a = (0, 0) and b = ( 1 , 0 ) ,  the target-space duality group 

turns out to be F + ( 2 ) r  x F - ( 2 ) v ,  whereas for the case X with ,t = 1 and a = ( 1 , 0 ) ,  
, VZ T''~U b = ( l  0 ) , w e f i n d F ( 2 ) T × F ( 2 ) v × ~ 2  • 

A.2. Rational lines and asymptotic behaviours 

Finally, we would like to analyse the behaviour of  the shifted lattices over the moduli  

space. This includes the identification of  special lines in the (7", U)-plane,  where extra 

massless states can appear in the spectrum, as well as some large-radius properties. 

Notice that these special lines are not necessarily lines of  enhanced symmetry, since 

(: ") 21~ The subgroups of SL(2, Z) that will actually appear in the following are 1 ":1: (2) and •'(2). If d 

represents an element of the modular group, F + (2) is defined by a, d odd and b even, while for F - (2 )  we 
have a,d odd and c even. Their intersection is F(2). 
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in some situations only extra hypermultiplets appear. For this analysis we introduce the 
combinations 

2,2 = ~ 2,2 2,2 , (A.10) 

which turn out to :be convenient in the computation of the threshold corrections (see 

Section 5).  

(a) The case ,~ = 0 

We focus here on the appearance of 0 ( 0 )  terms in F~,2[1 °] or F~I(2+), and O(v@) 

terms in F ~  - ) .  These situations are indeed possible along some specific lines in the 
moduli space, although they are not simultaneously realized. The results are summarized 

as follows: 

F~I2 [01 = 1 + ( - ) a ~ - b ~ 2 0  + . . . .  for T =  U (A.11) 

1 ( A . 1 2 )  = 1 + ( - - ) a 2 - b 2 2  0 q- . . . .  for T = - ~ ,  

FW( + ) 2,2 . . . .  + 20  + . . . .  for T = f~ ' (U) ,  (A.13) 

FW( - ) = 2.2 . . .  + 2 V/~ + . . . .  for T = f~ ' (U) .  (A.14) 

The lines T = U and T = - l / U  are no longer equivalent. In these expressions, the 

multiplicities are valid for generic points along the indicated lines. They can, however, 

be modified at some particular values of  the moduli. For instance, 

Fw2,2[~] = 1 +  ( ( - - ) a ' - & - t - ( - - ) a 2 - b 2 ) 2 0 + . . .  for T = U = i ,  

F ~ : 2 [ O l = l + ( ( - - , a ' - & + ( - - , a 2 - b 2 ( ( - - ) a ' + ( - - ' b ~ ) ) 2 0 + . . .  

for T = U = p  or - l / p ,  

and 

for T = - I / U  = p or - l /p .  

On the other hand, the functions f,w,(u) and f ~ ( U )  depend on the particular shift 
vector w. For concreteness, we concentrate on the particular case I (see Table A. 1 ) ; any 
other situation is obtained by duality transformation. In this case, f~ = 4U and f], = 2U. 
Moreover, for FI(+) the multiplicity is doubled at T = 4U = 1 + ix/3, whereas it is --2,2 ' 

doubled at T = 2U = 1 + i for F~(~ -). 



E. Kiritsis et al./Nuclear Physics B 540 (1999) 87-148 131 

Whatever the value of A, the existence of the above lines T = f ~ h ( U )  translates an 

underlying Z2 symmetry of the shifted lattice or of a sublattice of the latter. For example, 

F I(-) is invariant under T ~-~ 2U, whereas only a sublattice of F l(+) is invariant under 2.2 2,2 

T ~ 4U; similarly, a sublattice of F w r°] is invariant under T ~-~ U or T ~-~ - 1 / U .  2,2 LI] 
In contrast to what happens in the case of ordinary lattice sums, the behaviour of 

the A = 0 shifted lattice sums in the decompactification limit depends on whether one 
considers large or small moduli. This is due to the partial breaking of the duality 

group. For definiteness, let us focus on model I and consider two six-dimensional limits: 
Tz ~ o o ,  U2 = 1 (i.e. R1 ~ e<), Rz ~ 00  21 ) on the one hand, and T2 ~ 0 ,  U2 = 1 (i.e. 
Rm ~ 0, R2 ~ 0) on the other. These two limits are mapped onto each other under the 

combined transformation T --* - l I T  and U ~ - l / U ,  which does not leave model I 
invariant (it actually gives model IV). Therefore, they are not expected to be equivalent 

and it is easy to verify that 

F~ [~] > {T2/~'2 for h = g = 0 ,  (A.15) 
2,2 T2-~oo,U2=l 0 otherwise, 

whereas 

r M , 2 '2 [g lT2  o,U2=lT272 Vh,  g ,  (A.16) 

up to exponentially suppressed terms. 

Similar conclusions can be reached for other A = 0 models by considering the rel- 

~ r ~ u  transformations: there are always two distinct evant S L ( 2 , Z ) T  x S U ( 2 , Z ) u  x ~2 

decompactification limits where either all F~, 2 [~] survive and are equal, or only F~',2 [o °] 
survives. 

We would like to emphasize again that the nature of the extra massless states (vector 
multiplets and hypermultiplets) appearing across the lines T = U, T = - l / U ,  T = 

f,,"ih (U) as well as in the two distinct decompactification limits, is not determined by 
the structure of the shifted lattice only: it depends on the full structure of the string 
ground state. 

(b) The case a = 1 

In this case, we are interested in terms of order ~ in F~, 2 [0]. These are given in (A. 11 ) 
and (A.12), with the same modifications of their multiplicity at T = U = i and at other 
special points, as explained above. Moreover, terms of order ~/3/4 and ~1/4 are generated 
in r w(+) and F w(-) respectively, --2,2 2,2 ' 

Fv,,( + ) 03/4 2,2 . . . .  + 2 + . . . .  for T = f 2 ' (U)  (A.17) 

FW(-) = 2,2 . . . + 2 0 1 / 4 +  . . . .  f o r T = i f ( U ) ,  (A.18) 

21 Remember that when TI = UI = 0, T2 and U2 are parametrized as follows: U2 = R2/R1 and T2 = R1 R2, 
where Rl and R2 are the radii of compactification. 
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where for the model X (see Table A.2) f x  = 3U or U/3 and f ~  = U. Again, the 

generic multiplicity is 2 and can be promoted to 4 at some particular points on the 

lines T = f,w h (U) .  Results for other models in Table A.2 are obtained by performing 

appropriate SL(2, Z)T x SL(2, Z )u  x Z~ "~u transformations. 

We now turn to the decompactification limit of  ,~ = 1 models. Let us consider again 

a specific model, namely model X, in the limits T2 ~ oo,/-/2 = 1 and T2 --~ 0, (-/2 = 1. 

There is a major difference with respect to the A = 0 case studied above: the duality 
transformation that maps the limits at hand onto each other now leaves the model 
invariant. These two limits are therefore equivalent and the h = 1 shifted lattice under 
consideration possesses a unique behaviour, which is 

F x 2 [ ~ ] - - * 0  V ( h , g )  4= (0 ,0 )  (1 .19)  

in both T2 ---, oo, U2 = 1 and T2 --, 0, U2 = I l imits, whereas 

[~1 {T2/T2 for T2--+oo, U 2 = I ,  
l'X.2 =- I'2.2 --* l/T2r2 for T2 -+ 0, U2 = 1. (A.20) 

The same holds for more general A = 1 models. There is essentially a unique decom- 
pactification limit where only F~I 2 [o °] survives. 

Appendix B. Two four-dimensional Es X Es orbifold models 

We present here two typical Z2-orbifold models with N = 4 supersymmetry broken 

to N = 2 and determine some quantities relevant in Section 5 to the general analysis 

of  the threshold corrections. The partition function for the Zz-orbifold constructions is 

given in (4.1),  which we recall here: 

sp br T2 ~ 1 2 ' 0 2 4  2 ~ - -  (--l)<'+b+abO2 
a,b=O 

× 2 Lb + gJ 4,20 F2,2 ' 
h,g=O 

where F W Vq is the shifted two-torus lattice sum (see Eq. (A.3) or (A.4) ) .  For 2,2 I.gJ 

these constructions, we can recast the threshold functions ~ a  [hi defined in (5.5) by 
using (4.5). We find 

' r , ,  rol 
O20~ 4'2° [ lJ  ' 

-- /., 92 0 2 F'~'20 0 ' 
2 3 

- 2 2 4,20 • (B . I )  
't~ 2 1-94 
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We also recall the Eisenstein series, which will appear in the following considerations: 

OO n__q"_ 
E 2 = "~Or logr/= 1 - 24 Z (B.2) 

iTr n=t l - q " '  

ng_q. 
E4 = 1 (08 q_ 08 _1_ 08) __. 1 q- 240 ~ 1 - q n '  (B.3) 

//=1 
(2O nS q n 

E 6 ½(O 4 + O  4 ) (0  4 + O  4 ) (044 O 4) 1 504 . . . . . . .  . ( B . 4 )  
.=1 l _qn 

(a) The case A = 0 

We can choose the following (4, 20) twisted lattice: 

a=o [~] 1 ~ 02 [ ~ ] O  [ a - t - h ] o  [~-hg] ~4 [~+hg]--2 
/-'4,20 = ~ i_ b + g] + E 4 , ( B.5 ) 

~,b=-0 

which leads to an N = 2 four-dimensional model with gauge group E8 x/?8 x SO(8) x 
U(I)  2 with Nv = 526, NH = 0. Using (B.1) we can explicitly determine the/2's, which 
now read 

A=0[~] __ 1E2(O4_t_O4) = 1 a20. 2 f2(0 ) -- g --7173 tx -- x q- 1)2(x -- 2) ,  

2"2(0 ) --5"0-3 tX - -X+  I)2(X+ 1), 

e l  ( 0  4 - 0 4) = , 0 2 0 .  2 ~'O 3 •X --Xq'- 1)2(2x - 1). (B.6) 

We introduced, as previously, the variable x = (02/03) 4, which allows us in particular 
to recast E4 = O~ (x 2 - x + 1). 

The A's corresponding to the E8 factors of the gauge group are determined in a 

straightforward way, by using Eq. (5.7) as well as the identity [ 17] 

E4 ( E2)  E 4 j - j ( i )  
"024 P 2 s - ~  E 4 = E  6 12 

We find 

a=0 [~1 1E4E6(04+044) 1 6 ( X 2 - x + l ) ( x + l ) ( x - 2 ) 2 ( 2 x - 1 )  
A(°)e8 - 24 T] 24 "= -- 3 X2(X -- 1) 2 

a=0 [;] 1E4E6(04+O~)= 1 6 ( x 2 - x + l ) ( x + l ) 2 ( x - 2 ) ( 2 x  - 1) 
A(°)ea - 24 ,/124 -- 3 x2(x -  1) 2 

A(°)e8 = 24 r/24 3 x2(x -  1) 2 

(B.7) 
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(b) The case/~ = 1 

Similarly a ,~ = 1 model can be obtained with 

r,,:, r,,,1 [7] 4,20 [gj =/ '4,4 E4. (B.8) 

The gauge group (in a generic point of  the/ '4,4 [~] lattice) is now E8 x Es x U(1)  2 and 
Nv = 498, NH = 4. Following the same procedure as in the previous case, we obtain 

=v"  3 tx  - x + l ) Z v / l - x  

= -E,~ 02 O 2 = - O ~ ° ( x  2 - x + 1)2x/~, 

-E 020] - 3 - x +  - x )  (B.9) 

and, for the E8 Ihctors, 

h=l I~ ] 1 E4E6 2 2 3 2 ( x 2 - x ÷  1 ) ( x ÷  l ) ( x - 2 ) ( 2 x -  1)V l1 - X  
A(°)E~ - 12 "024 03/"94---- 3 x2(x  - 1) 2 ' 

Aa=l [ ; ]  I E4E6 2 3 2 ( x 2 - x + l ) ( x + l ) ( x - 2 ) ( 2 x - 1 ) v  'r~ 
(0)e, - 12 '024 t~q~/)3 = 3 xZ(x- I)  2 ' 

A(°)e8 - 12 "024 09202 

3 2 ( x  2 - x + l ) ( x ÷ l ) ( x - 2 ) ( 2 x - 1 )  x ~ / J ~ - x )  
=---~- X 2 ( X _  1) 2 (B.10) 

Appendix C. Some details on the threshold calculation 

In this appendix we collect technicalities that appear in the determination of the 
threshold corrections (see Section 5) for models with spontaneously broken N = 4 su- 
persymmetry, for which the helicity-generating function is given in Eqs. (2.4) and (2.7). 

C. 1. Models with ~ = 0 shifted lattice 

In order to express the constants Ai, Bi, Ci, Di and ~:, which appear in the functions 
a---o 

Fi a--° and Fgrav, in terms of the physical parameters of  the model, namely bi, ~hbi, ~,bi 
and bgrav, we must identify the  latter with the various coefficients that appear in the 

a--o Fa---°[ hI (Eqs. (5.4) and (5 .6)) .  Neglecting the large-~-2 expansions of  F~r~v [~] and i LgJ 

B-suppressed contributions, which play no role in our argument, these expansions read 
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Fia_-o[~l = q l (  2 A i + 2 B i + 2 C i + D i 4 8  '1 + ~:2 + ~:3 k i ) 1 2  

+ I  ( - 2 8 2  Ai - 26Bi - 122Ci + 3Di + (4 '1  - 124'2 - 252,3) ki) 

+ o ( , ~ ) ,  ( c .  ~ ) 

__(1 ai ,3 k." ~ 
F,_a=°(+) = -2-4 + q 12 i j  

+ - 4 7 A i - - - B i -  C i + - ~ ( 6 4 , 1 + 1 2 8 , 2 + 1 2 6 , 3 )  ki +O(gl) ,  

(c.2) 

F.I=o(_)= ~ 1  ( 6 A i + 2 C i 3  + 4 ' 2 + 6 ' 3 k i ) + 0 (  x ' / q ) 3  (C.3) 

and 

Fl=° [0]gray [l j _1 ( ,1+ ,2+,3)+1_212 = ~  ( ' l  - 31~2 - 63,3)  + O(~) ,  (C.4) 

/71=0(+) = _| __'3 + 64~1 + 128'2 + 126'3 + 0(4)  , (C.5) 
-grav g/ 12 3 

-b" '~-'-'~ ( - ) gray = - -  v ~  1 ( 4 ' 2 + 6 ' 3 )  + O (V/q) " 3 (C.6) 

The various constraints and identifications explained in the text lead to the following 
equations: 

2 Ai + 2 Bi + 2 Ci + Di + 4 ('1 + '2 + '3) ki =0 , 

6! ( - 2 8 2 A i -  2 6 B i -  122Ci+ 3Di + ~(4 '1 - 1 2 4 , 2 -  252 '3))  ki=bi ,  

- A i  + 2~e3 ki = 0 ,  

3 Ai + C~ + 2~2 + 3,3ki  _ 6hbi, 
3 3 4 

--47 Ai - ~ B i  - 8--°3Ci + ~(32'1 + 64 '2  + 63 '3)ki  = ~,bi 

'1 + ' 2  + ' 3  = | ,  

2 ( ' l  - 31 '2 - 63 '3) = bgrav • 

(c.7) 

The solutions read 

Ai = 3~ (4 bi - 24 t~hb i -- 2 8vbi + 54 ki - 9 bgrav ki) , (C.8) 

Bi = ~ (53 bi - 48 ~hbi -- 40 8vbi + 990 ki - 99 bgrav ki ) , (C.9) 

1 
Ci = ~-~ ( - 112 bi + 456 t~ h bi + 56 6~,bi - 1494 ki + 225 bgra v ki ) , ( C. l O) 
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1 
Di = ~ ( - 26 bi - 168 612bi q- 40 6,,bi - 1494 ki -+- 45 bgrav ki ) , (C. 11 ) 

1 
(1 = ~ ( 3 2  bi - 192 6hbi -- 166t, bi ÷ 990ki - 45 bgravki), (C.12) 

1 
(2 = ~ ( - 64 bi + 384 611bi + 32 62, b i - 846 k i + 117 bgrav ki ) , ( C. 13) 

1 
~3 = ~ (4 bi - 24 t$h bi - 2 62,bi q- 54 ki - 9 bgrav ki ) • ( C. 14) 

Let us now introduce several "elementary" functions, which will enable us to express 
the quantities appearing in (5 .30) - (5 .33)  in a compact way. As usual, f ( x )  = f[~] and 
consequently f[0] = f ( l -  x),  f i l l  = f ( x / ( x -  1)). We have 

( X -  1) 2 
o ' ( : ~ )  - - -  , 

3x 
( X -  1) 6 

~ b ( x ) = ( x  2 _ x + l ) ( x + l ) 2 ( x _ 2 ) ( 2 x  - 1 )  ' 

(X-  1) 4 

X ( x ) =  ( x  2 - x ÷ l ) ( x - 2 ) ( 2 x - 1 )  ' 

( X -  1) 2 
g,(x) = 

2 ( x 2 - -  x q - 1) " 

With these conventions 

6~=o 2 2 = ~  , 

a=o_ 4 h~ - - ~ J , - ,  

,a=o 1 2 

[ 1 , 4 1 bgrav ( l ) ] g , 2  
yga=o = 3 - 2--4 S + 9 0 .2 16 8 - , 

(9 ,1) 6 f  = 48 o- 48~-2 ~b, (C.15) 

a=0 ( ~ 2 9 1 )  
hj  = - + ~  ,/,, 

( ,,~ = _ + ~ 4', 

a=o [ ( 3  61 1_ 1 1 4 ~-5) _ ( 1  231  1 12) ] 
Yf = -- 48 o- 24 0 -2 + 2ff bgrav 96 0. 48 &" 
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C.2. Models with A = 1 shifted lattice 

physical parameters. Neglecting 1 Fi ~t=l and Fgarav l in terms of the various the 
suppressed contributions, the expansions of F,a =' [~] and F~=v ~ [~] are given by 

~a=,[0] :ql  ( Ai+Bi+Ci12 (1+(2+(3ki)12 

+ 2 ( _ 9 7 A i _ 3 3 B i _ C i + ( 5 ~ z l _ 2 7 ( z _ 5 9 ( 3 )  k i ) + 0 ( 0 ) ,  (C.16) 

03/41 (Ai__3 T2(3 ) ( ) El. '~=1(+) = z/_ ki q- O •1/4 , (C.17) 

01/41 ( 4 4 A i + 1 6 B i 3  3 2 ( 2 + 8 ( 3 ) + 0 (  03/4 ) 3  (C. 18) F,a=l~-) = + 

and 

=~  (5(1 - 2 7 ( 2 - 5 9 ( 3 )  + O(#), (C.19) 

Fga=/(+,_ 1 2 ( 3  + O (01/4) (C.20) 
rav 03/4 3 

Fga=l(-)_ 1 32(2+8(3 +0(03/4)  (C.2l) 
rav 01/4 3 

The equations now are 

Ai + Bi h- Ci if" ((1 + (2 ~- (3)ki = O, 

. . . . .  2 ( - 97 A/ 33Bi Ci + (5 (1 27(2 59(3) ki)= bi, 
3 

Ai (3 •L, bi 
---'6 + - 3  ki= 4 ' 

- 2 2 A i -  8Bi + 16(2 +4(3ki  - 8hbi, 
3 3 4 

(1 -~- (2 -~- (3 = 1 , 
2 
g (5 (1 - 27 (2 - 59(3) = bgrav, (C.22) 

which we can solve as 

Ai= -~1 (bi - 2 6hbi -- 56 6,,bi + 6 ki -- 3 bgrav ki) , (C.23) 

Bi= ~1 (9bi + 126hbi + 336 8,,b~ - 34ki + 21 bgrav k~) , (C.24) 

C'/= 6-~ (7 bi - 8 6hbi -- 224 8~,bi - 42 ki - 15 bgrav ki) , (C.25) 

1 
(i  = ~ (hi - 28hbi - 88,,bi + 60ki) , (C.26) 
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~2 = ~1 ( - 2 b i + 4 S h b i +  16~vbi i 2 k i +  3bgravki) , (C.27) 

(3 = ~1 (bi - 2 6hbi -- 8 6~ bi q- 6 ki - 3 bgrav ki) • (C.28) 

Finally, we have 

a=~ 1 2 
a~ = ]-gO , 

a=l 1 2 
h e = - g 0  . 

,a=l 1 2 
, . ,  = - 7 0  . 

a=, (3 Zb 5 l 4 I)@ 2 
. . . . .  + (C.29) Yg 32 grav 24o- 9 ~  ' 

.., (, ,~) 
aj. = 77+g--a x, 

ha/=l _ 1 
i6 x ,  

a=l 7 
~'.t = - ~ X ,  

a=i [ 3  l I l l ( 3  ~4 l)] 
Yi = 9-6 g () ~ 2  bgrav -{- ~ '~  ) ( .  

Appendix D. Fundamental -domain integrals 

D. 1. General evaluation of the integrals 

In this appendix we evaluate the following integrals: 

s d.. -[:I.' [:I ) I(T, U) = - -  F2 ,  2 --  co (D.1) 
7" 2 \(h,g) 

and 

,,.., s d2"( I:7 ;J ) = - -  Z F2, 2 1~72~a" - -  eo , ( 0 .2 )  
"/'2 \(h,g) 

and present some relevant asymptotic behaviours. Integrals invariant under / ' ( 2 )  such 
as (D. I )  were first evaluated in [ 12] and later in [21] in special cases, and then more 
generally in [24] and the last of [ 13]. 

The functions A a [hi and ~a[h] possess the following properties: (i) they transform 
kgJ Lg.I 

in a way that ensures modular invariance of the first term of the integrand in both a = 0 
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and A = 1 cases (see Eqs. (5.8) and (5.9) with q~a[~] ,~ (1/~Tza)D~[~]); (ii) they are 

holomorphic with Fourier expansion 22 in terms of q, 

Aa[7] = ~--~ cnqn, 
n>/-- I 

Aa(+)= Z a, qn+~, 
n~>--I 

Aa(-)= Z bnqn+½+~' 
n>~-I 

n ) - I  

q)A(+) = Z an qn+-~ 

n ) - I  

qOa(-)= Z bnqn+½+~, 
1 7 )  - I 

n)--I 

n/>-I 

E2~ a(-) = ~ b, qn+½+~ . (D.3) 
n/>--I 

As a corollary of these properties, in the/ l  = 0 case, we have 

Z ' A ~ = ° [  hI =ce+f l j ,  
(h,g) [g/ 

which implies that the coefficients an + en are in this case closely related to the Fourier 
coefficients of the j-function. Similarly, 

E4 E6 E4 E ' ~ - - o [  hI = ~,--~- + ~ _  
(/,,~) LgJ E6 

(a,  fl, 9' and 6 are constants) in general, although in our computations of gravitational 
corrections 6 turns out to vanish systematically. 

The above integrals are expected to converge in the (T, U) plane, with logarithmic 
singularities on the lines T = U, T = - I / U ,  T = f~'(U) and T = f~(U) due to the 
presence of c - l ,  a - i  and b-1 terms, respectively, in (D.3) (see Appendix A). 

The starting point is the Hamiltonian representation of the lattice sums, which reads 

~ As u.~u.,, i<+> : / [ ~ ]  ± I [ I } -  
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r2F2w2[~]=~-~TW[A][~], ( D . 4 )  

A 

where, in some specific Poisson-resummed form, 

TW[A][:J=T2e -ira' e x p [ i ~ ( a ,  a2)A(_gh)  ] e 2ri~detA 

7"/'T 2 . 21 ×exp -r--~2 (1 U ) A ( ; )  (D.5) 

and the summation is performed over a set of matrices of the form (remember that 
w= (a ,b)  with a = (aj ,a2) and b=  (bl,b2)) ( h ) th + b i g  ml + b l  

A - -  

n2 + b2~ mz+b2~ 
In order to evaluate the integrals (D.I) and (D.2), we generalize the method of 

modular orbits, which was first introduced in [9] and later applied to various situations. 
The idea is to reduce the set of matrices to a fundamental one and simultaneously unfold 
the integration domain by performing PSL(2, Z) transformations on the 7- variable. In 
this way, each term of the resulting series can be integrated separately. This operation 
assumes the exchange of summations and integrations, which can be invalid because 
of tachyon-like divergences. Depending on the values of the moduli T and U, we must 
therefore utilize other Poisson resummations than the one presented in (D.5). 

The set of fundamental matrices depends on the vector b. For concreteness, we will 
analyse two situations only, in which the shift vectors are wi and Wx, corresponding 
respectively to a = 0 and ,~ = 1 lattices. Any other case in Tables A.1 and A.2 can be 
obtained by duality transformations. 

(a) Evaluation of I for shift vectors wl and wx 

In the case at hand, b = (1,0) and there is no null orbit: 

1 = Ina + log, (D.6) 

where "nd" and "dg" stand for non-degenerate and degenerate orbits, respectively, and 

(h,g) 

After the identification of the set of fundamental matrices, we obtain 

[~] = 2 / - - ~ ' - "  ~--" ~-" [A= ( l ) j  [~] [~] d2r k j ÷ ~ ~ (D.9) 
r~ a--~ a--" a-~ T' °~ x 0 p Ind 

7~ k>0 k>.j>~Op~O 
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7-(, k>~O k>~j>/O p*O 

Ill / ~  [ (  o ~)][',] ['1] dZr k + 2  j +  A , (D.11) Ind =2 ~.---7- ~-~ ~-'~ ~-'~ T '°rx A= 
7-( k>0 k>j>/O pq, O 

[~1 tim { /~  [ (o ~ )1[°,1 I°,l/ d2~ - 0 j + ~  A 1 - e - ~  /dg = 7--T ~--~ T I°rx A= 
S J'P 

-Co ( l o g N + y +  1 + l o g ~ )  } ,  D.12) 

where ~ is the upper half-plane and S is the strip {r E 7-/. Ir~l < 1/2}. By using the 
standard machinery and the appropriate Poisson resummation of (D.5) to cover the 
whole moduli space, we obtain the following results: 

ll ( T. S) = -co (log lO4 ( T)14 lO2 ( S) ,4 T2 S2 - y + l + log - ~  ) 

O4(T) 4 +(co ~),o~-~ 
71" +~(ao-2Co-48(a_,+c_,))  

× (~o (~-~)  +~o (~-  ~)) 
+-~(ao-2Co+ 24(a-, +c-,) )(TzO(Tz-Uz) +U20(U2-T2) ) 

+4Re{-c_lLil(eZ~i(rl-u,+ilr2-v21)) 

+a-1Lil  (e 2*ri(~-2Ut+il~-2U21) ) +b_. Ell (e 2~'i(~-U'+il~-Uzl) ) 

+ Z (--CkeLil (e 2~ri'Tk+Ue)) + ake Li, (e 2~i(~k+2.,) 
k,g>0 

+ (2 c2ke - a2kg) Lil (e 2~'i~rk+2Ue)) 

+b2k,_k_gLil(e27ri(r(2k-1)+U(2g-l))))) (D.13) 

and 

U) =-Co (log ]O2(T)] 4 1192(U) 14 T2 U2-  "y + l  + log 9 - - ~ )  IX(T. 

- ~ c 0  (r2 o ~r2 - u~) + u~ o ~u2 - r~) ) 

+4 Re {c_l Lil (e2~i(r,-ul+ilr2-u21) ) 
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+a-1Lil e2~'i(~-~+il ~ - ~  2 2 ]) +b-lLi, e 2zri(~-~+il~- 

Z ( - c , t L i l  (e eri(Tk+t:O) + 2c4keLil (e 2~i(2T'+zve)~ + 

k,g>O 
+2 C4kg-2k-Zg+l Lij (e 27ri(T(2k- 1)+u(2g-1))) 

q-a4k~_3k_3g+2Lil (e2Zri(r(4k-3)+~(4~-3)) ) 

+a4kg-k-~ Lil (e 2zri( ~(4k-I)+~(4~-l) ) ) 

-[-b4k,-k-3g Li, (e 2~'i(r(4k--3)+~(4g-I) ) ) 

q-b4k,-3k-tCil(e2~ri(~(4k-l)+~(4'-3))))}. (D.14) 

The polylogarithms are defined as usual, 

x.J x j 
Liz(x) = - l o g ( 1  - x ) ,  Li2(x) = ~ j-2' Li3(x) = ~ j~ .  

j>O j>0 

Several comments are in order here. We first notice the partial breaking of the duality 
group SL(2, Z)T × SL(2, Z)u × Z~ ~U as explained in Appendix A (the Z2 r~U symmetry 
survives in the second case). We also observe the appearance of logarithmic singularities, 
as expected from Eqs. (A.11)-(A.14) and (A.17), (A.18). In I I, these take place at 
T = U, T = -1/U,  T = 4U and T = 2U. For the situation I x (A = 1), the divergences 
occur at T = U, T = - I /U ,  T = 3U and T = U/3. The leading behaviours are 

I I,-~ 4c_l I o g l T - U  I a t T = U ,  

I I ~ - 4 a _ l  l o g l T - 4 U  I a t T = 4 U ,  

l l~ - -4b_ l  l o g l T - 2 U  I a t T = 2 U ,  (D.15) 

and 

I X ~ - 4 ( c _ , + b _ l ) l o g l T - U  I a t T = U ,  

I X ~ - 4 a _ l  l o g l T - 3 U  ] a t T = 3 U ,  

T U U l X ~ - 4 a _ j  log - a t  T =  - - .  ( D . 1 6 )  
3 3 

The residues at T = - 1 /U  can be determined in both cases I and X by performing 
appropriate Poisson resummations. 

The most obvious example for the situation with A = 0 is the constant function. In 
that case only the first term of (D.13) survives, in agreement with [21]. A somewhat 
less trivial situation is provided by the function a [~] = j,  V(h, g) 4: (0, 0), for which 
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II [j ] = -744 (Iog IO4 ( T) '4 'O2 ( U) I4 T2 U2 - y + l + Iog -~-~ ) 

- 8 l o g  j ( T )  _j(2U)] +41ogIj(T) _j(U)I . 

This is precisely what is obtained by using the results of [ 15] together with the identity 

E ' F L 2  =2F2,2 ~ , 2 U  -F2,2(T,U). (D.17) 
( h , g )  

Finally, we would like to analyse the behaviour of the above integrals in the two 
limits that were considered in Appendix A, and which play a role in our analysis of the 
decompactification problem. Up to exponentially suppressed terms, 

ll(T, U), IX(T, U) , -co logT2 - co# (D.18) 
T2---+ o~3,U2 = I 

-+( +co II(T'U) r2--+o,u2=>l 3 ao+co-24(a_l +c-1) 1 

-co/~ - (3c0 + 2 )  log2 (D.19) 

and 

I x (T, U) > Co log T2 - co/~ ; (D.20) 
T2-'--+0,U2 = 1 

we have assumed TL = Ul = 0 and/x is a constant, 

77" 
= 4 logl+T(i)l - y +  1 + log  3x/3" (D.21) 

(b) Evaluation of [for shift vectors wi and wx 

The insertion of Ez = E 2  - 3/ ' /3"7"2,  for the cases at hand (i.e. without null orbit), 
leads to the following result: 

[ = ~? _ 3 I ' ,  CD.22) 
7/" 

where F is the integral (D.6) evaluated above, with all coefficients cn, an, bn substituted 
with e,, a , ,  ~,; on the other hand, 

, r+, = lna -I- ldg (D.23) 
(h,g) 

I' I'h] where nd LgJ are given in (D.q)-(D.11) with all ~[h] substituted with 7"~-t~[~] and 

j [ (o I '  [0] = d2"t" j + + ag[lJ s 7.-~- ~.l,e Tl°+x A=  P ~ (D.24) 



I 
~ 

~ 
~ 

~ 
÷ 

~ 
~ 

~ 
~ 

~ 
~ 

~ 
.~
 

i
 

~
i
~
 

i
_
 ~
 

_
~
 
~
 

~
 

~
_
~
 

~
 

~
 

~"
 

÷
 

÷
 

÷
 

~
 

~
 

~
 

~
 

~
 

÷
 

-
 

_
 

~
 

~
 

~
 

~
 

~ 
i 
° 

I 
~ 

~ 
~ 

~ 
÷ 

~ 
÷ 

~
'

~
 

~ 
÷ 

i 
~ c 



E. Kiritsis et al./Nuclear Physics B 540 (1999) 87-148 145 

( - ckg79 (Tk + Ug) + 2C4kg7 :~ (2Tk + 2Ug) + 
\ k,~>0 

+2Cak~-2k--2e+l 79 (T(2k - 1) + u ( 2 e  - 1)) 

+a4ke-3k-3t+2 79 (T(4k-- 3) + U (4g-- 3)) 

+04k,_k_e79 (T(4k-1) +U (4g- l)) 

+b4k~-k-3~79 (2 (4k- 3) + U (4g-1)) 

+b4k~_3k_~79 (T(4k-1) +U(4g- 3)) ) } , (D.26) 

where we have introduced [15] 

1 (ee~ix). T'(x)  = ImxLi2 (e 2~i~) + ~-~ Li3 

Regarding the singularities and the breaking of the duality group, the same observa- 
tions can be made, as in the cases without insertion of ffS2. In particular, Eqs. (D.15) 
and (D. 16) hold also for the functions P(T, U) and/X(T, U). When the shift vector is 
wb the simplest situations arise with q~ [~] = E4 E6/r/24 or Ea/E6, for all (h, g) v~ (0, 0). 
We can compute these integrals by using the identity (D.17) and the results of ] 15]; 
they turn out to be in agreement with our general formulas (D.22), (D.25). 

The asymptotic behaviours read here 

Co P ]a(T, U), iX(T, U) r~oo.U2'=, -- (Co -- 24C_1) logT2 - (co -- 24c-1) /z  - -~-2 ' 

(D.27 

( a0__+c0~ 1 
[ I ( T ' U )  T2-*o,u2='l-87r ( a - l - l - C - l )  48 ] ~+(co-24c_,)!ogT2 

( 1 24 a-1)) log2 - k,3 (co - 24c_,)  + ~ (ao - 

- (Co - 24 e_ , ) /z  - (co K + ao v) T2, (0.28 

[X(T'U) T2--+O.t~2='l (co-24c-1)logTz-(co-24c-1)Iz-copT2, (D.29 

up to exponentially suppressed terms. Again, we assumed Tl = U1 = 0 and introduced 
the constants 

"-~12 ~ ( 1  (1)_2 l 4 sinh 21 ),n.j j-z]l _~ ) p = ~ + sinh22~. ~ + tanh ¢rj , 

t< = - -  ~ + + "n'j 
7r i>o 4 sinh 2 ~-j )-3 ' 
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v = - -  ~ - + . (D.30) 
rr 2 -~  + 8 sinh 2 ~ j3 4~  sinh 7rj 

D.2.  A p p l i c a t i o n  to t h r e s h o l d  cor rec t ions  

One can use the results obtained so far to further investigate the threshold correc- 

tions, Eqs. (5.29) and (5.39),  of  the models with spontaneously broken supersymmetry 

described in Section 4. 

For lattices with shift vectors wl and Wx (A = 0 and 1 respectively) we obtain the 

following singularity properties (see (D.15),  (D.16)) :  

Algrav ~ - 3  log IT - U],  A I finite, at T = U,  

t log  T + 1 1 l Algra v "~ 3 , d i finite, at T = - ~ ,  

AIgrav~ { finite in class ( i ) '  } 1 
- ~ l o g l T - 4 U  [ in class (ii) ' h i finite, a t T = 4 U ,  (D.31) 

a|gl-aV ~ --26hbgrav log ]T - 2 U I ,  Ill ~ - 2 ~ h b i  log IT - 2U],  at T = 2U,  

and 

AgXav "~ (½ -- 2~hbgrav) log tT  - U], d x ~ - 2 6 h b i  log IT - U[,  at T = U 

AgXa v I log T +  U A x finite, at T =  1 , - ~  , - ~ ,  

/tgXav ~ -26,,bgr~v log IT - 3U[,  Zl x ~ - 2 ~ , , b i  log IT - 3U], at T = 3U,  

U 
AgXrav ~ -2~vbgrav log [U - 3 T  I , A x N - 2 ~ , , b i  log ]U - 3T I , at T = f t .  

(D.32) 

Finally, we can analyse the behaviour of  the corrections in the various decompact- 

ification limits. We will give the results containing leading terms and subleading cor- 

rections, up to exponentially suppressed ones. We assume again T1 = U~ = 0, and use 

Eqs. ( D . 1 8 ) - ( D . 2 0 )  and (D .27 ) - (D .29 ) .  

(a)  The  l imi t  T2 ---+ o o ,  U2 = 1 

In this limit, N = 4 supersymmetry is restored in both a = 0 and A = 1 lattices. The 

behaviours are 

Algra v X P ,  gr.v --bgro  ( l o g  + U )  - - 2 )  

and 

A I A X - - * - b i ( l o g T 2 + t z - l o g 2 e l - ~ ' ~ - k i ( b g r a v - 2 )  P 
' r2"  
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(b) The limit 7"2 ~ O, U2 = 1 

This l imit  is ( N  = 4 ) - supe r symmet r i c  for A = 0 models  of  class ( i i )  and models  with 

A = 1. For  a = 0 models  be long ing  to class ( i ) ,  the supersymmetry  remains  N = 2: 

4¢r ( 5 )  
A~rav (class ( i ) )  --~ ~ + bgrav logT2 - / x -  ~ l o g 2  - 11 log2  

- (K (bgrav - 2) - v (bgrav - 22))  T2, ( 1 
A~ (class ( i ) )  ~ (bi + 8,,bi - 12ki)  ~ + bi logT2 - / x  + log ~r 1 2 v ~ . ]  

~vbi 
2 l o g 2 - k i ( K ( b g r a v - 2 ) - v ( b g r a v - 2 2 ) ) T 2 ,  

( ' )  A~rav (class ( i i ) )  ---~ bgrav logT2 - / ~  - ~ l og2  - (bg~av - 2) (K - v )  T2, 

(c lass  ( i i ) )  ~ bi ( logT2  - / x  + log 1 e l -~"~ '~ 6v'~ J - k i ( b g r a v -  2 ) ( K - / - ' )  T2, 

AgXav ---+ -bg~av ( - l o g T 2  q- ~ )  - (bgra~ - 2) pT2, 

/ix -+ - b i  ( -  log T2 + p- - log 2 e I-~' "~ 
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