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Abstract

We consider the O(α′) string effective action, with Gauss–Bonnet curvature-

squared and fourth-order dilaton-derivative terms, which is derived by a matching

procedure with string amplitudes in five space-time dimensions. We show that a

non-factorizable metric of the Randall–Sundrum (RS) type, with four-dimensional

conformal factor e−2k|z|, can be a solution of the pertinent equations of motion.

The parameter k is found to be proportional to the string coupling gs and thus

the solution appears to be non-perturbative. It is crucial that the Gauss–Bonnet

(GB) combination has the right (positive in our conventions) sign, relative to the

Einstein term, which is the case necessitated by compatibility with string (tree)

amplitude computations. We study the general solution for the dilaton and metric

functions, and thus construct the appropriate phase-space diagram in the solution

space. In the case of an anti-de-Sitter bulk, we demonstrate that there exists a

continuous interpolation between (part of) the RS solution at z = +∞ and an

(integrable) naked singularity at z = 0. This implies the dynamical formation

of domain walls (separated by an infinite distance), thus restricting the physical

bulk space-time to the positive z axis. Some brief comments on the possibility of

fine-tuning the four-dimensional cosmological constant to zero are also presented.
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1 Introduction

Recently considerable effort has been devoted to the study of higher-dimensional
space-times with metrics of non-factorizable form between four- and higher(bulk)-
dimensional coordinates [1, 2]:

ds2 = e−2σ(z)ηijdX idXj + dz2 , i, j = 0, 1, . . . 3 . (1)

In the modern context of non-perturbative string (brane) theory, this type
of metrics arises from the so-called D(irichlet)-brane picture of our world,
according to which the observable Universe is viewed as a three-brane em-
bedded in a higher-dimensional (bulk) geometry [3, 2]. Among other issues,
in such an approach one looks for mechanisms that solve the mass hierarchy
problem [2] or offer explanations for the vanishing of the (four-dimensional)
cosmological constant. However, the latter case is inflicted by the presence
of naked singularities in the bulk [4] and/or instabilities [5].

In the original approach [1, 2] the metric (1) has been considered only in
connection with Einstein-type theories of gravitation, i.e. theories in which
only the curvature scalar appears in the gravitational part of the action.
Recently, however, attempts have been made towards the inclusion of higher-
curvature (quadratic) terms in the action [6] of the Gauss–Bonnet type [7].
Such terms, which arise naturally in (super)string effective actions [8], are
known to lead to non-trivial cosmological and general-relativistic solutions,
such as singularity-free expanding [9] and/or closed [10] universes, and black-
hole solutions with non-trivial (secondary dilaton) hair [11, 12].

In ref. [6] five-dimensional bulk geometries were considered, with our
four-dimensional universe viewed as a three-brane embedded in them. It
was argued, in agreement with the lowest-order (in the scalar curvature)
results [4], that the presence of higher-curvature Gauss–Bonnet terms can-
not lead to a solution of the cosmological constant on the brane without
fine-tuning, as a result of the appearance of naked singularities in the bulk.
However, in the models considered in ref. [6], the Gauss–Bonnet term in the
action was decoupled from the dilaton field. This is not the case in string-
effective models of higher-derivative gravity, compatible with string (tree)
amplitude computations in the bulk geometry [8]. In the latter case, it is
known that the dilaton field Φ couples to the higher-curvature part of the
effective action through the appropriate conformal weight, emΦ. The weight
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m is determined, together with the coefficient of the GB terms, by the re-
quirement that the effective action is the one reproduced by the appropriate
string amplitudes [8].

The purpose of this work is to reconsider the solution under the inclusion
of proper string-effective higher-curvature terms. In this article we show that,
in a set-up where there is an initial three-dimensional (spatial) brane located
at the origin z = 0 of the bulk dimension of the five-dimensional geometry,
a metric of the form (1) is still a solution of the equations of motion of an
effective action derived from (conventional) string amplitudes [8], up to O(α′)
in the Regge slope α′. As is well known, such actions can always be cast, by
means of appropriate field redefinitions that leave the (perturbative) string
amplitudes invariant, in a GB form [7], provided one includes appropriate
fourth-derivative dilaton terms. In fact, as we shall show below, both of
these facts result in different conclusions, for the non-constant dilaton case,
from those in refs. [6].

It is important to note that the sign, as well as the relative strength λ
of the GB terms in the action, are uniquely determined by the amplitude-
matching procedure. In our conventions for the metric and curvature the
coefficient λ comes out positive. We shall demonstrate that the Randall–
Sundrum (RS) type metric [2], with:

σ(z) =
∑

i

k |z − zi| , (2)

where i denotes the i-th brane, located at zi along the bulk direction, satisfies
the equations of motion derived from such an O(α′) string-effective action.
It is important to stress that the solution exists only for λ > 0. Moreover,

the parameter k ∝
√

1/λ. Since [8] λ ∝ 1/g2
s , where gs is the string coupling,

the resulting solution appears (formally) non-perturbative.
As we shall show, in our scenario there are also solutions that are charac-

terized by a vanishing vacuum energy contribution on the brane, a require-
ment that may come, for instance, by demanding a consistent embedding
of the solution (1) in a supersymmetric theory on the brane. However, as
argued in [13], recoil (quantum) fluctuations of the D3-brane, as a result of
scattering with (bulk) closed strings or other solitonic defects, may induce
supersymmetry obstruction by means of “conical” singularities on the brane.
This yields small contributions to the vacuum energy of the brane, which, as
a result of recoil, finds itself in an excited state, rather than its ground state.
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In addition, recoil fluctuations lead to a dynamical formation of horizons in
the bulk dimension [14] of a given size, which is determined by the dynamics.
Such effects, which here are viewed as subleading to the classical ones we are
discussing here, will be the topic of a forthcoming publication.

In the present article we shall consider dilaton configurations that de-
pend solely on the bulk dimension z. A particularly interesting case is the
one in which the dilaton field is linear in z. This case may be motivated by
the fact that the equations of motion of fields in the geometry (1) acquire a
‘friction type’ form, suggestive of the rôle of the bulk dimension as a renor-
malization group (RG) parameter [15], and actually of the Liouville-field
type [16, 17, 18]. The space-like character of the Liouville field is dictated by
the sub-critical dimensionality of space-time in the specific five-dimensional
geometry under consideration. Crucial to this interpretation is the fact that
the bulk space-time is of anti-de-Sitter type, which is known to exhibit holo-
graphic properties [19]. The fact that there exist non-trivial solutions to the
equations of motion, including the (stringy) Gauss–Bonnet term, is sugges-
tive of a deeper connection of this string-inspired approach with the (holo-
graphic) bulk geometries (1). However, in this paper we shall not pursue
the holographic RG interpretation in detail. We only mention at this stage
that this interpretation does not seem to hold in the generic case, and re-
quires specific properties of the bulk geometry (e.g. the validity of a proper
c-theorem [20, 21, 22]), which could be quite restrictive in the presence of
higher-curvature terms. A detailed study of such important issues will be
the topic of a forthcoming publication.

The structure of the article is as follows: in section 2 we formulate the
problem, and discuss the GB higher-curvature combination and its connec-
tion with string amplitudes in a general context of a D-dimensional space-
time. In section 3 we discuss non factorizable metrics of the form (1) in
a five-dimensional set up, with the fifth dimension generating a bulk ge-
ometry, in which a three-brane world is embedded. In particular, we first
demonstrate the consistency of the Randall–Sundrum-type space-time with a
constant dilaton, in the presence of the Gauss–Bonnet higher-curvature com-
bination derived from string amplitudes. We then proceed to discussing the
linear-dilaton ansatz (with respect to the bulk coordinate z). We show that
the string amplitude induced Gauss–Bonnet combination is not consistent
with this solution. However, there is a solution corresponding to a case [6] in
which there is no conformal coupling of the dilaton with the higher-curvature
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terms in the effective action. Our solution, however, still differs from that
of ref. [6] because of the presence of fourth-derivative dilaton terms. Some
brief comments on the possibility of fine-tuning the four-dimensional cosmo-
logical constant to zero are made. In particular, our analysis demonstrates
that such fine-tuning is possible only in the constant dilaton case. In section
4, we discuss the general solution of the equations of motion for the dilaton
and graviton fields in the string-effective case. This includes the above so-
lutions as special cases. In this general case, one is able of presenting some
analytic arguments on the singularity structure of the solutions, which allow
important conclusions to be drawn on the underlying physics, that go be-
yond the numerical solutions obtained. In particular, in the string amplitude
effective case, we demonstrate the existence of new solutions consisting of
continuous functions for the dilaton and space-time metric fields that inter-
polate between a RS-type solution at z = +∞ and an (integrable) naked
singularity at z = 0. This implies the dynamical formation of domain walls
in the bulk geometry obtained from the string-effective action. The walls are
separated by an infinite distance, and this results in a dynamical restriction
of the physical bulk space-time on the positive z axis only. The fact that this
solution emerges from (perturbative) string-effective actions is remarkable in
our opinion, implying that perturbative world-sheet physics can still lead to
important conclusions of relevance to (non-perturbative) string theory. Some
conclusions and outlook are presented in section 5.

2 String amplitude-induced Higher-Curvature

Gravity

In this section we shall formulate the problem mathematically, and set up
our notation and conventions. Throughout this work we shall follow the
conventions of ref. [23], according to which the five-dimensional space-time
has signature (−, +, . . . , +), and the Riemann tensor is defined as: Rµνσ

τ =
Γτ

νσ,µ − . . ..
We consider the action:

S = S5 + S4 (3)
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where S5 is the five-dimensional part :

S5 =
∫

d5x
√−g

[

−R − 4

3
(∇µΦ)2 + f(Φ)

(

αR2 + βR2
µν + γR2

µνρσ

)

+ξ(z)eζΦ + c2 f(Φ) (∇µΦ)4 + . . .
]

, (4)

with Φ the dilaton field, and the . . . denoting other types of contraction of
the four-derivative dilaton terms; these will not be of interest to us here, for
reasons that will be explained below.

The four-dimensional part S4 of the action (3) is defined as:

S4 =
∑

i

∫

d4x
√

−g(4)e
ωΦv(zi) (5)

where

gµν
(4) =

{

gµν , µ, ν < 5
0 , otherwise

(6)

and the sum over i extends over D-brane walls located at z = zi along the
fifth dimension 1.

The quantities α, β, γ, c2 are constants to be determined below by match-
ing with string amplitudes in the bulk geometry. We notice that in our
approach we consider the vacuum energy in the bulk and on the brane as
having a specific (exponential) dependence on the dilaton field Φ, dictated by
string amplitude computations. More general models, in which one consid-
ers arbitrary scalar potential functions of Φ have also been considered in the
literature [24], but will not be analysed here. We simply mention that the
precise dynamics behind models with dilaton potentials is still unknown; in
tree-level critical string theory there are no such potentials, but string-loop
corrections may be responsible for their generation.

We now consider, for definiteness, the case in which the action S5 is
derived from a O(α′) (α′ the Regge slope) heterotic-type string theory in
the low-energy limit in D(= 5)-space-time dimensions. Some remarks are
in order at this point. From a formal point of view, one may think of

1It is also possible to consider [14] a ‘stuck’ of such D-branes, in which case
∑

i
is

replaced by
∫

dz over flat integration measure, and v(zi) → v(z). This term is not varied
with respect to the fifth dimensional (bulk) gravitational field.
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the (bulk) fifth dimension in the space-time (1) as a (space-like) Liouville
mode [15, 16]. A more conventional (and probably safer) approach, which
we shall adopt here, is to assume initially a ten-dimensional space-time, in
which three branes are embedded. In the bulk one may, then, consider the
propagation of closed strings only [3], but take the case in which all but one
of the bulk coordinates are compactified. In that case, the induced string
theory amplitudes will formally correspond to those living in an effective
5-dimensional space-time, in the sense that one may consider string back-
grounds that depend only on the uncompactified coordinates, and restrict
oneself to effective string amplitudes (or, equivalently, σ-model conformal-
invariance conditions [8]) for those degrees of freedom.

With the above in mind, we have [8]:

α = +1, f(Φ) = λ eθΦ , λ = α′/8g2
s > 0 , (7)

where gs is the string coupling. In this case we also have ζ = −θ =
4√

3(D−2)
(= 4/3 in D = 5-dimensions of (formal) interest to us here). More-

over, in (perturbative) string theory one has the freedom [8] to redefine the
graviton and dilaton fields so as to ensure that the quadratic-curvature terms
in (4) are of the ghost-free GB form [7]:

R2
GB = RµνρσRµνρσ − 4 RµνR

µν + R2 . (8)

This field-redefinition ambiguity also allows us to consider the four-derivative
dilaton terms in (4) as having the single structure exhibited above. Matching
with tree-level string amplitudes to O(α′) then requires [8]

c2 =
16

9

D − 4

D − 2
. (9)

It is interesting to note that for four dimensional targets, this coefficient
vanishes(!). This fourth-derivative dilaton term will turn out to yield, in the
five-dimensional case, the essential difference in the solutions obtained here
from those in ref. [6].

The graviton equations of motion derived from (4) in the effective string
case are (with α = γ = 1, β = −4, c2 = 16/27) :

0 = Rµν +
1

2
gµν

(

−R − 4

3
(∇Φ)2 + c2f(Φ)(∇Φ)4 + ξ(z)eζΦ

)
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+
1

2

∑

i

√−g(4)√−g
gµν
(4)e

ωΦv(zi) −
4

3
(∇µΦ)(∇νΦ)

−f(Φ)
(

2αRRµν + 2βRµ
σR

νσ + 2γRµ
στρR

νστρ
)

+
1

2
gµνf(Φ)

(

αR2 + βRστR
στ + γRστρkR

στρk
)

+2α{(gµνf(Φ)R);σ
σ − (f(Φ)R)µν

; }
+β{(gµνf(Φ)Rστ );στ + (f(Φ)Rµν);σ

σ − (f(Φ)Rµσ);
ν
σ − (f(Φ)Rνσ);

µ
σ}

+2γ{(f(Φ)Rµσντ );στ + (f(Φ)Rµσντ );τσ}
−2c2f(Φ)(∇µΦ)(∇νΦ)(∇Φ)2 (10)

where ; denotes covariant differentiation.
The dilaton equation of motion, on the other hand, yields:

0 =
8

3
∇2Φ + f ′(Φ)

(

αR2 + βRµνR
µν + γRµνρσRµνρσ

)

+
∑

i

√−g(4)√−g
ωeωΦv(zi) − 4c2∇µ

(

f(Φ)(∇µΦ)(∇Φ)2
)

+ζξ(z)eζΦ + c2f
′(Φ) (∇Φ)4 , (11)

where the prime denotes differentiation with respect to Φ.
In the next two sections we shall study the classical solutions of these

equations in the context of non-factorizable space-times of the form (1).

3 String-Induced Higher-Curvature Gravity

and Non-Factorizable Metrics

3.1 General Remarks

We consider the non-factorizable ansatz (1) for the five-dimensional met-
ric [1, 2], which recently attracted a great deal of attention because of its
connection with the view our world as a D(irichlet)-brane embedded in the
five-dimensional geometry [3, 2]. Our point in this article is to examine first
whether such metrics are compatible with the low-energy effective action ob-
tained from the O(α′) string effective action (4). As we shall show below,
it is only for a particular (positive) sign of the GB term (8) relative to the
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Einstein term, which is the case obtained from string amplitudes [8], that the
equations of motion in the space-time (1) have a real solution. Moreover, we
shall also verify that the specific Randall–Sundrum scenario (2) is a solution
of the equations of motion under certain conditions.

Assuming that the metric function σ(z) in (1) and the dilaton fields Φ(z)
are functions only of z , we write the equations of motion (10),(11) in the
form:

0 =
eω Φ(z) v(z)

2
+

eζ Φ(z) ξ(z)

2
− 6 σ′(z)

2
+ 12 eθ Φ(z) λ σ′(z)

4

−36 eθ Φ(z) θ λ σ′(z)
3
Φ′(z) − 2 Φ′(z)2

3
+ 12 eθ Φ(z) θ2 λ σ′(z)

2
Φ′(z)

2

+
8 eθ Φ(z) λ Φ′(z)4

27
+ 3 σ′′(z) − 12 eθ Φ(z) λ σ′(z)

2
σ′′(z)

+24 eθ Φ(z) θ λ σ′(z) Φ′(z) σ′′(z) + 12 eθ Φ(z) θ λ σ′(z)
2
Φ′′(z) (12)

0 =
eζ Φ(z) ξ(z)

2
− 6 σ′(z)

2
+ 12 eθ Φ(z) λ σ′(z)

4 − 48 eθ Φ(z) θ λ σ′(z)
3
Φ′(z)

+
2 Φ′(z)2

3
− 8 eθ Φ(z) λ Φ′(z)4

9
(13)

0 = eω Φ(z) ω v(z) + eζ Φ(z) ζ ξ(z) + 120 eθ Φ(z) θ λ σ′(z)
4
+

8 Φ′′(z)

3

−32 σ′(z) Φ′(z)

3
+

256 eθ Φ(z) λ σ′(z) Φ′(z)3

27
− 16 eθ Φ(z) θ λ Φ′(z)4

9

−96 eθ Φ(z) θ λ σ′(z)
2
σ′′(z) − 64 eθ Φ(z) λ Φ′(z)2 Φ′′(z)

9
. (14)

Owing to the Bianchi identities, only two of the equations are linearly in-
dependent in the bulk. It is straightforward to verify the following relation
among the equations:

8 σ′(z) × [(12) − (13)] − Φ′(z) × (14) + 2
d

dz
(13)

= eζ Φ(z) ξ′(z) + eω Φ(z) v(z) (4 σ′(z) − ω Φ′(z)) . (15)
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Note that, in order to avoid breaking of Poincaré invariance in the bulk
space-time, which we assume here [1, 2], we must impose:

ξ′(z) = 0 . (16)

It should also be noted, however, that it is possible to preserve Poincaré
invariance in the bulk by including a more general dilaton potential ξ(Φ) [6,
24]. In the (heterotic)string-inspired context, of interest to us here, such
potentials may be generated by string-loop corrections. We shall not discuss
this case explicitly here, as it will not affect our qualitative conclusions.

3.2 Constant Dilaton Case and the Randall–Sundrum
Space-Time

We commence our analysis with the case of constant dilaton. In this case,
we can set Φ = η = constant, and Φ′ = Φ′′ = 0 in the bulk, but not on the
brane, since Φ′ can be discontinuous there, as we shall discuss later on. In
this case the equations of motion are reduced to

eηωvδ(z) =
d

dz

(

−6 σ′(z) + 8 eη θ λ σ′(z)
3
)

(17)

eζ η ξ(z) − 12 σ′(z)
2
+ 24 eη θ λ σ′(z)

4
= 0 , (18)

implying:
(

−6 σ′(z) + 8 eη θ λ σ′(z)
3
)

= c = constant (19)

in the bulk. As a third-degree equation this has always a real solution of the
form: σ′(z) = k+ , z > 0, σ′(z) = k− , z < 0.

We now integrate (17) over z to an interval that includes the brane at
z = 0:

eηωv =
(

−6 σ′(z) + 8 eη θ λ σ′(z)
3
)
∣

∣

∣

0+

0−
, (20)

which reduces to

eηωv = −6(k+ − k−) + 8 eη θ λ (k3
+ − k3

−) , (21)

9



thus relating k+, k− with v.
Solving (18) with respect to ξ, by requiring continuity of ξ(z) at z = 0,

we obtain

eηζξ = −12 k2
+

(

−1 + 2 eη θ λ k2
+

)

= −12 k2
−
(

−1 + 2 eη θ λ k2
−
)

, (22)

which has two solutions. The first one is:

k+ = −k− = k , (23)

which is the RS solution [2] 2.
The second solution is:

k2
+ + k2

− =
e−ηθ

2 λ
(24)

and exists only for λ > 0, which is the case compatible with string amplitude
computations [8].

From the dilaton equation (14) in the bulk, after taking into account (18),
one has:

ζ + 2 eη θ (−ζ + 5 θ) λ k+
2 = ζ + 2 eη θ (−ζ + 5 θ) λ k−

2 = 0 , (25)

which, in conjunction with (22), leads to either

k+ = −k− = k and ζ + 2 eη θ (−ζ + 5 θ) λ k2 = 0 (26)

or

ζ = θ = 0 and k2
+ + k2

− =
e−ηθ

2 λ
. (27)

Finally, integrating the dilaton equation (14) in the neighbourhood of the
brane, we obtain

eηω ω v = 32 eηθ θ λσ′(z)3
∣

∣

∣

0+

0−
= 32 eηθ θ λ

(

k3
+ − k3

−
)

. (28)

2Note that the solution with k+ = k− has a continuous metric function at z = 0, and
hence is not of the RS type.
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From (22), (26), (28) we thus have:

eζηξ = 12 k2 − 24 k4 λ (29)

eωηv = 4 k
(

−3 + 4 k2 λ
)

(30)

ζ =
10 k2 θ λ

−1 + 2 k2 λ
(31)

ω =
16 k2 θ λ

−3 + 4 k2 λ
(32)

Note that the string solution ζ = −θ (= 4
3

for 5-dimensional string theory)
is satisfied for

ω =
2

3
, v = −32 k

3
, ξ = 10k2 , k =

1

2
√

3λ
, λ =

1

8g2
s

. (33)

Since k is positive, we observe that the string-effective action yields, in the
case of a constant dilaton, the RS scenario [2] in which the bulk spacetime
is of anti-de-Sitter (in the sense of a cosmological constant ξ > 0 in our
conventions), whilst the sign of v is opposite to that of ξ (and hence the
brane world at z = 0 has positive tension). We also notice that the solution
(33) implies that the sign of the conformal weight ω is opposite to that of θ,
which is expected from generic considerations in string theory [8].

For the second solution (27), one obtains, on account of (22) and (28):

ζ = θ = ω = 0 (34)

and

v = −6 k+ + 8 λ k+
3 − 2

√

1

2 λ
− k+

2 − 8 λ k+
2

√

1

2 λ
− k+

2 (35)

ξ = −12 k+
2
(

−1 + 2 λ k+
2
)

(36)

k− = −
√

1

2 λ
− k+

2 . (37)

Above, we have chosen the negative solution for k− to ensure finiteness of
the metric at |z| → ∞. We observe that the bulk spacetime is again of the
anti-de-Sitter type, for small λ, where the perturbative string-effective-action
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approach is valid, whilst v and ξ come with opposite signs on the brane at
z = 0.

At this point it is natural to enquire whether a vanishing cosmological
constant on the brane occurs by an appropriate choice of the (free) parameter
k+ in the solution (37). Indeed, in the case of a single brane (at z = 0) the
four-dimensional cosmological constant (Ω) is given by:

Ω ≡
∫ ∞

−∞

√−gξ + v =
k− − k+

2k− k+

ξ + v , (38)

which yields the Randall–Sundrum solution, with

k+ = −k− = k =
1

2
√

λ
(39)

as the unique solution that guarantees the zero cosmological constant in our
framework, where higher-curvature corrections have been taken into account.

So far we have concentrated on the case of a single brane, located at z = 0.
The above conclusions are not affected by including more than one branes,
as in the approach of [2], which is needed for a solution of the hierarchy

problem. Within our framework, despite the small value of k =
√

2/3gs (33),
in units of α′, this can be achieved by placing another brane at z = r0, which
we assume describes the location of the observable world [2]. As in ref. [2], r0

may be taken (within the classical framework) to be a free parameter, which
may be assumed, much larger than the string scale ℓs =

√
α′. In such a case,

the mass hierarchy in our world arises from the fact that the value of the
determinant in front of the matter lagrangian on the brane, at z = r0, will
be suppressed by exponential factors of the generic form e−kr0. These can be
small for r0/

√
α′ sufficiently large.

However, as we shall discuss in the next section, the general solution to
the equations of motion for the string-effective case, imply the possibility of a
dynamical appearance of a second brane (domain wall) located at a distance,
which is determined by the underlying dynamics, and in fact turns out to
be infinite. We should mention that similar restrictions on a dynamically-
induced magnitude of r0 may be encountered in case one consider when
quantum (recoil) fluctuations in the D–branes are considered [14]. We reserve
a discussion on this problem for a forthcoming publication.
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3.3 Linear Dilaton in Randall–Sundrum space-times

In this subsection we shall examine the simplest possible case of a non-
constant dilaton, namely that of a dilaton linear in the bulk dimension [17,
18]:

Φ(z) = Qz + η , (40)

with Q constant.
Considering this case may seem well-motivated by the proposal on the

identification of the bulk coordinate z as a holographic renormalization group
parameter [15], in case the bulk space-time is anti-de-Sitter, which is known
to exhibit special holographic properties [19]. From this point of view, the
linear dilaton ansatz, for a metric of the form (1), is suggestive of a more
specific situation, namely that of the identification of z with a (space-like) Li-
ouville mode [16] in the five-dimensional context. However, this identification
requires some thinking, and is not always possible. Renormalization-group
flow in stringy σ-model is irreversible, due to the loss of information in modes
beyond the ultraviolet (world-sheet) cut-off. This implies the presence of a
c-theorem [20], whose existence for generic bulk space-times is not clear at
present [21, 22, 6]. We shall not discuss this interpretation further in this
article. This will be the topic of a forthcoming publication.

Nevertheless in this section we shall study the linear dilaton case (40) per
se and discuss whether this ansatz is compatible with the metric (1) in the
context of the O(α′) string-effective action (4). To this end, we first consider
the linear combination (12)− 3× (13) and substitute the ansatz (40) for the
dilaton and the RS metric (2). In such a case, we obtain in the bulk:

− 72 Q2 + 64 eθ Φ(z) Q4 λ + 648 eθ Φ(z) k3 Q θ λ + 648 eθ Φ(z) k2 Q2 θ2 λ (41)

From this, it is trivial to conclude that the linear dilaton solution is compat-
ible only with θ = 0, which, on account of the equations of motion leads to
ζ = ω = 0. In this case, we find two solutions for λ > 0 :

Q2 =
9

8 λ
, k2 =

1

2 λ
, ξ =

1

4 λ
, v = −18

√

2

λ
, (42)

or

Q2 =
9

8 λ
, k2 =

2 +
√

6

8 λ
, ξ = 0 , v = 3

√

52 + 22
√

6

λ
(43)
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We now remark that, from the point of view of a possible holographic renor-
malization-group interpretation of the bulk geometry [15, 19], the consistent
solution would be the first one (42), characterized by an anti-de-Sitter type
bulk geometry. Because of the z-independence of Q in this case, the fixed
points connected with the renormalization-group flow (i.e. the theories living
on the two branes in the RS geometry) would be degenerate, being character-
ized by the same value of the central charge Q, and hence would be connected
by marginal operators in a RG sense on the world-sheet. This case is common
in superstring theories.

Note the relative sign difference in v between the two solutions. Also no-
tice that in neither of the above cases it is possible to fine-tune the parameters
so as to obtain a vanishing cosmological constant on the four-dimensional
world. The cosmological constant is relatively small, for weakly coupled
strings, as being proportional to gs. However, this is not phenomenologically
acceptable, unless one considers (non-realistic) very weakly coupled string
theories.

As a final remark, we would like to stress the difference of our scenario
from those discussed in ref. [6]. In our case, in contrast to that discussed
in [6], there exists the non-trivial fourth-derivative dilaton term (∇φ)4. Its
presence is crucial in ensuring (for the θ = 0 case) the consistency of the
linear-dilaton ansatz with the non-factorizable metric case, and moreover in
yielding solutions for σ(z) that go beyond the RS scenario.

4 Beyond the Randall–Sundrum scenario

In this section we shall examine the general solution, within the string ef-
fective action framework, for the space-time (1), where we shall treat both
σ(z) and the dilaton Φ(z) as unknown functions, without restriction to the
specific form of the RS metrics (2). We shall discuss the general solution of
the equations of motion (12)–(14), and discuss the connection with the met-
rics (2) as a special case. As we shall demonstrate below, sufficient analytic
information on the structure of the solutions can be obtained, which allows
us to draw some general conclusions on the underlying physics.
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4.1 General Solution of the Graviton and Dilaton Equa-
tions

It is convenient to use the notation:

y(z) ≡ λeθΦ(z) , u(y) ≡ 1√
y

dy(z)

dz
, q ≡ √

y
dσ(z)

dz
, Ξ = ξ λ− ζ

θ (44)

From now on, we shall concentrate on the case of string theory ζ = −θ (= 4/3
in the case of five-dimensional strings). In the above parametrization, eq.
(13) becomes algebraic :

16 Ξ − 192 q2 + 384 q4 − 1536 q3 u + 12 u2 − 9 u4 = 0 . (45)

Solving (12),(14) with respect to q′, u′ and using (45) we obtain

y
dq(y)

dy
=

A(q, u)

8 u C(q, u)

y
du(y)

dy
=

B(q, u)

u C(q, u)
, (46)

where

A(q, u) = −
(

−4 q + 48 q3 − 2 u − 16 q2 u + u3
) (

128 q3 − 2 u + 3 u3
)

B(q, u) = 4 q
(

1 − 4 q2 + 12 q u
) (

−4 q + 48 q3 − 2 u − 16 q2 u + u3
)

C(q, u) = −2 + 8 q2 − 512 q4 − 16 q u + 3 u2 − 12 q2 u2 + 24 q u3 , (47)

Dividing the two equations in (46) we obtain:

dq

du
=

128 q3 − 2 u + 3 u3

32 q(−1 + 4q2 − 12 q u)
. (48)

Notice that the same equation is obtained by simply differentiating the alge-
braic equation (45) with respect to u, thus demonstrating that this equation
provides the general solution q = q(u). This is a one-parameter family of
solutions, with the parameter being provided by the bulk cosmological con-
stant Ξ. This result was to be expected, considering, the fact that the three
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equations are not independent (c.f. (15)). Using the result for q(u) we can
formally solve (46) for u(y)

y = y0 exp

(

∫

du u
C(q(u), u)

B(q(u), u)

)

, (49)

from which, on account of (46) and (44), we obtain y(z) (Φ(z)) and σ(z)
as functions of the bulk coordinate z. However, in practice the analysis is
obscured by the presence of divergences in the derivatives of (q, u), which are
resolved only in the physical parametrization (σ(z), Φ(z)). In this case we
resort to numerical integration of the full system (12)–(14).

We first note that the above equations admit in the bulk some exact
solutions, which are known analytically. The first example is the trivial case
of

Ξ = u = q = 0 , (50)

corresponding to a flat bulk space-time with a constant dilaton, which is
obviously an exact solution of the equations of motion.

A second exact solution occurs for anti-de-Sitter bulk with a specific value
of the cosmological constant:

q2 =
1

12
, u = 0, Ξ =

5

6
. (51)

This is the Randall–Sundrum (constant dilaton) solution (33), derived in
subsection 3.2.

A third exact solution can be found by inspecting eqs (46),(47). We notice
that both dq/dy and du/dy vanish for

q = q0, u = u0 6= 0 with − 4 q0 + 48 q0
3 − 2 u0 − 16 q0

2 u0 + u0
3 = 0 (52)

and thus the above points correspond to exact solutions with Ξ determined
from (45). These solutions that corresponds to a curve in the phase space
(see discussion in subsection 4.3 and figure 2). In terms of the metric and
the dilaton these solutions are singular

σ(z) = σ0 + σ1 ln(z − z0), Φ(z) = −3

4
lnφ0 −

3

2
ln(z − z0), (53)

16



with φ0 = 1 + σ1/(2 − 8 σ1
2 + 12 σ1

3) and Ξ determined form (45) in the
range 0.60 < Ξ < 44.44.

Finally, another exact solution is

q = 0, u = ±
√

2, Ξ =
3

4
(54)

or, in terms of the original parameters,

σ(z) = const, Φ(z) = −3

2
ln(

z√
2 λ

), ξ(z) =
3

4 λ
(55)

which implies a flat bulk space-time, with a non-constant dilaton.
The general solution of (46) and (45) is represented by a (Escher-illusion-

like 3 ) phase-space diagram given in figure 1. The shaded region correspond
to de-Sitter type bulk, Ξ < 0, whilst the rest of the graph correspond to the
case of interest here, namely anti-de-Sitter type bulk, Ξ > 0. The various
contours in the diagram of fig. 1 correspond to solutions with various values
of the cosmological constant Ξ = λξ. For instance, the depicted contours
in the anti-de-Sitter region in the upper-right-side of the graph correspond
to the following values of Ξ:0, 0.1, 5/6, 5, 10, 100, in increasing sequence,
pointing outwards from the center of the graph.

The above-discussed exact solutions (50)-(55) correspond to specific points
in that diagram. For instance, the trivial flat space-time appears at the ori-
gin (0, 0) of the solution space, whilst the RS solution (51) corresponds to
the marked points in figure 1.

From the graph it becomes clear that there are only four singular points,
corresponding to the cases q → ±∞, u → ±, in which q/u ∼ const. We shall
study these points analytically in the next subsection.

4.2 Singularity structure in (u, q) parameter space

In this section we perform an analytic study of the singular points of the
solution space of (46) in the (u, q) parametrization. It would be instructive to
consider first the connection between singularities in the physical parameters
σ, Φ and their derivatives and the transformed space parameters q, u, y and

3See M.C. Escher, “Liberation”, lithograph (1955), for instance at http://www.
WorldOfEscher.com/gallery/Liberation.html
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their derivatives. One easily concludes from (44) that when q, u diverge there
are divergences in at least one of the quantities Φ, dσ/dz, dΦ/dz 4.

Regarding the second derivatives we have

d2σ

dz2
= u

(

dq

dy
− q

2y

)

,
d2y

dz2
= u

(

du

dy
+

u

2y

)

, (56)

and thus singularities in dq/dy, du/dy for u, q, y =finite, correspond to singu-
larities in the derivatives of the physical parameters in all cases except u → 0
with u(dq/dy) =finite and u(du/dy) =finite.

We are now ready to proceed to a study of the singularities. The right-
hand-side of equations (46) does not contain any explicit dependence on y
and, thus, can be easily examined for singularities at the cases q → ±∞
and/or u → ±∞ and/or q → 0 and/or u → 0. After a systematic search
(see fig. 1) of all cases we find only one class of four singular solutions at
q ∼ u → ±∞

q ∼ ρiu, u ∼ u0y
ci , (57)

where ρi, i = 1, 2 is one of the real solutions of the equation −3 − 512 ρ3 +
128 ρ4 = 0, ρ1 ≈ −0.178, ρ2 ≈ 4.000 and

ci =
1 − 16 ρ2

i + 48 ρ3
i

32 (−3 + ρi) ρ2
i

, (58)

c1 ≈ −0.070, c2 ≈ 5.500.
We thus conclude (c.f. (44)) that the singularities in the solution space

are encountered at y → 0 (Φ → +∞) for ρ1 and y → +∞ (Φ → −∞) for ρ2.
From (44) one observes that, near the singular points, the dilaton y (Φ(z))
and metric σ(z) functions acquire the form:

y
1

2
−ci =

(

1

2
− ci

)

u0z > 0, y(z) =
(

u0(
1

2
− ci)z

)

1
1
2
−ci

,

Φ(z) = Φ0 −
3

2 − 4ci
ln|z| ,

σ(z) = σ0 +
ρi

1
2
− ci

ln|z| (59)

4 The inverse is also true, that is finite q and u correspond to finite σ, σ′ and Φ, Φ′ with
exception the points of the exact solution (53).
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where σ0, u0, Φ0 = const. Several remarks are in order at this point : (i) Both
singularities occur at z = 0, but we have the condition u0z > 0 (for ρ1), and
u0z < 0 (for ρ2), so if one assumes a fixed sign of u0 for both singularities,
then we see that one approaches z = 0 from different side for each type of
singular solution. (ii) As one approaches the singularities, both the dilaton
and metric functions diverge logarithmically with z, (iii) The scalar curvature
in the five-dimensional bulk near the singularity is given by:

R = 4
(

5(σ′(z))2 − 2σ′′(z)
)

= 4(5γ − 2)γ
1

z2
, γ =

ρi
1
2
− ci

. (60)

We observe from (60) that the curvature diverges as z → 0, and thus one has
a naked singularity there. However, for a four-dimensional observer, living
on the brane at z → 0, the singularity for both cases is integrable, given that
the (covariant) integral of the scalar curvature over z in the vicinity of the
singularity yields

∫

dz
√

gR(z) ∝
∫

z∼ǫ→0
dzz−4(γi+1/2) ∼ ǫ−4γi−1 → 0 , (61)

since the exponent −4γi − 1 takes on the positive values 0.25 and 2.2 for the
ρ1 and ρ2 cases respectively.

By closely inspecting the general solution we observe (see figure 1 and
for a detailed view fig.2) that the RS solution (51) is not isolated, but is
connected by means of a continuous interpolating function with the naked
singularity ρ2 (59). The important issue is to determine the point in the axis
z to which the RS solution corresponds. This will be the topic of the next
subsection.

Before doing so we should remark that there are other branches of the
solution space that connect the RS solution with genuine singularities of the
derivatives of q and u at points in which the C(q, u) factor in the denomina-
tor of (46) vanishes, for q, u finite and non zero. This becomes evident from
figure 2 where we plot the contours crossing the RS points (A, C) as well as
the curves (dashed lines) representing the above (non-resolvable) divergences
in the derivatives dq/dy, du/dy. Such points may correspond to naked singu-
larities in the σ(z) and Φ(z) space, given that the first and second derivatives
of both fields diverge, assuming finite values of y.

We have also plotted in figure 2 the curve that represents the (one pa-
rameter) exact solution of equation (53) (dotted curve). The various points
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on the curve correspond to exact solutions with different values of Ξ. The
curve does not contain the points A, B, since the u = 0 points are excluded.

In this article we shall not discuss these branches of the general solution
further. A detailed study is postponed to a future publication.

4.3 Interpolating between the Randall–Sundrum solu-
tion and Naked Singularities

Let us now proceed to an analytic determination of the behaviour of the
solution in the neighbourhood of the RS points (A, C in fig. 2), which will
also determine the point in the z axis to which the RS solution corresponds.

Expanding (45) around q = q0 = ± 1√
12

, u = 0 we obtain q ∼ q0 − 1
2
u,

which on account of (46),(47) leads to:

q = ± 1

2
√

3
∓ 1√

3
ln

y

y0
,

u = ± 2√
3
ln

y

y0
(62)

with y → y0 =finite. The sign of y−y0 determines the branch of the solutions
depicted in figure 2. For the AF or CH branches, which we shall study here,
y < y0, on account of (62) (the opposite is true for the AB, CD branches).

From (44) we have:

y = y0 − e
± 2

√

3y0
z

, (63)

which implies that the point y → y0 occurs at z → ∓∞, for y0 finite and

q0 = ±
√

1/12 respectively.

Solving for the dilaton Φ(z) and metric σ(z) functions, we then obtain:

Φ(z) ≃ Φ0 +
3

4y0
e
± 2√

3 y0

z
+ . . . ,

σ(z) = σ0 ±
1√
12y0

z +
1

8y0

e
± 2√

3 y0

z
+ . . . , (64)

where Φ0 ≡ −3
4
ln
(

y0

λ

)

.

Thus, we see that the leading parts of the solution (64), for infinite z (e.g
z → +∞ for q0 = −1/

√
12), is a smooth Randall–Sundrum type (with k =
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−1/
√

12y0), which should be understood only as the part of the RS metric
(2) inside a given region of the bulk space-time, bounded by a membrane
located at a position z → ∞ in the bulk. In fact the solution is valid only
near the membrane wall, and deviations from it are exponentially suppressed
with z. The reader should not be alarmed by the apparent divergent form of
the metric element as z → ∞. The correct way of viewing (64) is to consider
first the solution as valid for z = Λ, where Λ is larger than any other length
scale in the problem. Then, one may shift z → z̃ = Λ − z, and arrange the
constant σ0 of eq. (64) to be such as to cancel factors of q0√

y0
Λ. Eventually,

one may take the limit Λ → ∞. The resulting metric is of the RS type
around z̃ = 0, whilst the naked singularity now occurs at z̃ = ∞.

At this point we should also remark, that inspection of the phase-space
diagram of figure (1) reveals that the interpolation of the RS solution passes
through the point u = 0 twice. In the journey from z = +∞ towards finite
values, the solution passes first through another point z0 > 0 that has u = 0,
before reaching the naked singularity ρ2 (59) at z = 0. In the point z = z0 the
behaviour of both Φ(z) and σ(z) functions is perfectly regular. Indeed, this

second point of vanishing u occurs for q → q1 = ±
√

5/12. Expanding around

this point, one obtains z − z0 = O
(

(y − y1)
1/2
)

, for y → y1, where z0 > 0 is

finite. From (44), then, it is evident that for z ∼ z0: Φ(z) = Φ1 −O(z2), and
σ(z) = const +O(z), where Φ1 = 1

θ
ln(y1/λ) is a constant. This is a perfectly

regular behaviour in the z space.
The numerical analysis summarized in fig. 2 indicates that there exist

smooth functions for Φ(z) and σ(z) interpolating between the RS solution at
z = +∞ and the naked (integrable) ρ2 singularity (59) at z = 0. These are

plotted in fig. 3 for the case q0 = −
√

1/12.
The existence of the interpolating solution depicted in figure 3 implies an

important fact about the nature of the solution in the context of the string-
effective action in which it was derived. The induced bulk space-time is
dynamically restricted on the positive z axis (for definiteness, if one considers

the q = −
√

1/12 branch, which corresponds to the contour segment AF in

fig. 2). In this scenario, our (flat) four dimensional world is viewed as the
boundary of the anti-de-Sitter bulk (Ξ = 5/6) located at z = ∞. A RS-type
solution is valid near our world, which however deviates from it as z runs
towards the origin z = 0, to become an integrable naked singularity there.
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In this scenario, we observe that the dynamics of the O(α′) perturbative
string theory yielded important information on the structure of the bulk
space-time, which may be related with solitonic (non-perturbative) structures
such as D-branes. The non-perturbative nature of the solution we have thus
obtained becomes clear from the fact that in terms of the original parameters
of the model, the k conformal parameter of the RS solution (51) is found
proportional to 1/

√
λ ∼ gs, where gs is the string coupling.

From the point of view of a holographic RG interpretation of the bulk
coordinate (z), we remark that the solution of figure 3 satisfies a “c-theorem”
in the sense of ref. [21]. Namely, we observe that σ′′(z) > 0 for 0 < z < ∞,
which implies that the weakest energy condition is satisfied for this portion
of the bulk space-time.

5 Conclusions and Outlook

In the present article we have performed a systematic study of non-factorizable
metrics of the form (1) in the specific case of five-dimensional geometries.
We have considered the situation in which such geometries are derived as
consistent solutions of the equations of motion of string effective actions
in the five-dimensional case, to O(α′) in the Regge slope. Such terms in-
clude quadratic-curvature contributions of the Gauss–Bonnet type, as well
as fourth-order dilaton derivative terms.

Our analysis has shown that it is indeed possible to find compatibility of
such a string-inspired model with the Randall–Sundrum scenario, upon the
appropriate embedding of three branes in the five-dimensional space-time.
In addition, we were able to find more general situations, which interpolate
between the RS metric at the boundary of an anti-de-Sitter bulk and an (in-
tegrable) naked singularity at the origin. Such scenarios imply the dynamical
formation of domain walls in the space-time, which may be useful when one
discusses the consistent embedding of D(irichlet)-branes in such a picture
(as is the case of the original RS scenario). In our solutions the conformal
parameter k of the RS type metric, as well as the bulk cosmological constant,
turn out to be proportional to the string coupling.

There are many issues that remain to be checked. First the stability of
the solution against the inclusion of higher order α′2 corrections as well as
string-loop corrections. Moreover, in the present work we have assumed that
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the dilaton and metric functions depend only on the bulk coordinate, and we
took the four-dimensional world to be flat. The extension to more compli-
cated metrics, especially time dependent, is needed in order to discuss cos-
mological implications [9, 6, 25]. Moreover, the proper inclusion of quantum
fluctuating (recoiling) D-branes, in the way discussed in [14], a situation that
undoubtedly is expected to be encountered in a complete quantum theory,
are very interesting issues that deserve special attention and are currently
under investigation.

In addition, the precise connection of the bulk coordinate with a holo-
graphic renormalization-group parameter in the case of anti-de-Sitter bulk
geometries also merits a separate study. As mentioned in the text, one should
re-examine carefully this interpretation in the context of the existence of a
proper c-theorem, expressing the irreversibility of the renormalization group
flow in the bulk. In ref. [21], this c-theorem was suggested to be provided by
the monotonicity of σ′(z) (σ′′(z) ≥ 0) in the metrics (1), which is the result of
a positive energy theorem for consistent matter to be placed in the bulk. For
the interpolating solution of figure 3 this has been shown to be valid. How-
ever, this is not always true [6, 22] for generic bulk (anti-de-Sitter) geometries,
especially in the higher-curvature context discussed here, where the presence
of the Gauss–Bonnet terms complicates the positive energy conditions [11].
A detailed study of such issues will appear in a forthcoming publication.
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Figure 1: Phase-space diagram u(q) for the general solution of the five-
dimensional equations of motion for dilaton and graviton fields in the pres-
ence of O(α′) terms in the string-inspired effective action. The various con-
tours are parametrized by the values of the bulk cosmological constant (Ξ).
The shaded region corresponds to de-Sitter bulk space-times (Ξ < 0), while
the rest of the diagram corresponds to anti-de-Sitter bulk (Ξ > 0). The
boundaries between these two regions correspond to the Ξ = 0 contours. The
dots represent the Randall–Sundrum spacetime. The origin (u = q = 0)
corresponds to a flat bulk space-time.
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Figure 2: A solution interpolating between the Randall–Sundrum solution at
z = +∞ and a naked singularity (see (59) for the case ρ2) at z = 0. There
are two (physically equivalent) branches CH and AF. There are other solu-
tions that encounter (D or B) non-resolvable singularities in the derivatives
dq/dy, du/dy (dashed curves). The dotted curve (for u 6= 0) corresponds to
the exact solutions of eq. (53).
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Figure 3: The metric σ(z) and dilaton Φ(z) as functions of z interpolating

between a RS type solution (q0 = −
√

1/12) at z = +∞ and a naked singu-

larity (see (59) for ρ2 ) at z = 0. The existence of this solution implies the
dynamical restriction of the bulk space-time to the positive z axis.
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