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Superconductivity-induced Anderson localization
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We have studied the effect of a random superconducting order parameter on the localization of quasiparti-
cles, by numerical finite-size scaling of the Bogoliubov–de Gennes tight-binding Hamiltonian. Anderson
localization is obtained ind52 and a mobility edge where the states localize is observed ind53. The critical
behavior and localization exponent are universal within error bars both for real and complex random order
parameter. Experimentally these results imply a suppression of the electronic contribution to thermal transport
from states above the bulk energy gap.@S0163-1829~98!03229-9#
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During the past few years phase-coherent transport in
brid superconducting structures has emerged as a new
of study, bringing together the hitherto separate areas of
perconductivity and mesoscopic physics. Recent experim
have revealed a variety of unexpected phenomena, inclu
zero-bias anomalies,1–3 re-entrant and long-range behavio4

and phase-periodic transport.5–9 These experiments can a
be described by combining traditional quasiclassi
Green’s-function techniques with boundary conditions
rived initially by Zaitsev10 and simplified by Kuprianov and
Lukichev11 or alternatively by generalized current-voltag
relations12 based on a multiple-scattering approach to pha
coherent transport. The latter approach focuses attentio
Andreev scattering,13 whereby an electron can coherent
evolve into a hole and vice versa, without phase breakin

The aim of this paper is to address a new phenomen
not describable by quasiclassical techniques, namely the
set of quasiparticle Anderson localization due to spatial fl
tuations in a superconducting order parameter. In cont
with all of the above experiments, where the supercond
ing order parameterD(r ) is typically homogeneous, ther
are many situations in whichD(r ) varies randomly in space
even though the underlying normal potential is perfectly
dered. One example is provided by the melting of a fl
lattice14,15 in an otherwise perfectly crystalline high-Tc su-
perconductor. Another should occur in anisotropic superc
ductors, where by analogy with3He-A, disordered textures
can arise when an anisotropic phase is nucleated from a m
symmetric phase such as3He-B. In the first of these ex
amples, the order parameter is not quenched. Neverthe
close to the melting curve, the time scale for changes inD(r )
can be made arbitrarily long and therefore in the spirit of
Born-Oppenheimer approximation, it is reasonable to fre
the disorder and when necessary, treat any temporal fluc
tions as a contribution to the inelastic-scattering lifetime.

In one dimension, it is straightforward to demonstrat16

that fluctuations inD(r ) alone can localize the excitation
even at energies high above the bulk energy gap. Howe
localization in strictly one dimension is of little interest e
perimentally and therefore in this paper, we address the q
tion of whether or not superconductivity-induced Anders
localization occurs in higher dimensions. Early analy
work17,18 suggested that in the presence of time-reve
symmetry, states of energyE50 are localized for dimen-
sionsd<2, while in the absence of time-reversal symme
such states are localized in all dimensions. However ca
PRB 580163-1829/98/58~5!/2442~3!/$15.00
y-
ld

u-
ts

ng

l
-

e-
on

n,
n-
-
st
t-

-
x

n-

re

ss,

e
e
a-

r,

s-

al

u-

lations using a numerical finite-size scaling approach19 were
inconclusive and to date there has been no experimental
firmation of these predictions. In this paper we provide fi
numerical evidence for superconductivity-induced Anders
localization ind52 and 3 dimensions and compute the e
ponentn controlling the divergence of the localization leng
j at the mobility edge ind53.

To address the question of superconductivity-induc
Anderson localization, we analyze the tight-bindin
Bogoliubov–de Gennes equations

Ec i~E!5e ic i~E!2g(
j

c j~E!1D if i~E!,

~1!

Ef i~E!52e if i~E!1g* (
j

f j~E!1D i* c i~E!,

where c i(E) @f i(E)# indicates the particle~hole! wave
function of energyE on sitei and j sums over the neighbor
of i . Since only scaling behavior near a critical point is
interest, we examine the simplest possible model of a sys
with no normal disorder, but a spatially fluctuating ord
parameter, obtained by choosinge i equal to a constante0 for
all sites i and to set the energy scale, chooseg51. Two
models of disorder will be examined. In model 1~which
preserves time-reversal symmetry!, we chooseD i5D0@1
1dD i # and in model 2~which breaks time-reversal symme
try!, we chooseD i5D0@(11dD i)1ı(11dD i8)#, wheredD i

anddD i8 are random numbers uniformly distributed betwe
2dD and1dD. In what follows, we choosee050.

For each model, we compute the transfer matrixT for a
long strip (d52! and a long bar (d53! of lengthL sites and
cross-sectionM d21 sites, respectively, and identify the loca
ization length jM with the inverse of the correspondin
smallest Lyapunov exponent. The results are, of course,
sitive to the chosen energyE and since, in the absence o
disorder~i.e., dD50), there exists an energy gap atE50,
the usual choice ofE50 adopted in the absence of supe
conductivity is inappropriate. As a guide to a reasona
choice of E, we consider the related problem of a syste
with normal disorder but with a uniform order parameter.
this casee i is chosen randomly from a uniform probabilit
distribution butD i5D0, for all i . As noted in Ref. 20 if
c i

0(E0) is a solution of the normal-state Schro¨dinger equa-
tion, namelye ic i

0(E0)2( jc j
0(E0)5E0c i

0(E0), then c i(E)
2442 © 1998 The American Physical Society
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and f i(E) are each proportional toc i
0(E0), where E

5A@E0
21uD0u2#. This means that if in the absence of sup

conductivity a state at energyE0 is localized by normal dis-
order, then in the presence of a uniform order parameterD0,
quasiparticle states at energyE are localized with the sam

FIG. 1. ~a! The jM /M plotted as a function of the finite width
M in two dimensions forE5D0, e050, dD50.1, and various val-
ues ofD0. ~b! As in ~a! but in three dimensions where a critic
point is indicated.

FIG. 2. Log-log plot ofjM /M versusD0 where the intersection
definesWc and (jM /M )c . The upper-right inset shows the coeffi
cientsaM versusbM whose slope is2 ln Wc . The lower-left inset
shows a log-log plot ofbM versusM which yields the value for the
exponentn51.6460.06.
-

localization length. As a consequence all critical propert
are unchanged, providedE0 is replaced byE. In the normal-
state problem the least localized states occur atE050 and
therefore in the presence of normal disorder and a unifo
superconducting order parameter these states occurE
5uD0u. Of course, in what follows we are interested in t
opposite limit of a spatially fluctuating order parameter w
no normal disorder. Nevertheless, guided by the above
servation we chooseE5^uD i u&, where^uD i u& is the ensemble
averaged order parameter, which givesE5D0 for model 1
andE5A2D0 for model 2.

The raw data forjM /M versusM , for model 1 with
E5D0, e050, anddD50.1, are shown in Figs. 1~a! and 1~b!
for two and three dimensions, respectively. The strength
disorder in the order parameter isW52D0dD, whose critical
value is denotedWc , and is varied by changingD0, with
fixed dD. In two dimensionsjM /M decreases with increas
ing M indicating that all states are localized withWc50,
whereas in three dimensions there is a crossover from lo
ized to extended behavior at aroundD0'12 which for the
adopted value ofdD50.1 corresponds toWc'2.4.

To quantify the critical behavior in three dimensions, w
linearize the data aboutWc by writing ln(jM /M)5aM
1bM ln W and obtain the coefficientsaM andbM for various
M . In terms of the fixed-point values ln(jM /M)c and lnWc ,
we note thataM5 ln(jM /M)c2bM ln Wc . Thus, a graph of

FIG. 3. ~a! Log-log plot of jM /M versusM for various values
of D0 when time-reversal symmetry is broken~model 2! which
shows a crossover from extended to localized states.~b! Log-log
plot of jM /M versusD0 for model 2 where the intersections defin
Wc and (jM /M )c . The upper-right inset shows the coefficientsaM

versusbM whose slope is2 ln Wc . The lower-left inset shows a
log-log plot of bM versusM which yields the value for the expo
nentn51.6960.06.
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aM versusbM yields ln(jM /M)c , 2 ln Wc and hence the criti-
cal disorderWc . The critical exponentn for the divergence
of the localization lengthj of the infinite system is obtained
by substitutingaM into the first linear relation, which yields
ln(jM /M)5ln(jM /M)c1bM ln(W/Wc). Moreover, near the
critical point ln(W/Wc);(W2Wc)/Wc andj;uW2Wcu2n, so
that ln(jM /M)5ln(jM /M)c6j21/nbM , where the1 ~2! sign
refers toW.Wc (W,Wc). The finite-size scaling require
ment jM /M5 f (j/M ) immediately implies bM;M1/n,
which permits the computation of the exponentn.

Figure 2 shows a graph of ln(jM /M) versus lnD0, from
which aM andbM for the chosen widthsM can be extracted.
The top-right inset shows the resulting plot ofaM versusbM
whose slope is2 ln Wc and the corresponding intercept
ln(jM /M)c . This yieldsWc52.3660.04 which corresponds
to D0511.7360.12 and (jM /M )c50.5860.02. The lower-
left inset shows lnbM versus lnM whose slope yields the
critical exponentn51.6460.06.

For model 2, where time-reversal invariance is brok
due to the presence of a complex order parameter, all st
are localized ind52. In contrast, Fig. 3~a! shows the corre-
sponding plots ofjM /M versus M in three dimensions
which clearly show a crossover from extended to localiz
behavior. Results from a more accurate calculation are
sented in Fig. 3~b!, where the upper-right figure yieldsWc
55.5760.12 and (jM /M )c50.5860.02. The lower-left in-
set shows lnbM versus lnM, the slope of which leads to the
value for the exponentn51.6960.06. The errors in the cal
culation of jM /M are monitored as a function of lengthL
and chosen to be less than about 0.01 by taking long strip
lengthsL5250 000 and bars ofL5200 000 (L550 000) for
the real~complex! case. The errors forWc and n are esti-
mated from the corresponding least-square fits. We have
repeated our calculations by taking points closer to the c
cal valueWc , where the above analysis holds, with no si
nificant change of our results.
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The first important feature of the above calculation is t
unambiguous prediction of superconductivity-induced qua
particle localization ind52 and the presence of a mobilit
edge in d53. Localization arises from fluctuations in th
superconducting order parameter alone, without the need
additional normal disorder. A second key result is the obs
vation that for both models we find (jM /M )c;0.58 andn
;1.6, which are remarkably close to the values reported
normal d53 real systems,21 and also consistent with re
ported data for ordinary disordered critical systems with a
without time-reversal invariance.22,23 Recently, slightly dif-
ferent scaling behavior is obtained with and without tim
reversal by an alternative data analysis based on polyno
fits.24 Our study ind53 cannot distinguish such small dif
ference if it exists.

From an experimental point of view, it is worth notin
that the absence of quasiparticle diffusion does not imply
vanishing of the electrical conductance, because Andr
scattering does not conserve quasiparticle charge. It d
however, imply a vanishing of the electronic contribution
thermal transport from certain states above the gap. I
clean superconductor at a finite temperatureT, this varies as
exp(2D/kbT), whereD is the bulk energy gap. In contrast, i
the presence of a fluctuation-induced quasiparticle mob
edgeEc , this will be replaced by exp(2Ec /kbT). Thus, for
example, the melting of a flux lattice in a high-temperatu
superconductor should be accompanied by an expone
change in the electronic contribution to the thermal cond
tance.
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