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Superconductivity-induced Anderson localization
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We have studied the effect of a random superconducting order parameter on the localization of quasiparti-
cles, by numerical finite-size scaling of the Bogoliubov—de Gennes tight-binding Hamiltonian. Anderson
localization is obtained inl=2 and a mobility edge where the states localize is observed-i. The critical
behavior and localization exponent are universal within error bars both for real and complex random order
parameter. Experimentally these results imply a suppression of the electronic contribution to thermal transport
from states above the bulk energy gfp0163-18208)03229-9

During the past few years phase-coherent transport in hylations using a numerical finite-size scaling apprdaerere
brid superconducting structures has emerged as a new fieldconclusive and to date there has been no experimental con-
of study, bringing together the hitherto separate areas of sdirmation of these predictions. In this paper we provide firm
perconductivity and mesoscopic physics. Recent experimentsumerical evidence for superconductivity-induced Anderson
have revealed a variety of unexpected phenomena, includinigcalization ind=2 and 3 dimensions and compute the ex-
zero-bias anomali€s;? re-entrant and long-range behavior, ponentv controlling the divergence of the localization length
and phase-periodic transpdrt These experiments can all ¢ at the mobility edge ird=3.
be described by combining traditional quasiclassical To address the question of superconductivity-induced
Green’s-function techniques with boundary conditions de-Anderson localization, we analyze the tight-binding
rived initially by Zaitsev° and simplified by Kuprianov and Bogoliubov—de Gennes equations
LukicheV! or alternatively by generalized current-voltage
relationg? based on a multiple-scattering approach to phase-
coherent transport. The latter approach focuses attention on Egi(E)=¢i(E)~ v i(E)+Aihi(E),

Andreev scattering® whereby an electron can coherently . (1)
evolve into a hole and vice versa, without phase breaking.

The aim of this paper is to address a new phenomenon, E¢i(E)=— € ¢;(E)+ 3’*2 &,(E)+AF ¢ (E),
not describable by quasiclassical techniques, namely the on- j

set of quasiparticle Anderson localization due to spatial fluc- o ]
tuations in a superconducting order parameter. In contrag¥here #i(E) [¢i(E)] indicates the particlghole) wave

with all of the above experiments, where the superconductfunction of energye on sitei andj sums over the neighbors

are many situations in which(r) varies randomly in space, in.terest, we exami.ne the simplest pos§ible model Qf a system
with no normal disorder, but a spatially fluctuating order

even though the underlying normal potential is perfectly or- . :
dered. One example is provided by the melting of a fluxParameter, obtained by choosisgequal to a constar, for
all sitesi and to set the energy scale, choggse 1. Two

lattice'*® in an otherwise perfectly crystalline high- su- . : : .
perconductor. Another should occur in anisotropic superconr-nOOIeIS of (ysorder will be examined. In model (Which
preserves time-reversal symmetrywe chooseA;=Ag[1

ductors, where by analogy withHe-A, disordered textures SA di del hich breaks fi |
can arise when an anisotropic phase is nucleated from a more i] and in model 2which breaks |me-lreversa Symme-
try), we choose\;=Ag[ (14 5A;) +1(1+ SA[)], whereSA;

symmetric phase such atHe-B. In the first of these ex- f ) i/
amples, the order parameter is not quenched. Nevertheled1d 5 are random numbers uniformly distributed between
close to the melting curve, the time scale for changes(ijy ~ — 6A and+6A. In what follows, we choose,=0.
can be made arbitrarily long and therefore in the spirit of the FOr each model, we compute the transfer marifor a
Born-Oppenheimer approximation, it is reasonable to freezéng strip @=2) and a long bard=3) of lengthL sites and
the disorder and when necessary, treat any temporal fluctu§foss-sectioh = sites, respectively, and identify the local-
tions as a contribution to the inelastic-scattering lifetime.  ization length &y with the inverse of the corresponding

In one dimension, it is straightforward to demonsttate smallest Lyapunov exponent. The results are, of course, sen-
that fluctuations inA(r) alone can localize the excitations, Sitive to the chosen enerdy and since, in the absence of
even at energies high above the bulk energy gap. Howeveglisorder(i.e., 5A=0), there exists an energy gap&t0,
localization in strictly one dimension is of little interest ex- the usual choice oE=0 adopted in the absence of super-
perimentally and therefore in this paper, we address the que§onductivity is inappropriate. As a guide to a reasonable
tion of whether or not superconductivity-induced Andersonchoice of E, we consider the related problem of a system
localization occurs in higher dimensions. Early analyticwith normal disorder but with a uniform order parameter. In
work!"18 suggested that in the presence of time-reversalhis casee; is chosen randomly from a uniform probability
symmetry, states of energg=0 are localized for dimen- distribution butA;=A,, for all i. As noted in Ref. 20 if
sionsd<2, while in the absence of time-reversal symmetryzﬁio(Eo) is a solution of the normal-state ScHinger equa-
such states are localized in all dimensions. However calcution, hamelye; z//?(EO)—EJ-z//?(EO):Eol//iO(Eo), then ¢, (E)
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FIG. 1. (8 The ¢y /M plotted as a function of the finite width
M in two dimensions foE=A, €,=0, SA=0.1, and various val-
ues ofAg. (b) As in (8) but in three dimensions where a critical
point is indicated.

and ¢;(E) are each proportional to,//iO(EO), where E

= J[E2+|A|?]. This means that if in the absence of super-
conductivity a state at enerdyy is localized by normal dis-
order, then in the presence of a uniform order paramgger
guasiparticle states at enerfyare localized with the same
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FIG. 2. Log-log plot of&y, /M versusA, where the intersection
definesW, and (&, /M).. The upper-right inset shows the coeffi-
cientsay, versuspB,, whose slope is-InW;. The lower-left inset
shows a log-log plot of3), versusM which yields the value for the
exponentr=1.64+0.06.
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localization length. As a consequence all critical properties
are unchanged, providdg}, is replaced byE. In the normal-
state problem the least localized states occUe@at0 and
therefore in the presence of normal disorder and a uniform
superconducting order parameter these states occlE at
=|A,|. Of course, in what follows we are interested in the
opposite limit of a spatially fluctuating order parameter with
no normal disorder. Nevertheless, guided by the above ob-
servation we choosé=(|A;|), where(|A;|) is the ensemble
averaged order parameter, which gies A, for model 1
andE=/2A, for model 2.

The raw data foréy, /M versusM, for model 1 with
E=Ay, €,=0, andsA =0.1, are shown in Figs.(d) and Xb)
for two and three dimensions, respectively. The strength of
disorder in the order parameterdé=2A,5A, whose critical
value is denotedV,, and is varied by changing,, with
fixed SA. In two dimensionst, /M decreases with increas-
ing M indicating that all states are localized withi,;=0,
whereas in three dimensions there is a crossover from local-
ized to extended behavior at aroung~12 which for the
adopted value o6A=0.1 corresponds tV.~2.4.

To quantify the critical behavior in three dimensions, we
linearize the data abouW, by writing In(&,/M)=ay
+ By In Wand obtain the coefficients,, and3,, for various
M. In terms of the fixed-point values I§¢/M). and InW,
we note thatay,=In(&u/M).—Bum IN W,. Thus, a graph of
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FIG. 3. (a) Log-log plot of ¢y, /M versusM for various values
of Ay when time-reversal symmetry is brokémodel 2 which
shows a crossover from extended to localized stdt®sLog-log
plot of &y /M versusA, for model 2 where the intersections define
W, and ¢y /M), . The upper-right inset shows the coefficients
versus By, whose slope is-InW;. The lower-left inset shows a
log-log plot of B versusM which yields the value for the expo-
nentv=1.69+0.06.



2444 BRIEF REPORTS PRB 58

ay versusBy yields Ing, /M), —In W, and hence the criti- The first important feature of the above calculation is the
cal disordetW, . The critical exponent for the divergence Unambiguous prediction of superconductivity-induced quasi-
of the localization lengtt¥ of the infinite system is obtained Particle localization ind=2 and the presence of a mobility
by substitutinge, into the first linear relation, which yields edge ind=3. Localization arises from fluctuations in the
In(& /M)=In(&y IM)+ By IN(WIW,). Moreover, near the superconducting order parameter alone, without the need for
critical point INQVW,)~(W—W,)/W, and é~|W—W,| "%, so  additional normal disorder. A second key result is the obser-
that InEy/M)=In(&w/M)+=& "By, where the+ (—) sign  vation that for both models we findé(,/M).~0.58 andv
refers toW>W, (W<W,). The finite-size scaling require- ~1.6, which are remarkably close to the values reported for
ment &y/M=f(&M) immediately implies By~MY”, normal d=3 real systemé and also consistent with re-
which permits the computation of the exponent ported data for ordinary disordered critical systems with and
Figure 2 shows a graph of lj(/M) versus In\,, from  without time-reversal invarianc¢é:?® Recently, slightly dif-
which ay, and By, for the chosen width# can be extracted. ferent scaling behavior is obtained with and without time
The top-right inset shows the resulting plotay; versusBy  reversal by an alternative data analysis based on polynomial
whose slope is-In W, and the corresponding intercept is fits 2 Our study ind=3 cannot distinguish such small dif-
IN(éy /M).. This yieldsW,=2.360.04 which corresponds ference if it exists.
t0 Ap=11.73:0.12 and €y /M)=0.58+0.02. The lower- From an experimental point of view, it is worth noting
left inset shows I8y versus IV whose slope yields the hat the absence of quasiparticle diffusion does not imply the
critical exponenty=1.64+ 0.06. . _ vanishing of the electrical conductance, because Andreev
For model 2, where time-reversal invariance is brokengcattering does not conserve quasiparticle charge. It does
due to the presence of a Complex'order parameter, all Statﬁ%wever, imply a vanishing of the electronic contribution to
are Ioc_:ahzed ird=2. In contrast, Flg._(h) shows _the COMre~ thermal transport from certain states above the gap. In a
sponding plots oféy/M versusM in three dimensions Gclean superconductor at a finite temperaflyehis varies as

which clearly show a crossover from extended to localize L xp( A/k,T), whereA is the bulk energy gap. In contrast, in
behavior. Results from a more accurate calculation are pre= P ’ dy 9ap. '

sented in Fig. @), where the upper-right figure vielda/ the presence of a fluctuation-induced quasiparticle mobility
570,12 and /M), 0,56 0.02. The lower-eft in- €198Ec this will be replaced by exp(E./ksT). Thus, for

set shows I8y, versus InM, the slope of which leads to the example, the melting of a flux lattice in a hlgh—temperaturg
value for the exponent=1.69+0.06. The errors in the cal- SuPerconductor should be accompanied by an exponential
culation of &, /M are monitored as a function of length change in the electronic contribution to the thermal conduc-
and chosen to be less than about 0.01 by taking long strips ¢fNCe€.

lengthsL =250 000 and bars df =200 000 { =50 000) for

the real(compleX case. The errors fow, and v are esti- .

mated from the corresponding least-square fits. We have also 1S Work was supported by a TMR of the EU and for
repeated our calculations by taking points closer to the critiP-E-K. and S.N.E. partially by the Greek Secretariat of Sci-

nificant change of our results. ity at Lancaster where most of the work was carried out.
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