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Supersymmetric inflation with the ordinary Higgs?
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We consider a model of D-term inflation in which the inflaton coincides with the standard Higgs doublet.
Non-renormalizable terms are controlled by a discrete R-symmetry of the superpotential. We consider
radiative corrections to the scalar potential and find that Higgs inflation in the slow-roll approximation
is viable and consistent with CMB data, although with a rather large value of the non-renormalizable
coupling involved.

© 2010 Elsevier B.V. All rights reserved.
Although inflation was first proposed within the framework of
the gauge symmetry breaking phase transitions in the early uni-
verse [1–3], it was very soon realized that values of the mass
and the self-coupling of the scalar field that drives inflation ex-
cluded the electroweak or other GUT Higgses and that inflation
had to be associated with a separate sector only indirectly related
with the rest of particle physics [4]. Independently of that, infla-
tion has evolved into an exact science since its predictions for
density fluctuations can be quantitatively tested against the very
accurately measured CMB parameters. Recently, an interesting at-
tempt was made to relate inflation to the electroweak Higgs in a
version of the SM with a non-minimal Higgs coupling to the Ricci
scalar [5], nevertheless, no convincing way was found to avoid
non-renormalizable terms that could destroy the required effective
flatness of the scalar potential [6].

In the present Letter we discuss whether it is possible that the
Higgs doublet can be the driving field for inflation, namely the in-
flaton. We consider MSSM in the framework of D-term inflation.
A pair of extra fields will be assumed to be present, neutral under
the SM gauge group but charged under the extra gauge symmetry,
coupled to the Higgs doublets only through non-renormalizable
terms. A discrete R-symmetry of the superpotential will also be
assumed. The model will be studied in an expansion in the inverse
Planck mass. We shall find that the model possesses the essential
feature of D-term inflationary models, namely, a phase with the
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extra gauge symmetry unbroken and almost constant scalar poten-
tial. This is sufficient to initiate inflation. The additional feature of
this model is that the inflaton in the final global vacuum phase is
light possessing the flatness required by electroweak physics. We
shall study slow-roll inflation in this model and find that Higgs
inflation is viable and that it is achieved with inflaton field val-
ues below the Planck mass. Nevertheless, exact agreement with
the value of the spectral index, requires either a rather large value
of a particular coupling constant of a non-renormalizable term, or
a less simplified version of the model.

Let us consider an extension of MSSM with an extra U (1) gauge
factor. All standard MSSM fields are assumed to be neutral under
this new gauge group. We introduce only a pair of extra super-
fields φ± charged with opposite charges ±1 under it. We also
assume the presence of a non-zero Fayet–Iliopoulos parameter ξ

in the corresponding D-term |φ+|2 − |φ−|2 + ξ . This is the usual
D-term inflation set up [7,8]. No renormalizable term between the
MSSM fields and φ± is possible due to R-parity, assuming that the
new pair is even. Thus, the superpotential with all possible non-
renormalizable terms that involve only the Higgs doublets are of
the form

W = μH Hc +
∑
n,n′

λnn′

M2n+2n′−3

(
H Hc)n

(φ+φ−)n′
. (1)

Of course, we cannot solve the hierarchy problem and we shall
just assume that μ is in the neighborhood of the electroweak
scale. Terms like (H Hc)2 or φ+φ− can be forbidden with a suitable
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discrete R symmetry. For example, we may assume that the super-
potential will be invariant under the discrete R-symmetry1 Z (R)

3 ,

Q , L, Nc, U c → α, W, H, Dc, Ec → α2, Hc, φ+, φ− → 1.

This symmetry allows all standard renormalizable terms. The re-
sulting superpotential is

W = μH Hc + λ

M

(
H Hc)(φ+φ−) + λ′

M3

(
H Hc)3

+ λ′′

M3

(
H Hc)(φ+φ−) + · · · , (2)

where we do not show other fields2 apart from the Higgses
and φ± . Throughout this Letter we shall assume that the defin-
ing scale of non-renormalizable terms will be of the order of the
reduced Planck mass M = M P ∼ 2.4 × 1018 GeV.

Since, we have considered non-renormalizable terms in the su-
perpotential, we must do the same with the Kahler potential,
which, up to O (M−2), can be written as

K = K0 + K1

M2
+ O

(
M−4).

The correction K1 contains a large number of terms but can be
simplified without real loss of generality if we assume a discrete
exchange symmetry of K between the two Higgs doublets. If that’s
the case, the direction H = Hc satisfies electroweak D-flatness,
since K Hc Hc = K H H along this direction. Thus, assuming we stay
along this direction, we may simplify the model even further re-
placing it with a model defined by a superpotential

W = μ

2
h2 + λ

2M
h2φ+φ− + · · · (3)

and a non-minimal Kahler term

K1 = a|h|4 + b+|φ+|2|h|2 + b−|h|2|φ−|2 + c+|φ+|4 + c−|φ−|4
+ d|φ−φ+|2 + e|h|2φ+φ− + h.c. (4)

Next, we proceed to calculate the scalar potential to O (M−2). We
may also introduce a real canonical field h = φ/

√
2, in terms of

which, the scalar potential is

V ≈ μ2

2
φ2 + λ

μ

M
φ2(φ+φ− + φ∗+φ∗−

) +
(

5

16
− a

)
μ2

M2
φ4

+ λ2

M2
φ2|φ+φ−|2 + λ2

4M2
φ4(|φ+|2 + |φ−|2)

+ μ2

2M2
(1 − b)φ2(|φ+|2 + |φ−|2)

− e
μ2

2M2
φ2(φ+φ− + φ∗+φ∗−

) + g2

2

(|φ+|2 − |φ−|2 + ξ
)2

+ g2

M2

(|φ+|2 − |φ−|2 + ξ
)

×
(

2c+|φ+|4 − 2c−|φ−|4 + b

2
φ2(|φ+|2 − |φ−|2)). (5)

For simplicity, we have taken b+ = b− . The φ-dependent masses of
φ± are

1 This is not a symmetry of the sector responsible for the breaking of supersym-
metry and is broken when the latter is broken.

2 For example terms, like (Nc)2φ+φ− , involving the right-handed neutrino super-
field could play a role in inflation. This possibility is under exploration. Here, we
shall assume that the values of parameters are such that these terms do not con-
tribute to inflationary considerations.
m2± = λ2φ4

4M2
+ μ2

2M2
(1 − b)φ2

±
√

g4ξ2

(
1 + bφ2

2M2

)2

+ μ2φ4

M2

(
λ − eμ

2M

)2

. (6)

Note however that all μ-dependent contributions are negligible.
For example,3 in the potential, the mass-term μ2φ2 is over-
whelmed by g2ξ2 even for φ ∼ O (M), if μ � gξ/M . For

√
ξ ∼

1015 GeV, this amounts to μ � 1012 GeV, which is trivially satis-
fied. Similarly, in the expressions for m2± the μ-dependent terms

δm2± ≈ μ2φ2

2M2 (1 − b ± λ2φ2

g2ξ
) ≈ ± λ2μ2φ4

2M2 g2ξ
lead to a negligible contri-

bution δm2±/m2± ≈ ±μ2/g2ξ � 1.
Neglecting μ, the φ-depended masses of φ± are

m2± = λ2φ4

4M2
± g2ξ

(
1 + b

2

φ2

M2

)
. (7)

Thus, both masses are positive, provided

φ2 � 2g

λ

√
ξ M

(
1 + b

2

φ2

M2

)1/2

≈ 2g

λ

√
ξ M

(
1 + bg

2λ

√
ξ

M

)
≡ φ2

c . (8)

For φ � φc the fields φ± stay at the origin and the scalar potential
is

V (φ) ≈ g2ξ2

2
+ O

(
μ2)φ2, (9)

which is quite flat. The global vacuum of the theory arises at
φ < φc and corresponds to

φ+ = 0, φ− ≈ √
ξ

(
1 − c−

ξ

M2

)
. (10)

The potential near the global minimum, apart from O (μ2) terms,

it aquires a term λ2ξ

4M2 φ4, which is rather flat for λ
√

ξ/M � 1 as
we will see.

It should also be noted that the standard soft supersymmetry
breaking, introduced in the form quadratic mass-terms and the
cubic scalar interactions appearing in the superpotential, is not go-
ing to have any effect on the flatness of the potential. For m2

s φ
2,

the same argument applies as for the corresponding μ-term mass,
while for the m± masses, m2

s is negligible in comparison to g2ξ .
Finally, with the assumed superpotential, constrained by the given
symmetries, no dangerous term arises. For instance, the largest
such term is ms

M3 h6 and it is irrelevant.
At the local minimum with φ± = 0, the potential is indepen-

dent of φ and radiative corrections become important. They are
summarized in the Coleman–Weinberg formula, where only the
contributions of φ± appear, since these are the only fields that feel
the effective supersymmetry breaking of the D-term. They are

�V = 1

32π2

∑
±

(
m4±
f 2±

ln

(
m2±
f±Λ

)
− m4±(0)

f 2±
ln

(
m2±(0)

f±Λ

))
,

where m2±(0) are the masses of the fermions obtained by setting
ξ = 0. The function f± arises because of the non-minimal kinetic
terms

K j
i (DμΦ)i(DμΦ

)†
j ∼

(
1 + b

2

φ2

M2

)(|Dφ+|2 + |Dφ−|2) + · · · .
Finally, we have

3 The U (1)-breaking scale will be taken to be O (1015 GeV).
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V (φ) = g2ξ2

2
+ g4ξ2

16π2

(
ln

(
φ4

Λ4

)
− ln

(
1 + b

φ2

2M2

))
. (11)

We have absorbed the constant part in a suitable rescaling of the
renormalization scale.

Before we proceed further let’s have a look at the different en-
ergy scales that appear in the problem. As a matter of fact we have
already assumed, and made use of it, that the electroweak scale
is negligible compared with the scale of the extra U (1) breaking
expressed by the parameter

√
ξ . For this scale there is the well-

known cosmic string constraint [9], arising from the requirement
that cosmic strings formed by φ− at the end of inflation should be
suppressed and will not affect the CMB data. This constraint reads

3.8 × 1015 GeV �
√

ξ � 4.6 × 1015 GeV. (12)

As long as we are in the phase with unbroken U (1) the vacuum
energy is approximately constant. This can lead to an inflationary
phase in which the inflaton is identified with the Higgs field φ.
Let’s proceed assuming the validity of the slow-roll approximation,
namely φ̈ � Hφ̇ and (φ̇)2 � V (φ). The classical evolution equa-
tions in an FRW background are

3Hφ̇ ≈ − V ′(φ)

f (φ)
,

H2 ≈ V (φ)

3M2

⇒ dφ

d ln a
≈ − M2

f (φ)

V ′(φ)

V (φ)
. (13)

The function

f (φ) = Kh
h = 1 + 2a

φ2

M2

arises from the non-minimal kinetic terms. Integrating and taking
the logarithm, we obtain

N ≡ ln

(
a f

ai

)
≈ − 1

M2

φ f∫
φi

dφ f (φ)
V (φ)

V ′(φ)
, (14)

in terms of the number of e-folds N . Substituting the derivative of
the potential

V ′(φ) = 4

φ

(
g4ξ2

16π2

)(1 + b
4

φ2

M2

1 + b
2

φ2

M2

)
≈ 4

φ

(
g4ξ2

16π2

)(
1 − b

4

φ2

M2

)
,

obtained from (11) and integrating (14), we get

g2

π2
N ≈ −4

b

(
1 + 8a

b

)
ln

(1 − b
4

φ2
i

M2

1 − b
4

φ2
f

M2

)
− 8a

b

(
φ2

i

M2
− φ2

f

M2

)
. (15)

Taking N ≈ 60 and making the generic coupling choice g ∼ 0.1
gives us g2 N /π2 ≈ 0.061.

The comoving curvature perturbation is

Rc = H2

2π |φ̇| ≈ V 3/2 f

2π
√

3M3|V ′|

≈
(

π

g
√

6

)(
ξ

M2

)(
φi

M

)(1 + 2a
φ2

i
M2

1 − b
4

φ2
i

M2

)
. (16)

Matching this to the observed value Rc ≈ 4.7 × 10−5 amounts to
the constraint

(
φi

M

)(1 + 2a
φ2

i
M2

1 − b φ2
i

)
≈ 0.997. (17)
4 M2
The two constraints (15) and (17) should allow us to obtain suit-
able φi and φ f in terms of two “input” parameters a and b. We
shall limit ourselves to subplanckian values of φi . We may simplify
(and restrict) the search by assuming that a is subleading and tak-
ing it to be zero. In this case, solving (17) we obtain

b ≈ 4M2

φ2
i

− 4M

φi
. (18)

Varying φi/M ∈ [0.4,0.9], gives us values in the range b ∈ [0.5,15].
Note however that even O (10) values give bφ2/4 < 1. Neverthe-
less, lowering the initial inflaton values increases the matching
value of the parameter b.

Eq. (15) determines the value of φ f at the end of inflation. As
an example, for a characteristic pair of values we have

φ2
i

M2
≈ 0.25, b ≈ 8 
⇒ φ2

f

M2
≈ 0.217. (19)

Assuming that inflation ends when the value φc is reached, we
may identify

φ f

M
≈ φc

M
≈

√
2g

λ

√
ξ

M
.

We see that the above choice (19) corresponds to λ ∼ 10−3.
Let us now consider the slow-roll parameters ε,η and ζ . They

can be calculated in terms of the potential and its derivatives as

ε = M2
(

V ′

V

)2

≈ 1

4

(
M

φ

)2( g2

π2

)2(
1 − b

4

φ2

M2

)2

, (20)

η = 2M2 V ′′

V
≈ −

(
M

φ

)2( g2

π2

)(
1 + b

4

φ2

M2

)
, (21)

ζ 2 = M4

4

(
V ′′′V ′

V 2

)
≈ 1

8

(
M

φ

)4( g2

π2

)2(
1 − b

4

φ2

M2

)
. (22)

Their values at the start of inflation are

εi ≈
(

g2

2π2

)2

, ηi ≈ − g2

π2

(
2M2

φ2
i

− M

φi

)
,

ζ 2
i ≈

(
g2

π2

)2( M3

8φ3
i

)
.

Note that at the end of inflation these parameters are still small.
The spectral index corresponding to these parameters is

ns = 1 − 6εi + 2ηi ≈ 1 + 2ηi = 1 − 2
g2

π2

(
2M2

φ2
i

− M

φi

)
.

This is depicted in Fig. 1.
Note that the smaller values of the spectral index are obtained

for values of φi smaller than 0.5M corresponding to O (10) values
of b. For example, φi ∼ 0.3M corresponds to b ≈ 15. Note however
that even such values have the appearing combination bφ2

i /4 < 1.
Since the purpose of the present short Letter was to investigate
whether Higgs inflation is viable, we shall not go here into a com-
plete numerical study of the full parameter space.

When the Higgs field φ has evolved to the critical value φc the
theory makes a transition to the global minimum where the fields
oscillate rapidly. The fields φ± have a mass g

√
ξ ∼ 4.6 × 1014 GeV

and are directly coupled only to φ. They can decay to MSSM
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Fig. 1. Plot of the spectral index in terms of φi/M .

matter, either gravitationally, or through their effective coupling
λ
√

ξ/M to φ. The corresponding reheating temperature is

T R ≈
(

90

π2 g∗

)1/4(
λ2 g

8π2

)1/2(√
ξ

M

)3/2

M ≈ 1011 GeV.

This is comparable to the reheating temperature corresponding to
the gravitational decay rate to MSSM particles. As it stands the
model requires an additional entropy dilution in order to circum-
vent entirely the gravitino problem.

Summarizing, let us briefly discuss the motivation and the main
features of the model presented in the present Letter and, of
course, the main result. The motivation is simply to investigate
the possibility that the central scalar field of the Standard Model,
namely the Higgs doublet, might be involved in inflation. The start-
ing point had to be the MSSM because only supersymmetry could
guarantee the required flatness of the inflaton potential. In order
to avoid the η-problem of Supergravity, the framework of D-term
inflation was considered and MSSM was extended with an extra
U (1) gauge factor endowed with a non-zero Fayet–Iliopoulos term.
Factors of this sort are not entirely uncommon in presently dis-
cussed effective particle models. Only a pair of extra fields were
assumed to be present, neutral under the SM gauge group but
charged under the extra gauge symmetry. An important point is
that the extra fields can couple to the Higgs doublets only through
non-renormalizable terms. Finally, a discrete R-symmetry was also
assumed for the superpotential. This model was studied in an ex-
pansion in the inverse Planck mass and was found to possess the
essential feature of D-term inflationary models, namely, a phase
with the extra gauge symmetry unbroken and almost constant
scalar potential. The extra feature of this model is that the inflaton
in the final global vacuum phase is light possessing the flatness re-
quired by electroweak physics. Slow-roll inflation was studied for
the model and it was shown to occur for initial Higgs field values
below the Planck scale.
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