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Abstract 

We analyse the high-temperature behaviour of softly broken supersymmetric theories, taking into account the role played 
by effective non-renormalizable terms generated by the decoupling of superheavy degrees of freedom or the Planck scale 
physics. It turns out that discrete or continuous symmetries, spontaneously broken at intermediate scales, may never be 
restored, at least up to temperatures of the cutoff scale. There are a few interesting differences from the usual non-restoration 
in the non-supersymmetric theories case where one needs at least two Higgs fields and non-restoration takes place for a 
range of parameters only. We show that with non-renormalizable interactions taken into account the non-restoration can 
occur for any nonzero range of parameters, even for a single Higgs field. We show that such theories in general solve the 
cosmological domain wall problem, since the thermal production of the dangerous domain walls is enormously suppressed. 

1. Introduction 

The study of field theories at finite temperature 
[ 1,2], motivated by questions related to the cosmo- 
logical evolution of the Universe, has revealed a close 
analogy with many condensed matter systems. In the 
considered cosmological scenarios, the broken sym- 
metries of the effective gauge field theory that describe 
particle interactions (SM or GUT) are typically re- 
stored at high temperatures, in the same way as the 
rotational invariance of the ferromagnet is restored by 
rising its temperature. In many cases, however, as in 
the case of a certain ferroelectric crystal known as 
Seignette salt, the gauge models exhibit a high tem- 
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perature symmetry non-restoration [ 2,3]. It turns out 
that for a certain range of parameter space this effect 
is presented in many minimal realistic particle physics 
models with spontaneously broken discrete and con- 
tinuous symmetries [4-61. Needless to say that such 
a behaviour would lead to a different picture of the hot 
Universe and have a direct relevance for the solution 
[ 4,5] of some problems of the standard big bang cos- 
mology such as the domain wall [ 71 and the monopole 
[ 81 problems. 

In the modern view the effective gauge theory 
that describes particle interactions below the Planck 
scale is a softly broken supersymmetric theory re- 
sulting from spontaneously broken supergravity or 
superstrings. It has been argued [9] that supersym- 
metric theories exhibit global and gauge symmetry 
restoration at high temperatures, in contrast ordinary 
non-supersymmetric theories in which both types of 
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high-temperature behaviour are possible. This is a 
consequence of the more constrained nature of super- 

symmetric models in which all matter interactions, 
Yukawa as well as scalar, are determined by the su- 
perpotential. Note that the above is independent of 
the strength of supersymmetry breaking provided that 
it is soft. 

The decoupling of superheavy particles as we cross 
their mass threshold implies that the effective the- 
ory valid at lower energies receives knowledge of 

the existence of these particles only through non- 
renormalizable interactions of the light fields sup- 
pressed by inverse powers of the superheavy mass 
scale. In an analogous fashion, the effective theory 
resulting from supergravity or superstrings below 
the Planck scale MP displays an infinity of non- 
renormalizable interactions suppressed by the inverse 
powers of the Planck mass resulting from integrat- 
ing out of the heavy modes at MP. In both cases 
the theory below the superheavy scale is described 
by an effective superpotential that contains non- 
renormalizable interactions of the light fields [ 10,111. 
These interactions acquire particular importance in 
the case of fields with vanishing renormalizable inter- 
actions, such as moduli fields. The finite-temperature 
corrections to such a theory can be computed in the 
standard fashion as long as the temperature (0) stays 
below the cutoff scale. The scalar potential will be 
modified by the field-dependent terms quadratic in 0, 
while the higher powers of the temperature will be 
suppressed by inverse powers of the cutoff and there- 
fore be negligible. In the present letter we point out 
that the inevitable presence of the non-renormalizable 
interaction in the effective field theory below MP 
can imply that the high-temperature phase, in a class 
of supersymmetric models, is the one with a broken 
symmetry. The existing proofs [9] that the globally 
supersymmetric theories always possess a symmetric 
high-temperature ground state, are not valid when 
non-renormalizable superpotentials are allowed. 

It is interesting to note that the high-temperature 
behaviour of such theories exhibits certain differences 
from the previously studied non-supersymmetric mod- 
els with high-temperature symmetry non-restoration. 
For example, in conventional cases the symmetry non- 
restoration was observed exclusively in a system with 
more than one Higgs field and only in a certain range 
of the parameters. In contrast, in the case of super- 

symmetric theories with non-renormalizable terms in- 
cluded, the symmetry non-restoration may occur for a 
single Higgs field and for all (nonzero) values of the 
theory parameters (compatible with a symmetry). 

2. The role of the non-renormalizable couplings 

Consider a gauge theory with a set of the chiral su- 
perfields @ in various representations of the gauge 
group G with their matter interactions described by 
a superpotential W(Q). Supersymmetry will be as- 
sumed to be broken by the usual soft terms in the 
scalar potential 

m2/@‘/’ + m@‘@ + c&?“&@’ + h.c. (1) 

as well as the gaugino masses iM,Anh” + h.c. The 
lowest-order temperature corrections can be put in the 
form 

AV = $Tr[Mi + M)Mf + 3Mi], (2) 

where M,, Mf and M,, are scalar, fermion and gauge 
boson mass matrices respectively. Since, with the 
above assumed soft SUSY breaking, the contribution 
to the supertrace comes out to be field-independent, 
we may put these corrections in the form 

AV = gTr[Mf + 3Mi] 

up to field-independent terms. Note that no field- 
dependent SUSY-breaking term contributes. A pri- 
ori there is no reason why the global minimum of 
the full 0 # 0 potential should be the symmetric 
one. Restricting oneself to the renormalizable terms 
only, however, always leads to a symmetric high- 
temperature ground state [ 91. 

In order to illustrate that this need not be the case 
when non-renormalizable terms are included, we con- 
sider the simplest possible example of a single super- 
field @ transforming under a discrete Z;?-symmetry 
@ ---f -@. In general the superpotential may contain 
an infinity of even power terms compatible with the 
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symmetry. For simplicity we restrict ourselves to the 
lowest possible non-renormalizable coupling. So the 
model is described by the superpotential 

(4) 

where M has to be understood as some large mass N 
MP. This model could come about from a renormal- 
izable model described by the superpotential 

W(@)=-$L@~+M~X~+AX@~ (5) 

when the field X is integrated out. Notice that by field 
redefinition, any complex phase of the parameters can 
be simply absorbed in the overall phase of the super- 
potential and thus cannot affect the symmetry proper- 
ties of the potential minima. So for definiteness we as- 
sume both ,G and M to be real and positive. At 0 = 0, 
we have a pair of non-symmetric minima at the inter- 
mediate scale Cp = fa degenerate with the sym- 
metric minimum at the origin. The 0 # 0 potential 

(for 0 > 0) reads 

The equation for the extremum is 

++g) (&-,+&)=o. (7) 

Note that C0 is real in this equation. This equation has 
three solutions Q, = 0,Q2 = 2Mp and Q2 = 6Mp, 
but the third one exists as far as O2 < 8M,u. Thus, 
at high temperature 0 > 0, = a, above the 
intermediate scale but still below Mp, the only ex- 
trema are a2 = 0 and CD = fm, the second of 
which was a saddle point at 0 = 0. The determinants 
of the curvature matrix at these points can be easily 
computed and are equal to p2(p2 - e4/64M2) and 
,u2(B4/16M2 - 16p2/9) respectively. Therefore, we 
see that above 0, the symmetric minimum becomes 
unstable (saddle point) and the only minimum of the 
theory is the one with a broken symmetry. Note that 
the intermediate scale can be quite high if ,u is not 
very much smaller than M. 

What about higher-order couplings? In general, 
the system may include an infinite number of non- 

renormalizable terms compatible with the symmetry. 
In such a case the superpotential becomes 

W(@) = -&Q2 + a+ 
2n-3 ’ 2n(2n - 1) M,,, 

(8) 

where the sum over n > 1 is assumed. The high- 
temperature potential now is 

4j2n-2 
2 

v=p/2 -/!.A+ 
(2~ - 1)M:‘;y3 

(9) 

To see that above a certain temperature 0 > $@ 
the minimum with @ # 0 is the ground state, let us 
simply show that at this temperature there always is a 
state with @ # 0, which has an energy lower than the 
one with unbroken discrete symmetry. For this notice 
that the second term has at least one minimum (zero 
of the polynomial -I_L + (B2"/M$y3)) with @ = 4 

N a. At this point the second term vanishes (by 
definition) and the energy is given by the first term, 
which is of the order of 

N [@J12P2, (10) 

whereas the energy of the symmetric state CD = 0 is 
given by the second term and is equal to 

(11) 

Thus, above a certain temperature (> m) the 
state with a broken symmetry is the lowest-energy 

state. 
We can easily generalize the previous toy model into 

a two-field U( 1) gauge model with a superpotential 

The potential now is 

(12) 
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+ $@I2 - p12)2. (13) 

Again, the 0 = 0 vacua are <I, = & = 0 and /@I = 
IG I = ,/Zi?ji. For 0 # 0 the potential is minimized 
byI@,(=]&]=uwhereeitherv=Oor 

v4 + v2( -8Mp/3 + 5e2/12) + 4(M~)~/3 

+ (-M/A + 2g2M2)02/3 = 0 (14) 

Clearly, the gauge term favours the symmetric mini- 
mum so non-restoration can take place only if g’ < 
p/2M. Now at high temperatures (>> @?i$, above 
the intermediate mass scale, except the symmetric ex- 
tremum at the origin, we have the solution ]@I = 
161 = JZ%q. Th e curvature matrix at the origin 
has eigenvalues 

(15) 

indicating that the origin gets destabilized for 0 > 
m. Thus, we conclude that at high temperature 
the broken phase lies lower and is the ground state of 
the system. 

Let us now discuss an example with R-symmetry 
non-restoration at high temperature. Consider the sim- 
plest model with a discrete R-symmetry, under which 
the superpotential changes sign W + -W, and a sin- 
gle superfield with the same transformation properties 
CI, 4 -@. Then, the most general superpotential is 
simply a polynomial with only odd powers @J’~+’ in- 
cluded. For simplicity we consider only the case with 
n < 3. Thus, the superpotential becomes 

(16) 

Since we are interested in zero-temperature breaking 
of R symmetry at scales much below M, we assume, 
as before, ,u < M. Note that for h N 1 the theory still 

admits the zero-temperature ground state with CD N M. 
So we choose h N ,u/M and for convenience write it as 
h = Ap/M, where A is a parameter of order 1. Now the 
only zero temperature supersymmetric ground states 
are those with the R symmetry spontaneously broken 
at the intermediate scale 

(17) 

At high 0 the potential becomes 

V = & 1p2M2 - A/.LM@~ + @‘I2 
[ 

+ 202]@]2]@2 - ApM/2j2 1 . (18) 
We see that the second, O-dependent, term has two 
degenerated minima at any temperature 

Cp=O, Q2=i M; 
2P 

(19) 

whether the minimum with broken symmetry is a low- 
est one is decided by the first term (zero-temperature 
potential), which splits the energies of the above so- 
lutions, and this is simply a matter of the choice of 
parameters. To provide a simple existence proof let 
us choose A = 2. Then, the first term has a minimum 
@k = &a, which coincides with the minimum of 
the O-dependent term and is thus a true ground state of 
the system! The energy difference between this mini- 
mum and the one with an unbroken symmetry is ,u4. 
So we see that in a range of parameters the R symme- 
try is never restored. 

The above examples are sufficient to make our 
point. The discussion of what happens in more real- 
istic theories, such as MSSM or GUTS, is left for a 
future article [ 131. 

3. Application: the domain wall problem 

It has been shown [4,5] that the symmetry non- 
restoration at high temperature may provide a natural 
solution to the domain wall [7] and the monopole 
problems [ 81, which are grave difficulties for the 
standard cosmological scenario. Here we will address 
the issue of the domain wall problem in the context 
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of the models of spontaneously broken discrete sym- 
metries induced by the effective non-renormalizable 
couplings in the superpotential. As we have seen, 
these systems exhibit high-temperature symmetry 
non-restoration with characteristic features. The cru- 
cial point is that the order parameter does not neces- 
sarily grow with temperature, but may become frozen. 
This goes against with previously studied cases (with 

symmetries being broken by renormalizable interac- 
tions) in which the order parameter to temperature 
ratio remains constant at high temperature, so that 

the thermal production of the domain walls is enor- 
mously suppressed [ 41. This ensures that the absence 
of the phase transition suffices to solve the domain 
wall problem. In our case this question needs an addi- 

tional study. Let us consider again a simple prototype 
model with the superpotential (4). As was pointed 
out, this system at 0 = 0 has five extrema: three of 
them (a = 0 and @k = fJ6-;IM7;;) are the degenerate 
local minima, and the other two (a& = *m) are 
saddle points. At 0 # 0 the points @k get displaced: 

and they disappear at 0 > 0, = a. Above 
this critical temperature the theory has two degenerate 
minima Qs = fm and one saddle point @O = 0. 
Thus, the symmetry is never restored above 0,. How- 
ever, for the study of the domain wall formation, we 
need to consider the evolution of the system in the in- 
terval 0 < 0 < 0,. The evolution goes as follows: 
@O is a local minimum in the interval 0 < 0 < OC, 
whereas @& becomes a minimum only above 0 > 

J 
$OC (for 0 < 

$ 
$OC, the Q+ is a saddle point). 

The third pair, @k, is a local minimum in the interval 

O< 
$ 

$OC. Then, for 0, > 0 > 
ZT 

$OC it becomes 

a saddle point and, finally, disappears above 0,. The 

important message is that at 0 = 
$ 

$OC the extrema 

@~-‘f and Qk are coincident and represent an unstable 

turning point. Thus for 0 = 
$ 

$OC the theory has no 

stable point with broken symmetry and, therefore, in 

some interval 0 - 
J 

$OC the symmetry is inevitably 

restored. In the cosmological context this would lead 
to a restoration of the symmetry at 0 = 0 (since 

during the cooling the system would be trapped in 
the symmetric minimum). In order to have a discrete 
symmetry spontaneously broken at zero temperature, 
we can assume the soft SUSY-breaking negative mass 
term -m2]@j2, possibly radiatively generated. Then, 
the broken phase will be stable for any 0 provided 
Irn] > p. This avoids a troublesome phase transition, 
with a discrete symmetry breaking, for all the temper- 
atures, and thus domain walls are never formed by the 
Kibble mechanism, [ 121. 

Now, what about their thermal production? First let 
us estimate when the domain walls would start to dom- 
inate the Universe assuming that there is at least one 
horizon size wall at any time (temperature). At 0 >> 
0, the dominant contribution to the wall energy den- 

sity comes from the second O-dependent term in the 
potential of Eq. (6). The corresponding wall solution 
(for the planar infinite wall) can be approximated by 
the kink and its energy density per unit surface is 

f7 - $M,$. 
The thickness is 

s.2 l 
@l/Zip 

(21) 

(22) 

The energy of an R-radius wall is then given by ER N 
R%T N R2$(h4p) 3 provided R > 6. Walls start to 
dominate when their energy density overcomes that of 
the radiation. The corresponding temperature Od can 
be found from 

CR,’ NO;, (23) 

where R,ZJ N M/O: is a horizon size in radiation dom- 
inated era. From (22) and (24), we get @d N ,ufi. 
However, expression (22) for g is only valid until the 
temperature drops to N 0,. Below, the first term in 
Eq. (6) starts to dominate, the wall tension becomes 
frozen and the surface energy density is CT - p2M. 
So, the horizon size walls (if present) would dominate 
at best around @d N ,u. Note that above 0 > 0, the 
walls are wider than the horizon 6 > RH. So strictly 
speaking, there is no wall inside the horizon, but rather 
the horizon could appear inside the wall. In the latter 
case, the energy density of the wall inside the hori- 
zon is simply a false vacuum (Cp = 0) energy density 
N e2p2. This makes our upper limit on @d even 
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stronger, since now the condition that walls dominate 
reads 

o;J_L2 > 04. (24) 

Thus, we conclude that the temperature at which infi- 
nite walls would dominate is about @d - p. 

It is thus clear that we have to estimate the thermal 
production rate of those walls, which have a chance 
to survive and have a horizon size at temperature @d. 

Such problematic walls are those that would have the 
size of the scales that enter the horizon at @d. Thus, 
the dangerous size of the walls at any 0 is the one 
obtained by scaling RH(@~) back to the temperature 
0. In the radiation-dominated era all the length scales 
evolve as a scale factor N 0-l and thus, the comoving 
scale at temperature 0 is given by 

(25) 

It is not surprising that the suppression factor for walls 
of that size is enormous at any temperature. The ther- 
mal production rate is exponentially suppressed by the 
factor e-E/o. In our case 

(26) 

Even at temperatures N M the formation rate is negli- 
gible. Thus, dangerous walls are never produced ther- 
mally (at least below the temperatures N MP where 
our estimates can be trusted). 

4. Summary 

In this letter we have studied a possible role of the 
non-renormalizable interactions in the thermal history 
of supersymmetric theories. Our results show that this 
role may be crucial, since the non-renormalizable cou- 
plings can prevent the internal symmetries from the 
restoration at arbitrarily high temperature (at least up 
to MP). In contrast to previously observed cases, the 
order parameter does not necessarily grow with tem- 
perature and can become frozen. Also, it turns out that 

the symmetry non-restoration may take place in the 
case of a single Higgs superfield and for arbitrary val- 
ues of the parameters. Our observations indicate that in 
SUSY theories the symmetries broken at intermediate 
scales by non-renormalizable terms, in general, have 
a tendency to non-restoration. These effects are ex- 
pected to have important cosmological consequences. 
In particular we have shown that they may solve the 
cosmological domain wall problem in SUSY theories. 
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