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We give a classification of heavy Majorana neutrino mass matrices with up to three texture zeros, assum
the Dirac masses of the neutrinos to be of the same form as the ones of the up quarks in the five texture
solutions for the quark matrices. This is the case for many unified and partially unified models. We find tha
is possible to have solutions which account for the solar and atmospheric neutrino problems as well as
COBE observations simultaneously, and we motivate the existence of such solutions from symmetries.@S0556-
2821~96!04711-X#
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I. INTRODUCTION

Recently, there has been a lot of work on the origin
fermion masses and mixing angles@1–9#. The observed pat-
tern of masses and mixings can be explained if some str
ture in addition to that of the standard model exists at high
scales. Within the context of supersymmetry, unification h
had considerable success in determining the parameter
the standard model@10#. In addition to the successful predic
tions of the gauge couplings, the pattern and magnitude
spontaneous symmetry breaking at the electroweak sc
@11#, andb-t unification, it was also found that the fermion
mixing angles and masses have values consistent with
appearance of ‘‘texture’’ zeros in the mass matrices@12,1#.
Such textures indicate the existence of additional symmetr
beyond the standard model and together with the hierarch
structure observed in the quark and lepton mass matri
imply that an underlying family symmetry@e.g., a U~1! fam-
ily symmetry# with breaking characterized by a small param
eterl might exist@4#. For an exact symmetry, only the third
generation would be massive and all mixing angles ze
However, symmetry-breaking terms gradually fill the ma
matrices in powers ofl, generating a hierarchy of mas
scales and mixing angles. Thus, a broken symmetry can
plain the ‘‘texture’’ zeros as well as the relative magnitude
the nonzero elements.

In a previous work@5,6#, the implications of such a
scheme for neutrino masses and mixing angles in the cas
the minimal multiplet content of the minimal supersymme
ric standard model~MSSM!, extended to include right-
handed neutrino components~plus the standard model Higgs
singlets needed to generate their masses and to break
extended gauge family symmetry! were considered. Alterna-
tive schemes have also been proposed@7,8#. In @5,6# right-
handed fields got Majorana masses from a term of the fo
nRnRS whereS is a SU~3!^SU~2!^U~1! invariant Higgs
scalar field withIW50 andnR is a right-handed neutrino. In

*Present address: Theoretical Physics Division, Ioannina Univ
sity, Greece.
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many modelsS is not an elementary field, but a combination
of scalar fieldsS5n! Rn! R, wheren! R is the scalar component
of a right-handed antineutrino supermultipletn̄R @13#. It was
found that, up to a discrete ambiguity, the Majorana ma
matrix is determined and that, unlike previous assumption
for this matrix @14#, a large splitting between the entries ex
ists.

The main conclusions of this work are the following.
~i! The heaviest neutrino has a mass (0.4–4) eV for a to

quark of 200 GeV, thus being of the right size for structur
formation @15#.

~ii ! The light neutrinos have masses and mixing angles
the magnitude needed to explain solar neutrino oscillatio
@16,17#, in the small mixing angle region of the Mikheyev-
Smirnov-Wolfenstein~MSW! effect.

~iii ! In the simplest scheme, described in@5#, it was not
possible to obtain large mixing angles, without fine-tuning o
the Yukawa couplings. Such a large mixing is required for
vacuum solution of the solar neutrino problem as well as th
neutrino oscillation solution to the atmospheric neutrin
problem@18#. In @6# it was found, however, that in order to
obtain neutrino masses in a phenomenologically interesti
region while retaining bottom-t unification, in the small
tanb regime, large mixing in them-t charged leptonic sector
has to occur.1 This mixing can in principle appear also in the
large tanb regime and in particular in a subclass of the tex
tures of@5#, when dropping a residualZ2 symmetry. Still, for
a singleS field, the eigenvalues of the light Majorana mas
exhibit large splittings. Therefore, although we had been ab

er-

1The distortions to the bottom-t unification would appear as an
implication of the structure emerging from the U~1! symmetry, if
the right-handed neutrinos have Yukawa couplings of the same
der as the up quarks, thus affecting the radiative corrections in t
model in the small tanb regime@19#. An alternative solution arises
in a subclass of models where the Dirac-type Yukawa coupling
the neutrino is very suppressed@20#. In the large tanb regime due to
the infrared fixed point for the bottom coupling, which is describe
by analytical expressions in@21#, the effect of the neutrino coupling
to bottom-t unification is negligible.
6381 © 1996 The American Physical Society
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6382 53LEONTARIS, LOLA, SCHEICH, AND VERGADOS
to obtain two classes of solutions where we address either
solar and the atmospheric neutrino problem, or the solar n
trino problem and the Cosmic Background Explorer~COBE!
data, it was not possible to solve all three problems simul
neously.

However, in principle there is no reason why this partic
lar conclusion in the simplest extension of the standa
model should apply in the case of a more complicated sy
metry or with more than one pair of singlet fieldsS,S̄
present in the theory. Since in such a case there are m
possible patterns, instead of making a complete search ba
on symmetries, we follow the opposite strategy.

~i! We assume the very large class of models from und
lying unified models@such as strings and grand unified theo
ries ~GUT’s!# or partially unified models that fix the neutrino
Dirac mass matrix to be proportional to theu-quark mass
matrix. This of course is a simplified assumption@2,17,14#.
In fact we know that if a Dirac-type mass is generated by
vacuum expectation value~VEV! of the126of SO~10!, then
mn
D523mu . Thus, themn

D ,mu relation is more complicated
if both 10 and126of SO~10! develop nonzero VEV’s along
the directions contributing to the Dirac-type neutrino mass
To simplify the analysis, one usually assumes that for ea
entry only one type of Higgs field contributes. But differen
Higgs fields may develop vacuum expectation values in d
ferent directions@8#.

~ii ! We then study all possible Majorana neutrino ma
matrices with three exact and an arbitrary number of ph
nomenological texture zeros. It is clear that we are looki
for solutions with at least one large mixing angle~to explain
the atmospheric neutrino deficit! and nearly degenerate neu
trino mass eigenvalues.

~iii ! We then motivate these phenomenological solutio
from symmetries. As a result we find only a small number
possible Majorana neutrino mass matrices. This gives a c
straint on the underlying theory in terms of necessary co
plings.

We will start by briefly reviewing the experimental limits
on neutrino masses and mixing angles, in Sec. II. In Sec.
we will discuss the whole framework of unification and ma
matrices. In Sec. IV we then give a first example of how w
find solutions with exact texture zeros that allow large mi
ing angles and nearly degenerate mass eigenvalues.
complete results of this analysis are tabulated in the App
dix. These findings at high scales are then confronted w
the low energy requirements for such textures in Sec.
Here a classification of phenomenological texture zeros
given. Section VI addresses the derivation of such textu
from underlying U~1! symmetries. The connection of the tex
tures at high and low scales via renormalization is discuss
in Sec. VII. The conclusions are given in Sec. VIII. Finally
the complete approach of finding textures is summarized
the Appendix.

II. NEUTRINO PHENOMENOLOGY

Various recent data, confirmed by many experimen
groups, may be explained if the neutrinos have nonvanish
masses. In such a case, the neutral leptons produced in w
interactions are in general not stationary. The weak eig
states are linear combinations of the neutrino mass eig
the
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states, implying neutrino mixing. Although the standar
model theory does not give masses to the neutrinos, m
extensions of the standard model predict small masses a
mixing. Before discussing such extensions, we first revie
the experimental situation and give some indication of po
sible explanations.

If the neutrinos are light, neutrino oscillation experiment
are the best candidates to measure the small mass differen
dm2 ~from 1 eV2 down to 10210 eV2). Furthermore, neu-
trino oscillations may explain the solar neutrino problem
i.e., the apparent reduction of thene flux at earth compared
to that predicted by the standard solar model@22# ~SSM!. If
the neutrino mixing is small, the mechanism of neutrino os
cillations is not effective. Nevertheless, under the condition
of high density encountered in the sun’s interior, the oscilla
tion can be enhanced from the MSW effect@16#, since small
mixing angles can be converted into large effective mixin
angles, due to resonant scattering ofne neutrinos by elec-
trons. The data from the solar neutrino experiments can th
be described either by assuming resonant transitions~MSW
effect! or vacuum oscillations. These two possibilities re
quire the following ranges for masses and mixing angles.

~a! The small mixing angle solution for the MSW effect
requires

dmnena

2 '~0.621.2!31025 eV2, ~1!

sin22uae'~0.621.4!31022. ~2!

~b! Vacuum oscillations can solve the solar neutrin
puzzle if

dmnena

2 '~0.521.1!310210 eV2, ~3!

sin22uae>0.75, ~4!

where a is m or t. The most natural solution in unified
models is obtained through the MSW mass and mixing ang
ranges. This solution in particular requires a light neutrin
Majorana mass of the order

m('Adm2'3.031023 eV, ~5!

as already given in~1!. Such ultralight masses can be gener
ated effectively in GUT’s@23# and supersymmetric~SUSY!
GUT’s @24# by the well known ‘‘seesaw’’ mechanism@25#.

The atmospheric neutrino problem may be explained
the case that a large mixing and small mass splitting invol
ing the muon neutrino exists@18,26#. Taking into account the
bounds from accelerator and reactor disappearance exp
ments one finds that, forne-nm or nt-nm oscillations,

dmnanm

2 <1022 eV2, ~6!

sin22uma>0.5120.6, ~7!

wherea stands fore,t and in ~7! the larger lower limit for
sin22uma refers tonm-nt oscillations. Finally we have already
mentioned that neutrinos are possible candidates for struct
formation provided they have a mass;1 eV. This value is
consistent~with a small margin according to some measure
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53 6383TEXTURES FOR NEUTRINO MASS MATRICES
ments! with the bounds from neutrinoless doubleb (bb0n)
decay. In terms of the neutrino masses and mixing ang
the relevantbb0n measurable quantity can be written as

u^mne
&u5U(

i

3

~Uei!
2mn i

eil iU<1 eV, ~8!

whereeil i is theCP parity of thei th neutrino, whileUei are
the elements of the unitary transformation relating the we
and mass neutrino eigenstates.

What are the possible theoretical solutions that are co
sistent with this data? Only a partial solution of all thes
problems may be obtained easily in simple models with
general hierarchical pattern of neutrino masses. In most ca
it is possible to obtain a solution to the solar neutrino pro
lem with mn1

!mn2
'm( , andmn3

;1 eV to interpret the

COBE data. Then, thebb0n bound is satisfied due to the
smallness of theUe3 mixing element predicted by the theory
Indeed, assuming the above hierarchy, the quantity^mne

&
may be approximated byuUe3u2mn3

. Because of the assume
hierarchy, it follows easily that oscillation experiments a
sensitive only todm13

2 , dm23
2 , since oscillations related to

dm12
2 are too rapid. Thus the formula for the oscillation

P(ne→ne) @27# is simplified to

P~ne→ne!5124uUe3u2~12uUe3u2!sin2S px

l
D , ~9!

where several trigonometric identities andm1 ,m2!m3 are
used. SettinguUe3u5sinQee this may be rewritten as

P~ne→ne!512sin2Qeesin
2S px

l
D . ~10!

Taking sin2Qee50.2, we find uUe3u'0.23. This in turn
would imply, i.e., mn3

'18.9 eV for ^mne
&'1 eV from

above. Obviously, the atmospheric neutrino data do not fit
the above scenario.

It thus appears that the experimental data require nea
degenerate mass eigenstatesmn i

'm0 , i51,2,3 @28#, since,
first of all, structure formation in the Universe and the COB
data require( imi'3 eV. This sets the scale of the masse
The data from the atmospheric and solar neutrino expe
ments force the involved masses to be very similar. In th
case thebb0n bound may be respected due to mutual ca
cellations in~8! by oppositeCP phaseseil i. Introducing an
average massm0 one finds that

dm12
2 '2m0um22m1u'1025 eV2, ~11!

dm23
2 '2m0um22m3u<1022 eV2, ~12!

^mne
&'m0(

i51

3

~Uei!
2eıl i<1 eV. ~13!

With the mentioned mutual cancellations,m0'(122) eV
can be consistent with all data. Our aim in the present pa
is to use this observation and constraints from the low ene
theory, in order to determine the optimal Majorana mass m
trices with zero textures, for a wide class of theories. W
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consider the cases with~a! hierarchical light-neutrino masses
~partial solutions! and with ~b! nearly degenerate neutrino
mass eigenstates of order;1 eV ~complete solutions!.

The necessary mixing may occur in two ways: eithe
purely from the neutrino sector of the theory or by the
charged lepton mixing. In the second case the mixing is typ
cally too small to have any impact on the atmospheric neu
trino problem, but may still account for the solar neutrino
problem. In the former case, the mixing may be such as t
account for both deficits. One, of course, can consider mix
ing in both sectors. In this paper, we will search systemat
cally for solutions with one large mixing angle, stemming
from the need to accommodate the atmospheric neutrino da
from the beginning. Such an origin of a large mixing actually
seems to be the most reasonable case. We also chose
small mixing angle solution in order to address the sola
neutrino puzzle. We are not discussing the possibility of a
second large angle~as required for the vacuum oscillation
solution for the solar neutrinos!, since the analysis will be
more complicated. Therefore we have two possibilities.

~1! The solar neutrino problem is resolved byne-nm os-
cillations and the atmospheric neutrino problem bynm-nt
oscillations. For this possibility to be viable, we need a large
mixing angle, in the 2-3 entries.

~2! The solar neutrino problem is resolved byne-nt oscil-
lations and the atmospheric neutrino problem byne-nm os-
cillations. In this case the large angle should be in the 1-
entries.

III. UNIFICATION AND MASS MATRICES

In this section we discuss how predictions for mass ma
trices arise in unified theories. We will start by resuming the
discussion of@3,4# for quark and lepton mass matrices and
show how this extends to include neutrino mass matrices,
we assume certain unifications. So far, there has been a lot
progress in the construction of viable string theories. Al-
though many models seem to have fundamental problems
resembling the standard model at low energies, most of the
can not be totally excluded, because of their very comple
structure@30#. On the other hand, there exist many more
models which have not been studied at all. Therefore one
very interested in having an additional criterion to distin-
guish between all these possibilities and to single out thos
that may lead to the standard model at low energies.

The idea in@4# was~instead of taking specific models and
studying their parameters! to use additional discrete symme-
tries, which appear vastly in many string models, and stud
their implications for fermion mass patterns. Discrete sym
metries lead quite naturally to hierarchies of parameter
~Yukawa couplings, etc.! and therefore to predictions that are
largely independent of specific numerical values. A certain
model is realistic only if it possesses such a hierarchica
structure, without any fine-tuning. Indeed, it is a general ob
servation that a string model exhibits all possible coupling
allowed by the discrete symmetries, which are typically2 of

2Here we are referring to models close to, e.g., the conforma
point and not to large moduli VEV~vacuum expectation value!
cases.
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6384 53LEONTARIS, LOLA, SCHEICH, AND VERGADOS
order and there are hardly anyaccidentalzeros for the values
of the Yukawa couplings.

To see how symmetries may imply a hierarchical patte
of Yukawa couplings~and therefore masses!, one can look at
the mass matrices for a two-quark doublet, assuming an
ditional U~1! symmetry to the standard model gauge grou
under whichtL,R ,bL,R have chargea1 and cL,R ,sL,R have
chargea2 . The form of the actual mass matrix depends al
on the transformation of the Higgs fieldsH1 , H2 which give
masses to the fermions. Taking these charges to be22a1 ,
only the t and b quarks acquire a mass in the electrowea
breaking and the up or down quark mass matrix has only o
nonzero element. However, if the U~1! symmetry is broken
to a discrete symmetryZN by the VEV of a fieldu with
charge21, there are several mechanisms that give struct
to the mass matrices:~1! higher dimensional operators
qLqRHiu

n/Mn, whereM is the scale where these terms a
created; then in general the mass matrices are of the form

S l2 l

l 1D , ~14!

wherel5^u&/M and a hierarchy in terms ofl arises;~2!
mixing of the coupling Higgs field; and ~3! mixing of the
coupling matter fields.

Thus additional symmetries, together with stages of spo
taneous symmetry breaking, allow for a natural explanati
of hierarchies of masses. This actually makes use of the h
discrete symmetry groups appearing in string models; the
fore, one may hope that the patterns of mass matrices m
help to determine the underlying discrete symmetries and
turn to give restrictions on a possible fundamental stri
theory.

Let us note here that there aretwo typesof texture zeros:
exactandphenomenological. The first type is a zero implied
by a symmetry. The second type relaxes the zeros in a w
that does not change the hierarchical structure of a giv
matrix. If we are assuming a fundamental theory that h
only certain couplings at the tree level, like a pure GU
theory, it is clear from the start that we deal with exact zero
On the other hand, zeros incorporating mechanisms 1–3
create entries in the mass matrices seem bound to be
nomenological.

After giving the underlying idea of creating hierarchies o
couplings and therefore masses, let us briefly quote
‘‘phenomenological’’ results of Ramond, Roberts, and Ro
@3#, which we will need for the discussion that follows. Here
the authors looked for parametrizations of symmetric qua
mass matrices in terms of possible texture zeros and a h
archical parameterl that is in accordance with experimen
Those structures would have then to be explained by sy
metries of the underlying theory. Although a pattern of zer
in one single mass matrix does not have a meaning on
own ~because of the possible redefinitions of the qua
fields!, it has a meaning for the up and down quark ma
matrices together. Therefore, one encounters arelative struc-
ture ~e.g., one matrix may be made diagonal by redefinition
but the texture zero structure determines now the other m
trix.! A complete study of 5 and 6 texture zeros in the tw
mass matrices has been carried out along these lines. St
ing systematically all the possible cases and taking into
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count the running of the renormalization group equation
between the unification scaleMX , where the texture zeros
are assumed, andMW , five realistic pairs of texture zero
patterns for the quark mass matrices were found. These a
pear in Table I.

In general the texture zero structure is not unaffected b
the running of the renormalization group. Nevertheless th
hierarchy structure is preserved, indicating that the textur
zeros are kept at least asphenomenologicalones. We refer
the discussion to the following sections.

Let us now turn from the quark masses to lepton an
neutrino masses. In the case of the neutrino masses an ad
tional complication, through Majorana masses, arises. Th
experimentally relevant light neutrino mass matrix is given
by

mn
eff5mn

D~M nR
!21mn

D† , ~15!

wheremn
D is the Dirac neutrino mass matrix andM nR

the

heavy Majorana neutrino mass matrix. The matricesmn
D and

M nR
are completely generic, unless we assume a unificatio

that makes the predictionmn
D;mu . There are two ways of

reasoning behind such an assumption: either by a unified
by a partially unified theory. Such relations are then based o
a GUT or a string theory.3 For the GUT theories, the gauge
groups E6 , SU~5!, and SO~10! allow for an interesting phe-

3One should think that the~heterotic! string theory is the preferred
scenario, since it allows the solution of more fundamental problem
and also delivers a rich structure of discrete symmetries which ma
serve to introduce zeros and hierarchical patterns in the mass m
trices.

TABLE I. Approximate forms for the symmetric textures.

Solution Yu ,mn
D Yd

1 S 0 A2l6 0

A2l6 l4 0

0 0 1
D S 0 2l4 0

2l4 2l3 4l3

0 4l3 1
D

2 S 0 l6 0

l6 0 l2

0 l2 1
D S 0 2l4 0

2l4 2l3 2l3

0 2l3 1
D

3 S 0 0 A2l4

0 l4 0

A2l4 0 1
D S 0 2l4 0

2l4 2l3 4l3

0 4l3 1
D

4 S 0 A2l6 0

A2l6 A3l4 l2

0 l2 1
D S 0 2l4 0

2l4 2l3 0

0 0 1
D

5 S 0 0 l4

0 A2l4 l2/A2
l4 l2/A2 1

D S 0 2l4 0

2l4 2l3 0

0 0 1
D
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53 6385TEXTURES FOR NEUTRINO MASS MATRICES
nomenology. In the case of string gauge groups such as6
or subgroups of the same rank~after Wilson line breaking! as
well as in the flipped version of SU~5!, interesting relations
between fermion masses also appear quite naturally. Man
these models contain multiplets4 that allow for the same
structure of theu-quark mass matrixmu and the Dirac neu-
trino mass matrixmn

D . However, as we mentioned in the
Introduction, if the unified gauge group is not of string or
gin, representations such as the126 of SO~10! may be
present in the theory and the Dirac neutrino mass matrix
not directly proportional to the up quark mass matrix. Act
ally, it can even be complex and non-Hermitian@8#. In the
model of @2# mentioned above, for example, the nonze
matrix elements of the up quark mass matrix have the fo
of texture 2 of Table I. Assuming that the elements~2,3! and
~3,2! are generated by the126 representation of SO~10!,
while ~1,2!, ~2,1!, and~3,3! are obtained by a nonzero VEV
of the 10 of SO~10!, one finds@2,29# ~with P'Amumc/mt

andQ'Amc /mt) the modified matrix that appears on th
right side in Table II.

In the following analysis, we will find it convenient to
demand Hermitian matricesM nR

. This will enable us to clas-
sify the general three exact and any number of phenome
logical texture zero solutions and to give some insight in
solutions with less exact texture zeros. For the reasons
plained above, will further restrict most of the analysis in th
mn
D5mu case, but we will also present few examples f

more complicated cases.
Before passing to specific examples we have to disc

the lepton mass matrices, since their diagonalizing mat
enters in the mixing matrix of the charged leptonic curren
In complete analogy to the quark currents the lepton
@Kobayashi-Maskawa~KM !# mixing matrix is

Vtot5Vl Vn
† , ~16!

where Vl diagonalizes the charged lepton mass matr
while Vn diagonalizes the light neutrino mass matrix. Inste
of making a specific assumption for the lepton mass mat
or ~equivalently! the associated Yukawa couplings, we ju
treat them as parameters. We will only apply the observat
that the charged lepton hierarchical structure usually do
not lead to large mixings. E.g., the ansatz in@31#, which is
case 3 in Table I for the quark masses andme'md up to a

4This, however, has to be taken with a grain of salt, since in t
~very interesting! case of Wilson line breaking of E6 in a heterotic
string theory this structure is not perpetuated to the broken the
@13,30#.

TABLE II. The form of the up quark and Dirac mass matrices
the Harvey-Ramond-Reiss~HRR! ansatz@2#.

mu mn
D

S 0 P/V 0

P/V 0 Q/V

0 Q/V 1
D S 0 P/V 0

P/V 0 23Q/V

0 23Q/V 1
D
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numerical factor, has been studied extensively and it wa
found @32# that the mixing matrix due to charged current
interactions,Vl , is given by

Vl 5S 1 s3 2s2

2s3 1 s1

s2 2s1 1
D , ~17!

where the parameterss1,2,3 are determined in terms of ferm-
ion mass ratios. For this ansatz,

s356.931022,

s153.9531022,

s2;
mc

mt
;1022. ~18!

~Here we omitted possible complex phases, since they shou
be irrelevant when just discussing the mixing alone.! This
indicates that while thee-t mixing is too small to have any
importance for the MSW effect, thee-m mixing is suffi-
ciently large. The total mixing matrix for the neutrinos is
given by~16!. This indicates that in this ansatz, even if MSW
oscillations cannot be generated only viaVn , including the
mixing coming from the charged current interactions may
lead to a solution.

IV. FORM OF THE MAJORANA MASS MATRIX:
A FIRST EXAMPLE

In this section we will consider a first example of a model
with exact texture zeros, which potentially allows the consis
tent incorporation of all experimental data. Here we will
study the case with a strong mixing in the 2-3 entries of th
effective neutrino mass matrix (nm-nt mixing!. This will
then enable a solution of the atmospheric neutrino problem
For simplicity, we assume that MSW oscillations are gener
ated due to the mixing that arises from the charged curre
interactions. Furthermore, we want to have nearly degenera
masses. To simplify the analysis, we take the 1-2 and 1-
mixing angles to be zero in this simple example. The Dirac
mass matrix is taken to be given by the Giudice ansatz.

In order to identify the possible forms of the heavy Ma-
jorana mass matrix, we start from an effective light mas
matrix with a strong mixing. We then investigate which form
of the heavy Majorana mass matrix is compatible with the
specific form of the neutrino Dirac mass matrix. This is the
procedure we will follow in the Appendix, in order to obtain
a full range of viable patterns for the heavy Majorana mas
matrix. There, we also discuss the issue of the comple
phases involved in all the mixings.

We invert ~15!,

meff
215~mn

D†!21~M nR
!~mn

D!21, ~19!

to get

M nR
5mn

D†meff
21mn

D. ~20!

wheremeff
21 diag is given by

he

ory

in
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meff
21 diag5S 1

m1
0 0

0
1

m2
0

0 0
1

m3

D . ~21!

With the mixing matrix

Vn5S 1 0 0

0 c1 2s1

0 s1 c1
D , ~22!

meff
215Vnmeff

21diagVn
T has the form

meff
215S 1

m1
0 0

0
c1
2

m2
1

s1
2

m3
c1s1S 1

m2
2

1

m3
D

0 c1s1S 1

m2
2

1

m3
D c1

2

m3
1

s1
2

m2

D
[S a 0 0

0 b d

0 d c
D . ~23!

Identifying the entries gives

sin22u15
4d2

~m2
212m3

21!2
,

m1
215a,

m2
215

b

2
1
c

2
1
1

2
Ab222bc1c214d2,

m3
215

b

2
1
c

2
2
1

2
Ab222bc1c214d2, ~24!

whereu1 is thenm-nt mixing angle.
The case of the absolute value of the three masses eq5

~i.e.,m15m2 , m352m2) is equivalent to

b5c50, a5d. ~25!

Therefore

sin22u151, u1545°. ~26!

The form of the heavy Majorana mass matrix may then ea
ily be found from~20!. For the Giudice ansatz,6 where~after
rescaling!

mn
D5S 0 0 x

0 x 0

x 0 1
D , ~27!

we find that
1
x2S c12m3

1
s1
2

m2
D x2

sin2u1
2 S 1

m2
2

1

m3
D xS c12m3

1
s1
2

m2
D

x2
sin2u1
2 S 1

m2
2

1

m3
D x2S c12m2

1
s1
2

m3
D x

sin2u1
2 S 1

m2
2

1

m3
D

x2S c12m3
1

s1
2

m2
D x

sin2u1
2 S 1

m2
2

1

m3
D x2

m1
1

c1
2

m3
1

s1
2

m2

2 . ~28!
ve.
-

un-

se
For the above values of the three light masses this becom

M nR
5S 0 MNx 0

MNx 0 MN

0 MN MNx
D , ~29!

whereMN5xd'101121013 GeV. Thus, we see that in this
example the degeneracy of all three masses and one la
mixing angle is consistent and may be understood in terms
texture zeros of the heavy Majorana neutrino mass mat
M nR

at the scaleMX . We stress that such three texture ze
es

rge
of
rix
ro

solutions are maximal. More zeros normally7 imply a van-
ishing determinant and less texture zeros are less predicti

If we only havec50, then the heavy Majorana mass ma
trix becomes

5The fact that these relative signs between the masses are of f
damental importance will be discussed in the Appendix.
6The reader should keep in mind that this ansatz differs from ca

3 in Table I by two factors ofA2. Therefore we take herex instead
of l to denote the difference.
7See also the discussion about this point in the Appendix.
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M nR
5S 0 MNx 0

MNx
b

d
MNx MN

0 MN
a

d
MNx

D , ~30!

whereMN'xd and it possesses less texture zeros than
fore.

For the systematic study of the three texture zero so
tions, we refer the reader to the Appendix. Here all possib
cases of solutions with at least one large mixing angle a
given.

Let us now consider an SO~10! covering group, and as-
sume that the entries of the up quark and the Dirac neutr
mass matrices can arise from couplings to scalar fields wh
belong to the 10 and/or126 representations of the group. If
only 126 representations are involved, we have8 the relation
mn
D;mu. In the case that both types of representations a

involved, one obtains factors of23 in certain entries of the
mass matrix and unity factors in others, resulting in matric
with a slightly different structure. This would lead to predic
tions for the heavy Majorana mass matrix that differ only b
factors from the ones we have presented. In the simple
ample we gave above, forb5c50, a Dirac neutrino mass
matrix of the form

M n
D;S 0 0 x

0 2x/3 0

x 0 1
D , ~31!

which would result~for the same phenomenological choic
of mn

eff) in the heavy Majorana mass matrix

M nR
;S 0 MNx 0

MNx 0 MN

0 MN 23MNx
D . ~32!

In the case of the Harvey-Ramond-Reiss~HRR! ansatz of
Table II, when the coefficients that appear on the right-ha
side of Table II are included, the resulting heavy Majoran
neutrino mass matrix forb5c50 and large mixing in the
2-3 sector takes the form

M nR
5S 0 23dl8 dl6

23dl8 al12 9dl4

dl6 9dl4 26dl2
D MN. ~33!

The latter should be compared with the matrix obtained w
our procedure~solution 2 of Table IV which appears in the
following section!.

8Here, to be accurate, we should note that an overall factor o
multiplies the entries of the neutrino mass matrix, since in this ca
the VEV is pointing parallel to the hypercharge generator with e
ements unities and23 in the diagonal entries. However, this doe
not affect the structure of the matrices and can be absorbed in
overall scale that multiplies the matrices.
be-
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Since in our numerical analysis only the form ofmn
eff

enters, andnot the Dirac or the heavy Majorana mass matri
ces, we opted to use as few input parameters as possib
These seem to be adequate for the description of the know
neutrino properties. Of course, in the most general case, o
could also take into account the possibility to have nonsym
metric mass matrices, as it was done in@8#. This, however,
goes beyond the scope of the analysis that we present he

V. STUDY OF VIABLE MAJORANA MASS MATRICES

In this section we will discuss mass matrices at the low
energy scaleMW . So far we studied exact texture zeros o
neutrino mass matrices at the unification scaleMX . To in-
vestigate their impact on mass matrices atMW , one has to
perform a renormalization group analysis. As already men
tioned, the exact texture zeros are in general not preserve
Nevertheless, the hierarchical structure is kept. Or, to say
in other words,exacttexture zeros becomephenomenologi-
cal ones. We therefore want to study such phenomenologic
zeros atMW here and confront these solutions with the pre
liminary solutions atMX in Sec. VII. At this stage we want
to stress that a discussion of phenomenological zeros
MW immediately applies toMX as well, the reason being the
preservation of the hierarchical structure by the renormaliz
tion group running between the two scales.

We take the admissible Dirac mass matrices from Table
and study again solutions of~19!, assuming one large angle
to solve the atmospheric neutrino and drop any further mix
ing inm eff

21 . We may then imagine the small mixing~needed
for the solar neutrino deficit! to be due to the phenomeno-
logical character of the zeros or to reside in the charge
lepton mixing. Therefore this approach is less stringent tha
the one in Sec. IV and the Appendix, where the small mixin
atMX was taken to be zero or physically trivial for all three
zero textures. Here we will parametrize the small mixing in
the appropriate way.

We start with an atmospheric neutrino mixing residing in
the 2-3 submatrix.meff

21 then takes the form~23!, which we
use as a convenient parametrization. The solutions~20! of
~19! allowing for texture zeros9 in M nR

are given in Tables
III and IV. Textures arising from a large mixing in the 1-2
submatrix appear in Table V. Heremeff

21 takes a form similar
to ~23!, where the off-diagonal elementsd appear in the 1-2
submatrix.

We now pass to a discussion of the phenomenology in
duced by the forms ofmeff

21 that have been quoted. We in-
vestigate the case of a large mixing in the 2-3 submatrix. Th
case of large mixing in the 1-2 submatrix is very much th
same and leads to analogous conclusions.

There are two possibilities10 for texture zero solutions:
b50 or c50 that follow.

~i! c 5 0. Imposing this constraint onto~23! suggests a

f 3
se
l-
s
the

9These zeros are only of phenomenological type mainly due to th
effect of the renormalization group~RG! onmn

D .
10The caseb5c50, e.g., has been already discussed for the Dira

mass matrix pattern 3 of Table I in Sec. IV and impliesj51, and is
therefore in accordance with~45!.
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TABLE III. The texture zero solutions of the Majorana mass matrices associated with each of the Dir
mass textures of Table I with a large mixing in the 2-3 submatrix. We present here cases where ei
b50 or c50. The nonleading powers are in brackets except for the terms containing the parame
a5 1/m1 .

Solution M nR
/MN Comments

1a S 0 0
d

c
A2l6

0 2
a

c
l12

d

c
l4

d

c
A2l6

d

c
l4 1

D for b50

1b S 2
b

d
l8 A2

b

d
l6 A2l2

A2
b

d
l6

b

d
l412

a

d
l8 1

A2l2 1 0

D for c50

2 S 0
d

c
l8

d

c
l6

d

c
l8 l41

a

c
l12 l2F1

d

c
l4G

d

c
l6 l2F1

d

c
l4G 1F12

d

c
l2G D for b50

3a S 0 A2l4 0

A2l4
b

d
l4 1

0 1 2
a

d
l4
D for c50

3b S 2l8 A2
d

c
l8 A2l4

A2
d

c
l8 0

d

c
l4

A2l4
d

c
l4 112

a

c
l8

D for b50

4 S 0
d

c
A2l8

d

c
A2l6

d

c
A2l8 l4F12A3

d

c
l6G12

a

c
l12 l2F1~11A3!

d

c
l4G

d

c
A2l6 l2F1~11A3!

d

c
l4G 1F12

d

c
l2G D for b50

5 S 0 l6 1

2
l4

l6 A2l4
112A2

4
l2F1

b

d

1

A2
l4G

1

2
l4

112A2
4

l2F1
b

d

1

A2
l4G 1F1

b

d

l2

2A2G1
a

d

1

A2
l6

D for c50
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TABLE IV. Cases as in Table II, but withb5c50.

Solution M nR
/MN Comments

1 S 0 0 A2dl6

0 2al12 dl4

A2dl6 dl4 0
D for b5c50

2 S 0 dl8 dl6

dl8 al12 dl4

dl6 dl4 2 dl2
D for b5c50

3 S 0 A2dl8 0

A2dl8 0 dl4

0 dl4 2 al8
D for b5c50

4 S 0 A2dl8 A2dl6

A2dl8 2A3dl612 al12 dl41A3dl4

A2dl6 dl41A3dl4 2 dl2
D for b5c50

5 S 0 A2dl8
dl6

A2

A2dl8 2 dl6 dl4

2
1A2dl4

dl6

A2
dl4

2
1A2dl4 A2dl21al8

D for b5c50
nly

fi-

l

rewriting in terms of the parameterj52m2 /m3.0. Then

c15
1

A11j
, s15

Aj

A11j
, ~34!

meff
215S 1

m1
0 0

0
12j

m2

Aj

m2

0
Aj

m2

0

D , ~35!

and thus

sin22u15
4j

~11j!2
. ~36!

The neutrino oscillation probabilities are given in terms
the mixing matrix~where the origin ofue is undetermined, as
already said!

Vtot5Ve
†Vn5S ce 2se 0

se ce 0

0 0 1
D S 1 0 0

0 c1 s1

0 2s1 c1
D , ~37!

Vtot5S ce 2sec1 2ses1

se cec1 ces1

0 2s1 c1
D , ~38!
of

where we take

se'Ame

mm
'0.07, ce'1. ~39!

Such an ansatz for the charged leptons is most commo
used@1#. Furthermore, theblock form ~37! seems appropriate
to accommodate the data, since~1!, ~2!, ~6!, and~7! strongly
suggest this. A more general ansatz is definitely more dif
cult to handle.

It is now straightforward to calculate the oscillations
P(na→nb) for ~38!, using some identities and the genera
formula from @27#. We thus obtain

P~nm→nt!5ce
2 4j

~11j!2
sin2

m2
2~1/j221!x

4En
, ~40!

P~ne→nt!5se
2 4j

~11j!2
sin2

m2
2~1/j221!x

4En
, ~41!

P~ne→nm!5sin22ue F 1

~11j!
sin2

~m2
22m1

2!x

4En

1
j

~11j!
sin2

~m3
22m1

2!x

4En

2
j

~11j!2
sin2

~m3
22m2

2!x

4En
G . ~42!
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TABLE V. The texture zero solutions of the Majorana mass matrices associated with each of the D
mass textures of Table I with a large mixing in the 1-2 submatrix, for the examples withb50. Only cases for
b50 emerge and the solutions fora5b50 follow immediately.

Solution M nR
/MN Comments

1 S 0 2
d

c
l12 0

2
d

c
l12 2A2

d

c
l1012

a

c
l12 0

0 0 1

D for b50

2 S 0
d

c
l12 0

d

c
l12 l41

a

c
l12 l21

d

c
l8

0 l21
d

c
l8 1

D for b50

3 S 2l8 0 A2l4

0 0 A2
d

c
l8

A2l4 A2
d

c
l8 112

a

c
l8
D for b50

4 S 0 2
d

c
l12 0

2
d

c
l12 2A6

d

c
l1012

a

c
l12 l21A2

d

c
l8

0 l21A2
d

c
l8 1

D for b50

5 S l8
l6

A2
l4

l6

A2
l4

2

l2

A2
1A2

d

c
l8

l4
l2

A2
1A2

d

c
l8 112

d

c

l6

A2
1
a

c
l8

D for b50
s
ta

g-

s

~ii ! b 5 0. In this case we obtain, with the same param
etrization,

c15
Aj

A11j
, s15

1

A11j
, ~43!

meff
215S 1

m1
0 0

0 0
Aj

m2

0
Aj

m2

12j

m2

D , ~44!
-
and again the expression~36! for sin22u1. The oscillation
probabilities fornm→nt and ne→nt remain the same. For
the oscillationne→nm we have to substitutej→1/j.

Let us now compare these two possibilities for texture
with the experimental data. The atmospheric neutrino da
implies via ~6! that j is in between

j150.23 and j254.4. ~45!

Since j1j251 the value ofj selected merely determines
which of the neutrino masses is heavier, as well as the ma
nitude of the masses. Indeed, fromm3

25dm2/(12j2) and
m2
25m3

22dm2, we observe that, for a valuedm2'0.01
eV2 as implied by the atmospheric neutrino data, only value
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of j very near unity would give neutrino masses of ord
;1 eV. In particular, one may see that

m3'm2'1 eV for j50.995. ~46!

Here we should note that this is found by using the results
@26# which are quoted in the Introduction and are strict
than those of@18#. In this last reference,dm2 for m-t oscil-
lations can be as high as 0.5 eV2. In this case one finds, e.g.

m351.62 eV, m251.45 eV for j50.90. ~47!

After accommodating the atmospheric neutrino data, w
turn to a discussion of the solar neutrino numbers, and in t
example we interpret them asne→nm oscillations. From~42!
we may obtain an effective sin22uem . Depending on the size
of j, the 1/(11j) or j/(11j) term dominates:

j!1: sin22uem'sin22ue
1

11j
'1.631022; ~48!

j@1: sin22uem'sin22ue
j

11j
'1.631022, ~49!

when inserting the value ofue from ~39! and j from ~45!.
This is just in agreement with the MSW solution~2!. To
satisfy the mass constraints,m1 must be nearly equal to
m2 . For an average massm0'1 eV, dm12

2

'2m0um22m1u'1025 eV2 indicates the need for a very
big degeneracy. Such a high degree of degeneracy is
tremely hard to explain from an underlying theory withou
fine-tuning, unless the masses are forced to such values
symmetries. In Sec. VI we are going to show why this is th
case.

Finally we want to discuss neutrinoless doubleb decay
and the COBE data. For the first one, from~8! and~38!, we
obtain

u^mne
&u5Uce2m11ei ~l22l1!se

2S c122 s1
2

j
ei ~l32l2!Dm2U, ~50!

whereei (l22l1) is the relativeCP eigenvalue ofn1 and n2
~the masses here are positive!. Takingn2 andn3 to have the
sameCP eigenvalues~as already discussed in Sec. II!, we
obtain

u^mne
&u5Uce2m11ei ~l22l1!se

2S c122 s1
2

j Dm2U. ~51!

Now we may again study the texture zeros. With~34! we get

u^mne
&u5ce

2m1'm15;1 eV, ~52!

which is consistent with the bound~8!. The above predic-
tions are consistent with the COBE data, as well, since t
sum of the masses for the parameter range we indicate ca
of order a few eV’s, as required. Therefore we conclude th
there is no problem in accommodating the experimental d
for the phenomenological texture zero solutions. An identic
situation occurs when the large mixing which explains th
atmospheric neutrino deficit is in the 1-2 entries of the ne
trino mass matrices.
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VI. DERIVATION OF TEXTURES
FROM U „1… SYMMETRIES

In Sec. III, we already gave the motivation for looking for
texture zeros, arising due to symmetries in the underlyin
string or GUT theory. After obtaining a classification of
three exact and the general phenomenological texture ze
solutions in the Appendix~respectively Sec. V!, we want to
demonstrate how such patterns come about. Let us consi
the possibility of obtaining the above textures from addi
tional U~1! symmetries, following from the work of Iba´ñez
and Ross~IR! @4# as well as@5,6#. We stress again that such
additional U~1! symmetries appear most naturally in string
theories~especially at the ‘‘conformal point’’!. The U~1! FD
charges assigned to the matter fields can be found in I
They are chosen in such a way as to make the mass matri
symmetric ~respectively Hermitian!. Moreover, the lighter
generation charges are fixed by the need to have anom
cancellation, which is ensured by taking the U~1! to be trace-
less. Then one obtains the structure

mu'S e u24a122a2u e u23a1u e u2a222a1u

e u23a1u e u2~a22a1!u e ua22a1u

e u2a222a1u e ua22a1u 1
D , ~53!

which exhibits the relations

m11
u .

~m13
u !2

m33
u , m22

u .
~m23

u !2

m33
u . ~54!

This structure is consistent with solutions 1, 2, and 4 of th
textures shown in Table I. This is because a texture zero
the~1,3! position is correlated with a texture zero in the~1,1!
position. In@5,6# a similar analysis had been done to derive
the Majorana mass matrices from U~1! symmetries for the
case of the up quark matrix, Eq.~53!. In this work, we ex-
amined the simplest case which arises when adding only o
new pair of singlet fieldsS, S̄ with zero hypercharge, but
charged under the new U~1! symmetry.

Here, we will show how one can derive by symmetrie
cases 1 and 3, which seem to have the optimal structu
especially for a heavy Majorana mass matrix with many tex
ture zeros, as we can see from Tables II and III. In@4#, the
correctu-quark mass matrix is found by making the choice
of a2 /a1 , which generates the right order for the nonzer
elements of the solutions 1, 2, or 4. By demanding that th
powers of the~1,2! and~2,3! matrix elements be in the ratio
3:1 ~as needed for solution 2 or 4!, a252a1 and the
u-quark mass matrix has the form

mu'S e8 e3 e4

e3 e2 e

e4 e 1
D . ~55!

Here one also uses the freedom to seta151 through a re-
definition of the parameter e and a2 @i.e.,
e→(e)a1,a2→a2 /a1]. Notice that, e.g., in solution 2 the
~2,2! element is zero, but it actually does not affect the phe
nomenology if it is up toe2. Further study reveals that one
may obtain exactly the same hierarchy structure formd ,



d

n

s

c-
e

te

-
he

a-

rms

ll

t

6392 53LEONTARIS, LOLA, SCHEICH, AND VERGADOS
where one encounters only a different parameterē @4#. These
two matrices closely resemble case 2 in Table I and are
agreement with the data.

For possible choices of the lepton masses, we refer
reader to @4# and the extension in@5#. We remark that
mu;mn

D is more or less the simplest choice for the Dira
neutrino masses. But what are the predictions for the Ma
rana neutrino mass matrix? The most obvious choice lead
the same charge pattern as for theu quarks, with an addi-
tional complication coming from the presence of a singl
field. As we have already mentioned, right-handed fields g
Majorana masses from a term of the formnRnRS whereS is
a SU~3!^SU~2!^U~1! invariant Higgs scalar field with
IW50 andnR is a right-handed neutrino. If we assume aS
field with charge21, it will make the ~2,3! entry of the
resulting mass matrix 1. Indeed, what we obtain in term
of ē is @5,6#

M nR
'S 0 ē ~2321! ē ~2421!

ē ~2321! ē 1

ē ~2421! 1 ē ~21!
D , ~56!

where we have set the smaller entry to zero and have not
taken the absolute values of the charges in the expone
since at the next stage we are going to introduce a sec
singlet field, which alters the structure of the heavy Majora
mass matrix and we want to have the effect of the charge
each field manifest. The matrix in Eq.~56! has a similar
structure to the one we derived in~30!, for the 2-3 sector
~that is the down right 232 submatrix!. To obtain the de-
sired structure for the complete matrix, we add a seco
S8 field which develops a similar VEV and has a quantu
number12 under U~1! symmetry. This means that now, in
the heavy Majorana neutrino mass matrix, the dominant e
ment will be the one with the biggest absolute power inē.
I.e., the elements~2,2!, ~2,3!, and ~3,3! would still arise
mainly due to the couplings to theS field with charge21,
while the~1,2! and~1,3! elements arise from the couplings to
to S8. Then the complete matrix is

M nR
'S 0 ē ē2

ē ē 1

ē 2 1 ē
D , ~57!

and the structure would be that of the example in Sec. I
Actually, this is in fact the solution with onlyc50 @where
the ~2,2! element is of orderē#.

Is that generic, in the sense that we may create any m
matrix in that way? Within the simple procedure of addin
only a U~1! symmetry and more singlet fields, the answer
probably negative. Nevertheless, going beyond the sim
descriptions given above, while assuming more than o
U~1! symmetries, the phenomenologically viable Majoran
mass matrices obtained in this work may be derived na
rally.

After examining how the structure of the heavy Majoran
mass matrix may arise, we come back to the generation
the quark mass matrices for the preferred cases 1 and 3.
start with theu-quark mass matrix for the two cases. In cas
1 we need the~2,3! element to be zero. This can be done b
in
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assuming that the total charge of this entry is half-integer an
therefore gets banned by aZ2 symmetry. In principle, we
could choose a large U~1! charge, for this entry, which would
make it small. However, the~2,2! entry is the square of the
~2,3! entry as we see from~54!. Therefore the first choice is
the correct one. The~1,2! entry, which ise u23a1u, has to be
nonzero. Thusa1 is integer,a2 half-integer. This implies
that not is only the~2,3! entry zero, but also the~1,3!. The
form of the mass matrix is

mu'S e u24a122a2u e u23a1u 0

e u23a1u e u2~a22a1!u 0

0 0 1
D . ~58!

Settinga25c(w/2)a1 , w 5 odd integer, one may choose
w so as to have the~1,1! entry in high power and thus effec-
tively zero, while getting the hierarchical structure betwee
the two nonzero entries~1,2! and ~2,2!. The relation of the
abovee to the one in@4# and @5# should be clear from the
context.

Case 3~the Giudice ansatz! may occur in the following
way. We need the~1,2! entry to be 0; thus, it isa1 which we
take to be half-integer. Takinga2 integer, the~2,3! entry is
automatically zero and the mass matrix is of the form

mu'S e u24a122a2u 0 e u2a222a1u

0 e u2~a22a1!u 0

e u2a222a1u 0 1
D . ~59!

The entry~1,1! is once more effectively zero, since it appear
at a high power. The~1,3! and~2,2! entries can be made the
same~up to a coefficient! by setting

a254a1 . ~60!

After theu-quark mass matrices, we have to tackle the stru
tures for thed-quark mass matrices. Here things are mor
complicated, but the main idea has already been given in@3#.
One has to use different mixings in the light Higgs fields
H1 ,H2 . In principle one may create any structure from a
complicated enough mixing. Here we want to demonstra
that often already simple mixing will do. The general form is

H1,2
light5H1,21(

r
SH1,2

r ^u& r

M1,2
r 1H1,2

2r ^ū&2r

M1,2
r D , ~61!

where we denote byH1,2
r a Higgs field11 carrying a U~1!

charger . Which elements of a specific mass matrix are ac
tually created depends entirely on the terms in the sum on t
right-hand side~RHS!.

In this way, one can reproduce the down quark mass m
trix for case 1. The~1,3! entry then can be almost zero,
because it can be related to a higher charge, as both the te
that containa1,2 have the same sign. However, now, the
~2,3! entry is no longer zero. There seems to be a sma

11Here we assumed for simplicity one pair of fieldsu,ū with
charge 61. One might also have several pairs with differen
charges and couplings.
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problem here. This is that the~2,2! and ~2,3! entries are
related, and while now we get~2,3! 2'~2,2!, in the textures
of Ramond, Roberts, and Ross, they are of the same or
However, note that this can be fixed by a choice of coef
cients.

Similarly, we can get case 3 by a suitable mixing. Th
d-quark mass matrix here is of the form

md'S 0 ē 3 ē 4

ē 3 ē 2 ē

ē 4 ē 1
D . ~62!

This structure for the down mass matrix is viable. But is th
up? We saw before how we can get it in general~59!. We
observe that the~1,2! and ~2,3! entries, which we want to
vanish, are odd numbers, while the others that we have
retain are even. We therefore need aZ2 symmetry to ban the
odd charges in~62!. But this can be done easily if there ar
only fields with even charges in the light Higgs fields~61!
that couples tomu . Then we get

mu'S 0 0 e4

0 e2 0

e4 0 1
D , ~63!

which just gives the~2,2! entry larger than what we would
like. However, the basic structure is the same and coe
cients can make it even better.

VII. RENORMALIZATION EFFECTS

Up to now, in Sec. IV~respectively, the Appendix! we
found all exact three texture zero solutions at the sca
MX , while in Sec. V we discussed phenomenological textu
zero solutions atMW and found that there is hardly any dif-
ficulty in accommodating the experimental data. From th
range of solutions forj in ~45! it is clear that there is no
problem in reconciling the solutions at both scales. A natu
solution to all the neutrino puzzles may be obtained when t
light effective Majorana mass scale is;1 eV. In the context
of a grand unified theory such a small scale is obtained
the implementation of theseesawmechanism, resulting in

the effective light~Majorana! mass matrixmn
eff5mn

D2
/M nR

.

As already discussed, in GUT’s the scalemn
D is usually fixed

by the quark mass matrixmn
D;mQ ; therefore, the right-

handed neutrino scale should be aroundMN;101221013

GeV, i.e., at least three orders smaller than the gauge un
cation scaleMX;1016 GeV. Then, the running of the cou-
plings from the unification scaleMX down to the scale of
M nR

must include possible radiative corrections fromnR
neutrinos. After that scale,nR’s decouple from the spectrum,
and the effectiveseesawmechanism discussed above is op
erative. This running, even if of order 1, will not be able t
spoil the neutrino hierarchy of the mass matrices. For t
phenomenological zeros atMX this is even more obvious.

It has already been observed that the main result of
presence ofnR is a 10% effect in theb-t unification, and that
only for small tanb (ht@hb) @19#. It is well known that, in
most of the unified gauge groups, theb-t equality is a stan-
der.
fi-

e

e

to

e
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le
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dard successful prediction. Indeed, after taking into accou
renormalization group effects fromMX down toMW , the
correctmb /mt ratio at low energies is obtained naturally if
the Yukawa couplingshb ,ht are equal at the GUT scale. In
the presence of the right-handed neutrino, however, t
renormalization group equations~RGE’s! get modified for
small tanb.

Since at this stage we already make a distinction betwe
small and large tanb, we should note the following concern-
ing mass matrices: In the simplest scheme~IR! where one
tries to derive the known fermion masses from U~1! symme-
tries, the model is forced to be in the large tanb regime. This
is because at the tree level the U~1! quantum numbers of the
light Higgs fieldsH1 ,H2 allow them to couple to the third
generation and an effective SU(2)l ^SU(2)R symmetry of
the couplings ensures equal Yukawa couplingshb'ht . Nev-
ertheless, the model is easily modified if there is an add
tional heavy stateHi ,H̄ i , i51 or 2, with the same U~1!
quantum number. Then mixing effects can generate differe
hb andht couplings, allowing for any value of tanb.

The RGE’s for small tanb and for the third generation
Yukawa coupling can be approximated as

16p2
d

dt
ht5~6ht

21hN
22GU!ht , ~64!

16p2
d

dt
hN5~4hN

213ht
22GN!hN , ~65!

16p2
d

dt
hb5~ht

22GD!hb , ~66!

16p2
d

dt
ht5~hN

22GE!ht , ~67!

wherehN is the largest Yukawa coupling of the right-hande
neutrinos. TheGa5( i51

3 ca
i gi(t)

2 are functions that depend
on the gauge couplings and the coefficientsca

i . Below
MN , the right-handed neutrino decouples from the massle
spectrum and we are left with the standard spectrum of t
MSSM. Thus for scalest beyondMN the gauge and Yukawa
couplings evolve according to the standard renormalizati
group equations. We may see clearly the effect of thenR
threshold on theb-t unification if we write the relation be-
tween the Yukawa couplings at theM nR

scale:

hb~ tN!5rj t
gD

gE
ht~ tN!, ~68!

with r5hb0 /ht0
jN and

ga~ t !5expS 1

16p2E
t0

t

Ga~ t !dtD , ~69!

j i5expS 1

16p2E
t0

t

hi
2dtD , ~70!

wheret0 is at the high scaleMX . Herej i<1. In the case of
b-t unification we haveht0

5hb0. Thus in the absence of the
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right-handed neutrinojN[1, which impliesr51, and the
mb mass has the phenomenologically reasonable predict
at low energies. However, in the presence ofnR , if
ht0

5hb0 at the GUT scale, the parameterr is no longer

equal to unity sincejN,1. In fact the parameterjN becomes
smaller for lowerMN scales. Therefore in order to restore th
correctmb /mt prediction at low energies we needr51,
which corresponds to

hb05ht0
jN . ~71!

This would seem to alter the relative structure betwe
the mass matrices; however, there exists a natural way
retain the successfulb-t unification, as is predicted by
GUT’s, with the simultaneous presence of the desired ne
trino mass scaleMN to resolve the neutrino puzzles. Such
solution has been proposed in@6# in the context of fermion
mass textures predicted by U~1! symmetries. It was found
that it is possible to retain themb

05mt
0 GUT prediction of the

(3,3) elements of the corresponding mass matrices, provid
there is sufficient mixing in the charged lepton mass mat
between the two heavier generations. But this mixing is al
what one needs in order to solve the atmospheric neutr
problem.

All this is true for the small tanb regime. In the case of a
large tanb the first thing to note is that there are importan
corrections to the bottom mass from one-loop graphs invo
ing SUSY scalar masses and them parameter, which can be
of the order of (30250)%. In addition to this, the effect of
the heavy neutrino scale is much smaller, since now the b
tom Yukawa coupling also runs to a fixed point; therefore, i
initial value does not play an important role. To compa
things, we look at the maximal possible effect on theb-t
unification, which would occur for a scaleMN51012 GeV,
and an upper limit for the running bottom massmb54.35. In
this case, for the parameter space whereht52.0 and
hb50.0125 lead to a factorjN50.86, when we set
hb52.0, jN50.96. Moreover, for the same example, if w
allow for a running bottom massmb54.4, jN50.99 ~re-
member that the effect of the neutrino is to increase t
bottom/t mass ratio!. For higher heavy neutrino scales, th
relevant effect is even smaller. However, even for larg
tanb, a strong mixing is also desired in order to solve th
atmospheric neutrino problem.

Finally, an additional effect of renormalization effects i
that, for large lepton couplings, they amplify the neutrin
mixing angle at the GUT scale when going to low energi
@33#. This is in the correct direction for a solution to the
atmospheric neutrino problem.

VIII. CONCLUSIONS

We have explored the possibility of deriving simple Ma
jorana mass matrices of right-handed neutrinos, which m
explain simultaneously all the neutrino experimental data~at-
mospheric neutrino oscillations, solar neutrino oscillations
the MSW approach, neutrinoless doubleb decay, and the
COBE data!. This can be accomplished by assuming the e
istence of a right-handed neutrino Majorana mass mat
M nR

with a scale (101221013) GeV. The solution of the
atmospheric neutrino puzzle resides in a large mixing ste
ion
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ming from the neutrino mass matrix. Some type of unifica
tion or partial unification implyingmn

D;mu was adopted.
This is a common relation in successful GUT’s, since
minimizes the number of arbitrary parameters and increas
the predictability of the theory.

Along these lines, we gave a complete classification
exactthree zero texture solutions at large scalesMX . These
solutions allow just one large mixing.12 On the other hand,
we studiedphenomenologicaltexture zero solutions at any
scale. It was found that there is no problem to reconcile bo
types of zero solutions with the experimental data.13 As we
see from Table III, in the large tanb case, a natural deriva-
tion of the right-handed neutrino mass matrixM nR

in terms
of the low energy constraints is obtained for cases 1 and

The inclusion of renormalization group effects due to th
right-handed neutrino threshold does not spoil these obser
tions. The main effect of including a neutrino running cou
pling is that, retaining the successfulmb

05mt
0 prediction at

the GUT scale, in the simplest schemes, it is now possib
only in the large tanb case. In the small tanb scenario, the
restoration ofb-t equality atMGUT requires a large mixing
in the charged lepton sector between the two heavier fam
lies, which is sufficient to solve the atmospheric neutrin
puzzle @6#. Interestingly enough, some of the phenomeno
logically derived mass textures that are presented can be
tained using additional simple U~1! symmetries along the
lines of @4#, assuming proper U~1! charges for the standard
matter fields and additional singlets acquiring vacuum expe
tation values.
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APPENDIX

In this appendix we carry out the systematic study of th
three texture zero solutions that allow one large mixin
angle. In particular, we are interested in three zeros, sin
this is in general the maximally allowed number for thre
nonzero eigenvalues. Indeed, although there exist three ca
of matrices with four texture zeros and three nonvanishin
eigenvalues, applying the discussion of Sec. IV to this ca
leads to an overdetermined set of constraints. Only if the
are additional structures~like the block structure ofmn

D in
case 1 of Table I! do solutions exist at all but even in this
case no large mixing may be obtained.

The inverse light neutrino Majorana matrix is

meff
215Rmeff

21diagRT, ~A1!

whereR are appropriaterotations. What type of rotations do
we have to study? Sincemn

D;mu and mu is real and

12We remark that all such solutions are given in the Appendi
even if they do not allow the required mass degeneracies.
13See also previous footnote.
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TABLE VI. Possible textures for largene-nm mixing.

MN matrices for textures of Dirac mass matrix 1

S0 0 c

0 d e

c e 0
D c1

25
1
2 e250 e350 2m25m3

MN matrices for textures of Dirac mass matrix 2

S0 b c

b 0 e

c e 0
D c1

25
1
2 e2Þ0 e350 6m1,,2m25m3

MN matrices for textures of Dirac mass matrix 3

S0 b 0

b 0 e

0 e f
D c1

25
1
2 e250 e350 2m25m3
r

the

-
s
sk
al-

ing

n
-
the
symmetric,14mn
D is real symmetric as well.M nR

andmeff are

complex symmetric, and the complex phases are in gen
relevant. Trying to absorb them by redefinitions would l
them reappear inmn

D . However, instead of taking the genera
R required for the diagonalization of a complex symmetr
matrix ~Schur rotation!, we restrictR to those diagonalizing
a real symmetric matrixand allow meff

21diag to possess nega
tive entries. One may convince oneself that this resumes
general all possible cases. Taking into account also comp
phases will only lead to further constraints on solution
Nevertheless, we have to stress that only including nega
eigenvalues formeff

21 allows nontrivial solutions. Thus we
only consider

R5RiRjRk, i , j ,kP1,2,3, not equal, ~A2!

whereRi denotes a rotation in thej -k plane, withiÞ j ,k.
We are now looking for all possible three texture ze

solutions that allow at least one large mixing angle.15 There
are 20 possibilities for three texture zeros inM nR

. Because
of the experiment, there has to be one large mixing eithe
the 1-2 or 2-3 submatrix to explain the atmospheric neutr
data. We restrict ourselves here to the case of one large m
ing and take the others to be small.~In the actual numerical
study, nevertheless, the precise formulas have been tak!
We therefore to solve

M nR
5mn

D†~Rmeff
21 diagRT!mn

D , ~A4!

where

14In the framework of@3#, mu can always be chosen to be rea
symmetric. Possible phases reside inmd and are suppressed in
Table I.
15Since

meff5Rmeff
diagRT, ~A3!

we have the sameR in ~A1!.
eral
et
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R5R1R2R3 , ~A5!

or permutations with

R15S 1 0 0

0 c1 2s1

0 s1 c1
D ,

R25S 1 0 2e2

0 1 0

e2 0 1
D ,

R35S 1 2e3 0

e3 1 0

0 0 1
D ~A6!

for the large mixing in the 2-3 submatrix and its analogue fo
the other case. The results are given in Tables VI and VII.

Here, one has to note that the results are dependent of
order in which we multiply theRi in ~76!. In general we find
thatR5R1R2R3 exhausts all possibilities and that any per
mutation is a subclass. But we will now also see why thi
dependence is somehow trivial. We denote with an asteri
the angles that are associated with two degenerate eigenv
ues. As explained in@27#, one is able to redefine the physical
states in those cases and a mixing has no physical mean
~as is, e.g., the case for all neutrinos massless!. Solutions
with the mixing being undetermined in this way have bee
dropped from the tables. The reason for this is that all solu
tions with degenerate eigenvalues only make sense when
texture zeros are not exact~otherwise the experimental data

l



re are

6396 53LEONTARIS, LOLA, SCHEICH, AND VERGADOS
TABLE VII. Possible heavy Majorana textures for largenm-nt mixing. An asterisk in the table denotes
arbitrary angles that are trivial, since they are associated with a mixing of degenerate eigenvalues. If the
only two masses given on the RHS, this implies that the third one is arbitrary. The sign,. means that
solutions with, and. are found.

Heavy Majorana textures of Dirac mass matrix 1

S0 b 0

b d 0

0 0 f
D

c3
25

1
2 * e250 2m15m25m3

e150 * m15m352m2

e150 e250 2m15m2

0,c3
2,1 * e250 2m1,.m25m3

e150 * m15m3,.6m2

e150 e250 2m1,.m2

Sa 0 0

0 d 0

0 0 f
D

c3
25

1
2

* e250 2m1'm25m3

e150 * m15m3'2m2

e150 e250 2m1'm2

0,c3
2,1 * e250 2m1,.m25m3

e150 * m15m3,.6m2

e150 e250 6m1,.m2

Sa b 0

b 0 0

0 0 f
D

c3
25

1
2

* e250 2m1'm25m3

e150 * m15m3'2m2

e150 e250 2m1'm2

0,c3
2,1 * e250 2m1,.m25m3

e150 * m15m3,.2m2

e150 e250 2m1,.m2

Heavy Majorana textures of Dirac mass matrix 2

S0 b 0

b d 0

0 0 f
D 0,c3

2,1 e150 e250 (6m1,.7m2),,m3

Heavy Majorana textures of Dirac mass matrix 3

Sa 0 c

0 0 e

c e 0
D 0,c3

2,1 e150 e250 Hm1,,~2m2,.m3!

~m1,.2m2!,,m3

~m1,.m3!..2m2

Heavy Majorana textures of Dirac mass matrix 4

S0 b 0

b 0 e

0 e f
D 0,c3

2,1 e150 e250 H~6m1,.7m2!,,m3

~6m1,.m3!..7m2

6m1,,~7m2,.m3!

S0 b 0

b d 0

0 0 f
D 0,c3

2,1 e150 e250 H~6m1,.7m2!,,m3

~6m1,.m3!..7m2

6m1,,~7m2,.m3!
t
cannot be explained!, implying by the smallness of these
entries that such an undetermined mixing angle will give
negligible effect.

Let us now summarize and discuss the results of this cl
sification. As can be seen from the tables there are seve
solutions for different Dirac neutrino mass matrices. It
clear that the three texture zero solutions in the exact fo
~exact zeros! allow onlyone large mixing. All the small mix-
a

as-
ral
is
rm

ings are either zero or trivial. Therefore it is necessary tha
the mixing for the solar neutrino reside inVl in ~16!. Nev-
ertheless, if the texture zeros are assumed to be only ofphe-
nomenologicalnature, additional small mixings might be
created. Finally, we point out that one may easily rewrite the
found solutions forM nR

in Tables VI and VII in a form that
is an analogue of the solutions of@3#. This had been done,
e.g., for the example in~29! in Sec. IV.
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