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The SU(5)--, SU(3)× SU(2)× U(I) phase transition is examined in the case of zero Higgs 
bare mass. We find that, depending on assumptions made, two scenarios are most likely to occur. 
Either the transition is rapidly completed into the SU(3) × SU(2) × U(1) phase, or the Universe 
supercools down to temperatures where the theory gets strongly coupled. In the latter case 
non-perturbative effects come into play. 

1. Introduction 

Grand unified theories and their cosmological implications in the framework of 
standard hot big bang cosmology have recently drawn a lot of attention. Among the 
many problems not well understood is the dynamics of the symmetry-breaking phase 
transition GUT-- ,  SU(3) X SU(2) X U(1). Even in the case of the simplest GUT,  the 
many existing free parameters allow for different scenarios with different possible 
consequences on the various relevant questions (monopoles, entropy generation, 

etc.). 
It has been suggested that when the symmetry breaking is driven by radiative 

corrections, i.e., the elementary Higgs scalars have zero bare mass, large gauge 
hierarchies seem most natural. Although no theory of this type which gives a large 
hierarchy without some unnatural adjustment in the Higgs sector is known, it is 
certainly interesting enough to investigate the consequences of the Coleman-Weinberg 
type of potential [1]. It is the purpose of this paper to elucidate the problem of the 
symmetry-breaking phase transition in the case of the Coleman-Weinberg potential. 
We restrict ourselves to the simplest G U T  SU(5) [2, 3] but believe that more 
complicated models would show similar qualitative behaviour. 

As is known from the study of the Coleman-Weinberg mechanism in the Wein- 
berg-Salam phase transition [4-6], the scale invariance of the classical potential 
forces all these transitions to be strongly first order and consequently very slow. In 
the case of the electroweak phase transition the Universe would supercool to 
absurdly low temperatures if it were not forced to the broken phase by the 
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dynamical breakdown of chiral symmetry [4]. Transitions of this kind proceed with 
the formation of bubbles of true vacuum inside an expanding Universe. The 
standard procedure is to calculate the bubble formation rate, carrying over to finite 
temperature the work of Callan and Coleman [7]. For a strictly Coleman-Weinberg 
potential the progress of the phase transition depends entirely on the bubble 
nucleation rate since the false vacuum never ceases to exist as a local minimum 
of the potential. This is not the case when the symmetry is broken at the tree 
level [8, 9]. 

We examine the possibility that although at zero temperature the parameters are 
constrained so that SU(5) breaks down to SU(3)× SU(2)× U(1), the Universe 
passes through an intermediate SU(4)× U(1) phase. This could happen because for 
a range of the Higgs parameters the supercooled transition to SU(4) × U(1) is faster 
than the transition to SU(3)× SU(2)× U(1). Whether or not the Universe passes 
through this intermediate phase, together with the amount of supercooling achieved, 
has considerable consequences on the monopole abundance problem [10-12]. 

Depending on the assumptions made, two scenarios emerge. In the first the 
transition goes directly to the 3-2-1 phase with moderate supercooling. In the second 
the Universe cools down to a temperature at which SU(5) gets strongly coupled. In 
this case, we argue that a condensate forms which drives the phase transition. 

2. The Higgs potential 

The one-loop effective potential of the adjoint Higgs gP is 

V ( ~ ) :  X M [ T r ( ~ 4 ) _  7 ( T r  ~2)2] + Xc[ ~ (Tr ~2) 2 -  Tr( ~4)1 

64~ "2 M/41n i . (1) 

We have neglected the scalar loops, anticipating that the Higgs self-couplings are of 
order g4 [3]. For Tr(~ 2) fixed, the potential is known to have extrema for the critical 
orbits 

= q~U + Diag(1,1,1, - -~, - 3)U, 

q : ~V + Diag(1,1,1,1,--4)V, 

where U and V are arbitrary SU(5) transformations and ~ and ~ scalars. The first 
choice breaks SU(5) down to SU(3) X SU(2) X U(1) (3-2-1) and the second down to 
SU(4) X U(1) (4-1). The masses of the heavy gauge bosons are correspondingly 

m i  2 = 2g~g2t~2, i = 1 ..... 12, 

M2 : ~g2~2, i : 1 ..... 8. 
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In both cases the potential reads 

V ( q ~ ) = ~ ] - ~ - ~  [m t ~  --½ . (2) 

The constant c~ is unity in the first case and ~ in the second case. In the second case 
one has to read ¢(~0) instead of ~(4'0). ~o(¢0) is the minimum of the SU(3) X SU(2) 
× U(1) [SU(4) X U(1)] potential. The minima are related to the couplings via 

2 _  8~ 2 [ 
q'o - 2-~g2 exp [ 

^ 2 - -  2~ 2 [ 
* o -  2-~g2 exp [ 

64~r2~c +3_11 ] 
15g4 

128~r z)tM45g 4 t- ~ ] .  

In order to ensure a deeper minimum in the SU(3)× SU(2)X U(1) direction, we 
must have 

- 60/~o ~ ( ~ ) , / 4  (3) 

Note that the investigation of the gauge hierarchy problem suggests that [3] 
Xc(ff) -~ 0 and ?,M(~t) --~ 0.03 at/~ = 2. 10 ~4 GeV. This corresponds to o -~ 5 • 10 -3, a 
number very close to zero. 

At non-zero temperature the potential is modified by the addition of the free 
energy of the gauge bosons [13] (we neglect the contribution of the Higgs bosons). 
Thus we have 

c218T4 {, exp/  x2+2 2c302j8 2 } 
V ( ¢ , T ) = V ( ¢ ) +  ~r 2 fo dxx21n 5g ) T_- ~=~ . (4) 

The constants appearing in (4) are c 2 = C 3 ~--- 1 for SU(3) X SU(2) X U(1) and c 2 =~ ,  
c 3 = 4 for SU(4)× U(1). The free energy has been normalized so that the full 
potential is zero at the origin. Expressing all the dimensional quantities in units of 
q~0, the potential can be written as 

[ 5625 

18T4r dxx21n 1- exp(- ¢x2 + 2592 2/8  ) 
+ ~ r  ~ .t o [ 1 - e  -x J 

(5) 
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1. Plot of the maximum (B) and minima (A and C) of the potential in the 3-2-1 and the 4-1 cases. In 
the second case, the curve is shown for o = (3~) I/4. 

in the 3-2-1 direction, and 

204i,ni02 
+ 12T4~r 2 .10/'°°dxx21n~ 1 - L  exPi - ~x2 +l----~-~2~g2q~2/2T2) } (6) 

for the 4-1 case. 
The minimum at non-zero temperature does not occur at %(~0) anymore. The 

local extrema of the potential are plotted in fig. 1 as a function of the temperature*. 
At very high temperatures there is only one minimum, at ~ = 0. Below some critical 
temperature there is a maximum B and two- local: minima C away from: the origin, 
and A at the origin. This plot is indicative of a strongly first-order phase transition 
[14-16]. The barrier (B) ceases to exist only at zero temperature. What happens as 
the Universe cools down is illustrated by fig. 2 in terms of the 3-2-1 potential. 

There is perhaps a distinction to be made between a Coleman-Weinberg type of 
potential and potentials for which the symmetry breaking is driven by a- negative 
squared mass term. In the former case, the metastability survives down to zero 
temperature and the duration of the transition cannot be read f rom the order_ 

* All numerical results presented are obtained using g2/4~r = ~ and Mx, v = 6.1014 GeV. 
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Fig. 2. Plot of the 3-2-1 potential for various typical temperatures. 

parameter  plot. One has to calculate the rate at which the bubbles of the broken 
phase fill the Universe as a function of temperature. The duration of the transition is 
determined by the temperature at which the rate becomes significant. 

Another problem is to know whether the Universe goes directly into the 3-2-1 
phase or if it passes through our intermediate 4-1 phase. Even if the 3-2-1 minimum 
is deeper at T =  0 it need not be so at non-zero temperature. In fig. 3 we have 
plotted the value of the potential at the minimum as a function of temperature at 
different values of o. One can see that for most values of o the 3-2-1 minimum is 
indeed deeper and the SU(3)X SU(2)X U(1) critical temperature (T~ = 0.3014) is 
higher than the SU(4) X U(1) one (To = 0.6028 a). For example, with the choices of 
ref. [3], the SU(4) X U(1) critical temperature comes out Tc -~ 0.0028. Of course, since 
we are talking about a strongly first-order phase transition, what is important is not 
the critical temperature, but the temperature a t  which the Universe goes into the 
broken phase. But again, as the calculation will show, in the relevant range of 
parameters the transition proceeds faster in the 3-2-1 direction. 
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Fig. 3. Value of the potential at minimum. 

3. Bubble dynamics 

The rate of bubble nucleation is obtained solving the Euler-Lagrange equations 
for the euclidean theory with the boundary condition that the fields approach the 
false vacuum at infin!ty. The tunnelling probability per unit four-volume is given by 
[7] 

Y =Ae-S4 (7) 

where S 4 is the euclidean action corresponding to the tunnelling solution (the 
"bounce"). A has the dimensions of a mass to the fourth power. Its determination 
would require taking into account quantum fluctuations. We will take for A some 
typical mass of the problem to the fourth power [e.g., Tc 4, ~g or I V(D0)I]. 

Since the extrema of the potential lie in the 3-2-1 and 4-1 directions, we have two 
possible classes of solutions interpreted as describing tunnelling towards these two 
broken vacua. The solution with the least action usually has the maximum symme- 
try. At zero temperature this means a solution with 0(4) invariance. 

At finite temperature we must consider the temperature-dependent potential and 
impose 1/T periodicity in time. The solution of highest symmetry is 0(3) invariant 
(and periodic in time). Finding it seems a formidable task and therefore we have to 
make approximations. If the space extension of the bubble is far bigger than the 
period l/T, then the solution will be approximately static in imaginary time. Thus, 
assuming that only static configurations are important, we demand only [4] 0(3) 
invariance. Up to a fixed gauge transformation, the solution is diagonal for all space 
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time. So we are led to the one-dimensional problem 

d2¢/~+2 d , _  1 ~V(qS, T)  

do 2 p do 

With boundary conditions 

lim ~(P)  = 0, 

C O0 

335 

(8) 

C is ~ for SU(3) × SU(2) × U(1) and 20 for SU(4) × U(1). The action is 

$4_$3.T 4~rT_ cm 211 /dqS) 2dpp ] -- "/0 dpp [gC[ + V(dp, r )  . (10) 

This problem can be easily solved numerically. Nevertheless, following Witten [4], 
one can obtain an explicit solution under the following approximations. First, keep 
only the first term of the small ~ expansion of the vector meson free energy, i.e., 

75 22 2 r .  

Second, replace ~ in the argument of the logarithm of the potential by some typical 
value, i.e., 

~2 T 2 

where M x is the mass of the superheavy gauge bosons. As the argument of the 
logarithm is large, we can also neglect the - ½ term. The approximate potential then 
reads 

V(eO, r ) ~ c ,  1-]-O-~]tT 041n 25g202c3 +75Cl62C3,g-2"r'2-t21 ~ , (11) 

i.e., a 04 potential with negative coupling. The action of the three-dimensional 
bounce associated with this potential is known [17]. Substituting the coefficients 
appearing in eq. (11) we obtain 

$4=-T-=2"63  c2 ] 7 In 8T 22c3 (12) 

Our results for the action are plotted in fig. 4 as a function of the temperature. S 4 

d~ 0 =0 dp =0 ,  (9) 
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Fig. 4. The action of the SU(5) ---, SU(3) ® SU(2) ® U(1) and SU(4) ® U(1) bounces using a non-running 
coupling constant. Dashed curves are obtained using Witten's approximation. 

goes very slowly to zero as the t empera tu re  goes to zero. The  act ion for the 

tunnel l ing to 4-1 is a slowly decreasing funct ion of o. These two facts are re la ted 

since S 4 is a funct ion of T / a .  One also sees that  for most  values of o, S 4 is bigger  for 

the t rans i t ion  to 3-2-1 than for the t rans i t ion  to 4-1, a l though the min imum in the 

3-2-1 direct ion is deeper.  This fact would  favour  the t rans i t ion  to 4-1. No te  f inal ly 

that  Wi t t en ' s  app rox ima t ion  agrees within 10% with the exact results*. However ,  

this error  is exponen t ia ted  in the bubb le  nuclea t ion  rate.  

The  phase  t ransi t ion develops in an expanding  Universe.  The s t andard  assump-  

t ion is that  the Universe  is homogeneous  and isotropic  and thus descr ibed by  the 

Robe r t son -Walke r  metric.  The expans ion  is governed by  Einstein 's  equat ion  

3Mp2 O R 2 ,  

where K = -  1,0, 1 cor responds  to an open, flat  or  c losed Universe.  The  energy 

* The approximation in the temperature dependent part of the potential is responsible for most of the 
difference from the exact results. The approximation of the logarithm has virtually no effect. 
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density is given by 

P = ( / ' t r  2)71 T4 + PO" (14) 

Here ~/ is the effective number of degrees of freedom at q, = 0 [~/= 160.75 in the 
standard 3 family SU(5) model] and 00 is the vacuum energy, i.e., the minimum 
value of I V(3-2-1)1 at T =  0. (Remember that we have normalized the potential to be 
zero at the false vacuum.) 

At very high temperatures, the temperature term in (14) dominates and the 
Universe is effectively an ideal gas of massless particles. Einstein's equations can be 
solved for a fiat Universe under the assumption of adiabatic expansion and give 

(15) 

However, when T<< T c the vacuum energy density dominates* and we derive an 
exponential rate of expansion 

~ e x  [ ~ t  ] (16) R(t) P]. Mp ~" 

Let us now consider the rate at which bubbles of the true vacuum fill an 
expanding Universe characterized by eq. (14). Following Guth and Tye [12], the 
probability that a given point will remain in the symmetric phase at temperature T is 
given by 

[ .',- x ' g ( x )  & g ( y )  " 
(17) 

The function g is 

g(T) = ~/ p(T)po 

and the constant 

d=y6-#  I (18) 

We have computed P(T) under the two extreme assumptions that the Universe 
goes entirely into the 3-2-1 or into the 4-1 phase. Taking for definiteness the factor A 

* The vacuum density is roughly p = 53(T 4 + 0.06T~4). 
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Fig. 5. P(T) for the SU(5) ~ SU(3) ® SU(2) ® U(1) transition using a non-running coupling constant 
and A = (TJ. 
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Fig. 6. Plot of the transition temperature versus o. Non-dashed curves correspond to A = (Tc) 4 in eq. (7). 
Dashed curves are obtained using A = (4'o)4[(q,o)4 in the 4-1 case]. Curves with A = 1 V(4'o)l lie between 

the plotted ones. Dotted curves refer to Witten's approximation and A = (T~) 4. 
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in eq. (7) to be Tc 4, we h a v e  d(Tc )4~e  39 in the first case and ~ e  42+41n° in the 

second case. Concentrating on the first case, the transition will occur roughly at 
S4~ln(dTc 4) ~-39. Hence we anticipate ~ 15 orders of magnitude of supercooling 

(see fig. 4). 
P(T) is plotted as a function of T in fig. 5 for the 3-2-1 phase transition. The 

transition takes place between temperatures of 10 -15 ~0 and 10 -16  dp0. Witten's 
approximation in the determination of S 4 gives temperatures lower by three orders 
of magnitude. Results for the transition temperature T s, defined as the temperature 
for which P ( T s ) ~  10%, are plotted for the 3-2-1 and 4-1 cases in fig. 6. Our main 
results can be read on this curve. 

(i) For 0 < o  ~< 10 -2,  the Universe goes directly into the SU(3)×  SU(2)×  U(1) 
phase. It supercools for about fifteen orders of magnitude before the transition takes 
place. As already mentioned this range of o includes the case of ref. [3] where an 

analysis of the hierarchy problem indicates that o is indeed very small. 
(ii) For 10-1 ~< or < ~,32,/1!"~1/4, the Universe goes first into an SU(4) × U(1) phase. It 

will undergo at smaller temperatures a second phase transition to SU(3) × SU(2) × 
U(1). Since this range of values for o is not theoretically preferred [3], the tedious 
study of this second phase transition is not necessary. A supercooled intermediate 
phase scenario would certainly lead to much lower final transition temperatures. 

(iii) Finally fo r  10 2~<o~< 10 ~ there is a competition between the direct 
transition 5 ~ 3-2-1 and the two-step one 5 ~ 4-1 ~ 3-2-1. 

4. Improvement of the model 

The calculation above has been done under some drastic approximations which 
are in some sense mandatory in order to keep the amount of work needed within 

reasonable limits. 
(i) we have not used a renormalization group improved potential; 
(ii) we have not calculated the prefactor A of eq. (7) (a formidable task) but only 

tried to estimate its order of magnitude; 
(iii) we have made the 0(3) approximation to the bounce. 
The renormalization group improvement of the potential [eqs. (5) and (6)] is a very 

hard task due to the presence of two mass scales T and q~0- We are in a situation 
where none of them is negligible as compared to the other. In a recent paper  Sher 
[18] uses the ansatz 

g2 _ 12~r (19) 
4~r 401n(T2/A 2) ' 

with A determined from the condition 

12~r 
O¢OUT = 401n(M2/A2)  ' (20) 
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A = Mx e-6"/4°~UT - 1.5 • 1 0  6 GeV. 

This ansatz has the advantage of leading to simple computation. 
Concerning the factor A, the expectation 

(21) 

A ~  (orT~orlV(~o)[)  (22) 

has been used extensively in the literature and seems very reasonable. It is, however, 
true that following the theoretical result 

(23) 
( 84 1 4 f  det'(- [] + V"(q~)) } - , /2  

A-~ 2rr ] L det ( - [ ]  + V"(0)) 

in the 0(4) case [7], and 

(24) { ÷ 
A -~ T ~ det(-  [] + V"(0)) 
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Fig. 7. Same as fig. 4 but with a running coupling constant given by eqs. (19) and (20). 



A. Billoire, K. Tamvakis / Early cosmology 341 

in the 0(3)  case [19], one can deduce that [4] 

A ~ T  4. 

This is because in Witten's approximation (undoubtedly not a bad one on the 
qualitative level) V(q,) is given by eq. (11) where T is the only dimensionfull 
parameter. This result has dramatic effects on the transition temperature, However, 
it cannot be trusted for too small T as it gives a vanishing bubble nucleation 
probability in the limit T ~ 0. But in this limit, the barrier goes away! In fact, this 
vanishing nucleation probability comes from the overcoming of the leading term 
( e - s , )  behaviour by the order h correction (T4). The semiclassical approximation 
clearly breaks down in the limit T ~ 0. The thing to do in such a situation is to stop 
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Fig. 8. Plot of the transition temperature versus o using A = (~o)  4, dashed curve refer to Witten's 
approximation. 
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the perturbative development before the first obviously crazy term, the O(h)  term in 
our case. The prefactor A is thus truly undetermined. 

To investigate the importance of these effects, with particular emphasis on the 
comparison between the 5 ~ 3-2-1 and 5 ~ 4-1 transitions, we have repeated the 
computation using the ansatz (19) and (20). The results for the bounce action can be 
found in fig. 7. As compared with fig. 4, the action is smaller. As a consequence, the 
transition will occur at much higher temperatures. One can also see that the 5 ~ 4-1 
bounce has a smaller action for a more limited range of values of o. This could have 
been predicted from fig. 4 where the curve for 4-1 (o -- 10-  2) happens to be steeper 
than the 3-2-1 curve. So even if the 4-1 curve is under the 3-2-1 curve for small T i t  is 
above it for bigger T 's. 

In fig. 8 we have plotted the transition temperature versus o, using A --~4. As 
compared to the non-running approximation, the transition occurs at a temperature 
higher by 10 orders of magnitude! Note that the 3-2-1 final state is preferred for a 
slightly larger range of o. The transition temperature is around 10 I° GeV. Remem- 
ber, however, that this was obtained by A ~- (q,0) 4 and not T 4. 

5. Condensation phenomena 

Suppose now that one uses A -~ T 4. In this case P(T) as given by the formula (17) 
stays equal to 1 (with a ten digit precision) from T :  T c down to T =  A --= 1.5 • 106 
GeV. At this point formula (19) gives an infinite result for a. This reflects the 
breakdown of perturbation theory for T-~ A [20]. It is clear that the appearance of 
this breakdown is independent of Sher's ansatz and even of the fact that the 
potential is of the Coleman-Weinberg type. 

Let us now speculate about what might happen for T~< A. A plausible scenario is 
that the 5 and 10 of ordinary fermions give rise to condensates with expectation 
value of order A. The most attractive channel [21] is the condensate 

-T  ,~ ~ v s n -  - (25) 

which breaks the symmetry down to SU(4). 
We will now argue that this condensate may finally drive the transition. First of 

all, the fundamental of Higgs gets an expectation value of the order A (A is the only 
dimensional quantity available) through its Yukawa coupling 

GH"( +T&~ ) + h.c. (26) 

Once H has got its expectation value (as this is also a first-order phase transition, 
some new amount of supercooling is expected), the • potential is modified because 
of the ~-H coupling. This coupling has a totally negligible influence on the 
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potential close to its minimum, but it may greatly help the transition by decreasing 
the barrier (remember that the barrier is only of order T). 

The direct couplings ]H21Trq~ 2 and H + ~2H are negligible as the temperature gets 
lowered. Note that the latter gives a positive mass squared to ~b in order for the 3-2-1 
minimum to be deeper [22]. The hope is thus that the gauge loops give a negative 
mass squared to ~. This is indeed the case for the one-loop term 

6 g 4 ( T ) ~ f -  2 -  2 ( ~  ~ )}  lr'6~lLH~lLq, In 6")]L2 A- 6"~L~ 
02 

(27) 

which is negative for small qb. 
It seems more likely that the five expectation value triggers • in the SU(4)® U(1) 

direction (slightly broken by ( H ) ) ,  however a direct transition down to SU(3)® 
SU(2) ® U(1) is possible. As we are in a strong coupling regime, the answer is hard 
to decide. 

Finally, once the transition is completed, the vacuum energy is released and the 
Universe reheated. The condensate evaporates, and H loses its expectation value. If 
q~ is SU(3) ® SU(2) ® U(1) symmetric, the Universe is in the true vacuum, however if 
it is SU(4) ® U(1) symmetric, as is most probable, a new transition is required. 

No further tumbling is possible as the fermions are in a real SU(4) representation. 
Perturbation theory breakdown at T-~ Asv~4 ) only results in a transition into a 
confined SU(4) phase. The exit, if any, to the 3-2-1 phase thus seems extremely hard 
to describe. 

6. Conclusions 

We think that it is clear that no firm conclusion is possible due to the very big 
uncertainties we have encountered. Two opposite possibilities seem to emerge. Either 
the Universe goes into the 3-2-1 phase at temperatures high enough so that 
non-perturbative effects do not play a role or it cools down to temperatures so low 
that perturbative theory breaks down and a fermion condensate forms. We argue 
that this condensate would drive the transition of the Higgs field, presumably down 
to the SU(4)® U(1) phase. The exit to SU(3)® SU(2)® U(1) seems problematic. 

Cosmological consequences of a Coleman-Weinberg type SU(5) potential are also 
investigated in ref. [23]. We disagree with their treatment of the SU(5) ~ SU(4) ® U(1) 
transition. 

A.C. Davis collaborated with us on the initial stages of this work. We wish to 
thank her and also L. Abbott, J. Ellis, G. Lazarides, O. Napoly, S. Rudaz, Q. Shaft, 
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