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ABSTRACT

Recent observations from the Transition Region and Coronal Explorer (TRACE) and the EUV Imaging
Telescope (EIT) show that warm (T � 1–1.5 MK) EUV coronal loops in active regions generally have enhanced
densities, enhanced pressure scale heights, and flat filter ratio (temperature) profiles in comparison with the
predictions of static-equilibrium theory. It has been suggested that mass flows may explain these discrepancies.
We investigate this conjecture using one-dimensional hydrodynamic simulations of steady flows in coronal
loops. The flows are driven by asymmetric heating that decreases exponentially along the loop from one
footpoint to the other. We find that a sufficiently large heating asymmetry can produce density enhancements
consistent with a sizable fraction of the observed loops, but that the pressure scale heights are smaller than the
corresponding gravitational scale heights, and that the filter ratio profiles are highly structured, in stark contrast to
the observations. We conclude that most warm EUV loops cannot be explained by steady flows. It is thus likely
that the heating in these loops is time dependent.

Subject headings: hydrodynamics — Sun: corona — Sun: UV radiation

1. INTRODUCTION

Solar active regions (ARs) are areas of enhanced magnetic
field on the Sun that are threaded by numerous coronal loops
emitting at EUVand soft X-ray (SXR) wavelengths (e.g., Bray
et al. 1991). These loops are magnetic flux tubes connecting
opposite-polarity patches in the photosphere that are loaded
with hot coronal plasma. They are the basic building blocks of
active regions. Since EUV and SXR emissions affect the
chemistry and dynamics of the terrestrial atmosphere, under-
standing how loops are heated to million degree temperatures
is a cornerstone problem for both solar physics and the dis-
cipline of Sun-Earth connections.

Recent observations and modeling of EUV loops have
revealed several very puzzling properties (e.g., Lenz et al.
1999; Aschwanden, Schrijver, & Alexander 2001; Winebarger,
Warren, & Mariska 2003). It is now clear that a majority of
these loops cannot be explained by static-equilibrium theory
(e.g., Rosner, Tucker, & Vaiana 1978; Serio et al. 1981),
which has proved so successful in explaining many as-
pects of SXR loops. In this theory, loops are steady (time-
independent) structures characterized by force and energy
balance in the absence of flow. They are obviously in hy-
drostatic equilibrium.

The new EUV observations were made by the multilayer
telescopes on the Transition Region and Coronal Explorer
(TRACE) and Solar and Heliospheric Observatory (SOHO;
EUV Imaging Telescope [EIT]) spacecraft. Both instruments
have three channels (171, 195, and 284 Å) with maximum
temperature sensitivity in the range � 1–2 MK. The ratio of
intensities observed in two channels, often called a filter ratio,

is an indication of the plasma temperature, under the as-
sumption that the plasma is isothermal within the observa-
tional pixel. Most EUV loops have a nearly constant 195 :
171 Å ratio along their entire length, suggesting a uniform
temperature of �1.2 MK (e.g., Aschwanden et al. 1999;
Aschwanden, Nightingale, & Alexander 2000; Lenz et al.
1999). This is generally inconsistent with static-equilibrium
theory, which predicts that temperature should rise abruptly in
the transition region and then more slowly, but significantly,
in the corona.
A second inconsistency concerns the visibility of EUV

loops at great heights above the solar surface. The loops can
be very long and high arching, with heights as much as 4 times
the pressure scale height for a plasma in hydrostatic equilib-
rium at �1.2 MK (Aschwanden et al. 2001). The brighter-
than-expected emission at these altitudes indicates pressure
gradients that are much shallower than those for a plasma in
hydrostatic equilibrium. Direct measurements of the pressure
scale height find it to be typically 2–4 times larger than the
gravitational scale height.
A third inconsistency concerns loop densities. From the

observed intensity, temperature (as inferred from the filter-
ratio method), and diameter of a loop, a lower limit on the
density can be inferred by assuming that the loop is com-
pletely filled (i.e., it has a filling factor of unity). The density
limits obtained from TRACE observations indicate that loops
are overdense by factors of 2–2000 compared to static equi-
librium (Winebarger et al. 2003). Small filling factors make
the discrepancy even worse. Let us mention here that the filter-
ratio method used to derive temperatures suffers from signif-
icant ambiguities, and by no means leads to a unique solution
(e.g., Testa et al. 2002).
To summarize, in comparison with the predictions of static-

equilibrium theory, warm (�1 MK) EUV loops generally have
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(1) enhanced densities, (2) enhanced pressure scale heights,
and (3) flat filter ratios. Detailed modeling shows that the
density and filter-ratio discrepancies can be reduced if the
coronal heating is assumed to be concentrated low in the legs
of the loops. However, reasonable agreement can be obtained
for only about 30% of observed cases (Aschwanden et al.
2001; Winebarger et al. 2003). More than two-thirds of EUV
loops are incompatible with static-equilibrium theory, even
with footpoint heating. The filter ratio functions for TRACE
are not single valued, i.e., a particular value of the ratio can
correspond to more than one temperature. In interpreting the
observations, it is customary to assume the temperature at
which the instrument is most sensitive. However, it has been
suggested that the loops observed by TRACE may actually be
much hotter, in which case the discrepancies with static
equilibrium would be considerably reduced (Reale & Peres
2000). This is an intriguing possibility. Such hot loops would
be easily detectable by the Soft X-ray Telescope on Yohkoh,
and would produce intense TRACE-detectable emission at
their transition region footpoints, and there is some question
as to whether such observational signatures are present in the
data.

Given the shortcomings of a static-equilibrium interpreta-
tion, an obvious next step is to consider the possibility of
steady flows. Indeed, there exists observational evidence for
the existence of substantial mass flows in active regions.
Spectroscopic observations of shifts in the spectral line pro-
files averaged over large areas in active regions or at the
footpoints of loops imply line-of-sight velocities of the order
of 20 km s�1 (e.g., Klimchuk 1987; Kjeldseth-Moe & Brekke
1998; Teriaca, Banerjee, & Doyle 1999; Spadaro et al. 2000;
Winebarger et al. 2002). Furthermore, TRACE observations of
slowly (5–20 km s�1) moving intensity fronts at the feet
of large-scale coronal loops could be another manifestation of
mass flows (Winebarger, DeLuca, & Golub 2001).

At this point, it is useful to review some of the basic
physical properties of loops with flows (see also Bray et al.
1991). The presence of flow in a loop can affect both the
energetics (i.e., thermal structure) and dynamics (i.e., pressure
structure). Loop energetics are modified by the flow-related
terms (enthalpy, and kinetic and gravitational energy) in the
energy-balance equation, as well as by the specific spatial
form of the heating invoked to drive the flow. Loop dynamics
are modified by the ram-pressure term in the momentum
balance equation. However, because the hydrodynamic
equations represent a set of coupled and nonlinear differential
equations, the dynamical and energetic aspects of loops are
interconnected.

Steady mass flows have been extensively modeled in the
past. In many studies, the flows are driven by a prescribed gas
pressure difference at the two footpoints (e.g., Cargill & Priest
1980; Noci 1981; Robb & Cally 1992; Orlando, Peres, &
Serio 1995a, 1995b; Betta et al. 1999). Such an approach is
realistic if one takes the footpoints to be located in the pho-
tosphere or below, because there the plasma � is larger than
unity, and gas pressure differences may be required to offset
magnetic pressure differences in order to have lateral force
balance. For example, if one footpoint of a loop is wider than
the other, it has a weaker field strength and must therefore
have a higher gas pressure.

This argument does not apply in the chromosphere and
transition region, where the � is small and the plasma plays
no significant role in the lateral force balance. In this region,
it may not be appropriate to specify a pressure boundary

condition. The pressure at the top of the chromosphere and
above depends sensitively on the heating and energy balance
throughout the loop. A realistic model should therefore treat
the pressure as a free parameter. If it does not, the resulting
solution may imply conditions at and below the footpoint that
are difficult to justify. In some situations, solutions may not
exist (Mariska & Boris 1983; Betta et al. 1999).

The most physically straightforward way to generate steady
flows in coronal loop models is to specify a heating asym-
metry, so that one side of the loop receives a greater energy
input than the other (e.g., Boris & Mariska 1982; Mariska &
Boris 1983; Craig & McClymont 1986; Betta et al. 1999).
Pressure differences at the footpoints result, but it is clear how
the differences arise. Winebarger et al. (2002) have recently
shown that a steady-flow solution of this type has 3 times
higher densities and a flatter filter ratio profile than the
corresponding static solution with the same peak temperature.
It therefore agrees better with the observations of EUV loops.
The goal of the present work is to further investigate this
encouraging development, and to determine whether EUV
loops can be explained with steady flows generated by heating
asymmetries.

This paper is organized as follows: in x 2 we describe the
numerical code we used to solve the one-dimensional hydro-
dynamic equations; in x 3 we describe the details of our
simulations; and in x 4 we present our results. We conclude
with a discussion and conclusions in x 5.

2. NUMERICAL MODEL

Given the fact that the solar corona is a highly conducting
low-� medium, the magnetic field confines the plasma within
flux tubes, and the plasma can be described with one-dimen-
sional hydrodynamics. The time-dependent single-fluid equa-
tions for conservation of mass, momentum, and energy along a
coronal loop are
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where we have assumed that loops have a constant cross
section, as supported by observations of both EUV and SXR
loops (Watko & Klimchuk 2000; Klimchuk 2000). In the
above equations, s corresponds to the distance along the loop
from the ‘‘left’’ base of the model; � ¼ 1:67� 10�24 � n is
the mass density assuming a fully ionized hydrogen plasma,
with n being the electron number density; v is the plasma flow
velocity; T is the plasma temperature; P ¼ 2nkT is the pres-
sure from the ideal gas law; �0 ¼ 10�6 is the coefficient of
thermal conduction; � ¼ 5=3 is the ratio of the specific heats;
H is the volumetric heating rate; �ðTÞ is the optically thin
radiation-loss function; and gkðsÞ is the component of gravity

STEADY-FLOW MODELS AND EUV CORONAL LOOPS 323



parallel to the loop axis. We do not include compressive vis-
cosity in equations (2) and (3), which can be important during
the early stages of solar flares, when shocks develop (e.g.,
Peres & Reale 1993), but which is not significant in the
steady-flow simulations presented here.

The coronal part of our loop is taken to be semicircular,
with a full length L ¼ 300 Mm, typical of observed EUV
loops. We account for the decrease in gravitational accelera-
tion with distance from Sun center, and therefore gkðsÞ �
g�fR�½R� þ hðsÞ��1g2 cos �ðsÞ½ �, where hðsÞ is the height
above the solar surface, g� is the gravitational acceleration at
the surface, R� is the solar radius, and �ðsÞ is the angular
position along the semicircle. Attached to each end of the
coronal semicircle is a 60 Mm chromospheric section. The
total length of the model flux tube is therefore 420 Mm.

We adopt an optically thin radiative loss function �ðTÞ that
has a piecewise continuous power-law form as given in
Klimchuk & Cargill (2001). It is based on atomic physics
calculations of J. Raymond (1994, private communication),
and uses abundances that are a factor of 2 greater than the
Meyer (1985) coronal values. The loss function drops pre-
cipitously to zero between 30,000 and 29,500 K, guaranteeing
that the model chromosphere is approximately isothermal
within this temperature range. A more realistic treatment
would require optically thick radiative transfer and is unnec-
essary for studying the properties of the coronal part of the
loop. All that we demand of the chromosphere is that it pro-
vide a source and sink of mass through the processes of
chromospheric evaporation and condensation.

Equations (1) to (3) are solved using our state-of-the-art one-
dimensional hydrodynamic code, Adaptively Refined Godunov
Solver (ARGOS), which is described in detail in Antiochos
et al. (1999). Two aspects of ARGOS make it particularly well
suited for studying coronal and transition-region dynamics.
First, the time-dependent solution is advanced using a second-
order Godunov scheme with a Monotone Upwind Schemes
for Scalar Conservation Laws (MUSCL) limiter, which is one
of the most robust numerical schemes for studying one-
dimensional hydrodynamics. Second, ARGOS employs the
PARAMESH parallel adaptive mesh refinement (AMR)
package, which dynamically refines or ‘‘derefines’’ the grid
based on the local density variations. For the applications
described in this paper, the minimum grid spacing is roughly
25 km, which is adequate for resolving the small spatial
scales of the transition region. Rigid wall boundary con-
ditions are applied at the ends of the flux tube. Our model
chromosphere is many gravitational scale heights thick
[HgðT ¼ 30; 000 KÞ � 1500 Mm], so that the boundary
conditions have negligible influence on the plasma dynamics
in the transition region and corona, and so that the height of
the chromosphere is not affected by the depletion and ac-
cumulation of mass.

3. DETAILS OF THE HYDRODYNAMIC SIMULATIONS

As a first step, we calculated a static-equilibrium solution
to serve as a reference for comparison with the steady-flow
solutions. We accomplished this by prescribing a spatially
uniform heating rate of H ¼ 4:6� 10�6 ergs cm�3 s�1

and allowing an initial approximate equilibrium based on
scaling-law theory (e.g., Rosner et al. 1978; Serio et al. 1981),
to relax to the true equilibrium. The relaxation was termi-
nated when the residual mass motions had diminished to less
than 0.5 km s�1. The relaxed static equilibrium has an apex

temperature of approximately 1.2 MK, typical of loops ob-
served by TRACE.
We then carried out a series of steady-flow simulations for

the same loop. Beginning with the static solution, we modified
the heating so that it decreases exponentially along the loop
from one footpoint all the way to the other footpoint,

HðsÞ ¼ H0 exp � s� sbase

sH

� �
; ð5Þ

where sH is the heating scale length and H0 is the magnitude
of the heating at sbase, the position of the top of the chromo-
sphere (i.e., base of the corona) on the ‘‘left’’ side of the static
solution. Note that the heating does not increase with height
on the ‘‘right’’ side, as it does in the steady solution of
Winebarger et al. (2002) and the thermal nonequilibrium
solutions of Karpen et al. (2001, 2003). Note also that the
static solution can be regarded as a special case of the expo-
nential heating function when sH tends to infinity.
For a given choice of sH and H0, we kept the heating

constant in time and allowed the solution to relax to a steady
equilibrium. Transient flows and sound waves are initially
excited, but after a few tens of thousands of seconds, cor-
responding to several sound crossing times (of the order of
few 1000 s) across the system, all the physical parameters vary
by less than 1% throughout the loop. We nonetheless con-
tinued the calculations for an additional �100,000 s to verify
that the solution is stable.
We considered three different values for sH , corresponding

to progressively more asymmetric heating: sH = L=10, L=20,
and L=40. For each, we found a different H0 ð1:5� 10�4,
6:5� 10�4, and 17:5� 10�4 ergs cm�3 s�1, respectively)
such that the peak temperature approximately matches the
1.2 MK peak temperature of the static solution. We discovered
that the total heating integrated along the loop, Htot �R
loop

HðsÞ ds, is a decreasing function of sH . In other words,
smaller heating scale lengths require more total energy to
produce the same peak temperature. This has important con-
sequences for the loop density, as we discuss later.
The exponential heating function of equation (5) applies

throughout the loop, including the chromosphere. Different
models therefore have different chromospheric heating rates.
However, because our radiation-loss function is extremely
steep between 2:95� 104 and 3:0� 104 K, large changes in
the heating rate are offset by very small changes in temper-
ature, and the structure of the chromosphere is nearly iden-
tical in all of the models. The height of the chromosphere
varies slightly from model to model because of differences in
the coronal (and transition region) pressure. For example, the
top of the chromosphere in the sH = L=40 model is displaced
by approximately 3000 km compared to the static model.
This is an entirely physical effect that we expect to occur on
the Sun.

4. RESULTS

4.1. Flow Velocities

The flow velocities along the loop for the three steady
solutions are shown in Figure 1. The velocities are positive
throughout the loop, which means that they are upward in the
left half and downward in the right half. The flows are driven
by a pressure imbalance associated with the asymmetric
heating. Greater heating on the left side produces enhanced
pressure compared to the right side. We can easily understand
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this by considering the static loop scaling law (e.g., Rosner
et al. 1978)

P / H6=7L5=7; ð6Þ

which can be applied separately to the left and right sides of
the loop. Since L is the same on both sides, if H is greater on
the left, P must be also greater. This implies that a static state
is not possible, and a flow is set up from left to right. We see
from Figure 1 that larger heating asymmetries (smaller sH )
produce greater velocities. This is expected, since the pressure
asymmetries are correspondingly larger. We note that the ve-
locities are subsonic for all the three cases considered here (the
sound speed at a temperature of 1.2 MK is �160 km s�1),
although they correspond to a significant fraction of the sound
speed, with a maximum Mach number M � 0.7.

4.2. Densities

The densities along the loop for the static solution and the
three steady-flow solutions are shown in Figure 2. The flow
solutions have higher densities, with the density increasing for
greater heating asymmetry. Compared to the static solution,
the apex densities are enhanced by factors of �3, 6, and 7 for
sH ¼ L=10; L=20; and L=40, respectively. The enhancements
are less in the lower sections of the loop.

As mentioned earlier, and for reasons we discuss shortly,
loops with asymmetric heating require more total energy to
have the same peak temperature as uniformly heated loops.
This implies higher densities, since loops lose energy almost
exclusively by radiation, and the radiative output scales with
the square of the density. Thermal conduction and flows are
energetically important, but they serve only to redistribute
energy between the corona and transition region, and between
different parts of the corona (see the Appendix).

4.3. Pressures

Pressures are also enhanced in the steady-flow solutions, as
shown in Figure 3. The enhancement generally increases with
increasing heating asymmetry, although at the apex the trend
reverses between sH ¼ L=20 and L=40, because of a temper-
ature inversion discussed below. The maximum pressure en-
hancement in our solutions is a factor of �6.

Equally important from an observational standpoint is
the fact that, in the coronal section of the loop, the flow so-
lutions have pressure scale heights that are shorter than the
local gravitational scale height, HP < HgðTÞ, where HP ¼
P @P=@zj j�1

and z is the vertical coordinate. In the static so-
lution, the pressure gradient need only be large enough to
support the weight of the plasma, but in the flow solutions, it
must be greater in order to accelerate the plasma on the left
side and decelerate the plasma on the right side. It is straight-
forward to show that for subsonic mass flows HP=Hg �
1� �M 2, where M is the Mach number. The exact ratio
HP=Hg, together with its approximation given above, is plotted
in Figure 4 as a function of position along the loop for the
sH ¼ L=40 model.

4.4. Temperatures and Filter Ratios

The temperature profiles for the static and steady-flow
solutions are shown in Figure 5. As the heating asymmetry
increases, the temperature profile first flattens and then
develops a minimum near the apex, which becomes progres-
sively deeper. Similar behavior is found for heating that is
concentrated symmetrically near the footpoints of both legs
(e.g., Aschwanden et al. 2001; Winebarger et al. 2003). The
reason is as follows. With uniform heating, there is enough
energy deposited at the apex to power the local radiative
losses. In fact, there is too much energy, and roughly half is
conducted down the legs to be radiated from the transition

Fig. 1.—Flow velocity vs. position along the loop for the steady solutions,
with sH ¼ L=10 (long-dashed line), L=20 (short-dashed line), and L=40 (dash-
dotted line). Positive velocities correspond to upflow in the left half of the loop
and downflow in the right half.

Fig. 2.—Electron number density vs. position along the loop for the static
solution (solid line), and steady-flow solutions with sH ¼ L=10 (long-dashed
line), L=20 (short-dashed line), and L=40 (dash-dotted line).
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region (Vesecky, Antiochos, & Underwood 1979). With a
heating profile that decreases exponentially with height,
comparatively less energy is deposited at the apex, and the
thermal conduction losses must be reduced. These losses vary
as T5=2dT=ds, so both the temperature and temperature gra-
dient decrease. The temperature profile flattens and shrinks.

Increasing the heating throughout the loop (i.e., increasing H0)
raises the peak temperature back up to its uniform heating
value, but the temperature profile remains flattened. For suf-
ficiently small scale lengths (sH < L=10), the energy deposited
at the apex is so small that thermal conduction must switch
from a cooling mechanism to a heating mechanism, and a
temperature inversion develops (see also Betta et al. 1999).
This argument applies to loops with heating concentrations

in one or both footpoints. In the former case, studied here,
there is little energy deposited anywhere in the right leg.
Energy associated with the flow must supplement or replace
thermal conduction in order to power the radiative losses on
that side. On the left side, the flow acts primarily as a cooling
mechanism. Thus, the primary role of the flow is to transfer
energy from the left side of the loop, which receives most of
the coronal heating, to the right side. Both sides radiate
strongly. Figure 6 shows profiles of the different terms of the
energy equation for the case of intermediate heating asym-
metry. Positive values represent energy sources and negative
values represent energy sinks. The net is zero, as it must be for
a loop in equilibrium. Note that kinetic energy is unimportant
compared to enthalpy, since the flows are subsonic.
The ratio of the intensities that would be observed in the

195 and 171 Å channels of TRACE are shown in Figure 7.
These intensities are equal to the product of the emission
measure and the temperature-dependent response function for
each channel. The intensity ratio reduces to the ratio of the
corresponding response functions. We used the response
functions provided in the SolarSoft package, which were
calculated using version II of the CHIANTI atomic database.
The calculations assume coronal abundances (Feldman 1992)
and ionization equilibrium from the calculations of Arnaud &
Raymond (1992). We see that the intensity-ratio profiles have
a similar appearance to the temperature profiles. This results
from the fact that the response functions are sharp functions of
temperature. The profile is rather flat for the mildest heating
asymmetry we have considered, but it is highly structured in

Fig. 3.—Plot of n � T (/ pressure) vs. position along the loop for the
static solution (solid line), and steady-flow solutions with sH ¼ L=10 (long-
dashed line), L=20 (short-dashed line), and L=40 (dash-dotted line).

Fig. 4.—Ratio HP : Hg of the pressure scale height to the local gravitational
scale height in a coronal section of the loop for the steady-flow model with
sH ¼ L=40, showing the exact ratio (solid line) and the analytical approxi-
mation given in x 4.3 (dashed line).

Fig. 5.—Temperature vs. position along the loop for the static solution
(solid line), and steady-flow solutions with sH ¼ L=10 (long-dashed line),
L=20 (short-dashed line), and L=40 (dash-dotted line).
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the other two cases. The ratio varies across each leg by nearly
1 order of magnitude for sH ¼ L=20, and by nearly 2 orders of
magnitude for sH ¼ L=40. The ‘‘spikes’’ at the ends occur in
the thin transition region.

5. DISCUSSION AND CONCLUSIONS

We now address whether our steady-flow models are con-
sistent with the observations of warm (�1 MK) EUV loops.
Recall that observed loops generally have higher densities,
larger pressure scale heights, and flatter filter ratios than pre-
dicted by static-equilibrium models. On the first point, our
models represent an improvement over the static models. The
factor of 7 density enhancement in the case sH ¼ L=40 is
adequate to explain a considerable fraction of the TRACE
loops studied by Winebarger et al. (2003). Unfortunately, that
model has a highly structured filter-ratio profile that is entirely
incompatible with the observations (Lenz et al. 1999). The
model with mild heating asymmetry (sH ¼ L=10) successfully
reproduces the observed filter ratios, but it predicts a density
enhancement of only a factor of 3, which is too small for a
large majority of the TRACE loops. Finally, the flow models
have pressure scale heights that are smaller than the gravita-
tional scale heights of static equilibrium, which is opposite to
what is observed. We must conclude that warm EUV loops
cannot be explained by steady flow models of the type we
have considered. We note here that steady flow models are
also unable to explain cool (T < 106 K) loops (e.g., Peres &
Orlando 1996; Peres 1997) reported by Foukal (1976).

Fig. 6.—Temperature (top panel) and sources and sinks of energy (bottom
panel) vs. position along a central section of the loop for the steady-flow
solution with sH ¼ L=20, showing thermal conduction (solid line), gravita-
tional energy (long-dashed line), enthalpy (short-dashed line), radiation
(dotted line), kinetic energy (dash-dotted line), and heating HðsÞ (dash–triple-
dotted line). The energies sum to zero, as indicated by the thick solid line. The
loop apex is at s ¼ 21� 104 km.

Fig. 7.—Ratio of intensities in the TRACE 195 and 171 Å channels vs. position along the loop for the static solution (solid line), and steady-flow solutions with
sH ¼ L=10 (long-dashed line), L=20 (short-dashed line), and L=40 (dash-dotted line). The distance between the tick marks (i.e., 10 Mm) corresponds to � 25
TRACE pixels.
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If static and steady-flow models are unable to explain the
loops, it must be that either the models are missing some
important physics or the loops are heated in a time-dependent
manner. Missing physics could include the pressure force
associated with propagating waves (Woods, Holzer, & Mac-
Gregor 1990; Hollweg 1981) or standing waves (Litwin &
Rosner 1998). We find the idea of time-dependent heating
very appealing, since we are aware of no plausible heating
mechanism that would produce steady heating on a given
magnetic field line. Furthermore, impulsively heated loops
have enhanced densities when their temperatures are in the
range detectable by TRACE (e.g., Cargill & Klimchuk 1997;
Warren, Winebarger, & Hamilton 2002; Spadaro et al. 2003).
A number of independent lines of evidence now point to a
picture in which loops comprise multiple unresolved strands
that are heating by nanoflare–like energy bursts, as advocated
by Cargill (1994) and others. We are actively pursuing de-
tailed models of this type, and will report on the results of our
study in a future article. In principle, the strands of a multi-
stranded loop could contain steady flows, but we would not
expect such a loop to agree significantly better with the
observations than a single monolithic loop.

An alternative to impulsive heating is heating that is steady
for a considerable period and then suddenly switches off (see
also Reale & Peres 2000). Such a scenario might explain the
enhanced densities seen by TRACE, but only if the initial loop
temperature (the temperature before the heating decrease) is
much hotter than 1 MK.

We close by comparing our steady-flow models with
models in which the heating decreases exponentially with
height in both legs. First, consider the symmetric case of equal
heating in both legs. Several studies have shown that a stable
equilibrium is possible only if the heating scale length is not
too small compared to the loop length. The requirement is that
sH > L=6, approximately, where the reader is reminded that L
is the total loop length (Serio et al. 1981; Aschwanden et al.
2001; Sigalotti & Mendoza-Briceno 2003; Winebarger et al.
2003). These symmetric equilibria are necessarily static. In

contrast, we find stable equilibria with flows when sH is at
least as small as L=40. The difference demonstrates the im-
portance of the flows to the local energy balance.
In time-dependent calculations of symmetric heating with

sH less than the critical value for equilibrium, a cool con-
densation forms and grows at the top of the loop (Antiochos &
Klimchuk 1991; Antiochos et al. 1999). In principle, the loop
can reach equilibrium once the condensation becomes suffi-
ciently large (Dahlburg, Antiochos, & Klimchuk 1998), al-
though we would only expect this to occur under special
circumstances. If a mild asymmetry is introduced, so that the
exponential heating is slightly (�25%) stronger in one leg
than the other, a phenomenon know as ‘‘thermal nonequilib-
rium’’ occurs (Antiochos, MacNeice, & Spicer 1999; Karpen
et al. 2001, 2003). Instead of a steady flow developing, as in
our models, condensations form and fall down the more
weakly heated leg in a never-ending cycle. We can understand
the different behavior as follows: strong footpoint heating
drives evaporative upflows in both legs; because the upflows
are comparable, mass collects at the top where the upflows
collide, until a radiative instability ultimately produces a
condensation. In our models, the heating is orders of magni-
tude stronger in one leg than the other. The upflow from that
leg dominates, and a unidirectional flow is rapidly established.
It appears, therefore, that thermal nonequilibrium requires not
only a small heating scale length, but also a sufficiently mild
heating asymmetry. Quantifying this assertion must await
additional detailed modeling.
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APPENDIX

EQUILIBRIUM LOOP ENERGY LOSSES

Flows and thermal conduction play important roles redistributing energy within an equilibrium loop, either between the corona
and transition region, or between different parts of the corona. They are not, however, significant in the global energy budget of the
loop as a whole. Equilibrium loops gain energy almost exclusively by coronal heating, and lose energy almost exclusively by
radiation. In the following discussion, we take the loop footpoint to be the top of the chromosphere, which has a temperature of
3� 104 K in our models.

The flux of energy carried by thermal conduction is

Fc ¼ �0T
5=2 dT

ds
: ðA1Þ

Since the temperature gradient vanishes at the top of the chromosphere (approximately), there is minimal flow of energy through
the footpoint.

Flows carry enthalpy, gravitational energy, and kinetic energy. The enthalpy flux is

Fe ¼
�

� � 1
Pv ¼ �R

� � 1
Tð�vÞ; ðA2Þ

where � is the ratio of specific heats and R is the ideal gas constant. Since the mass flux �v is constant throughout the loop and T is
the same at both footpoints, Fe must also be the same at both footpoints. A given sign of Fe represents inflow at one footpoint and
outflow at the other, so there is no net change in the energy of the loop. Similarly, the gravitational energy flux,

Fg ¼ gkð�vÞ; ðA3Þ
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makes no net energy contribution as long as the loop has the same inclination at both footpoints. The kinetic-energy flux,

Fk ¼
1

2
�v3 ¼ 1

2
v2ð�vÞ; ðA4Þ

is not necessarily the same at both footpoints. However, because the flows are highly subsonic at the footpoints, the energy flux is
insignificant compared to the coronal heating and radiation integrated along the loop. It does not impact the global energy budget
of the loop.
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