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Abstract

We present the complete 2-loop renormalisation group equations of the superpotential

parameters for the supersymmetric standard model including the full set of R-parity

violating couplings. We use these equations to do a study of (a) gauge coupling unifica-

tion, (b) bottom-tau unification, (c) the fixed-point structure of the top quark Yukawa

coupling, and (d) two-loop bounds from perturbative unification. For large values of

the R-parity violating coupling, the value of αS(MZ) predicted from unification can be

reduced by 5% with respect to the R-parity conserving case, bringing it to within 2σ of

the observed value. Bottom-tau Yukawa unification becomes potentially valid for any

value of tan β ∼ 2− 50. The prediction of the top Yukawa coupling from the low tanβ,

infra-red quasi fixed point can be lowered by up to 10%, raising tan β up to a maxi-

mum of 5 and relaxing experimental constraints upon the quasi-fixed point scenario. For

heavy scalar fermion masses O(1 TeV) the limits on the higher family ∆L 6= 0 operators

from perturbative unification are competitive with the indirect laboratory bounds. We

calculate the dependence of these bounds upon tan β.
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1 Introduction

The first grand unified theory (GUT), of the electroweak and the strong interactions was

non-supersymmetric and the unification scale was of order MX = 1015 GeV [1]. In order

to connect the GUT predictions at MX with observations at presently accessible energies,

the renormalisation group evolution of the relevant parameters must be taken into account

[2]. Postulating unification of the gauge couplings at a high scale leads after renormalisation

to one low-energy prediction, e.g. the electroweak mixing angle sin2 θW . In 1987, it was

first found that in supersymmetry the prediction for sin2 θW is in agreement with the data,

while in the Standard Model it is not [3, 4]. This was spectacularly confirmed in 1990

with the precise LEP1 measurements of the gauge couplings constants [5, 6]. This is the

most compelling “experimental” indication for supersymmetry and has lead to a flourish of

activity on unification and supersymmetry [7, 5, 8]. These studies focused on the minimal

supersymmetric Standard Model (MSSM) which is minimal in particle content and couplings

and conserves the discrete and multiplicative symmetry R-parity1 [9]

Rp = (−)3B+L+2S . (1.1)

We refer to this model as the Rp-MSSM, i.e. the Rp conserving MSSM.

If we require a supersymmetric Standard Model which is only minimal in particle content

the superpotential is modified to allow for additional R-parity violating (6Rp) interactions

which are given in full below in Eq.(2.3). The superpotential includes terms which violate

baryon number and separate terms violating lepton-number. In order to avoid rapid proton

decay either baryon number or lepton number must be conserved but not necessarily both. We

refer to a model which violates just one of these symmetries as an 6Rp-MSSM, [10]. Symmetries

which can achieve this are for example baryon parity and lepton parity [11, 12]

Bp = (−)3B+2S , Lp = (−)L+2S . (1.2)

Thus, both the Rp-MSSM and the 6Rp-MSSM require a discrete symmetry beyond GSM and

are theoretically equally well motivated [10].

1.1 R-parity Violation and Grand Unification

Given the intense study of unification in the Rp-MSSM it is the purpose of this paper to study

the gauge coupling unification in the 6Rp-MSSM. At first sight, it might seem unnatural to

study unification within the 6Rp-MSSM, since 6Rp is not obtained in the simplest GUT models.

In SU(5) for example, the dimension-four R-parity violating interactions are given by the

operator

ψiψjχk, (1.3)

1B: Baryon number, L: Lepton number, S: Spin.
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where i, j, k = 1, 2, 3 are generation indices, and ψi, χk are the 5, and 10 representations of

SU(5) respectively. The operator (1.3) contains all the cubic terms of Eq.(2.3), i.e. both the

baryon- and lepton-number violating interactions. This leads to unacceptably rapid proton

decay or unnaturally small couplings (∼ 10−13) and thus must not be present. In SO(10)

and in E6 grand unification the dimension-four R-parity violating interactions are directly

prohibited by gauge invariance.

It seems R-parity violation and GUTs are incompatible. The reason is that any R-parity

violating symmetry which is consistent with the bounds on proton decay, such as baryon

parity and lepton parity in Eq.(1.2), assigns quarks and leptons different quantum numbers.

But in GUTs quarks and leptons are in common multiplets and thus must have the same non-

SU(5) quantum numbers. This contradiction is resolved once the GUT symmetry is broken,

i.e. for energy scales below MGUT . Once the SU(5) symmetry is broken, R-parity violating

terms can be generated which are consistent with proton decay.

In general, we do not expect a GUT to be the final theory, it leaves many of the same

questions unanswered as in the Standard Model. For example GUTs do not include gravity

and therefore it should be an effective theory embedded in a more fundamental one, such as

M-theory. This more fundamental theory will lead to a set of non-renormalisable operators

at the GUT scale such as [13]
k

MX
ψiψjχkΣ. (1.4)

This operator is suppressed by a mass scale MX
>∼ MGUT . Here, Σ is a scalar field in the

adjoint representation of SU(5) and k is a dimensionless coupling constant. ψi, ψj , χk and Σ

can be combined to SU(5) invariants in several ways. When Σ receives a non-zero vacuum

expectation value SU(5) is broken and the operators in Eq.(1.4) can generate a subset of the

6Rp interactions in the superpotential (2.3), which are consistent with bounds on proton decay

[13]. Models of this nature have been constructed for the gauge groups SU(5) [11, 13, 14, 15],

SU(5) × U(1) [16, 13, 14] and SO(10) [13].

Below the SU(5) breaking-scale the operators (1.4) are effectively dimension-four opera-

tors. Their dimensionless coupling constant k <Σ> /MX will run, i.e. it will be renormalised

and it will contribute to the running of the other couplings in the theory. Thus even though

at first sight GUTs and R-parity violation seem inconsistent, this is not the case. Unless pro-

hibited by a special symmetry, we expect to have R-parity violation via non-renormalisable

operators in any GUT. At low-energy, this will manifest itself in (effective) tri-linear R-parity

violating contributions to the superpotential. Above the GUT scale we will have an SU(5)

symmetric theory with for example one unified gauge coupling constant.

1.2 Unification and Fermion Masses

One particular aspect of unification we will focus on below is the GUT prediction mb(MU) =

mτ (MU ) which has been very successful [17, 18, 19]. We shall study the effect of R-parity
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violation on this prediction. If there are no non-renormalisable operators leading to effective

fermion masses below MGUT , or if these operators are highly suppressed then we expect the

Yukawa unification to still hold in the presence of R-parity violation. This can typically be

achieved by a discrete symmetry but should be incorporated in a general theory of fermion

masses (or Yukawa couplings). If the non-renormalisable terms have the form

W = hu
ij(Σ)χiχjhu + he,d

ij (Σ)χiψjhd, (1.5)

the mass predictions are maintained. Here hu, hd are the SU(5) 5 and 5 Higgs superfields,

respectively. hu
ij , h

e,d
ij are general functions of the adjoint Higgs field. When SU(5) is broken

and <Σ> 6= 0, the usual mass terms are generated.

In the MSSM, if one requires the Yukawa couplings to unify this greatly reduces the

allowed region of the (supersymmetric) parameters. In particular one obtains a strict relation

between the running top mass mt(mt) and the ratio of the vacuum expectation values (vevs)

of the two Higgs doublets, tanβ [7, 20]. Given the observed top quark mass [21] this results

in a prediction for tanβ ∼ 1 − 3 or tanβ ∼ 55. Does this prediction still hold when allowing

for R-parity violation? In Ref. [22], by allowing only the bi-linear lepton number violating

terms, it is shown that bottom-tau Yukawa unification can occur for any value of tanβ. The

bi-linear term induces a tau-sneutrino vev, which introduces an additional parameter into the

relation between λt and mt, as compared to the MSSM. Bottom-tau Yukawa unification is

then obtained by varying the stau vev, and therefore λt (and hence tan β). Here, we will

focus on the effect of the tri-linear 6Rp terms upon the bottom-tau unification scenario. The

third generation 6Rp-couplings enter the evolution of mt, mb, and mτ at one loop and can thus

have a large effect. Thus if we allow for 6Rp we expect the strict predictions of the MSSM

to be modified. In Section 6 we shall analyse this effect and show that bottom-tau Yukawa

unification becomes viable for any value of tanβ, each one corresponding to a particular value

of an 6Rp coupling.

There has been much work to predict the fermion masses at the weak scale from a simple

symmetry structure at the unification scale [18, 23]. It is possible that the fermion mass

structure is determined by a broken symmetry [24] where only the top-quark Yukawa coupling

is allowed by the symmetry at tree-level. Its value is put in by hand and is presumably of

order one. The other couplings are then determined dynamically through the symmetry

breaking model. Given such a model, we would then still require a prediction for the top-

quark Yukawa coupling. An intriguing possibility is that this Yukawa coupling is given by

an infra-red (quasi) fixed point [25]. The low-energy value then depends only very weakly on

the high-energy initial value; the exact opposite of a fine-tuning problem. In supersymmetric

GUTs with bottom-tau unification one typically requires large values of λt ∼ 1 close to the

IR quasi fixed-point. This has been studied in detail in Refs.[7, 20, 18, 26, 27]. We investigate

the effect of the 6Rp-couplings on the fixed point in Section 7. Similar to the case of bottom-

tau unification in section 6 we find fixed-point structures for the top Yukawa coupling for

4



any value of tan β, although the focussing behaviour can be weakened depending upon the

particular coupling introduced.

1.3 Present Status

There have been several previous studies of the renormalisation group equations (RGEs) of the

6Rp-Yukawa couplings [28, 29, 30, 31, 32], which have all been at the one-loop level. The main

point of this paper is that we present the two-loop equations for the first time.2 In [30, 29]

the unitarity bounds on the couplings were determined at one-loop. These are still the best

bounds on some of the baryon-number violating couplings. Below we update these bounds

using the two-loop renormalisation group equations (RGEs). In [28] the complete one-loop

RGEs for the dimensionless couplings were first presented and the fixed point structure was

studied. We differ slightly in philosophy by also considering the Yukawa unification scenario

as discussed above and considering the fixed point structure at two-loop in the RGEs. In [32]

the full one-loop RGEs including the soft breaking terms were presented. These were used to

study the bounds from flavour changing neutral currents. We do not here consider the RGEs

for the soft breaking terms and this work is thus complimentary to ours. Several models have

also been constructed implementing one-loop equations including the soft-terms [31]. Since

our results are mainly model independent we do not comment on this work here.

The most important effect which enters at two-loop is that the running of the gauge

couplings now depends on the 6Rp-couplings. One might expect this effect to be small. But

for higher generations the bounds on the 6Rp-couplings are weak and the couplings can be

of order the electromagnetic coupling (e ≈ 0.30) or more. In addition, most bounds are

presented for scalar fermion masses of 100 GeV and become weaker for higher masses. At

present the best 1σ empirical bounds for the highest generation couplings and for relevant

scalar fermion masses of 1 TeV are [10, 34]

λ323 < 0.6 λ′333 < 2.6 λ′′323 < 0.43∗, (1.6)

where the asterisk indicates the bound for a 100 GeV mass, and does not have a simple

analytic description of the scaling with mass. At 1.5 TeV the bound on λ323 [35] is almost

identical to the perturbative limit obtained below in Section 3. The bound on λ′333 [34] at

1 TeV, is obtained by scaling and as such is meaningless since perturbation theory breaks

down below MU for such large values. The appropriate bound is thus the perturbative limit,

which we obtain in Section 3. A mass-independent bound on λ′′323 was found in ref.[36] from

requiring perturbativity up to the scale MU . However, we show below that the bound from

perturbative unification is dependent upon tanβ, and we calculate this dependence. We shall

thus explore all three couplings to the perturbative limit.

2The two-loop equations have been presented before in [33]. This work contained a sign error in the

RGEs as pointed out by the authors of [32] and remained unpublished since one author left the field with the

computer program.
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The outline of the paper is as follows. In Section 2 we present the full two-loop renormali-

sation group equations for the gauge couplings and the superpotential parameters. In Section

3 we present the specific RGEs assuming there is only one 6Rp-operator present at a time. In

Section 4 we outline the procedure for our numerical analysis. In Section 5 we use the specific

equations to study the effects of R-parity violation on the unification of the gauge couplings.

We focus on the main predictions of unification: the unification scale, the value of the gauge

coupling at the unification scale and the value of the strong coupling at MZ . In Section 6

we study the effects of the third generation 6Rp-couplings on b-τ unification. In Section 7 we

study the Landau poles and the fixed points of the top- and the 6Rp-Yukawa couplings. In

Section 8 we present our conclusions.

2 Renormalisation Group Equations

The chiral superfields of the Rp-MSSM and the 6Rp-MSSM have the following GSM = SU(3)c×
SU(2)L × U(1)Y quantum numbers

L : (1, 2,−1
2
), Ē : (1, 1, 1), Q : (3, 2,

1

6
), Ū : (3, 1,

2

3
),

D̄ : (3, 1,−1
3
), H1 : (1, 2,−1

2
), H2 : (1, 2,

1

2
). (2.1)

In the following we shall apply the work of Martin and Vaughn (MV) [37] to the general

6Rp-MSSM superpotential. For the generic superpotential, W , we closely follow their notation

W = Y φρφσφδφρφσφδ/6, (2.2)

where φρ,σ,δ denote any chiral superfield of the model. The indices ρ, σ, δ run over all gauge

and flavour components. The 6Rp-MSSM superpotential is then given by

W = ǫab

[

(YE)ijL
a
iH

b
1Ēj + (YD)ijQ

ax
i H

b
1D̄jx + (YU)ijQ

ax
i H

b
2Ūjx

]

+ǫab

[

1

2
(ΛEk)ijL

a
iL

b
jĒk + (ΛDk)ijL

a
iQ

xb
j D̄kx

]

+
1

2
ǫxyz(ΛU i)jkŪ

x
i D̄

y
j D̄

z
k

+ǫab

[

µHa
1H

b
2 + κiLa

iH
b
2

]

. (2.3)

We denote an SU(3) colour index of the fundamental representation by x, y, z = 1, 2, 3. The

SU(2)L fundamental representation indices are denoted by a, b, c = 1, 2 and the generation

indices by i, j, k = 1, 2, 3. We have introduced the twelve 3 × 3 matrices

YE, YD, YU , ΛEk , ΛDk , ΛU i , (2.4)

for all the Yukawa couplings. This implies the following conventions in the MV notation

Y La
i Qbx

j D̄ky = Y La
i D̄kyQbx

j = Y D̄kyLa
i Qbx

j = Y Qbx
j La

i D̄ky

= Y Qbx
j D̄kyLa

i = Y D̄kyQbx
j La

i = (ΛDk)ijǫabδ
y
x, (2.5)

Y La
i Lb

jĒk = Y La
i ĒkLb

j = Y ĒkLa
i Lb

j = (ΛEk)ijǫab = −(ΛEk)jiǫab, (2.6)

Y ŪixD̄jyD̄kz = Y D̄jyŪixD̄kz = Y D̄jyD̄kzŪix = ǫxyz (ΛU i)jk = −ǫxyz (ΛU i)kj , (2.7)
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We denote the GSM gauge couplings by g3, g2, g1. In Appendix A we have collected several

useful group theoretical formulas pertaining to GSM and the above field content. Here we

mention that for U(1)Y we use the normalisation as in GUTs and thus use g1 =
√

3/5 gY .

More details are given in the appendix. We define our notation for the Yukawa couplings via

the superpotential including all 6Rp terms.

We now in turn study the dimensionless couplings and then briefly also discuss the mass

terms µ, κi. We do not consider the soft-breaking terms here.

2.1 Gauge Couplings

The renormalisation group equations for the gauge couplings are

d

dt
ga =

g3
a

16π2
B(1)

a +
g3

a

(16π2)2





3
∑

b=1

B
(2)
ab g

2
b −

∑

x=u,d,e

(

Cx
aTr(Y†

xYx) + Ax
a

3
∑

i=1

Tr(Λ†
xi
Λxi

)

)



 . (2.8)

The coefficients Ba, Bab, and Cx
a have been given previously [38] and for completeness we

present them in the appendix. The 6Rp-effects on the running of the gauge couplings appear

only at two-loop and are new. We obtain

Au,d,e
a =









12/5 14/5 9/5

0 6 1

3 4 0









. (2.9)

This completes the equations for the running of the gauge coupling constants at two-loop.

2.2 Yukawa Couplings

In general the renormalisation group equations for the Yukawa couplings are given by [37]

d

dt
Y ijk = Y ijp

[

1

16π2
γ(1)k

p +
1

(16π2)2
γ(2)k

p

]

+ (k ↔ i) + (k ↔ j), (2.10)

and the one- and two-loop anomalous dimensions are

γ
(1)j
i =

1

2
YipqY

jpq − 2δj
i

∑

a

g2
aCa(i), (2.11)

γ
(2)j
i = −1

2
YimnY

npqYpqrY
mrj + YipqY

jpq
∑

a

g2
a[2Ca(p) − Ca(i)]

+2δj
i

∑

a

g2
a

[

g2
aCa(i)Sa(R) + 2

∑

b

g2
bCa(i)Cb(i) − 3g2

aCa(i)C(Ga)

]

. (2.12)

We have denoted by Ca(f) the quadratic Casimir of the representation f of the gauge group

Ga. C(G) is an invariant of the adjoint representation of the gauge group G and Sa(R) is the

second invariant of the representation R in the gauge group Ga. These quantities are defined

in the appendix and their specific values are given there as well. We now first give the explicit

version of Eq.(2.10) for the matrices (2.4) in terms of the anomalous dimensions, and then

we present the explicit forms for γ
(1)fj

fi
, and γ

(2)fj

fi
.
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2.2.1 RG-Equations

The RGEs for the Yukawa couplings (including full family dependence) are given by

d

dt
(YE)ij = (YE)ikΓ

Ej

Ek
+ (YE)ijΓ

H1

H1
− (ΛEj)kiΓ

H1

Lk
+ (YE)kjΓ

Li

Lk
, (2.13)

d

dt
(YD)ij = (YD)ikΓ

Dj

Dk
+ (YD)ijΓ

H1

H1
− (ΛDj )kiΓ

H1

Lk
+ (YD)kjΓ

Qi

Qk
, (2.14)

d

dt
(YU)ij = (YU)ikΓ

Uj

Uk
+ (YU)ijΓ

H2

H2
+ (YU)kjΓ

Qi

Qk
, (2.15)

d

dt
(ΛEk)ij = (ΛEl)ijΓ

Ek

El
+ (ΛEk)ilΓ

Lj

Ll
+ (YE)ikΓ

Lj

H1
− (ΛEk)jlΓ

Li

Ll
− (YE)jkΓ

Li

H1
, (2.16)

d

dt
(ΛDk)ij = (ΛDl)ijΓ

Dk

Dl
+ (ΛDk)ilΓ

Qj

Ql
+ (ΛDk)ljΓ

Li

Ll
− (YD)jkΓ

Li

H1
, (2.17)

d

dt
(ΛU i)jk = (ΛU i)jlΓ

Dk

Dl
+ (ΛU i)lkΓ

Dj

Dl
+ (ΛU l)jkΓ

Ui

Ul
. (2.18)

At two-loop the anomalous dimensions are given by

Γfi

fj
=

1

16π2
γ

(1)fj

fi
+

1

(16π2)2
γ

(2)fj

fi
. (2.19)

2.2.2 Anomalous Dimensions

The one-loop anomalous dimensions are given by

γ
(1)Lj

Li
=

(

YEY
†
E

)

ji
+ (ΛEqΛ

†
Eq)ji + 3(ΛDqΛ

†
Dq)ji − δj

i (
3

10
g2
1 +

3

2
g2
2), (2.20)

γ
(1)Ej

Ei
= 2

(

Y
†
EYE

)

ji
+ Tr(ΛEjΛ

†

Ei) − δj
i (

6

5
g2
1), (2.21)

γ
(1)Qj

Qi
=

(

YDY
†
D

)

ji
+
(

YUY
†
U

)

ji
+ (Λ†

DqΛDq)ij − δj
i (

1

30
g2
1 +

3

2
g2
2 +

8

3
g2
3), (2.22)

γ
(1)Dj

Di
= 2

(

Y
†
DYD

)

ij
+ 2Tr(Λ†

DiΛDj ) + 2(ΛUqΛ
†
Uq)ji − δj

i (
2

15
g2
1 +

8

3
g2
3)), (2.23)

γ
(1)Uj

Ui
= 2

(

Y
†
UYU

)

ij
+ Tr(ΛUjΛ

†

U i) − δj
i (

8

15
g2
1 +

8

3
g2
3)), (2.24)

γ
(1)H1

H1
= Tr

(

3YDY
†
D + YEY

†
E

)

− (
3

10
g2
1 +

3

2
g2
2), (2.25)

γ
(1)H2

H2
= 3Tr

(

YUY
†
U

)

− (
3

10
g2
1 +

3

2
g2
2), (2.26)

γ
(1)H1

Li
= γ

(1)Li

H1

∗
= −3(Λ∗

DqYD)iq − (Λ∗
EqYE)iq. (2.27)

Note that here, H1,2, L,Q represent the fields Ha
1,2, L

a, Qxa where a is the index of the

fundamental representation of SU(2) (i.e. no factors of ǫab are factored in). For the two-loop

anomalous dimensions we write

γ
(2)fj

fi
=
(

γ
(2)fj

fi

)

yukawa
+
(

γ
(2)fj

fi

)

g−y
+
(

γ
(2)fj

fi

)

gauge
. (2.28)
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These correspond respectively to the three terms of (2.12). These are given explicitly below.

The pure gauge two-loop anomalous dimensions are given by

(

γ
(2)Lj

Li

)

gauge
= δj

i (
15

4
g4
2 +

207

100
g4
1 +

9

10
g2
2g

2
1), (2.29)

(

γ
(2)Ej

Ei

)

gauge
= δj

i

234

25
g4
1, (2.30)

(

γ
(2)Qj

Qi

)

gauge
= δj

i (−
8

9
g4
3 +

15

4
g4
2 +

199

900
g4
1 + 8g2

3g
2
2 +

8

45
g2
3g

2
1 +

1

10
g2
2g

2
1), (2.31)

(

γ
(2)Dj

Di

)

gauge
= δj

i (−
8

9
g4
3 +

202

225
g4
1 +

32

45
g2
3g

2
1), (2.32)

(

γ
(2)Uj

Ui

)

gauge
= δj

i (−
8

9
g4
3 +

856

225
g4
1 +

128

45
g2
3g

2
1), (2.33)

(

γ
(2)H1

H1

)

gauge
=

(

γ
(2)H2

H2

)

gauge
=
(

γ
(2)Lj

Li

)

gauge
, (2.34)

(

γ
(2)H1

Li

)

gauge
=

(

γ
(2)Li

H1

)

gauge
= 0, (2.35)

The mixed gauge-Yukawa two-loop anomalous dimensions are given by

(

γ
(2)Lj

Li

)

g−y
= (16g2

3 −
2

5
g2
1)
(

ΛDqΛ
†
Dq

)

ji
+

6

5
g2
1(YEY

†
E + ΛEqΛ

†
Eq)ji, (2.36)

(

γ
(2)Ej

Ei

)

g−y
= (6g2

2 −
6

5
g2
1)(Y

†
EYE)ij + (3g2

2 −
3

5
g2
1)Tr(ΛEjΛ

†

Ei), (2.37)

(

γ
(2)Qj

Qi

)

g−y
=

2

5
g2
1[
(

YDY
†
D + 2YUY

†
U

)

ji
+
(

Λ
†
DqΛDq

)

ij
], (2.38)

(

γ
(2)Dj

Di

)

g−y
= (

16

3
g2
3 +

16

15
g2
1)
(

ΛUqΛ
†
Uq

)

ji

+(6g2
2 +

2

5
g2
1)[
(

YDY
†
D

)

ji
+ Tr(ΛDjΛ

†

Di)], (2.39)

(

γ
(2)Uj

Ui

)

g−y
= (6g2

2 −
2

5
g2
1)
(

Y
†
UYU

)

ij
+ (

8

3
g2
3 −

4

15
g2
1)Tr(ΛUjΛ

†

U i), (2.40)

(

γ
(2)H1

H1

)

g−y
= (16g2

3 −
2

5
g2
1)Tr(YDY

†
D) +

6

5
g2
1Tr(YEY

†
E), (2.41)

(

γ
(2)H2

H2

)

g−y
= (16g2

3 +
4

5
g2
1)Tr

(

YUY
†
U

)

, (2.42)

(

γ
(2)H1

Li

)

g−y
=

(

γ
(2)Li

H1

)∗

g−y
= (

2

5
g2
1 − 16g2

3) (Λ∗
DqYD)iq −

6

5
g2
1 (Λ∗

EqYE)iq . (2.43)

The pure Yukawa two-loop anomalous dimensions are given by

−
(

γ
(2)Lj

Li

)

yukawa
= 2

(

YEY
†
EYEY

†
E

)

ji
+
(

Y
†
E

)

ki
(YE)jl Tr

(

Λ
†

ElΛEk

)

+ 2
(

ΛElΛ
†

Ek

)

ji

(

Y
†
EYE

)

lk
+
(

ΛElΛ
†

Ek

)

ji
Tr
(

Λ
†

ElΛEk

)

+
(

YEY
†
E

)

ji
Tr
(

YEY
†
E + 3YDY

†
D

)

(2.44)

+ (YE)jk

(

3Λ†

EkΛDpY∗
D + Λ

†

EkΛEpY∗
E

)

ip

− (Y∗
E)ik (3ΛEkΛ∗

DpYD + ΛEkΛ∗
EpYE)jp

+
(

Λ
†

EkYEY
†
EΛEk + 3Λ†

EkΛDpΛ
†
DpΛEk + Λ

†

EkΛEpΛ
†
EpΛEk

)

ij

9



+ 6
(

ΛDlΛ
†

Dk

)

ji

[(

Y
†
DYD

)

lk
+ Tr

(

Λ
†

DlΛDk

)

+
(

ΛUqΛ
†
Uq

)

kl

]

+ 3
(

Λ∗
DkYDY

†
DΛT

Dk + Λ∗
DkYUY

†
UΛT

Dk

)

ij
+ 3

(

ΛDkΛ
†
DpΛDpΛ

†

Dk

)

ji
,

−
(

γ
(2)Ej

Ei

)

yukawa
= 2

(

Y
†
EYEY

†
EYE + Y

†
EΛElΛ

†

ElYE + 3Y†
EΛDlΛ

†

DlYE

)

ij

+ 2
(

Y
†
EYE

)

ij
Tr
(

Y
†
EYE + 3YDY

†
D

)

(2.45)

− 2
(

3Y†
EΛEjΛ∗

DmYD − Y
†
EΛEjΛ

†
EmYE

)

im

+ 2Tr
[

ΛEjΛ
†

Ei

(

YEY
†
E + ΛElΛ

†

El + 3ΛDlΛ
†

Dl

)]

− 2
(

3Y†
DΛT

DmΛ
†

EiYE − Y
†
EΛEmΛ

†

EiYE

)

mj

−
(

γ
(2)Qj

Qi

)

yukawa
= 2

(

YDY
†
DYDY

†
D

)

ji
+
(

YDY
†
D

)

ji
Tr
(

Y
†
EYE + 3Y†

DYD

)

+ 2
(

YUY
†
UYUY

†
U

)

ji
+ 3

(

YUY
†
U

)

ji
Tr
(

Y
†
UYU

)

+ 2
(

Λ
†

DlΛDm

)

ij

[(

Y
†
DYD

)

ml
+
(

ΛUqΛ
†
Uq

)

lm
+ Tr

(

Λ
†
DmΛDl

)]

+
(

Λ
†
DmYEY

†
EΛDm

)

ij
+ 3

(

Λ
†
DmΛDqΛ

†
DqΛDm

)

ij
+
(

Λ
†
DmΛEqΛ

†
EqΛDm

)

ij

+ (YD)jl

(

3Λ†

DlΛDmY∗
D + Λ

†

DlΛEmY∗
E

)

im
+ 2

(

YDΛ
†
UqΛUqY

†
D

)

ji

+ 2 (YD)jm

(

Y
†
D

)

li
Tr
(

Λ
†
DmΛDl

)

(2.46)

+ (Y∗
D)il

(

3ΛT
DlΛ

∗
DmYD + ΛT

DlΛ
∗
EmYE

)

jm
+ (YU)jl

(

Y
†
U

)

ki
Tr
(

Λ
†

U lΛUk

)

−
(

γ
(2)Dj

Di

)

yukawa
= 2

(

Y
†
DYDY

†
DYD

)

ij
+ 2

(

Y
†
DYUY

†
UYD

)

ij

+ 2
(

Y
†
DYD

)

ij
Tr
(

Y
†
EYE + 3Y†

DYD

)

+ 2
(

YT
DΛ

†
DpΛDpY∗

D

)

ji

+ 2Tr
(

ΛT
DjΛ

∗
Di

(

YDY
†
D + YUY

†
U

)

+ Λ
†

DiΛDjΛ
†
DqΛDq

)

+ Tr
(

6ΛDqΛ
†
DqΛDjΛ

†

Di + 2ΛEqΛ
†
EqΛDjΛ

†

Di + 2YEY
†
EΛDjΛ

†

Di

)

+ 4
(

ΛUmY
†
DYDΛ

†
Um

)

ji
+ 4

(

Λ
†
UmΛUpΛ

†
UpΛUm

)

ij
(2.47)

− 4
(

Λ
†
Um

)

ik
(ΛUm)jl Tr

(

ΛDlΛ
†

Dk

)

+
(

6Y†
DΛT

DjΛ
∗
DpYD

)

ip

+ 2
(

Y
†
DΛT

DjΛ
∗
EpYE

)

ip
+
(

6YT
DΛ

†

DiΛDpY∗
D + 2YT

DΛ
†

DjΛEpY∗
E

)

jp

+ 2
(

Λ
†

UkΛU l

)

ij

[

Tr
(

Λ
†

U lΛUk

)

+ 2
(

Y
†
UYU

)

lk

]

−
(

γ
(2)Uj

Ui

)

yukawa
= 2

(

Y
†
UYUY

†
UYU

)

ij
+ 2

(

Y
†
UYDY

†
DYU

)

ij
+ 6

(

Y
†
UYU

)

ij
Tr
(

YUY
†
U

)

+ 2
(

Y
†
UΛT

DmΛ∗
DmYU

)

ij
+ 4

(

Λ
†

U iΛUj

)

lm
Tr
(

Λ
†
DmΛDl

)

+ 4Tr
(

ΛUjΛ
†

U iΛUpΛ
†
Up

)

+ 4Tr
(

Λ
†

U iΛUjY
†
DYD

)

(2.48)

−
(

γ
(2)H1

H1

)

yukawa
= Tr

(

3YEY
†
EYEY

†
E + 9Y†

DYDY
†
DYD + 3YDY

†
DYUY

†
U

)

+ Tr
(

3YEY
†
EΛDqΛ

†
Dq + YEY

†
EΛEqΛ

†
Eq + 6Y†

DYDΛ
†
UqΛUq

+ 3YDY
†
DΛT

DqΛ
∗
Dq

)

+
(

Y
†
EYE

)

ji
Tr
(

Λ
†

EiΛEj

)

+ 6
(

Y
†
DYD

)

ik
Tr
(

Λ
†

DkΛDi

)

, (2.49)
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−
(

γ
(2)H2

H2

)

yukawa
= Tr

(

9YUY
†
UYUY

†
U + 3YUY

†
UYDY

†
D + 3YUY

†
UΛT

DqΛ
∗
Dq

)

+ 3
(

Y
†
UYU

)

jk
Tr
(

Λ
†

UkΛUj

)

, (2.50)

−
(

γ
(2)H1

Li

)

yukawa
=

(

3Λ†

EjΛDpΛ
†
DpYE + Λ

†

EjΛEpΛ
†
EpYE + 3Λ†

EjYEY
†
EYE

)

ij

+
(

Λ
†

EkYE

)

il
Tr
(

Λ
†

ElΛEk

)

+ 3
(

Y∗
EYT

EΛ∗
DmYD − Y∗

EYT
EΛ∗

EmYE

)

im
− 9

(

Λ∗
DkYDY

†
DYD

)

ik

+ 6
(

Λ∗
DkYDΛ

†
UmΛUm

)

ik
− 6 (Λ∗

DkYD)il Tr
(

ΛDlΛ
†

Dk

)

− 3
(

Λ∗
DjYUY

†
UYD

)

ij
− 3

(

Λ∗
DjΛ

T
DmΛ∗

DmYD

)

ij
= −

(

γ
(2)Li

H1

)∗

yukawa
(2.51)

This completes the renormalisation group equations for the Yukawa couplings at two-loop.

Before we discuss applications we briefly consider the renormalisation of the bilinear terms.

2.3 Bi-Linear Terms

Following the general equations given in MV the renormalisation group equations for the

bilinear terms now including all R-parity violating effects are given by

d

dt
µ = µ

{

ΓH1

H1
+ ΓH2

H2

}

+ κiΓH1

Li
, (2.52)

d

dt
κi = κiΓH2

H2
+ κpΓLi

Lp
+ µΓLi

H1
. (2.53)

The anomalous dimensions at two-loop are given in the previous subsection. We see that

even if initially κi = 0 a non-zero κi will in general be generated through the RGEs via a

non-zero µ. As noted in MV the bi-linear terms do not appear in the equations for the Yukawa

couplings or the gauge couplings. They thus do not directly affect unification and we ignore

them for the rest of this paper.

2.4 Discussion

The two-loop renormalisation group equations for the Yukawa couplings respect several sym-

metries. If at some scale for example λ′′ijk = 0 for all i, j, k then baryon parity, Bp, is conserved

at this scale. There are no 6Bp-couplings in the theory and thus in perturbation theory no

6Bp-couplings are generated, i.e. the RGEs preserve λ′′ijk = 0 at all scales. Analogously, lepton

parity, once imposed, is also preserved by the RGEs. If at some scale λijk = λ′′ijk = 0 for all

i, j, k and only one lepton flavour is violated, (e.g. λ′3jk 6= 0 in the mass basis of the charged

leptons) then this is also true for all scales. If the neutrino masses are non-zero then this is

no longer true [39]. The electron mass matrix YE then contains off-diagonal entries which

generate off diagonal ΓEi

Ej
,ΓLi

Lj
via the RGEs. But the effects will be very small and can thus

be neglected in most circumstances. However, if we assume only λ′111 6= 0 at some scale then

through the quark CKM-mixing the other terms λ′1ij will be generated.
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Our results agree with MV for the MSSM Yukawa couplings. We also agree with the

one-loop Rp violating results [28, 36, 31].

3 Specific RGEs

3.1 Assumptions

We now apply the two-loop RG-equations to the questions of unification. We shall assume

as a first approximation that the 6Rp-couplings have a similar hierarchy to the SM Yukawa

couplings and thus only consider one coupling at a time. The third generation couplings have

the weakest bounds (1.6) and can thus lead to the largest effects. We shall consider the three

cases

LLĒ : λ323, LQD̄ : λ′333, ŪD̄D̄ : λ′′323, (3.1)

defined in the current basis of the charged fermions. We assume that in each case the re-

spective operator decouples from the other 6Rp-operators whose couplings we set to zero.

Rigourously this is not a consistent approach. However we can show that this is a very good

approximation.

The coupling (ΛE3)23 violates Lµ and can thus also generate non-zero (ΛE1)12 as well as

(ΛDk)2j . We use (ΛE3)23 as defined in a field basis in which YE is diagonal, otherwise Le,τ are

not valid to protect the other (ΛEk)ij from becoming non-zero. The full RGEs are directly

determined from the equations in the previous section. The largest relevant terms at one-loop

order are

d

dt
(ΛE1)12 ≈ −1

16π2
(hehτ )(ΛE3)23, (3.2)

d

dt
(ΛD3)23 ≈ 1

16π2
(hbhτ )(ΛE3)23. (3.3)

Here he, hτ , hb are the e, τ, and b Yukawa couplings. We do not know the entries in YD. Here

we have assumed (YD)33 ≈ hb. Then in both cases the newly generated couplings are strongly

suppressed and we can safely drop them. As an additional check, we have run the one loop

RGEs in the above cases with (ΛE3)23 non-zero at the unification scale. The initially zero

couplings are then generated at the 10−5 level even for large values of (ΛE3)23|MU
.

The coupling (ΛD3)33 violates Lτ and can in principle generate (ΛDj )3i, (ΛEi)i3 6= 0 at

the one-loop level. The relevant terms in the RGEs are

d

dt
(ΛDk)3j ∼ 1

16π2
(ΛD3)33

[

2δj3(Y
†
DYD)3k + δk3[(YDY

†
D)3j + (YUY

†
U)3j] + 3hb(YD)jk

]

,(3.4)

d

dt
(ΛE1)31 ≈ 3

16π2
(hehb)(ΛD3)33. (3.5)

d

dt
(ΛE2)32 ≈ 3

16π2
(hµhb)(ΛD3)33, (3.6)
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where j, k are not equal to 3 simultaneously. In order to estimate the contribution in the first

RGE we would need full knowledge of the matrices YD and YU , which does not exist to date.

If we use the symmetric texture ansätze of [40] we indeed find the off-diagonal elements of YD,

Y †
DYD and Y †

UYU highly suppressed. We thus feel justified in neglecting the newly generated

couplings. In the second and third case we have made the same assumption as in (3.3) and

we see that we can safely ignore the newly generated couplings.

An initial non-zero (ΛU3)23 can generate all the other baryon-number violating couplings.

At one-loop and to leading order these are (ΛU i)jk, where (ijk)ǫ{(312), (313), (123), (223)}.
The relevant terms in the RGEs are

d

dt
(ΛU i)jk ≈ 1

8π2
(ΛU3)32

[

(Y †
DYD)31δi3δj2δk1 + (Y †

DYD)21δi3δj1δk3 + (Y †
UYU)3iδj2δk3

]

. (3.7)

Under the previous assumptions this again leads to negligible new couplings. Thus in all

three cases the decoupling is a good assumption. In line with this argument we assume the

following form for the Higgs-Yukawa matrices

YE = diag(0, 0, λτ), YD = diag(0, 0, λb), YU = diag(0, 0, λt). (3.8)

So we make the approximation that the current basis is equal to the mass basis.

3.2 Special Case Equations

We now consider the specific case of the R-parity violation being through one dominant

operator as in (3.1). Thus we set the product of any two 6Rp couplings to be zero. We note

the connection between the conventional notation and our matrix notation

(ΛE3)32 = λ323, (ΛD3)33 = λ′333, (ΛU3)23 = λ′′323. (3.9)

The gauge couplings have RGEs equivalent to those of the MSSM except for the following

two-loop 6Rp contributions which we parameterise as

∆

(

d

dt
ga

)

≡ d

dt
g 6Rp−MSSM

a − d

dt
gRp−MSSM

a (3.10)

where

∆

(

d

dt
g3

)

= − g3
3

(16π2)2

[

6λ′′
2
323 + 4λ′

2
333

]

(3.11)

∆

(

d

dt
g2

)

= − g3
2

(16π2)2

[

6λ′
2
333 + 2λ2

323

]

(3.12)

∆

(

d

dt
g1

)

= − g3
1

(16π2)2

[

24

5
λ′′

2
323 +

14

5
λ′

2
333 +

18

5
λ2

323

]

. (3.13)
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The RGEs of the Yukawa couplings are

d

dt
λ323 = λ323

(

ΓE3

E3
+ ΓL3

L3
+ ΓL2

L2

)

+ λτΓ
L2

H1
(3.14)

d

dt
λ′333 = λ′333

(

ΓD3

D3
+ ΓQ3

Q3
+ ΓL3

L3

)

− λbΓ
L3

H1
(3.15)

d

dt
λ′′323 = λ′′323

(

ΓD3

D3
+ ΓD2

D2
+ ΓU3

U3

)

(3.16)

d

dt
λτ = λτ

(

ΓE3

E3
+ ΓH1

H1
+ ΓL3

L3

)

+ λ323Γ
H1

L2
(3.17)

d

dt
λb = λb

(

ΓD3

D3
+ ΓH1

H1
+ ΓQ3

Q3

)

− λ′333Γ
H1

L3
(3.18)

d

dt
λt = λt

(

ΓU3

U3
+ ΓH2

H2
+ ΓQ3

Q3

)

. (3.19)

The RGEs for the bi-linear terms are:

d

dt
µ = µ

(

ΓH1

H1
+ ΓH2

H2

)

+ κ2Γ
H1

L2
+ κ3Γ

H1

L3
(3.20)

d

dt
κ1 = κ1

(

ΓL1

L1
+ ΓH2

H2

)

(3.21)

d

dt
κ2 = µΓL2

H1
+ κ2

(

ΓL2

L2
+ ΓH2

H2

)

(3.22)

d

dt
κ3 = µΓL3

H1
+ κ3

(

ΓL3

L3
+ ΓH2

H2

)

. (3.23)

In the RGE for κ1 the term proportional to µ is dropped because in our approximation ΓL1

H1

vanishes. The specific two-loop anomalous dimensions are:

ΓE3

E3
=

1

16π2

[

2λ2
τ + 2λ2

323 −
6

5
g2
1

]

(3.24)

+
1

(16π2)2

[

(λ2
τ + λ2

323)(−
6

5
g2
1 + 6g2

2) − 4λ4
τ − 8λ2

τλ
2
323

− 6λ2
bλ

′2
333 − 6λ2

τλ
2
b − 4λ4

323 +
234

25
g4
1

]

ΓL3

L3
=

1

16π2

[

λ2
τ + λ2

323 + 3λ′
2
333 −

3

10
g2
1 −

3

2
g2
2

]

+
1

(16π2)2

[

15

4
g4
2 +

207

100
g4
1 +

9

10
g2
2g

2
1 (3.25)

+ λ′
2
333(16g2

3 −
2

5
g2
1) +

6

5
g2
1(λ

2
τ + λ2

323) − 3λ4
τ − 6λ2

τλ
2
323 − 3λ4

323 − 3λ2
τλ

2
b − 9λ′

4
333

− 9λ′
2
333λ

2
b − 3λ2

tλ
′2
333

]

ΓL3

H1
= ΓH1

L3
= − 1

16π2
3λ′333λb (3.26)

− 1

(16π2)2

[

λ′333λb(16g2
3 −

2

5
g2
1) + 3λ2

τλbλ
′
333 − 9λ′333λ

3
b − 9λ′

3
333λb − 3λ′333λ

2
tλb

]

ΓL2

L2
=

1

16π2

[

λ2
323 −

3

10
g2
1 −

3

2
g2
2

]

(3.27)

+
1

(16π2)2

[

15

4
g4
2 +

207

100
g4
1 +

9

10
g2
2g

2
1 +

6

5
g2
1λ

2
323 − 3λ4

323 − 3λ2
τλ

2
323

]
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ΓL2

H1
= ΓH1

L2
=

1

16π2
λ323λτ +

1

(16π2)2

[

λ323λτ
6

5
g2
1 − 3λ3

323λτ − 3λ3
τλ323

]

(3.28)

ΓD3

D3
=

1

16π2

[

2λ2
b + 2λ′′

2
323 + 2λ′

2
333 −

2

15
g2
1 −

8

3
g2
3

]

(3.29)

+
1

(16π2)2

[

−8

9
g4
3 +

202

225
g4
1 +

32

45
g2
3g

2
1 + (λ′

2
333 + λ2

b)(
2

5
g2
1 + 6g2

2) + λ′′
2
323(

16

15
g2
1 +

16

3
g2
3)

− 16λ2
bλ

′2
333 − 8λ4

b − 2λ2
bλ

2
t − 8λ′

4
333 − 2λ′

2
333λ

2
t − 2λ2

bλ
2
τ − 8λ′′

4
323

− 4λ′′
2
323λ

2
t − 2λ2

τλ
′2
333

]

ΓQ3

Q3
=

1

16π2

[

λ2
b + λ2

t + λ′
2
333 −

1

30
g2
1 −

3

2
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(3.35)

4 Outline of the Numerical Analysis of RGEs

In order to determine the scale of unification we numerically solve the renormalisation group

equations. In the process, we re-derive unification predictions in the MSSM [7, 17, 20],

[41]-[44]. The main aim of this paper is to isolate the new effects due to the SUSY 6Rp

part of the theory. When running the equations we must cross the mass thresholds of the

supersymmetric particles. In order to determine these we must also run the two-loop RGEs of
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Figure 1: Effect of non-zero 6Rp coupling λ323 upon unification predictions. The value of tanβ

input and the predictions for no 6Rp are shown in the figures. (a) Ri correspond to the ratio of

the prediction of i in the Rp case to the predictions in the 6Rp case. (b) Rb/τ = λb(MU )/λτ(MU ).

the soft supersymmetry breaking terms. The 6Rp couplings contribute to these RGEs, but this

contribution has not yet been calculated at two-loop, although one-loop RGEs exist [32]. In

the future, when the full RGEs for the soft terms have been calculated, it will be interesting

to include the 6Rp effects on the spectrum and thus on the thresholds. At this stage, we

make the approximation of using the Rp-MSSM RGEs for the soft terms and the above 6Rp

RGEs for the dimensionless couplings. We will also not consider (potentially large, but model

dependent) GUT threshold corrections [42, 44].

We add in turn one of the three 6Rp-Yukawa couplings (3.1). We run the full set of

equations including the two-loop correction of the Yukawa couplings to the running of the

gauge couplings in Eq. (2.8). The boundary values of the running DR gauge couplings g1(MZ)

and g2(MZ) can be determined in terms of the experimentally well known parameters, the

Fermi constant GF , the Z-boson mass MZ and the electromagnetic coupling α−1
EM at Q2 = 0.

GF = 1.16639 10−5GeV −2, (4.1)

MZ = 91.187 GeV, (4.2)

α−1
EM(Q2 = 0) = 137.036. (4.3)

For a given set of pole masses mt = 174 GeV, mb = 4.9 GeV, mτ = 1.777 GeV we define the

DR Yukawa couplings at MZ . Then we use 2-loop Renormalisation Group equations to run

up to the scale MU , where g1 and g2 meet3.
3The gauge boson self energies ΠZZ , ΠWW are not modified by the R-parity violating couplings up to
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Figure 2: Effect of non-zero 6Rp coupling λ′333 upon unification predictions. The value of tanβ

input and the predictions for no 6Rp are shown in the figures. (a) Ri correspond to the ratio of

the prediction of i in the Rp case to the predictions in the 6Rp case. (b) Rb/τ = λb(MU )/λτ(MU ).

We have assumed universal boundary conditions at MU for the soft breaking parameters

A0, M0, M1/2. The iteration procedure used to determine our results is described in [44]. As a

characteristic mean value of the soft breaking parameters atMU we choose A0 = M1/2 = M0 =

300 GeV. We solve the RGEs for different values of the 6Rp-coupling at mt, starting from zero.

The maximal value we consider is where the running coupling reaches the perturbative limit

at the unification scale. For most of our discussion we take this to be λ(MU) <
√

4π ≈ 3.5.

However, we also show some results where λ(MU) < 5.0.

There has been a large interest in the literature [7, 20, 17, 18, 19, 46] in the restrictions on

the unification scenario from bottom-tau unification. Requiring bottom-tau unification leads

to a strict relation between the running top quark mass and tan β. For the experimental value

of mt [21], tan β is predicted to be very close to 1.5 or around 55 [47]. We are interested in

how the effects of 6Rp can relax this strict relation and allow a larger range of tanβ. As a

model scenario, we consider tanβ = 5 which is well away from the solutions in the MSSM. We

show that this feature is general and that solutions may be obtained for any value of tanβ,

provided one tunes the value of the 6Rp coupling. The 6Rp couplings change the fixed-point

(and quasi-fixed point) structure of the top-Yukawa coupling’s evolution. This is investigated

in detail for low values of tan β.

1-loop level. We assume that the effect of those couplings in vertex and box corrections to the running weak

mixing angle is negligible [45, 44].
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Figure 3: Effect of non-zero 6Rp coupling λ′′323 upon unification predictions. The value of tanβ

input and the predictions for the no 6Rp case are shown in the figures. (a) Ri correspond

to the ratio of the prediction of i in the Rp case to the predictions in the 6Rp case. (b)

Rb/τ = λb(MU)/λτ (MU ).

5 Gauge Coupling Unification

For λ 6Rp = 0 and with the inputs and procedure defined above, we obtain

αs(MZ) = 0.128, MU = 2.0 1016 GeV, αU = 0.041. (5.1)

In order to discuss the effects of the non-zero 6Rp Yukawa couplings we consider the unification

parameters as functions of λ 6Rp evaluated at mt.

αs(MZ , λ 6Rp), MU (λ 6Rp), αU(λ 6Rp). (5.2)

and define the ratios

Rα3
(λ 6Rp) =

α3(MZ , λ 6Rp)

α3(MZ , 0)
,

RMU
(λ 6Rp) =

MU(λ 6Rp)

MU(0)
, (5.3)

RαU
(λ 6Rp) =

αU(λ 6Rp)

αU(0)
.

When λ 6Rp = 0 and tan β = 5, the ratios in (5.3) are then all equal to 1 as can be seen on the

left of Figs. 1a, 2a, and 3a, respectively. Next we turn on the 6Rp-couplings. In Fig.s 1b, 2b,

and 3b we can read off the value of the 6Rp-coupling at the unification scale as a function of
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the coupling at mt. The plots stop once the perturbative limits are reached. For the present

numerical discussion we focus on tan β = 5. λ323(MU) reaches its perturbative limit for a low

scale value of λ323(mt) = 0.93. It is worth pointing out that this is the same as the laboratory

bound for slepton masses at 1.5 TeV! Thus although the laboratory bounds on the LLĒ

operators are generally considered to be very strict; for heavy supersymmetric masses they

are no stricter than the perturbative limit. At this point λ323 has run off Fig. 1b but it should

be clear how it extrapolates. The perturbative limits for the other couplings are given by

λ′333(mt) = 1.06 (5.4)

λ′′323(mt) = 1.07 (5.5)

The first limit (5.4) is equivalent to the empirical 2 σ limit for 700 GeV squark masses. The

1σ empirical bound on λ′′323 is 0.43 for 100 GeV squark mass, and so the limit (5.5) will be

restrictive for somewhat higher masses. These limits are tan β dependent, and we leave a full

discussion to section 7.3.1.

In Fig.s 1a, 2a, 3a we show how the ratios (5.3) change as we turn on the 6Rp-couplings.

For λ323 6= 0, αs(MZ) and αU are practically unchanged except very close to the perturbative

limit. However, MU is shifted upwards by up to 10(15)%, where the parenthesised value

corresponds to choosing the perturbative limit to be λ < 5.0. For λ′333 the downward shift

in αs(MZ) is typically 1-2%. At the extreme perturbative limit λ < 5.0 the maximum shift

is is a decrease of 5% in αs(MZ) giving a value of αs(MZ) = 0.122. This corresponds to an

agreement with the data αS(MZ) = 0.119± 0.002 [48] to 1.5σ, without using GUT threshold

corrections. While the importance of this result is obvious, caution in its interpretation

is required because the correction to αS(MZ) is sensitive to where one places the limit of

perturbative believability. For example, if one chooses λ(MU ) < 3.5, one only obtains a 3%

decrease, still with significantly better agreement with the data than the Rp conserving case.

αU is decreased slightly at this point. However, MU is decreased by up to 20%. This effect

is significantly beyond the effect due to the top quark Yukawa coupling. For λ′′323 6= 0, αU

remains practically unchanged. αs now has an overall increase of up to about 3% at the

perturbative limit corresponding to a value of αs(MZ) = 0.131 in disagreement with the

experimental value. MU is raised by up to 20%.

Thus we find αU essentially unchanged by 6Rp-effects. MU can change either way by up

to 20%. If we compare this with other effects considered in Ref. [41] we find it of the same

order as the uncertainty due to the top quark Yukawa coupling or the effects of possible non-

renormalisable operators at beyond the GUT scale. The effect is much smaller than that due

to GUT-scale threshold corrections or weak-scale supersymmetric threshold corrections. It is

thus much too small an effect to accommodate string unification. The strong coupling can

also change either way by up to 5%. A decrease is favoured by the data and is welcome in

supersymmetric unification. The effect of the 6Rp-couplings on αs(MZ) is of the same order as

the effects due to the top-quark Yukawa coupling, GUT-scale threshold effects and high-scale
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Figure 4: Bottom-tau Yukawa unification including the R-parity violating couplings (a) λ′333,

(b) λ′′323 for various tanβ = 1.6, 5, 26. The plots show Rb/τ = λb(MU)/λτ (MU) as a function

of the 6Rp couplings evaluated at mt. In (b), the tan β = 1.6 curve stops as λt(MU) reaches

its perturbative limit.

non-renormalisable operators [41].

6 b-τ Unification

In order to study the unification of the bottom and τ Yukawa couplings λb, λτ at MU we

define the ratio

Rb/τ (MU ) =
λb(MU , λ 6Rp)

λτ (MU , λ 6Rp)
. (6.1)

For λ 6Rp = 0, tanβ = 5 we have

Rb/τ (MU ) = 0.78. (6.2)

Thus including the top-quark effects but before turning on the 6Rp-coupling we are well away

from the bottom-tau unification solution Rb/τ (MU) = 1. Recall that the uncertainties due to

the bottom quark mass are small for small tanβ. Now we consider the corrections due to the

6Rp-couplings. The one-loop RGE for Rb/τ (t) is given by

16π2dRb/τ (t)

dt
= Rb/τ (t)

[

λ2
t + 3λ2

b − 3λ2
τ − 4λ2

323 + 3λ′
2
323 + 2λ

′′2
323 +

4

3
g2
1 −

16

3
g2
3

]

. (6.3)

The leading dependence of Rb/τ on λ323 has a negative sign and as we see in the two-loop

result shown in Fig. 1b Rb/τ drops significantly. Near the perturbative limit it drops by a

factor of 2.5 and 6Rp becomes a dominant effect on the evolution of Rb/τ . This is important
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for the range of tan β which leads to bottom-tau unification. In the MSSM Rb/τ is too large

for tanβ
<∼ 1.5 or

>∼ 55 [47]. Including a non-zero operator λ323 strongly reduces Rb/τ and

thus can lead to bottom-tau unification in this previous regime.

For λ′′323 6= 0 or λ′333 6= 0 there is an additional positive contribution in the evolution of

Rb/τ (t). The full two-loop result shows a clear rise in Rb/τ (t) as a function of λ′′323 in Fig. 3b.

The maximum increase at the perturbative limit is by 60%. For λ′′323(mt) = 0.9 bottom-

tau unification is restored! This is quite remarkable. Even though 6Rp-couplings are usually

expected to lead to only small effects they can have a significant impact on our understanding

of Yukawa-unification. Recall, that grand unification is possible in 6Rp-theories as discussed

extensively in the introduction. From Eq. (6.3) it should be clear that for example for λ′333

we get an increase in Rb/τ (MU ) as well leading to further bottom-tau unification points. From

Fig. 2, we see that for λ′333(mt) = 0.75, we achieve Rb/τ = 1 for tanβ = 5. To investigate

further, we plot Rb/τ as a function of λ′333(mt) for several other values of tanβ in Fig. 4a. The

figure illustrates that any value of tanβ = 2 − 26 achieves bottom-tau Yukawa unification,

provided λ′333(mt) is chosen correctly. Fig. 4b shows the equivalent plot for λ′′323 6= 0 with

the same conclusions.

7 Landau Poles and Fixed Points of Yukawa Couplings

True fixed points and quasi fixed points were first considered in [49]. Since then, many ap-

plications have been discussed in the literature (see ref.[50] and references therein), including

those in the Rp conserving MSSM. In the MSSM and at low tanβ, it is well known that if

one neglects two-loop corrections as well as those from couplings smaller than g3, the RGE

for λt has an infra-red stable fixed point [25] corresponding to λt/g3 =
√

7/18. This is too

low to accommodate mt = 175± 5 GeV. To be phenomenologically viable, λt must be out of

the domain of attraction of the true fixed-point. In practice, this implies that λt(mt) must be

nearer to its quasi-fixed point (QFP) limit of 1.1, where λt(MU) is large (formally it diverges).

Using mt(mt) = 165 ± 5 GeV as an input means that one can derive tanβ in this scenario

through the relation

sin β =

√
2mt(mt)

vλt(mt)
, (7.1)

implying tan β = 1.7 ± 0.2 at the QFP [51]. This scenario is very attractive [26, 50] because

the values of many parameters in the infra-red regime are insensitive to their input values

at MU , giving higher predictivity and a tightly constrained phenomenology. The quasi-fixed

Rp conserving MSSM is presently severely constrained [51, 50]. A large 6Rp coupling changes

the running significantly, and so in this section, we examine the running of the couplings as

a function of renormalisation scale. It is convenient to split this analysis into three cases to

focus upon: (1) infra-red stable fixed points of approximated RGEs, (2) a small amount of
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6Rp near the QFP of λt and (3) the case of two large Yukawa couplings. We then examine the

constraints on the 6Rp couplings defined at mt coming from the requirement of perturbativity

up to MU .

7.1 Fixed Points

First, we analyse the fixed points in the equations including the couplings λ′333, λ
′′
323 one at a

time. Neglecting λb, λτ (i.e. looking at the low tanβ limit) and two-loop terms, we reformulate

Eqs. (3.19), (3.14)-(3.16) as

d lnXt

d ln g2
3

=
7

9
− 1

3
X ′ − 2Xt −

2

3
X ′′ +

α2

α3
+

13

45

α1

α3
(7.2)

d lnX

d ln g2
3

= −1 +
3

5

α1

α3
+
α2

α3
− 4

3
X (7.3)

d lnX ′

d ln g2
3

=
7

9
− 1

3
Xt − 2X ′ +

α2

α3
+

7

45

α1

α3
(7.4)

d lnX ′′

d ln g2
3

=
5

3
− 2X ′′ − 2

3
Xt +

4

5

α1

α3

, (7.5)

where Xt ≡ λ2
t/g

2
3, X ≡ λ2

323/g
2
3, X

′ ≡ λ′2333/g
2
3 and X ′′ ≡ λ′′2323/g

2
3. The stability of Yukawa

couplings in supersymmetric theories has been considered in refs. [52]. Considering only one

non-zero 6Rp coupling at a time, we have two infra-red stable fixed points in the limit that we

ignore the electroweak gauge couplings. The first is

X = X ′ = 0 : Xt =
1

8
, X ′′ =

19

24
(7.6)

and the second is

X = X ′′ = 0 : Xt = X ′ =
1

3
. (7.7)

We have ignored λ323 in this discussion because it does not exhibit fixed point behaviour

itself due to the lack of renormalisation from the QCD interactions. The values of Xt in

Eqs. (7.6),(7.7) are even lower than the Rp-conserving MSSM value Xt = 7/18. They are

experimentally excluded [50] by the lower bound on λt(mt) coming from the requirement of

mt(mt) = 165 GeV.

7.2 Large λt(MU), Small 6Rp Coupling

We now discuss the case where λt(MU) > 1 and the 6Rp-couplings are in turn very small. The

behaviour of the Rp conserving superpotential parameters will be similar to their behaviour

in the Rp conserving MSSM. In this case, we can solve the one-loop RGEs for the 6Rp Yukawa

couplings analytically:

λ323(µ) = λ323(MU)δ−3
2 δ

−3/11
1 , (7.8)

λ′333(µ) = λ′333(MU)δ
40/27
3 δ

−5/2
2 δ

−29/594
1 δ

1/6
t , (7.9)

λ′′323(µ) = λ′′323(MU)δ
56/27
3 δ2δ

−95/297
1 δ

1/3
t , (7.10)
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Figure 5: (a) Effect of large R-parity violating couplings upon the quasi-fixed point of λt.

The 6Rp couplings increase toward the bottom of the plot. The lower limit of λt(mt) is defined

as the minimum value required to obtain mt(mt) = 165 GeV. (b) Perturbative limits of

large R-parity violating couplings as a function of tanβ. The upper curves correspond to the

two-loop order calculation and the lower ones to a one-loop calculation.

where δ1,2,3 ≡ g1,2,3(µ)/g(MU) and δt ≡ λt(µ)/λt(MU). We have neglected contributions from

λτ , λb in Eqs. (7.8)-(7.10) and so they are valid only at low tanβ < 15. The one-loop analytic

solutions for δ1,2,3 are equivalent to the Rp conserving MSSM ones [50]. The solution for δt

is also equivalent to its Rp counterpart, which has been solved analytically at one loop order

including g3, g2 [53]. Eqs. (7.8)-(7.10) predict a constant ratio of λ 6Rp(MU)/λ 6Rp(mt). This

corresponds to a straight line for the λ 6Rp(MU ) curves in Figs. 1b, 2b, 3b. For λ 6Rp(mt)
<∼ 0.3

this is a good approximation, after that the two-loop effects become important. We also obtain

analytic solutions at low tanβ for the bi-linear 6Rp terms when the 6Rp Yukawa couplings are

small:

κi(µ) = κi(MU)δ
−5/198
1 δ

−3/2
2 δ

−8/9
3 δ

1/2
t . (7.11)

7.3 Two large Yukawa couplings

The one-loop RGEs including λt, λb, g2,3 have been solved in the MSSM [54]. These RGEs

have the same form in the case of a non-zero λ′333, when ignoring all other Yukawa couplings

except λt. The analytic solutions to this system are therefore contained in ref. [54] and are

in terms of hypergeometric functions.

We present here numerical solutions to the two-loop equations, which can also be applied

to the cases of large λ323, or λ′′323 with large λt(mt). Using αU = 0.041, MU = 2 × 1016 GeV
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Figure 6: Running of λt(µ) and (a) λ′′323(µ), (b) λ′333(µ). The circles are separated by two

orders of magnitude of µ/ GeV. The flow is towards the region (a) λt ≈ 1, λ′′323 ≈ 1 and (b)

λt ≈ 1, λ′333 ≈ 1 for decreasing µ.

and again switching off λb and λτ (which is only valid for low tan β
<∼ 15), we calculate how

λt(mt) is related to its input value at MU , i.e. we study the quasi-fixed point structure. SUSY

threshold corrections are not included.

In Fig. 5a, the top solid line shows the quasi-fixed point structure of λt in the MSSM.

For λt(MU ) > 2.0 it is almost flat, i.e. λt(mt) = 1.1 becomes insensitive to λt(MU). The

horizontal dashed line corresponds to the minimum λt(mt) required to produce a top quark

mass which agrees with the data and for which sin β ≤ 1. It changes by ±0.03 within the

empirical errors on mt. The λ323 6= 0 curves are not plotted because they coincide with that of

the MSSM. This can be understood from Eq. (3.19) as the coupling does not directly appear

in the running of λt. This holds at two-loop due to our assumption of only one dominant 6Rp

coupling at a time.

When λ′333 is switched on, the quasi-fixed point behaviour of λt persists but its QFP

value can be decreased as far as λt(mt) = 1.03 which corresponds to tanβ = 2.1±0.9
0.1. Any

decrease in λt(mt) can increase tan β as extracted from Eq. (7.1), modifying the QFP pre-

dictions of superpartner masses, for example. In particular, higher tanβ can allow for higher

masses of the lightest CP-even Higgs, relaxing a severe constraint in the Rp conserving QFP

scenario [51]. For large λ′′323, the quasi-fixed behaviour of λt is somewhat weakened as the

non-zero gradient of the curves suggests, but λt(mt) = 1 is possible as the QFP prediction4,

corresponding to tanβ = 3.0±1.5
0.7.

Fig. 5 only shows information on the quasi-fixed point structure of λt. One would like to

4This lowering of λt(mt) was first pointed out by Brahmachari and Roy in ref. [36]
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know if the 6Rp couplings also exhibit the QFP behaviour when they are large. Fig. 6a shows

the running of both λt(µ) and λ′′323(µ) with the renormalisation scale µ. λb, λτ have been

switched off in this calculation. The two-loop 6Rp-MSSM RGEs were run through 14 orders of

magnitude (roughly corresponding to running from MU to mt), using αU = 0.041. Although

the figure shows both couplings running toward 1 in the infra-red regime, it is clear that it is

difficult to make this statement quantitatively accurate. The same conclusion holds for large

λ′333 6= 0 and λt, as shown in Fig. 6b. λ323 exhibits even less focussing behaviour because it is

not directly affected by QCD interactions.

7.3.1 Perturbative Limits

In Fig. 5b, we show the limits from perturbativity upon the 6Rp-couplings defined atmt. We use

a degenerate effective SUSY spectrum at mt in this calculation but no finite SUSY threshold

effects are included. We include λτ , λb however, because they make a large difference to any

Landau poles of Yukawa couplings at high tanβ. When we switch an 6Rp coupling on, the

curves in the figure map out what value of the coupling is required at mt to produce a value

of 5 for at least one of the Yukawa couplings at MU . In practice, to good accuracy the point

where a Yukawa coupling is 5 is very close to the Landau pole of that coupling. The deviation

between the two curves shows the significant weakening effect of including two-loop terms in

the RGEs: 5%, 12% and 10% for λ323, λ
′
323 and λ′′323 at high tan β respectively. The upper

bound calculated in this way exhibits a strong tanβ dependence due to λb, λτ contributing

to the running at high tanβ. Our one-loop bounds in Fig 5b agree with the previous limits

upon λ′′323 from perturbativity bounds provided in by Brahmachari and Roy [36]5 to within

3%. One-loop bounds upon other λ′′ijk were obtained by Goity and Sher [36].

8 Conclusions

We have argued that 6Rp is theoretically on equal footing with conserved Rp. Since it can

be realized in grand unified theories it is relevant for unification. We then first determined

the complete two-loop renormalisation group equations for the dimensionless couplings of the

unbroken supersymmetric Standard Model. It is only at two-loop that Yukawa couplings

affect the running of the gauge coupling constants. We then considered three models of

6Rp. We have added to the MSSM in turn the three Yukawa operators L3L2Ē3, L3Q3D̄3,

and Ū3D̄2D̄3. We considered their effects on various aspects of the perturbative unification

scenario. We have focused on qualitative effects. A detailed search for a preferred model is

beyond the scope of this paper. We found several important effects. The unification scale is

shifted by up to ±20%. This is comparable to some threshold effects but insufficient for string

5Note that Brahmachari and Roy differ by a factor of two in their convention for the λ′′ superpotential

terms.
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unification. αs(MZ) can be changed at most by ±5%. The reduction which is favoured by

the data is obtained close to the perturbative limits of λ′333 and λ′′323. We have obtained the

two-loop limit from perturbative unification for all three operators. For λ323 it is equivalent

to the laboratory bound for a slepton mass of 1.5 TeV and for λ′333, λ
′′
323 is competitive for

masses below 1 TeV. Two-loop limits from perturbativity are 5 − 12% weaker than the one-

loop limit previously obtained. This is all quite remarkable. The 6Rp-couplings can have

significant effects on the entire Yukawa unification picture. For bottom-tau unification we

have found significant affects. For λ323 6= 0 bottom-tau unification could be obtained for

values of tanβ < 1.5 were it not for the fact that the perturbative limit is reached. For

λ′′323, λ
′
333 6= 0, we found new points of bottom-tau unification at tanβ = 5 − 26. Thus for

tanβ < 30, bottom-tau unification doesn’t necessarily correspond to top IR quasi fixed-point

structure, as is the case in the MSSM [7, 25, 27, 50]. Indeed, the quasi-fixed structure is

changed resulting in lower values of the λt(mt) prediction for λ′333, λ
′′
323. This allows tanβ to

increase, resulting in higher masses for the lightest CP-even Higgs, relaxing severe constraints

on the QFP.
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Appendix

We consider a group G with representation matrices tA ≡ (t)Aj
i . Then the quadratic Casimir

C(R) of a representation R is defined by

(tAtA)j
i = C(R)δj

i . (A.1)

For SU(3) triplets q and for SU(2)L doublets L we have

CSU(3)(q) =
4

3
, CSU(2)(L) =

3

4
. (A.2)

For U(1)Y we have

C(f) =
3

5
Y 2(f), (A.3)

where Y (f) is the hypercharge of the field f . The factor 3/5 is the grand unified normalisation.

For the adjoint representation of the group of dimension d(G) we have

C(G)δAB = fACDfBCD, (A.4)
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where fABC are the structure constants. Specifically for the groups we investigate

C(SU(3)C) = 3, C(SU(2)L) = 2, C(U(1)Y ) = 0, (A.5)

and C(SU(N)) = N . The Dynkin index is defined by

TrR(tAtB) ≡ S(R)δAB. (A.6)

For the respective fundamental representations f we obtain

SU(3), SU(2) : S(f) =
1

2
, (A.7)

U(1)Y : S(f) =
3

5
Y 2(f), (A.8)

where we have inserted the GUT normalisation for U(1)Y .

The coefficients in the two-loop running of the gauge couplings (2.8) are given by [38]

B(1)
a = (

33

5
, 1,−3), (A.9)

B
(2)
ab =









199/25 27/5 88/5

9/5 25 24

11/5 9 14









, (A.10)

Cu,d,e
a =









26/5 14/5 18/5

6 6 2

4 4 0









. (A.11)
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