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Abstract

We derive a new class of time-dependent solutions for the Randall–Sundrum model by patching together isometries broken
by the brane. Solutions generated by generalized boosts along the fifth dimension are associated with localized gravity and lead
to an effective Friedman equation on the brane with a scale factor exhibiting power law or exponential behaviour. The effective
energy-density on the brane depends linearly on the brane tension. 2001 Published by Elsevier Science B.V.

The large gap between the electroweak scale and the
gravitational Planck scale has motivated the quest of a
theory with a higher dimensional spacetime in which
our world corresponds to a four-dimensional hyper-
surface. Although the idea that the world might corre-
spond to a topological defect embedded in a higher di-
mensional spacetime is not new [1], string theory pro-
vides many examples of such hypersurfaces orbranes
and, therefore, strong motivation for their exploration.
In a class of such higher dimensional models Standard
Model Physics is confined on the brane while gravity
propagates in the bulk. Large compact extra dimen-
sions can lower the fundamental gravitational scale
down to the TeV range [2]. The extra space, however,
does not have to be compact but just highly curved.
Such is the Randall–Sundrum spacetime [3,4] charac-
terized by a graviton which, although depending on
the transverse coordinate, it is sharply localized on the
brane. The RS metricds25 = e−2κ|y|gµν dxµ dxν+dy2

corresponds to gluing together two regions of theAdS5
space (y > 0 and y < 0) such that to posse aZ2
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symmetry. Smooth generalizations of such a geom-
etry can be constructed with the help of a scalar
field that gives rise to the brane as a kink-like soli-
ton while, in addition to gravitons, other relevant de-
grees of freedom can be localized on the brane [5].
An additional important possibility that seems to be
open in brane models is the possibility of explain-
ing the smallness of the observed cosmological con-
stant. Branes allow for an interplay between higher
dimensional and four-dimensional cosmological con-
stant contributions. Suchself-tuning behaviour [6–11]
arises also in the case that the brane is realized as
a scalar soliton [10]. An interesting as well as impor-
tant issue is whether higher dimensional models lead
to a cosmological evolution compatible with standard
Big Bang cosmology or extensions of it like inflation-
ary models. The cosmological implications of higher
dimensional models have been studied by a number of
authors [12–25]. A general feature of brane cosmol-
ogy is that in the Friedman-like equations on the brane
the energy density of the brane, naively corresponding
to the brane tension, appears quadratically [21] in con-
trast to the Friedman equations of the standard cosmol-
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ogy where it appears linearly. In the Randall–Sundrum
framework, however, this quadratic contribution in the
right hand side of the Friedman equation is compen-
sated by the linear bulk energy density coming from a
bulk cosmological constant. Exact compensation gives
the well known Randall–Sundrum static flat solution.
Dynamical evolution is possible in the form of expo-
nential expansion when the above two contributions
do not cancel, leaving an effective four-dimensional
energy density.

In the present Letter we investigate the time evo-
lution on the brane in the framework of the Randall–
SundrumAdS5 spacetime looking for time-dependent
solutions of Einstein’s equations in the full five-
dimensional space. We consider Lorentz transforma-
tions as a prototype of isometries that are broken by
the presence of the brane and replace them with their
Z2-invariant analogues. The metric generated by such
a transformation satisfies Einstein’s equations with an
effective energy-momentum tensor consisting of the
contributions of the brane and a bulk cosmological
constant. The corresponding cosmological evolution
on the brane is that of exponential expansion. Next, we
consider a generalization of the above metric that leads
to a general time-dependence of the four-dimensional
scale factor that includes standard time evolution like
a(τ) ∝ τ1/2. These solutions exist for specific time-
dependent bulk energy densities. In all cases the four-
dimensional scale factor satisfies an effective Fried-
man equation that features the effective energy density
on the brane calculated by summing the bulk energy
density contribution and the brane tension. The gen-
eral quadratic dependence on the brane tension is re-
placed by a linear one due to the relation between the
Randall–Sundrum curvature parameter and the brane
tensionκ = ξ/24M3

5 necessary for the existence of so-
lutions.

Let us consider the five-dimensional anti-de-Sitter
spaceAdS5 with metric

(1)ds2 = e−2κy(−dt2 + dx2⊥ + dx2||
) = 1

κ2x2||
dσ 2,

where the notation

x|| ≡ eκy

κ
,

(2)dx2⊥ = δij dxi dxj , i, j = 1,2,3,

has been introduced.AdS5 is maximally symmetric
and its Riemann tensor satisfies

Rµνκλ = κ(gµκgνλ − gνκgµλ), µ, . . .= 0, . . . ,4.

The metricdσ 2 and thex|| = const slices of the full
space are invariant under theboosts

(3)t ′ = 1√
1− β2

(
t + βx||

)
,

(4)x ′|| =
1√

1− β2

(
x|| + βt

)
,

(5)x ′ i⊥ = xi⊥.
The total metric (1) is then written in the new boosted
coordinates as

ds2 = 1

κ2x ′||
2

(−dt ′2 + dx ′2⊥ + dx ′2||
)

(6)= 1− β2

κ2(x|| + βt)2
(−dt2 + dx2⊥ + dx2||

)
.

In terms of the original coordinates we have, up to
a constant

ds2 = 1

(eκy + βt)2
(−dt2 + dx2

1 + dx2
2 + dx2

3

)

(7)+ e2κy

(eκy + βt)2dy
2.

This metric still describesAdS5 just in another coor-
dinate system, i.e., the boosted one. As a result, we
would the same physics as the original metric if no
discontinuities exist, since the boosts are just a set
of general coordinate transformations. In the Randall–
Sundrum model, however, where a brane sits aty = 0,
we can have the above boosts fory > 0 and their ana-
logues fory < 0 such that no global coordinate trans-
formation to exists and describing different physics.
Introducing conformal timee−βτ dτ = −dt and im-
posing theZ2 symmetryy→ −y we can set the met-
ric (7) in the form

ds2 = − e−2βτ dτ2

(eκ|y| + e−βτ − 1)2
+ δij dx

i dxj

(eκ|y| + e−βτ − 1)2

(8)+ e2κ|y| dy2

(eκ|y| + e−βτ − 1)2
.

When the parameterβ vanishes, this metric is the
static Randall–Sundrum metric

ds2RS= e−2κ|y|gµν dxµ dxν + dy2.
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Dynamical solutions with the same static limit has
been constructed also in [26,27]. It is clear that if the
right (y > 0) or left (y < 0) metric given (8) was
extended to the whole spacetime, it would provide a
solution of Einstein’s equations with a cosmological
constant. The existence of the brane, mathematically
represented by the presence of the absolute value|y|,
will induce extraδ(y) and constant terms coming from
|y|′′ and (|y|′)2. Such terms are exactly the terms
expected from a bulk cosmological constant and a
3-brane term in the action. Thus, the metric (8) should
be compatible with the action

S =
∫
d5x

√−g {
2M3

5R−ΛB
}

(9)−
∫
d5x

√−det(gµν) ξδ(y),

which leads to Einstein’s equations

GMN =RMN − 1

2
gMNR

= −gMN ΛB
4M3

5

− gµνδµMδνN
ξ

4M3
5

δ(y)

b

(10)≡ 1

4M3
5

TMN.

The two parameters appearing in these equations,
namely thebrane tension ξ and thebulk cosmological
constant ΛB should be matched with the two parame-
ters of the metricκ andβ .

Using the metric ansatz

ds2 = −n2(τ, y) dτ2 + a2(τ, y)γij dx
i dxj

(11)+ b2(τ, y) dy2

with γij the metric of a three-dimensional maximally
symmetric space,1 we can compute components of
Einstein’s tensorGAB . They are [16,22]

(12)

G00 = 3

{
ȧ

a

(
ȧ

a
+ ḃ

b

)

− n2

b2

(
a′′

a
+ a′

a

(
a′

a
− b

′

b

))
+ k n

2

a2

}
,

1 γrr = (1− kr2)−1, γθθ = r2, γφφ = r2 sin2 θ .

(13)

Gij = a2

b2
γij

{
a′

a

(
a′

a
+ 2
n′

n

)

− b′

b

(
n′

n
+ 2
a′

a

)
+ 2
a′′

a
+ n′′

n

}

+ a2

n2γij

{
ȧ

a

(
− ȧ
a

+ 2
ṅ

n

)
− 2
ä

a

+ ḃ

b

(
−2
ȧ

a
+ ṅ

n

)
− b̈

b

}
− kγij ,

(14)G05 = 3

(
n′

n

ȧ

a
+ a′

a

ḃ

b
− ȧ′

a

)
,

(15)

G55 = 3

{
a′

a

(
a′

a
+ n′

n

)

− b2

n2

(
ȧ

a

(
ȧ

a
− ṅ

n

)
+ ä
a

)
− k b

2

a2

}
.

Substituting the boosted expressions (9), (10) and (11)
of the metric components, we can easily see that they
are indeed a solution to Einstein’s equations for the
casek = 0. We also determine the solution parameters
in terms of the parameters of the actionΛB and ξ .
Their relations are

(16)ξ = 24M3
5κ,

(17)ΛB = −24M3
5

(
κ2 − β2).

Notice that forβ = 0, when the metric coincides with
the static Randall–Sundrum metric, these relations
are the well-known relations that relate the brane
tension to the curvature parameter and express the
fine-tuning between the bulk cosmological constant
and the brane tension in order to have a flat solution.
This last relation however in the case of non-vanishing
β should not be interpreted as a fine-tuning since there
is a continuous range of values ofκ2 + ΛB

24M3
5

� 0

corresponding to solutions.
The four-dimensional metric corresponding to our

solution is

(18)ds24 = −dτ2 + a2
0(τ ) d 
x 2

with

(19)a0(τ )= eβτ .
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This exponential expansion can be described with an
effective Friedman equation

(20)

(
ȧ0

a0

)2

= 8πG

3
ρeff.

This can be easily seen considering that2 8πG =
1

4M2
P

= κ

4M3
5
. Then, the effective energy density should

satisfy

(21)

(
ȧ0

a0

)2

= β2 = κ

12M3
5

ρeff.

In view of the parameter relations (18) and (19), the
effective four-dimensional energy density is

(22)ρeff = 1

2

(
ΛB

κ
+ ξ

)
= 1

2

(
ρ
(4)
B + ρ(4)b

)

being the average of the bulk contribution to the
four-dimensional energy density3 ΛB × κ−1 and the
naive four-dimensional energy densityξ . Note that
in the static Randall–Sundrum case these two terms
cancel to give an exactly vanishingρeff. It is worth
comparing the above effective Friedman equation with
the analogous general equation [21] derived for any

2 The four-dimensional Planck mass is determined to beM2
P =

M3
5/κ . Using standard time we have

ds24 = a2(t,0)
(−dt2 + d 
x 2) = gµν(t) dxµ dxν

and

√−G= √−g b(t, y)(a(t, y)/a(t,0))4
.

Since,

R[G] = a2(t, y)

a2(t,0)
R(4)[g] + · · · ,

performing they-integration, we obtain

S = 2M3
5

∫
d4x

∫
dy

√−GR

= 2M3
5

∫
d4x

√−g a−2(t,0)

{∫
dy a2(t, y)b(t, y)

}
R(4) + · · ·

= 2M3
5
κ

∫
d4x

√−gR(4)[g] + · · · ,

from which we read off

M2
P =M3

5/κ.

3 Note thatκ−1 is the effective size of the fifth dimension.

constant bulk energy–momentum

(23)

(
ȧ0

a0

)2

= 1

24M3
5

ρB + 1

(24M3
5)

2
ρ2
b − k

a2
0

+ C
a4

0

.

The two equations coincide fork = C = 0 due to
the relationρb = ξ = 24M3

5κ which transforms the
quadratic dependence on the brane tension into a linear
one, namely
(
ȧ0

a0

)2

= κ

24M3
5

(
ρ
(4)
B + ρ(4)b

)

= κ

24M3
5

(
ρ
(5)
B

κ
+ (ρ

(4)
b )

2

24M3
5κ

)

= 1

24M3
5

(
ρ
(5)
B + (ρ

(4)
b )

2

24M3
5

)
.

It seems, therefore, misleading to interpret the above
equation as indicating a quadratic dependence on the
brane energy density.

The next step in the quest for time-dependent
solutions compatible with standard cosmology would
be to replace the exponential in the metric ansatz
with a general function of timea0(τ ). Introducing the
generalized trial solutions

(24)a(τ, y)= a0(τ )

a0(τ )(eκ|y| − 1)+ 1
,

(25)n(τ, y)= 1

a0(τ )(eκ|y| − 1)+ 1
= a

a0
,

(26)b(τ, y)= a0(τ )e
κ|y|

a0(τ )(eκ|y| − 1)+ 1
= eκ|y|a,

we obtain, fork = 0, the Einstein tensors

(27)G05 = 0,

(28)G00 = g00

{
6κ2 − 6

(
ȧ0

a0

)2

− 6κ
δ(y)

b0

}
,

(29)

G55 = g55

{
6κ2 − 6

(
ȧ0

a0

)2

− 3

n(τ, y)

(
ä0

a0
−

(
ȧ0

a0

)2)}
,

(30)

Gij = gij
{

6κ2 − 6

(
ȧ0

a0

)2

− 6κ
δ(y)

b0

− 3

n(τ, y)

(
ä0

a0
−

(
ȧ0

a0

)2)}
.
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These, through Einstein’s equations, can be matched
with a conserved energy–momentum tensor

(31)T MN = Diag(−ρ,p,p,p,pT )
with components

(32)ρ = 24M3
5

{
κ
δ(y)

b0
− κ2 +

(
ȧ0

a0

)2}
,

(33)p = −ρ − 12M3
5

n(τ, y)

{
ä0

a0
−

(
ȧ0

a0

)2}
;

pT equals to the bulk part ofp. Note that the bulk
energy density is only time-dependent while the bulk
pressure has also a space-dependence. Notice that
there is no time-dependence introduced on the brane
tension which is againξ = 24M3

5κ . It is easy to see
that the content of the previous section can be easily
recovered from the above energy–momentum tensor
which becomes constant.

Let as now introduce a power law time-dependence
in the scale factor

(34)a0(τ )= Cτγ
The 5D metric then turns out to be

ds2 = − dτ2

C2τ2γ (eκ|y| − 1)+ 1

+ C2τ2γ δij dx
i dxj

C2τ2γ (eκ|y| − 1)+ 1

(35)+ C2τ2γ eκ|y| dy2

C2τ2γ (eκ|y| − 1)+ 1
,

whereas the corresponding densities are

(36)ρ(τ)= 24M3
5

{
κ
δ(y)

b0
− κ2 + γ 2

τ2

}
,

(37)p(τ, y)= −ρ(τ)+ 12M3
5
γ

τ2

{
1

n(τ, y)
− 2γ

}
;

pT is given by the bulk-part ofp.
A physical explanation for the spatial dependence

of the pressure is given by the fact that the force along
the fifth dimension takes the form

(38)f (τ, y)≡ −∂p
∂y

= 12M3
5Cγ τ

γ−2κ sign(y) eκ|y|

representing a force directed towards the brane and
increasing with distance from it. A bulk pressure

density of this form is apparently required to sustain
the brane at its given position.

The scale factor resulting from such an energy–
momentum density satisfies an effective Friedman
equation

(39)

(
ȧ0

a0

)2

= γ 2

τ2 = κ

12M3
5

ρeff.

Thus,

ρeff = ρB(τ)

2κ
+ 12M3

5κ

(40)= 1

2

(
ρB(τ)

κ
+ ξ

)
= 1

2

(
ρ
(4)
B (τ )+ ρ(4)b

)
,

in terms of the bulk part of the five-dimensional energy
densityρB and the brane tension. Thus, again we have
the same averaging formula as in the time-independent
case and there is no quadratic dependence on the brane
tension. Time-dependent perturbations on the brane
tension will not modify the linear dependence. This
is clear from
(
ȧ0

a0

)2

= 1

24M3
5

(
ρ
(5)
B + (ρ

(4)
b )

2

24M3
5

)

= 1

24M3
5

(
ρ
(5)
B + (ρ

(4)
b + δξ(τ ))2

24M3
5

)

∼ κ

24M3
5

(
ρ
(4)
B + ρ(4)b + 2δξ(τ )

) + O
(
δξ2).

From the above analysis it is clear that both cases
of inflation (a0(τ ) ∝ eβτ ) and standard cosmological
expansion (a0(τ ) ∝ τ1/2) could be described by a
common suitable bulk energy density. Indeed, the bulk
energy density

(41)ρB(τ)= 24M3
5

{
−κ2 + β2κ−1

1+ β2γ−2τ2

}

corresponds to a scale factor

(42)a0(τ )∝ eγ sinh−1
(
β
γ
τ

)
.

Using that sinh−1(x)∼ x for x � 1 and sinh−1(x)∼
ln2x for x� 1, we get an early exponential expansion
and a late power-law one

(43)a0(τ )∝
{
eβτ , τ → 0,

τ γ , τ → ∞.



160 A. Kehagias, K. Tamvakis / Physics Letters B 515 (2001) 155–160

A bulk energy density of this sort would describe a
temporary inflationary phase succeeded by a phase of
standard power law expansion.

Summarizing, we have studied a class of time-
dependent solutions of Einstein’s equations in the
framework of a five-dimensional spacetime corre-
sponding to the standard Randall–Sundrum AdS met-
ric in the static case. We considered Lorentz transfor-
mations as a prototype of isometries that are broken by
the presence of the brane and replace them with their
Z2-invariant analogues. The metric generated by such
a transformation satisfies Einstein’s equations with an
effective energy–momentum tensor consisting of the
contributions of the brane and a bulk cosmological
constant. The corresponding cosmological evolution
on the brane is that of exponential expansion. Next
we studied a generalization of the above metric cor-
responding to a general time-dependence of the four-
dimensional scale factor that includes standard time
evolution likea(τ) ∝ τ1/2. These solutions exist for
specific time-dependent bulk energy densities. In all
cases the four-dimensional scale factor satisfies an ef-
fective Friedman equation that features the effective
energy density on the brane calculated by summing the
bulk energy density contribution and the brane tension.
The general quadratic dependence on the brane ten-
sion is replaced by a linear one due to the relation be-
tween the Randall–Sundrum curvature parameter and
the brane tension.
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