
Physics Letters B 301 (1993) 345-350 PHYSICS LETTERS B 
North-Holland 

A particular realization of  a gravitational anyon 

A.A.  K e h a g i a s  a n d  C.E.  V a y o n a k i s  
Physzcs Department, Untverstty of loannma, GR-451 10 loanmna, Greece 

Received 27 November 1992 

We discuss the situation, frequently arisen in general relativity, in which the background spacenme is multiply connected The 
associated grawtatlonal Aharonov-Bobm effect can induce a small, but arbitrary phase factor turning a massive point particle 
into an anyon. Possible ~mphcatlons of this are outhned 

It is by now well known that  quan tum mechanical  
systems in (2 + 1 ) d imensions  exhibit  a variety o fpe -  
cuhar quantum mechanical  phenomena related to the 
pecul iar  structure of  the rotat ion,  Lorentz and Poin- 
car6 groups in ( 2 +  1 ) d imensions  [ 1 ]. So, in p lanar  
physics there is the possibi l i ty  that  particles can carry 
arbi t rary  values of  angular  momentum,  exhibi t ing in 
that  way fractional  statistics [2] .  This  is essentially 
due to the abellan nature of  the rotation group SO(2 ), 
which admits  a con t inuum of  uni tary representat ions  
character ized by the e tgenvaluej  of  its only generator  
J, the angular m o m e n t u m  operator .  In contrast ,  in 
( 3 + 1 ) d imensions  the rotat ion group SO (3)  is non- 
abelian and its unitary representations are labelled by 
a discrete index, the integer or half-integer eigen- 
v a l u e j  of  the angular  m o m e n t u m  in that  case. Upon  
rotat ion by an angle 0 (a round  an axis taken orthog- 
onal to the p lane) ,  the wave function ~' of  a system 
wi th  angular m o m e n t u m j  acquires a phase 

e'°Jq/= e'°'~u. ( 1 ) 

In the former two-space d imensional  case a rota t ion 
by 2~ does not  leave lnvar iant  the wave function, 
whereas in the lat ter  three-space d imensional  case a 
phase factor + 1 arises. 

The connect ion between spin and statistics can be 
unders tood from the propert ies  of  the many-par t ic le  
wave function. The wave function of  an n-particle 
system qJ(ql . . . .  , qn), where q, denotes collectively all 
quan tum numbers  characterizing the ith particle,  
upon interchange of  two particles may be chosen to 
satisfy the condi t ion  

~u( .... q ...... qj, ..)=e2~"~u( .... q j , . . ,  q , , . . . ) ,  (2)  

where s is the "statist ics" parameter.  In famihar  cases 
the phase factor is + 1, corresponding respectively to 
bosons (e.g. s = 0 )  and fermlons (e.g. s=½) .  How- 
ever, an arbi t rary  value of  the phase factor arises if  
the statistics parameter  s acquires other  than integer 
or half-integer values, leading to a quantum system 
of  part icles with fractional statlsttcs, i.e. anyons. 

The spin-statist ics theorem can also be unders tood 
from the topology of  the many-part ic le  configuration 
space. The possibi l i ty of  fractional  statistics occurs in 
a quantum mechanical  system, when the configura- 
t ion space has non-cont rac t ib le  loops [3] Let us 
consider  [4] a single particle moving in a d-dimen-  
sional configurat ion space M a. If  the system contains 
n particles with posmons  x, = (x]  ..... xd) ,  l = 1, ..., n, 
the configurat ion space for the system as 

M ( d , n ) = ( M d ) " - { X l  ..... x , ; x , ¢ x s ,  t4: j } .  (3)  

Moreover,  if  the system consists of  indist inguishable 
particles,  the relative configurat ion space is 

Q ( d , n ) = M ( d , n ) / S , ,  (4)  

where S, is the permuta t ion  group of  n objects acting 
on M(d ,  n).  The wave function of  the system 
~u(x)=~,(Xl,  ., x , )  is, in general, a mul t lva lued 
function on Q(d ,  n).  However,  It lS always slngleval- 
ued on Q(d ,  n),  where Q(d ,  n) is the universal  cov- 
ering space o f Q ( d ,  n).  This means that  Q(d ,  n) and 
Q(d ,  n) differ in their  first homotopy  ( fundamen-  
tal ) group only: FIl (Q)  ~ 171 (Q)  = {0} (it  is of  course 
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possible that Q = Q, which corresponds to a simply 
connected space Q).  General arguments [ 3 ] indicate 
that the wave function ~ satisfies the composition rule 

~,(y~) = U(y)~ , (~) ,  (5) 

where X~ Q (d, n ), y is an element of  the fundamental  
group Fll (Q)  and U(7) is a unitary representation of  
H,(Q). 

If  M(d,  n) is simply connected, then F I I ( Q ) =  
Ho(Sn) =Sn as follows from the exact sequence be- 
tween homotopy groups [ 5 ], 

H, (M(d,  n) ) =0--, Hi ( Q ) - , I I o  (S,)  ~ 0 .  (6) 

For d>~3 it is In fact FI~(Q)=Sn.  If  then P~Sn de- 
notes a permutation, the unitary representations of  
I-Il (Q)  are either 

U(P) = ( -  1)P= + 1 

according to an even or odd permutat ion,  (7a) 

o r  

U ( P ) =  + 1 for all P .  (Tb) 

It is now clear from (5) that ~, carries a representa- 
tion of  H, (Q)  and, thus, for the configuration space 
under consideration the particles can either be fer- 
mions (7a) or bosons (7b).  This IS the usual case. 
For d =  2, however, it is H ~ (Q)  = Bn, the braid group 
o fn  objects, which, because the space o f  periodic tra- 
jectories has an infinite number  of  distinct one-di- 
mensional representations, can be parametrlzed by a 
continuous statistics parameter s (defined modulo 
Z).  For s = 0  or ½ we again obtain bosons or fer- 
mlons, but for other values of  s we have a quantum 
system of particles with fractional statistics, i.e. an- 
yons. This precisely corresponds to the infinitely 
connected space o f  periodic trajectories there. 

So far, little attention has been paid to multiply 
connected spaces for d >  3. However, as we will argue 
below, in general relativity there can easily exist con- 
figuration spaces which can be multiply connected. 
In that case, instead of  (6) the sequence between 
homotopy groups is 

0~FI~ (M (d, n) ) - ,  Fit (Q)-~Ho (S~)-~0,  (8) 

and thus FI~(Q) #Sn. AS a result, there is room in 
general relativity for particles which are neither bo- 
sons nor fermlons, but can obey a generalization of  

the usual spin-statistics connection, where a statistics 
factor exp [ 1 (phase) ] implies spin equal to (phase) / 
27r. 

An important  figure of  anyon systems is that they 
generically violate parity and time-reversal invari- 
ance. This is due to the fact that either a P or a T 
transformation reverses the sign of  the relative phase 
between two trajectories. Thus, a system of  anyons 
with statistics phase 0 is transformed into a system 
with statistics phase - 0 and this is lnequlvalent ex- 
cept for 0=  0 or 7r (bosons or fermions). 

The most interesting dynamical mechanism up to 
now in which fractional statistics arises is through the 
coupling of  point particles to electrodynamics with a 
Chern-Simons action [ 6 ]. The fractional statistics is 
then explained by a two-dimensional Aharonov-  
Bohm effect. Such a model of  dynamically realized 
anyons in d =  2 dimensions is now thought to play a 
role in the fractional quantum Hall effect and in high 
Tc superconductivity [7].  Coming to gravity, it has 
been discovered [ 8 ] that gravitational anyons in d =  2 
dimensions arise by coupling massive point particles 
to topologically massive gravity [9 ], where a topo- 
logical gravitational Chern-Slmons term is added to 
the usual Einstein action. Moreover, the spin and sta- 
tistics connection has been calculated [10] in the 
same framework. Actually, a massive point particle 
with spin in Einstein gravity gives rise to the same 
asymptotic gravitational field as a massive splnless 
point particle in topological massive gravity [8,11 ], 
something which suggests that the same mechanism 
which makes massive point particles have fractional 
statistics in topologically massive gravity should in- 
duce fractional statistics for massive spinning p a r t i -  

c les  in Einstein gravity. The same issues were subse- 
quently [12] clarified in the context of  the Chern-  
Simons-Wlt ten formulation of  (2 + 1 )-dimensional 
Einstein gravity, where the Einstein action is re- 
placed by an equivalent ISO(2,  l )  Chern-Slmons 
action and gravity is thus reexpressed as an ISO (2, 
1 ) gauge theory. There are also some further discus- 
sions on a ( 2 +  1)-dimensional gravitational anyon 
[13].  

The gravitational Aharonov-Bohm effect [14] 
arises from considering the quantum mechanics of  a 
gravitating point particle in a gravitational field and 
appears to induce a phase to a massive point particle 
turning it into an anyon This is by no means re- 
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stricted to d =  2 space dimensions. It is our purpose 
here to present a ( 3 + 1 )-dimensional situation, which 
precisely realizes the appropriate topology we have 
previously presented for having an anyonic system. 
The gravitational field contribution to the total an- 
gular momentum will induce a fractional spin, a 
gravitational analog of  previous discoveries [ 15 ]. 

Let us consider a test point particle moving in an 
arbitrary gravitational background. The best way to 
understand the relationship between the quantum 
Aharonov-Bohm effect and gravity is through the la- 
grangian formulation for a nonrelatlvistlc test parti- 
cle in a weak gravitational field. The equations of  
motion are derived from the action 

S = - m c  ~ ds= ~ L d t ,  (9) 

where d s=  ( - g ~  cbc u dx")  1/2 is the length of  a line 
element and L =  - m c  ds /d t  is the lagranglan. In the 
limit of  a weak gravitational field gu~ = qu~ + hu~ and 
small velocities, the lagrangian is given by 

L = ½ m22 + mcho~2 ~ + ½ mc2hoo, ( 1 O) 

where 22=2.2pj,~p, 2 ~ = d x ~ / d t ,  a,  f l= 1, 2, 3. The 
canonical momentum p is 

OL 
p .  _ O~ ~ = m£c~ + mcho,~ , ( 11 ) 

and the hamiltonian of  the system is [ 16 ] 

1 
H =  ~m ( P ' ~ - m c h ° ~ ) 2 -  ½mcZh°° " (12) 

The mechanical angular momentum lm IS 

l m = r X m r ,  [ r=(X l ,Xz ,  X3) , i '=( .~l ,Xz ,X3)  ] , 
(13) 

while the canonical angular momentum is given by 

l ¢ = r X p ,  [P=(P l ,Pz ,P3) ]  . (14) 

From ( 1 1 ) It becomes clear that there exists a differ- 
ence between the two types o f  angular momentum 
equal to 

l ¢ - l m = r X m c h o ,  [ho=(hol ,ho2,  ho3)] . (15) 

The difference between the canonical and the me- 
chanical angular momentum is of  course due to the 
fact that the gravitational field carries its own angu- 
lar momentum.  It should be noted that ho,~ is not 

uniquely determined. Under  a diffeomorphism x u ~  
x 'u=xu+e~u, generated by ~u= (~o, ¢), hoa IS trans- 
formed as [ 17 ] 

ho. ~ h 3. = ho. + e~o,. • (16) 

The wave function ~ (x )  of  the system satisfies the 
equation 

H~t(x)  = Eg t (x ) .  ( 17 ) 

We may write ~'(x) as 

~ , (x )=exp  i ~ -  ho.(X' )  dx  "~ ~,'o(X) , (18) 

7 

where the integral is taken along a path 7 with end 
point x and ~Uo(X) satisfies the equation 

Ho~to (X)=(2~nPZ-½mc2hoo(X) )~o(X  ) . (19) 

The above equation is the equation for a nonrelativ- 
iStlC particle moving in a potential V ( x ) =  
-½mc2hoo(X).  Thus, ~Uo(X) will be singlevalued. As 
a result, ~t(x) as follows from (5) will be multlval- 
ued and under a round trip in a closed path y it will 
acquire a phase factor 

exp x-if- ho. dx"  , (20) 
T 

which will correspond to a unitary representation 

U ( 7 ) = e x p  i ~ -  ho. dx ~ . (21) 
? 

The integral fy ho,~ dx"  above is identically zero, if 
ho. dx"  is an exact form. This corresponds to a static 
spacetime. For a stationary one, however, ho. dx"  is 
not exact. Of  course, using the gauge freedom as ex- 
pressed in (16),  one may switch off ho. so that 
h~. =E~o,. will correspond to an exact form. How- 
ever, this is a local expression and cannot be valid 
everywhere on the manifold. As a result, we expect a 
different than zero phase for a stationary spacetlme. 
In the following we will illustrate the above discus- 
sion precisely for such a case. 

Let us consider a stationary axially symmetric 
spacetime with energy-momentum tensor of  the form 

Tu~ = ltuuu~ , (22) 
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where the energy density is given by 

/ z = / Z o ~ ( p - a ) .  (23) 

As a result, the energy flows around a cyhnder of  ra- 
dius a w~th velocity 

u u = (c, u) , u=u(~ (24) 

(see fig. 1 ). In the weak field (hnear)  approMmatlon 
and in the limit of  small velocities, the components 
of  the energy-momentum tensor can be read [ 18 ] 

T o o = / ~ c  2 , TI1=T22=T33=O, 
ToL = I~cu~ = - - / ~ c u  sm ~0, 

To2 = flcu2 = llcu COS ¢,o (25) 

In the approximation we consider here, the field 
equations reduce to 

16~G T, 
VZhoa  = - c 4  o a ,  (26) 

8riG 
VEhoo - c4 Too, (27) 

where, in order to remove the freedom of  making dlf- 
feomorphisms, the gauge condition V. ho = 0 has been 
imposed. Employing the boundary condmons  

16riG 
( V h u , ( < ) - V h u , ( > ) ) . h l ~ =  c4 tu, (28) 

for the m ( < ) and out ( > ) of  the cyhnder solutions 

/ 
D 

// 
I I 
I I 

Fig 1 A s t aUonary  axmlly  s y m m e t r i c  space t lme  

(tu, is the energy-momentum tensor on the surface 
S of  the cylinder), eqs. (26),  (27) are solved by 

16~zG 8G j3 
= - - l t o U ~ a , o X # =  C3 aZEapx ~a, (29) ho.( < ) c3 

x ~ 8G 3 x# h o ~ ( > ) =  16zt~GmuaZ~# p - j J e~p-~, (30) 

hoo( < ) = const. (31) 

8ztG p 
hoo( > ) = - c~ / to  a In - a + c o n s t .  (32) 

j3 is the angular momentum density along the x3-ax~s 
as measured at spatial mfimty and it is given by 

I f (xl]rOZ x2TOl) dS .  (33) j 3 =  
C d 

S 

Let us now investigate the motion of  a test particle 
in the above space. The configuration space is ~ 3 [ D, 
if the particle cannot penetrate the region D. Since 
~31D is multiply connected, one may expect particles 
which are neither bosons nor fermlons, but can obey 
a generahzed spin-statistics connection, as we have 
d~scussed at the beginning. According to that general 
treatment, the phase factor acquired by the wave 
function ~,(x) wdl be 

e,O=exp( I mc 8G 3 "~ ~ - J  2~zn). (34) 

It should be noted that the phase 0 ~s a very small 
quanttty due to the presence of  Newton's  constant G. 

Moreover, as we have already pointed out, a nec- 
essary condmon for obtaining a phase 0 different than 
0 or 2~z ts P and /o r  T non-mvariance. In our case, 
this P or T non-mvarmnce comes from the dipole 
structure of  the energy-momentum tensor ( Tu~ is not 
invariant under the substltUt~on ~0--. - ~0). As a result, 
the solutions ( 2 9 ) -  (32) correspond to a stationary 
spacetlme, which necessardy is not P or T mvarmnt.  

There ~s a non-gravttat~onal analog to the above 
d~scussion, namely cyons [19 ], which also exist in 
(3 + 1 ) dimensions and make the properties of  an- 
yons much more mtmtive. A cyon ~s a composite ob- 
ject of  a charged parucle orbiting around an infi- 
nitely thin, lnfimtely long solenoid (magnetic flux 
tube).  For a winding angle ~o there is an Aharonov-  
Bohm phase reduced in the wave function [2] 
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gt'(~o) = exp(iqqb~0/2~r) ~,(~0), (35) 

where q IS the charge and qb ts the flux. These phases 
can simulate fractional statistics and the field contri- 
but ion to the total angular m o m e n t u m  can simulate 
fractional spin [15 ]. The two types of angular mo- 
men tum relevant to the discussion of the cyons are 
the mechanical and the canonical one. The total an- 
gular momen tum is equal to the canonical angular 
m o m e n t u m  and this is always integral [20]. It is di- 
vided into the piece of mechanical angular momen-  
tum localized near the cyon which is fractional [2] 
and a piece located at spatial infinity which IS also 
fractional, thus providing a consistent point  of view 
[21 ]. Actually, the difference between the canonical 
and the mechanical angular m o m e n t u m  is that con- 
tained in the electromagnetic field. 

Here, we have an analogous situation. The differ- 
ence between the canonical and the mechanical an- 
gular momentum is given by the expression ( 15 ) and, 
in the speclt]C example we have considered, h0 is given 
by the expressions (29) ,  (30).  The difference is pre- 
cisely the angular m o m e n t u m  carried by the gravita- 
tional field to spatial infinity. 

Of course, according to the representation theory 
of the Poincar6 group [22],  we have unitary repre- 
sentations which correspond to: (1) massive particles 
with discrete values of spin s =  0, ½, 1, .., ( i l)  mass- 
less particles with s =  0, ½, 1 ..... or  (111) massless par- 
ticles with cont inuous spin, which however seem not 
to be realized in nature. What we contemplate here is 
a physical picture in which, due to gravity, we have a 
very small violation of Polncar6 invarlance by an 
amount ,  which is reflected in the very small phase 0 
of equation (34).  If a generalized spin-statistics con- 
nection is really valid [2,10], this corresponds to a 
very small departure from discrete values of spin even 
for massive pomt particles. We should underhne  the 
local character of this effect and the role played by 
the asymptotic regmn (large distances) 

We have to emphasize that while small violations 
of Lorentz/Poincar6 lnvarlance cannot  be a priori 
excluded, observational limits however put very se- 
vere constraints in every case where such violations 
have been formulated. For example, astrophysical 
data enforces the absence of a (3 + 1 )-d~mensional 
Lorentz-vlolating modificat ion (by a Chern -S lmons  
term) of electrodynamlcs [23 ]. The possibility of 

considering theories of gravity which are not locally 
Lorentz invariant  has been suggested in the context 
of mult i -dimensional  theories [24]. Moreover, in 
(3 + 1 ) dimensions the Lorentz lnvariance appears 
to be a low-energy phenomenon [25] and in general 
a deviation from Lorentz symmetry can be expected 
at sufficiently high energy scales (correspondingly 
very small distances). As a result, the posslblhty re- 
mains that gravitational interactions in the very early 
universe are described by a theory which is not lo- 
cally Lorentz lnvarlant  and this, for example, can be 
shown to lead to an inflationary phase [26]. 

All these are amusing possibilities and one can pos- 
sibly imagine other interesting cosmological imph- 
cations ofanyonlc  systems. We have to stress anyway 
that there is a hmlta t lon in what we have discussed, 
given that our results were obtained within the h- 
nearlzed approximation to gravity. It is an open 
problem if these results survive a transi t ion to the full 

non-l inear  theory. This should perhaps be soluble, if 
we compare with the special case m + / w =  0 solution 
[ 8 ], which indeed generalizes to the non-l inear  the- 
ory [27]. We hope to return to this problem in a fu- 
ture publication. 
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