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We discuss the situation, frequently arisen 1n general relativity, in which the background spacetime 1s multiply connected The
assoclated gravitational Aharonov-Bohm effect can induce a small, but arbitrary phase factor turning a massive point particle

nto an anyon. Possible implications of this are outlined

It 1s by now well known that quantum mechanical
systems 1n (2+ 1) dimensions exhibit a variety of pe-
culiar quantum mechanical phenomena related to the
peculiar structure of the rotation, Lorentz and Poin-
caré groups in (24 1) dimensions [1]. So, 1n planar
physics there is the possibility that particles can carry
arbitrary values of angular momentum, exhibiting 1n
that way fractional statistics [2]. This 1s essentially
due to the abehan nature of the rotation group SO(2),
which admaits a continuum of unitary representations
characterized by the eigenvalue ; of 1ts only generator
J, the angular momentum operator. In contrast, 1n
(34 1) dimensions the rotation group SO(3) is non-
abelian and 1ts unitary representations are labelled by
a discrete index, the integer or half-integer eigen-
value ; of the angular momentum in that case. Upon
rotation by an angle 8 (around an axis taken orthog-
onal to the plane), the wave function y of a system
with angular momentum ; acquires a phase

eWy=ey. (1)
In the former two-space dimensional case a rotation
by 2rn does not leave invariant the wave function,
whereas 1n the latter three-space dimensional case a
phase factor + 1 arises.

The connection between spin and statistics can be
understood from the properties of the many-particle
wave function. The wave function of an r-particle
system w(4q, .-, 4, ), where g, denotes collectively all
quantum numbers characterizing the 1th particle,
upon 1nterchange of two particles may be chosen to
satisfy the condition

W(v s s qj’ ) =estV/(“.’ QJ’ R P ) ’ (2)

where s is the “statistics” parameter. In famzihar cases
the phase factor 1s * 1, corresponding respectively to
bosons (e.g. s=0) and fermions (e.g. s=1). How-
ever, an arbitrary value of the phase factor arises 1f
the statistics parameter s acquires other than integer
or half-integer values, leading to a quantum system
of particles with fractional statistics, 1.e. anyons.
The spin-statistics theorem can also be understood
from the topology of the many-particle configuration
space. The possibility of fractional statistics occurs 1n
a quantum mechanical system, when the configura-
tion space has non-contractable loops [3] Let us
consider [4] a single particle moving 1n a d-dimen-
sional configuration space M?. If the system contains

n particles with positions x, = (x}, ..., x9), 1=1, ..., 1,
the configuration space for the system 1s
M(dan)=(Md)n_{xls"'>xn;x1¢xjal7é.]}- (3)

Moreover, if the system consists of indistinguishable
particles, the relative configuration space 1s

Q(d, n)=M(d, n)/S,, (4)

where S,, 1s the permutation group of # objects acting
on M(d, n). The wave function of the system
wv(x)=w(x;, . x,) 1s, in general, a multivalued
function on Q(d, n). However, 1t 1s always singleval-
ued on Q(d, n), where Q(d, n) is the universal cov-
ering space of Q(d, n). This means that Q(d, n) and
Q(d, n) differ in their first homotopy (fundamen-
tal) group only: IT, (Q) #I1, (Q) = {0} (1t is of course
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possible that Q=0Q, which corresponds to a simply
connected space Q). General arguments [ 3] indicate
that the wave function y satisfies the composition rule

w(yx)=U()y(x), (3)

where e Q(d, ), y1s an element of the fundamental
group I1, (Q) and U(y) is a unitary representation of
I1,(Q).

If M(d, n) 1s simply connected, then IT,(Q)=
I1,(S,) =S, as follows from the exact sequence be-
tween homotopy groups [5],

I, (M(d, )) =0-1T1, (Q) - I, (S,) -0 (6)

For d>3 it is in fact I1,(Q)=S,. If then PeS, de-
notes a permutation, the unitary representations of
IT,(Q) are erther

U(P)=(-1)==1

according to an even or odd permutation, (7a)
or
U(P)=+1 forallP. (7b)

It is now clear from (5) that y carries a representa-
tion of I1, (Q) and, thus, for the configuration space
under consideration the particles can either be fer-
mions (7a) or bosons (7b). This 1s the usual case.
For d=2, however, it is I, (Q) =B,, the braid group
of n objects, which, because the space of periodic tra-
jectories has an infinite number of distinct one-di-
mensional representations, can be parametrized by a
continuous statistics parameter s {defined modulo
Z). For s=0 or { we again obtain bosons or fer-
mions, but for other values of s we have a quantum
system of particles with fractional statistics, 1.e. an-
yons. This precisely corresponds to the infinitely
connected space of periodic trajectories there.

So far, little attention has been paid to multiply
connected spaces for > 3. However, as we will argue
below, in general relativity there can easily exist con-
figuration spaces which can be multiply connected.
In that case, instead of (6) the sequence between
homotopy groups 1s

011, (M(d, n)) - 11, (Q) -1, (S,) -0, (8)

and thus I1,(Q) #8,. As a result, there is room 1n
general relativity for particles which are neither bo-
sons nor fermions, but can obey a generalization of
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the usual spin-statistics connection, where a statistics
factor exp[1(phase) ] implies spin equal to (phase)/
27,

An important figure of anyon systems 1s that they
generically violate parity and time-reversal invari-
ance. This 1s due to the fact that eithera Pora T
transformation reverses the sign of the relative phase
between two trajectories. Thus, a system of anyons
with statistics phase 0 1s transformed 1nto a system
with statistics phase — 6 and this is inequivalent ex-
cept for =0 or n (bosons or fermions).

The most interesting dynamical mechanism up to
now 1n which fractional statistics arises 1s through the
coupling of point particles to electrodynamics with a
Chern-Simons action [6]. The fractional statistics 1s
then explained by a two-dimensional Aharonov-
Bohm effect. Such a model of dynamucally realized
anyons in d=2 dimensions is now thought to play a
role in the fractional quantum Hall effect and 1n high
T, superconductivity [7]. Coming to gravity, 1t has
been discovered [8] that gravitational anyons in d=2
dimensions arise by coupling massive point particles
to topologically massive gravity [9], where a topo-
logical gravitational Chern-Simons term 1s added to
the usual Einstein action. Moreover, the spin and sta-
tistics connection has been calculated [10] in the
same framework. Actually, a massive point particle
with spin 1n Einstein gravity gives rise to the same
asymptotic gravitational field as a massive spinless
point particle 1n topological massive gravity [8,11],
something which suggests that the same mechanism
which makes massive point particles have fractional
statistics 1n topologically massive gravity should in-
duce fractional statistics for massive spinning parti-
cles in Einstein gravity. The same issues were subse-
quently [12] clarified 1n the context of the Chern-
Simons-Witten formulation of (2+ 1)-dimensional
Einstein gravity, where the Einstein action 1s re-
placed by an equivalent ISO(2, 1) Chern-Simons
action and gravity 1s thus reexpressed as an ISO (2,
1) gauge theory. There are also some further discus-
sions on a (2+ 1)-dimensional gravitational anyon
[13].

The gravitational Aharonov-Bohm effect [14]
arises from considering the quantum mechanics of a
gravitating point particle 1n a gravitational field and
appears to induce a phase to a massive point particle
turning it 1nto an anyon This 1s by no means re-
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stricted to d=2 space dimensions. It 1s our purpose
here to present a (3 + 1 )-dimensional situation, which
precisely realizes the appropniate topology we have
previously presented for having an anyonic system.
The gravitational field contribution to the total an-
gular momentum will induce a fractional spin, a
gravitational analog of previous discoveries [15].

Let us consider a test point particle moving in an
arbitrary gravitational background. The best way to
understand the relationship between the quantum
Aharonov-Bohm effect and gravity is through the la-
grangian formulation for a nonrelativistic test parti-
cle in a weak gravitational field. The equations of
motion are derived from the action

S=—mcjds=det, (9)

where ds= (—g,, dx#dx”)"/? 1s the length of a line
element and L= —mcds/dt 1s the lagrangian. In the
limit of a weak gravitational field g,,=#,,+h4,, and
small velocities, the lagrangian 1s given by

L=%m.x.'2+mch0axa+%mc2hoo, (10)
where X?=X"%#3,, x*=dx*/dt, e, f=1, 2, 3. The
canonical momentum p is

Da =mXo+mchy, , (11)

= e

and the hamultonian of the system is [16]
1
H= 5; (pa_mChOa)z_%mczhOO- (12)

The mechanical angular momentum Z,,, 1s

Im=rxmi’a [rz(xl’x23x3)a"‘=(xl9x2’x3)],

(13)
while the canonical angular momentum 1s given by

I.=rxXp, [p=(p,P2,p3)]. (14)

From (11) 1t becomes clear that there exists a differ-
ence between the two types of angular momentum
equal to

I.—Il,=rXmchy , [ho=(ho1, ho2, ho3)] - (15)

The difference between the canonical and the me-
chanical angular momentum is of course due to the
fact that the gravitational field carries its own angu-
lar momentum. It should be noted that Ag, is not
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uniquely determined. Under a diffeomorphism x,—
x,,=x,+€,, generated by &,= (&, &), ho, 15 trans-
formed as [17]

hOa_’hE)a=h0a+6€0,a- (16)

The wave function w(x) of the system satisfies the
equation

Hy(x)=Ey(x). (17)

We may write y(x) as
v =exp(12 [ houtx) @ o), (18)
v

where the integral is taken along a path y with end
point x and ¥, (x) satisfies the equation

Hovo(x) =352~ a0 Jwot) . (19)
The above equation is the equation for a nonrelativ-
1stic particle moving 1 a potential V(x)=
— 1mc?hge(x). Thus, wo(x) will be singlevalued. As
a result, y(x) as follows from (5) will be multival-
ued and under a round trip in a closed path y 1t will
acquire a phase factor

exp(l m7c§ how dx“) , (20)
Y
which will correspond to a unitary representation

U(y)=exp(im7c§h0adx“). (1)

The integral §, Ao, dx® above 1s 1dentically zero, 1f
hoe dx“ 1s an exact form. This corresponds to a static
spacetime. For a stationary one, however, Ay, dx¢ is
not exact. Of course, using the gauge freedom as ex-
pressed 1n (16), one may switch off Ay, so that
hoo =€& o Will correspond to an exact form. How-
ever, this 15 a local expression and cannot be valid
everywhere on the manifold. As a result, we expect a
different than zero phase for a stationary spacetime.
In the following we will illustrate the above discus-
sion precisely for such a case.

Let us consider a stationary axially symmetric
spacetime with energy-momentum tensor of the form

T,uu=,uuuuu y (22)
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where the energy density is given by

p=pod(p—a) . (23)

As a result, the energy flows around a cylinder of ra-
dius a with velocity

HFT—‘(C,II), ll=1«l¢ (24)

(see fig. 1). In the weak field (linear) approximation
and 1n the limit of small velocities, the components
of the energy-momentum tensor can be read [18]

Too=puc?, Ty =Typ=Ts=0,
Toy=pcu, = —pcusin g,
Toz2 = UCUy = JICU COS @ (25)

In the approximation we consider here, the field
equations reduce to

1

Vihoo= = 28 Ty, (26)
8nG

Vho = — o Ty, (27)

where, 1n order to remove the freedom of making dif-
feomorphisms, the gauge condition V-A,=0 has been
imposed. Employing the boundary conditions

. 167G
(thv(<)_Vh;w(>))'n|s=_T[uu (28)

for the 1n ( <) and out (> ) of the cylinder solutions

/D

Fig 1 A stationary axially symmetric spacetime
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(2, is the energy-momentum tensor on the surface
S of the cylinder), eqgs. (26), (27) are solved by

3

167 8G J
hoa(<)=T ueaﬂxﬂ= FPGQﬂXﬁ, (29)

167G x®  8G x#
hOa(>)= Tﬂouazfaﬁﬁ=?.lsfaﬂ?, (30)
Noo( < ) =const. (31)

8
hoo(> )= — quoaln§+const. (32)

J3 is the angular momentum density along the x;-axis
as measured at spatial infimity and it is given by

J3=%'[ (x'T2—x2T"") dS. (33)

N

Let us now investigate the motion of a test particle
1n the above space. The configuration space is R3| D,
if the particle cannot penetrate the region D. Since
R3[| D 1s multiply connected, one may expect particles
which are neither bosons nor fermions, but can obey
a generalized spin-statistics connection, as we have
discussed at the beginning. According to that general
treatment, the phase factor acquired by the wave
function y(x) will be

e‘9=exp<1 %i—?]ﬁnn). (34)

It should be noted that the phase 6 1s a very small
quantity due to the presence of Newton’s constant G.
Moreover, as we have already pointed out, a nec-
essary condition for obtaining a phase f different than
0 or 27 1s P and/or T non-invariance. In our case,
this P or T non-invariance comes from the dipole
structure of the energy-momentum tensor ( T, is not
invariant under the substitution g— —@). As a result,
the solutions (29)-(32) correspond to a stationary
spacetime, which necessarily is not P or T 1nvariant.
There 1s a non-gravitational analog to the above
discussion, namely cyons [19], which also exist in
(3+1) dimensions and make the properties of an-
yons much more intuitive. A cyon 1s a composite ob-
ject of a charged particle orbiting around an 1nfi-
nitely thin, infinitely long solenoid (magnetic flux
tube). For a winding angle ¢ there 1s an Aharonov-
Bohm phase induced in the wave function [2]
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¥ (p) =exp(igPyp/2m)y(p) , (35)

where g 1s the charge and @ 1s the flux. These phases
can simulate fractional statistics and the field contri-
bution to the total angular momentum can simulate
fractional spin [15]. The two types of angular mo-
mentum relevant to the discussion of the cyons are
the mechanical and the canonical one. The total an-
gular momentum is equal to the canonical angular
momentum and this is always integral [20]. It 1s di-
vided into the piece of mechanical angular momen-
tum localized near the cyon which is fractional [2]
and a piece located at spatial infinity which 1s also
fractional, thus providing a consistent point of view
[21]. Actually, the difference between the canonical
and the mechanical angular momentum is that con-
tained 1n the electromagnetic field.

Here, we have an analogous situation. The differ-
ence between the canonical and the mechanical an-
gular momentum 1s given by the expression (15) and,
1n the specific example we have considered, kg 1s given
by the expressions (29), (30). The difference 1s pre-
cisely the angular momentum carried by the gravita-
tional field to spatial infinity.

Of course, according to the representation theory
of the Poincaré group [22], we have unitary repre-
sentations which correspond to: (1) massive particles
with discrete values of spin s=0, 4, 1, .., (i1) mass-
less particles with s=0, 1, 1, ..., or (11) massless par-
ticles with continuous spin, which however seem not
to be realized in nature. What we contemplate here 1s
a physical picture in which, due to gravity, we have a
very small violation of Poincaré invariance by an
amount, which 1s reflected in the very small phase 6
of equation (34). If a generalized spin-statistics con-
nection 1s really valid [2,10], this corresponds to a
very small departure from discrete values of spin even
for massive point particles. We should underline the
local character of this effect and the role played by
the asymptotic region (large distances)

We have to emphasize that while small violations
of Lorentz/Poincaré invariance cannot be a prior
excluded, observational hmits however put very se-
vere constraints in every case where such violations
have been formulated. For example, astrophysical
data enforces the absence of a (34 1)-dimensional
Lorentz-violating modification {by a Chern-Simons
term) of electrodynamics [23]. The possibility of
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considering theories of gravity which are not locally
Lorentz invariant has been suggested in the context
of multi-dimensional theories [24]. Moreover, 1n
(3+1) dimensions the Lorentz invariance appears
to be a low-energy phenomenon [25] and in general
a deviation from Lorentz symmetry can be expected
at sufficiently high energy scales (correspondingly
very small distances). As a result, the possibility re-
mains that gravitational interactions in the very early
universe are described by a theory which 1s not lo-
cally Lorentz invariant and this, for example, can be
shown to lead to an inflationary phase [26].

All these are amusing possibilities and one can pos-
sibly imagine other interesting cosmological impli-
cations of anyonic systems. We have to stress anyway
that there 1s a limitation 1n what we have discussed,
given that our results were obtained within the h-
nearized approximation to gravity. It 1s an open
problem if these results survive a transition to the full
non-linear theory. This should perhaps be soluble, 1f
we compare with the special case m+ uo=0 solution
[8], which indeed generalizes to the non-linear the-
ory [27]. We hope to return to this problem 1n a fu-
ture publication.
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