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Abstract

This is a short note on the relation of the Matrix model with the non-commutative geometry of the 11-dimensional
supermembrane. We put forward the idea that M-theory is described by the ’t Hooft topological expansion of the Matrix
model in the large N-limit where all topologies of membranes appear. This expansion can faithfully be represented by the
Moyal Yang-Mills theory of membranes. We discuss this conjecture in the case of finite N, where the non-commutative
geometry of the membrane is given be the finite quantum mechanics. The use of the finite dimensional representations of the
Heisenberg group reveals the cellular structure of a toroidal supermembrane on which the Matrix model appears as a
non-commutatutive Yang–Mills theory. The Moyal star product on the space of functions in the case of rational values of
the Planck constant " represents exactly this cellular structure. We also discuss the integrability of the instanton sector as
well as the topological charge and the corresponding Bogomol’nyi bound. q 1999 Published by Elsevier Science B.V. All
rights reserved.

1. Introduction

w xOne of the basic ingredients of M-theory 1,2 is
Ž .the eleven dimensional 11-d supermembrane for
w xwhich some years ago 3 a consistent action has

been written in a general background of 11-d super-
gravity. The supermembrane has a uniquely defined
self-interaction, which comes in contrast to the su-
perstring, from a infinite dimensional gauge symme-
try apparent in the light-cone gauge as the area-pre-
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serving diffeomorphisms on the surface of the mem-
brane.

Because of the absence of the dilaton field for the
supermembrane, there is no topological expansion
over all possible three manifolds analogous to the
string case. The supermembrane, due to its unique
self-interaction, is possible to break into other super-
membranes so in a sense is already a second quan-
tized theory but up to now there is no consistent
perturbative expansion. In the light-cone gauge, and
flat space-time, there are two classes of membrane
vacua, points and tensionless strings, so a low-en-
ergy effective field theory of supermembrane mass-
less excitations would be either eleven-dimensional
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supergravity or a field theory for tensionless strings.
Hopefully, recent efforts for understanding the cou-
pling of 11-d supergravity with the supermembrane
will help to the construction of its effective low

w xenergy field theory 4 .
In this letter, we present arguments that the Ma-

w xtrix model 5–7 describes the non-commutative ge-
ometry of the 11-d supermembrane, and M theory is
the ’t Hooft topological expansion of the Matrix
model. We demonstrate the existence of a topologi-
cal charge and the corresponding Bogomol’nyi bound
and we discuss the integrability of the instanton
sector.

2. Non-commutative geometry of the membrane

It is a well known fact that the Matrix model
w x5–7 was one of the first ideas for the study of the
dynamics of the bosonic membrane in the light-cone
frame and in the approximation of finite number of

w xoscillation modes 8,9 . The true dynamics would be
determined by taking the limit of infinite number of
modes. In the finite mode approximation the Hamil-
tonian of the membrane is exactly the same with

Ž . Ž .SU N Yang-Mills YM classical mechanics and
this system is known to possess interesting chaotic

w xdynamics 10 and a discrete spectrum at the level of
Ž . w xquantum mechanics QM 11 . Later on, Townsend

w xet al. 3,12 discovered the supermembrane La-
grangian in 11 dimensions and the finite mode trun-
cation, as was expected, is described by the Hamilto-

Ž .nian of the supersymmetric SU N YM mechanics.
It was found that the quantum mechanical spectrum
of this model is continuous; at that time this was
considered to be the end of the supermembrane as a
fundamental object replacing the superstring and
producing all the low energy physics that could be
useful for the unification of gauge and gravitational

w xforces 13,14 .
w xIn Ref. 15 the question of a deeper origin of the

Ž .SU N YM classical mechanics as an approximation
of the membrane dynamics was considered and it

Ž .was found that SU N represents the Lie algebra of
the finite Heisenberg group, which acts on a dis-
cretized membrane representing a toroidal discrete
phase space. The membrane coordinates are approxi-

Ž .mated by N=N matrices YM gauge fields , which

represent collectively N 2 number of points in the
target space. The large N-limit to reproduce the
continuous surface of the membrane, should be such

Ž .that all the positions of the SU N matrices are filled
up in a continuous way and this limit has not been
expressed, up to now, in a mathematically consistent

w xway 16 . The non-commutative geometry of the
discrete membrane is generated by the finite and
discrete Heisenberg group and the space of functions
on the surface of the membrane is the algebra of
N=N complex matrices.

w x Ž .In modern language 17 the SU N YM classical
mechanics is the YM theory on non-commutative
2-torus. It is interesting that the torus compactified
Matrix model is equivalent with the M-theory com-
pactification in a constant antisymmetric background
gauge field. In this case, the Matrix model descrip-
tion becomes that of a gauge theory on a non-com-

w xmutative torus 17–21 .
It is well known that the usual Quantum Mechan-

ics can be represented on functions of the phase-space
w x 3variables, with the Moyal bracket 22 replacing

the classical Poisson bracket. Recently the vertex
operators of open strings in an external antisymmet-
ric gauge field B were found to obey non-com-mn

mutative relations of the Weyl type, which induces a
Moyal bracket structure on the space of functions on

w x 4the string momenta 25 .

3. The Heisenberg-Weyl group and the Moyal
bracket

To start with, we introduce the irreducible repre-
sentations of the finite Heisenberg group appropriate
for the Matrix model non-commutative geometry of
a toroidal membrane. The Hilbert space H of theG

wave functions on the torus GsCrL of complex
modulus tst q ıt , where L is the integer lattice,1 2

� <Ž . 4Ls m qt m m ,m gZ=Z is defined as the1 2 1 2

space of functions of complex argument zsxq ıy:

f z s c e ıp n2tq2p ı n z 1Ž . Ž .Ý n
ngZ

3 w xFor a recent discussion see 23,24 and references therein.
4 w xFor recent discussions see 26 .
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with norm

< < < < 2 y2p y 2 rt 2 < < 2f s e f z dxdy , t )0. 2Ž . Ž .H 2

Ž .Consider the subspace H G of H with periodicN G

� 4Fourier coefficients c of period N:n ng Z

c sc ngZ, NgN. 3Ž .n nqN

Ž .The space H G is N-dimensional and there is aN

discrete Heisenberg group, with generators SS1r N
w xand TT acting as 27,281

SS f z s c e2p ı n r Ne2p ı n zqp ı n2t ,Ž .Ž . Ý1r N n
ngZ

TT f z s c e2p ı n zqp ı n2t , c gC. 4Ž . Ž . Ž .Ý1 ny1 n
ngZ

On the N-dimensional subspace of vectors
Ž .c , . . . ,c the two generators are represented by1 N

N=N matrices, Q, P

SS sQ sv Žn1y1 .d ,Ž .1r N n ,n n ,nn ,n 1 2 1 21 2

TT sP sd , 5Ž . Ž .n ,n1 n ,n n y1,n1 2 1 2 1 2

Ž .with vsexp 2p ırN . They satisfy the Weyl rela-
tion QPsv PQ.

The Heisenberg group elements are defined as

JJ sv rP sr2P rQ s . 6Ž .r , s

These N=N matrices are unitary JJ † sJJ andr , s yr ,ys

periodic with period N, i.e. JJ N s1. They realize ar , s

projective representation of the discrete translation
group Z =Z :N N

JJ JJ X X sv Ž rX syr sX .r2JJ X X . 7Ž .r , s r , s rqr , sqs

w xIn Ref. 5 the finite N-Matrix model is consid-
Žered as a non-commutative QM system see also

w x.15 , but the canonical commutation relations were
not represented through the finite Heisenberg group
basis JJ . It is possible to define finite dimensionalr , s

ı q̂ yı p̂matrices p,q such that Qse and Pseˆ ˆ
2p

q s sq1y i d ,Ž .ˆi j i jN
Ž .iyj

p y1Ž .
p syı , 8Ž .ˆi j pN sin iy jŽ .

N

where Ns2 sq1 and s is an integer. Here we have
shifted by s rows and columns of Q and P matrices

Ž .defined in relations 5 . These matrices satisfy new

Heisenberg commutation relations, which have a very
w xsimple form 29

p Ž .iyjiy j y1Ž . Ž .2p Nyı q , p s , 9Ž .ˆ ˆ i j pN sin iy jŽ .
N

when i/ j and zero when is j. The matrix q satis-ˆ
fies the torus compactification relations of the Matrix
model, with corrections due to their finite size

2p
y1P qPsqq I y2p I , 10Ž .ˆ ˆ N 0N

where I is the N=N identity matrix and I theN 0

N = N diagonal matrix with diagonal elements
� 41,0, . . . ,0 .

The bosonic part of the Matrix model is the
Ž .SU N YM classical mechanics and the gauge fields

are linear combinations of the elements JJ , i.e.,r , s

Ny1
r , sA t s A J , ls1, . . . ,dy1, 11Ž . Ž .Ýl l r , s

r , ss0

which can be considered as coherent states of the
discrete and finite toroidal phase-space N=N lat-
tice. The A matrices are the non-commutative coor-l

dinates of the discrete membrane in dy1 dimen-
sions.

There is another representation of the standard
quantum mechanics on the space of functions of the
phase-space variables. This is the unique deforma-

w xtion of the Poisson bracket, the Moyal bracket 22,24

1
X X� 4f , g u ,Õ s sin l E E yE E f u ,Õ� 4 Ž . Ž . Ž .Ž .l u Õ u Õ

l

=
X X < X Xg u ,Õ . 12Ž . Ž .usu ,ÕsÕ

Here, l corresponds to the Planck constant and the
Moyal bracket gives a structure of infinite dimen-
sional algebra on the space of functions on the torus
generated by

1
ıŽ r uqsÕ.e u ,Õ s e , 13Ž . Ž .r , s 2p

w xwhere u,Õg 0,2p and r,sgZ. This algebra is the
trigonometric algebra of Fairlie Fletcher and Zachos
w x30 :

� X X 4e ,e u ,Õ� 4 Ž .r , s r , s l

1
X X

X Xs sin l rs yr s e u ,Õ , 14Ž . Ž . Ž .Ž . rqr , sqs2pl
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2pwhich also includes the case ls . This case givesN

Ž .the SU N algebra in the base JJ :r , s

2p
X X

X X X Xw xJJ , JJ sy2 ısin rs yr s JJŽ .r , s r , s rqr , sqsž /N
15Ž .

if the e functions are identified with er , s rqk N, sqm N

for k,mgZ. The Heisenberg group matrices JJr , s

have been introduced by Weyl.
Ž .When l™0 or N™` , we recover the Poisson

algebra of the area preserving transformations of the
w xtorus 31

1
X X

X X X X� 4e ,e u ,Õ s r syrs e . 16Ž . Ž . Ž .r , s r , s rqr , sqs2p

The Matrix model has various large N-limits. Up
to now it is not known how to get the quantum
mechanics of supermembrane starting from this
model, even though, various compactifications indi-
cate that it has membrane states as excitations. We
believe that the appropriate limit is the ’t Hooft

Ž .topological expansion of the SU N YM-mechanics.
To this end, we shall determine what happens to the
Heisenberg group matrices JJ in this limit. Wer , s

observe that these matrices contain powers of the
root of unity along two diagonals so we start with

MŽ . Ž .vsexp 2p ı , M, N co-prime integers . The cor-N

Ž .rect large N-limit for SU N is the inductive one,
Ž . Ž . Ž .i.e., SU N ™SU Nq1 ™SU Nq2 . . . which

we get if we let M, N™` with MrNs constant.
MNote that the constant "s2p can be identifiedN

with the flux of the 3-index antisymmetric gauge
field per unit membrane area. The Weyl relations
become the Heisenberg group relations for an infi-
nite phase-space lattice and in the Fourier transform
space of both canonical variables the Matrix model
describes a toroidal continuous membrane with Ma-

w xtrix commutators replaced by Moyal brackets 32 .
Since the limit "™0 replaces the Moyal bracket by
Poisson, we get from Moyal YM theory the mem-
brane. Higher order corrections to " can be repre-
sented as membranes with attached handles on the

Ž .initial membrane which is determined by the SU N
chosen basis, in our case the torus.

In this limit, the light-cone gauge equations of
motion for the membrane

¨ � 4X s X , X , X ; i ,ks1, . . . ,dy1 17� 4 Ž .i k k i

˙� 4and the corresponding Gauss law X , X s0 arei i

replaced by

¨ � 4X s X , X , X , 18� 4� 4 Ž .� 4i k k i

˙X , X s0, i ,ks1, . . . ,dy1. 19Ž .� 4½ 5i i

When the space of functions on the toroidal mem-
brane is replaced by the algebra of N=N matrices,
the coordinates of the membrane become the matri-

Ž . Ž .ces A t , the velocity is the SU N electric fieldi
˙Ž . Ž .E t sA t , and the magnetic field in three ori i

1Ž . w xseven dimensions is B t s f A , A where fi i jk j k i jk2

is the e totally antisymmetric symbol in threei jk

dimensions and C the octonionic multiplicationi jk
w xtable in seven dimensions 33 .

The Moyal bracket generalizes both Poisson
brackets and matrix commutators, so that one is
tempted to consider a system where the Poisson

w xbracket is replaced by the Moyal one 34 . The
question of the appearance of Moyal bracket for
physical reasons in the dynamics of membrane is up
to now open. We know that there are other limits of
the Matrix model, one leads to perturbative string

w xfield theory 35,36 , and the Poisson limit in which
Ž .the SU N symmetry becomes the area-preserving

diffeomorphism group. We believe that the physical
origin of the Moyal bracket is due to the presence of
the antisymmetric background field C in thei jk

Žlight-cone gauge which gives a ‘magnetic’ flux Hall
.effect , transforming the surface of the membrane

w xinto a non-commutative phase-space 37 . This is
true for open membranes where the topological term
of the action receives a contribution from the bound-
ary.

4. Topological charge, Bogomol’nyi bound and
integrability.

In order to explain the appearance of non-abelian
electric-magnetic type of duality in the membrane
theory, we recall that for YM-potentials independent
of space coordinates the self-duality equation in the
gauge A s0 is0

1Ȧ s e A , A , i , j,ks1,2,3. 20Ž .i i jk j k2
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w xAccording to Ref. 38 the only non-trivial higher
dimensional YM self-duality equations exist in 8
space-time dimensions which, for the 7-space coordi-

Žnate independent potentials, can be written in the
.A s0 gauge as0

1Ȧ s C A , A , i , j,ks1, . . . ,7, 21Ž .i i jk j k2

where C is the multiplication table of the seveni jk

imaginary octonionic units.
It is now tempting to take the large N-limit and

Ž .replace the commutators by Poisson Moyal brack-
ets to obtain the self-duality equations for mem-

Žbranes non-commutative instantons for the Moyal
.case . In this limit we replace the gauge potentials

A by the membrane coordinates X . Then, the 3-di i
w xsystem is 39,40 ,

1Ẋ s e X , X , i , j,ks1,2,3, 22� 4 Ž .i i jk j k2

w xwhile in seven space dimensions 34,41

1Ẋ s C X , X , i , j,ks1, . . . ,7 23� 4 Ž .i i jk j k2

and correspondingly for the case of Moyal brackets
w xin three dimensions 42,43 and in seven dimensions

w x24 . It is easy to see that the self-duality membrane
equations, imply the second order Euclidean-time,
equations of motion in the light-cone gauge as well
as the Gauss law.

One striking feature of the self-duality membrane
equations is their simple geometrical meaning
w x39,41 . These equations state that the normal vector
at a point of the membrane surface and the velocity

Ž .at the same point are parallel self-dual or anti-
Ž .parallel anti-self-dual . The possibility to write down

self-duality equations based on the existence of vec-
tor cross-product comes from the existence of the
quaternionic and octonionic algebras. Since these are
the only existing division algebras the 3 and 7

w x 5dimensions are unique 33 . The validity of this
geometrical statement could be extended in a general
curved space-time background as a definition of the
self-dual membranes.

If one takes the limit where the commutator of
matrices is replaced by commutator of operators or
the Moyal bracket, then the self-duality equations

5 w xFor other approach to self-duality see also 44 .

become the Moyal Nahm or Moyal-Bogomol’nyi
w xequations of 34 .

The membrane instantons carry a topological
w xcharge density 45 which satisfies a Bogomol’nyi

w xbound 46 :

1
abc i j kV X s e f X X X , 24Ž . Ž .i jk a b c3!

where X i sE X i, a,b,cs1,2,3 and f se whena j i jk i jka

i, j,ks1,2,3 and f sC for i, j,ks1, . . . ,7. Thisi jk i jk

topological charge density defines the topological
charge of the membrane

1
3Qs d jV X , 25Ž . Ž .H

V3

where V is the volume of the integration region.3

The topological charge Q is an integer and repre-
sents the degree of the map from the membrane to its
world volume. We display below the convenient
representation of the topological charge which will
help us demonstrate that it is a lower bound of the
membrane action for topologically non-trivial mem-
branes

21 1j k j k˙ � 4 � 4V X s X f X , X s X , X , 26Ž . Ž .i i jk2 2

where the self-duality equations as well as the prop-
erties of f in three and seven dimensions havei jk

been used. The topological charge of the membrane
can now be written as

1 23 j k� 4Qs d j X , X . 27Ž .H
2V M3

Ž .The minimum value of Q Qs1 is obtained for the
membrane instanton compactified on a world-volume

' 'torus, X s 2 s , X s 2 s and X s2 t.1 1 2 2 3

The Euclidean action can be written as

1 21 13 2˙Ss d j X q X , X . 28� 4 Ž .H ž /i j k2 4V3

1 2˙Ž � 4.From the inequality X " f X , X G0 we de-i i jk j k2

rive that

SGQ 29Ž .
and the equality holds only for the self-dual or
anti-self-dual membranes. So the self-dual or anti-
self-dual membranes are BPS Euclidean-time mem-
brane world-volume solitons. As we have seen in
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w xRef. 47 , the 3-d and 7-d self-dual solutions preserve
8 and 1 supersymmetries respectively or 1r2 and
1r16th of the supersymmetry of the light-cone su-
permembrane Hamiltonian. This is a direct conse-
quence of the above Bogomol’nyi bound and the

Ž .SO 3 and G rotational space symmetry of the2

above cases.
The role of the membrane instantons is important

in developing a perturbative expansion. Configura-
tions of the membrane around instantons cannot
collapse to points or strings, because they have
different topological charge. The 3-index antisym-
metric gauge field which is so crucial for the unique-
ness of the supermembrane Lagrangian participates
in the bosonic part through the Cern-Simons term. If
its vacuum expectation value is non-zro and propor-

Ž .tional to C in the corresponding 7 dimensions ,i jk

then the topological charge defined above, separates
the functional integral into membrane topological
sectors. Going now to the case of Moyal-Nahm
equations, there is a corresponding topological charge
without an obvious geometrical meaning and the
Bogomol’nyi bound is valid in this case too. This
bound is important for the stability of the corre-
sponding Moyal-Nahm instantons. Recent discus-
sions on the role of instantons in non-commutative

Ž .YM theories non-commutative instantons imply that
they can be considered as regularizations of small

Žsize instantons in standard YM theories see e.g.
w x.48 . The case of Moyal-Nahm equations could be
considered as non-commutative membrane instan-
tons which regularize the Poisson or membrane case.

We now make few remarks on the integrability of
the self-dual equations. The 3-d self-duality system
has a Lax pair and an infinite number of conserva-

w xtion laws 39,40 . In order to see this, we first rewrite
the self-duality equations in the form

˙ ˙� 4 � 4X s i X , X , X s i X , X ,q 3 q y 3 y

1˙ � 4X s i X , X , 30Ž .3 q y2

where

X sX " iX . 31Ž ." 1 2

The Lax pair equations can be written as

1˙ ˙csL c , csL c , 32Ž .X ql X X yX3 y q 3
l

where the differential operators L are defined asf

E f E E f E
L ' i y . 33Ž .f ž /Ef Ecosu Ecosu Ef

Ž .The compatibility condition of 32 is

E yL ,E yL s0, 34Ž .1t X ql X t3 y X yXq 3
l

from which, comparing the two sides for the coeffi-
cients of the powers 1rl, l0, l1 of the spectral

Ž .parameter l, we find 30 . From the linear system
Ž .32 , using the inverse-scattering method, one could
in principle construct all solutions of the self-duality
equations.

The infinite number of conservation laws are
derived as follows: from the Cartesian formulation

dXi 1s e X , X 35� 4 Ž .i jk j k2dt

contracting with a complex 3-vector u such thati

u se u Õ , 36Ž .i i jk j k

where u u s0, and Õ is another complex vectori i

with Õ Õ sy1 and u Õ s0, we findi i i i

duPX
� 4s uPX ,ÕPX . 37Ž .

dt

The latter is a Lax pair type equation, which implies

d n2d j uPX s0. 38Ž . Ž .H
dt

Applying the same method in seven dimensions
with two complex 7-vectors u ,Õ such that u u s0,i i i i

Õ Õ sy1 and u Õ s0, leads to the equationi i i i

duPX
1� 4 � 4s uPX ,ÕPX q f u Õ X , X .jk lm j k l m2dt

39Ž .

The curvature tensor f is defined as the dualjk lm
Ž .of C in seven dimensions. When Eq. 39 isi jk

Ž .restricted to three dimensions we recover 37 . We
observe that the presence of the curvature tensor is
an obstacle for the integrability. At this point, we
may look for an extended definition of integrability
replacing the zero-curvature condition with the octo-
nionic curvature one. We can restrict the above
equation in particular subspaces of solutions where
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integrability appears. One possibility is the factoriza-
w xtion of the time 41 .

We conclude with a few remarks. In this note we
have given arguments that the Matrix model de-
scribes a non-commutative YM theory for the super-
membrane in the presence of background three-index
antisymmetric gauge fields. If this conjecture is true,
it implies that the excitations of this model in various
compactifications are also physical excitations of the
supermembrane. So the supermembrane should con-
tain 11-d supergravity at least in weak coupling
limits given by small radii of the compactification
manifolds. It is tempting to calculate correlation
functions of membrane observables using the Matrix
model and then take the large N-limit as was dis-
cussed in Section 3. On the other hand, perturbation
theory for the supermembrane could be defined
through the expansion in the parameter "rN, with
MrN™" for M, N™`. In this expansion all the
topologies of the membrane appear as splitting and
joining interactions The other known large N-limit
w x35,36 gives the string perturbation theory as a QM
sector of the supermembrane.

As this work was written, we have been kindly
informed that the Moyal limit of the Matrix model
has been studied in connection with the higher
derivative corrections to the Born-Infeld Lagrangians

w xfor the D2-brane 49 . For a very recent, interesting
w xpaper on D-branes in group manifolds, see 50 .
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