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Abstract

We perform a systematic string computation of the masses of anoméldysyauge bosons in
four-dimensional orientifold vacua, and we study their localization properties in the internal (com-
pactified) space. We find thaf = 1 supersymmetric sectors yield four-dimensional contributions,
localized in the whole six-dimensional internal space, while- 2 sectors give contributions local-
ized in four internal dimensions. As a result, iél) gauge fields can be much lighter than the string
scale, so that when the latter is at the TeV, they can mediate new non-universal repulsive forces at sub-
millimeter distances much stronger than gravity. We also point out that@y&)yis which are free
of four-dimensional anomalies may acquire non-zero masses as a consequence of six-dimensional
anomalies 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

AnomalousU (1) gauge symmetries appear generically in string vacua. The massless
charge spectrum is anomalous in the sense that the traditional triangle (or polygon in
dimensions higher than four) diagrams are non-zero. However, the anomaly is cancelled
via a generalization of the Green—Schwarz mechanism [1,2]. In four dimensions, a scalar
axion (zero-form, or its dual two-form) is responsible for the anomaly cancellation. In
six dimensions, both zero-forms (or their duals four-forms) and two-forms can participate
in anomaly cancellation [3]. However, only zero-forms (or their duals) can give mass to
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the U (1) gauge boson and break the gauge symmetry. Thus, a necessary consequence in
four dimensions is that the (quasi)anomalous gauge symmetry is broken. Moreover, in the
presence of supersymmetry (at least), an anomalbids is accompanied by a D-term
potential that involves the charged scalars, shifted by a term proportional to the CP-even
partner of the respective axion [2].

In perturbative heterotic vacua, at most one anomaldg$) can appear in four-
dimensionalV = 1 compactifications. The relevant axion is the four-dimensional dual of
the Neveu—-Schwarz (NS) two-form, which was shown to develop the appropriate couplings
and transformation properties, needed to cancel all relevant anomalies [2]. Moreover, the
scalar modulus appearing in the D-term potential is the dilaton, and for non-trivial vacua,
vanishing of the D-term implies generically that charged scalars get a non-trivial vacuum
expectation value (VEV) breaking the associated glabdl) symmetry.

The situation is richer and more interesting in perturbative orientifold vacua. Here, there
are in general several anomaloligl)’'s and the cancellation of anomalies is achieved
via the coupling of twisted Ramond—Ramond (RR) axions [4]. The D-term potentials
involve the twisted NS—NS moduli. However, at the orientifold point their expectation
values vanish, and this allows to have a spontaneously broken gauge symmetry with the
global U (1) unbroken in perturbation theory [5]. The global symmetry may be broken
non-perturbatively due to instanton effects, which however are small at weak coupling.

Orientifold vacua are prime candidates for realizing the Standard Model as a brane-
world, in the context of perturbative string theory with low string scale and large internal
dimensions [6] (for earlier attempts see [7]). As pointed out in [8], any minimal realization
of the Standard Model in this context contains at least 2 anomal¢Liss that are expected
to obtain a mass. Abelian gauge symmetries have been also used on the world-brane orin
the bulk, in order to impose approximate global symmetries, such as baryon number or
Peccei—Quinn symmetries [9,10]. It is therefore important to compute their masses and
study their localization properties in the internal compact space.

It turns out that the mass of anomaladugl)’s in orientifold vacua can be unambigu-
ously calculated by a direct one-loop string computation (although a disk calculation may
also give the mass modulo normalization ambiguities). In this work, we perform such a
computation and we derive a formula for the mass matri& ¢f) gauge bosons. We also
study some explicit examples @fy andZy x Z, orientifold vacua.

We find the following general features.

(1) The gauge boson masses are given by an ultraviolet contact term of the one-loop
annulus diagram with the gauge bosons inserted one at each boundary. There are
no contributions from the annulus with insertions on the same boundary or from the
Mobius strip since such contact terms are absent by tadpole cancellation. By open-
closed string duality, th&/ (1) mass-terms are also given by some appropriate infrared
(IR) closed string channel tadpoles.

(2) The mass-terms df (1) gauge bosons obtain volume independent corrections from
N =1 supersymmetric sectors, whil = 2 sectors give contributions dependent on
the moduli of the corresponding fixed torus. Moreover, they are BPS saturated (given
by the supertrace of the square of the four-dimensional helicity). Thus, mass-terms of
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N =1 sectors are localized in all six internal dimensions, while thogé f2 sectors
are six-dimensional, localized in four internal dimensions.

(3) UD)’s that are free of four-dimensional anomalies can still be massive, if upon
decompactification they suffer from six-dimensional anoma&li@#is is expected
since Kaluza—KIlein (KK) states can contribute to (higher-dimensional) anomalies once
there is a corner of moduli space where they become massless (decompactification
limit). Uncancelled anomalies in six dimensions depend both on the localization
of gauge fields (D-branes) and the localization of axions (coming from the bulk).
Potentially anomalous sectors involve a six-dimensional coupling of a gauge field to
an axion that extend in the same six dimensions.

As we already mentioned, the masse#/¢1)’s arise through Green—Schwarz couplings
involving RR axions. Moreover, at the orientifold point, the associated global symmetries
remain unbroken to all orders in perturbation theory. Using the localization properties we
described above, one can provide explicit realizations of all possible arrangements for the
Abelian gauge bosor($l) and their corresponding axioKs):

(A, a) = (brane, brane)bulk, brane)(brane, bulk)(bulk, bulk). (1.2)

N =1 sectors realize the first two possibilities, whe= 2 sectors realize the last two.
Note that the axions can propagate at most in two internal dimensions, 8ufijegauge
bosons may propagate everywhere. It follows thatfli®) massM 4 in these four cases is
proportional to:

Ma~O0W). 1YVVa. YVVar Va/Va. 1/\/VaVa (1.2)

in string units, whereV, and V, stand for the internal volumes corresponding to the
propagation of thé/(1) and the axion fields, respectively( is two-dimensional). The
last two possibilities correspond both to the (bulk, bulk) case and depend on whgiker
part of V4 or orthogonal to it.

As a result,M 4 can vary from the string scal&,, up to much lower values that can
attain Mf/Mmanck, in the two middle cases of (1.1), if the respective volume in Eq. (1.2)
coincides with the total volume of the bulk. The gauge field exchange can then induce new
(repulsive) forces at sub-millimeter distances (of the order of a few micron¥ fa few
TeV). The third case, where the gauge field lives on the brane, is however experimentally
excluded, since the corresponding gauge coupfings of order unity. In the second
case, the gauge field lives in the bulk and the four-dimensibt{a) gauge coupling is
infinitesimally smallgs ~ M /Mpjanck> 10~16. However, this value is still bigger that the
gravitational coupling- E /M p for typical energies of the order of the proton mass, and
the strength of the new force would be®:a(® stronger than gravity. This an interesting
region which will be soon explored in micro-gravity experiments [12]. Notice that the
supernova constraints can exclude only the case where there are less than four large extra
dimensions in the bulk, felt by the gauge field [9]. Finally, in the (bulk, bulk) case when
V, is part of V4, the masses of all KK modes are shifted by a large amount according to

2 Similar observations were made independently in [11].
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Eg. (1.2) and the resulting force becomes effective at much smaller distances. On the other
hand, wherV, is orthogonal to/4 the mass of th&/ (1) 4 is tiny O(Mf/Mmanck) while its
coupling is suppressed only by the volume of the bulkdog s ~ 1/4/V4.

Of course, in all cases of (1.1), tHé(1) gauge bosons can be produced in particle
accelerators at high energies leading to interesting signatures. Note that their masses are
always lower than the string scale because of the (string) one-loop factor suppression.
Moreover, their effective coupling is of order unity, if one takes into account the number
of KK excitations that are produced at high energies.

The paper is organized as follows. In Section 2, we describe the effective action
involving the anomalou#/ (1) symmetries. In Section 3, we present the one-loop string
computation and we give the general results for the contribution$ ef 1 andN = 2
supersymmetric orbifold sectors. In Section 4, we study specific orientifold examples based
oNnZs, Z7, Z2 x Z3 = Zg, Zg andZ3 x Zg orbifolds. Finally, Section 5 contains concluding
remarks and a discussion of non-supersymmetric models.

2. The effective action

In four dimensions, there are two on-shell equivalent (dual) ways of describing the fields
responsible for cancelling anomalies: as pseudoscalars or as two-index antisymmetric
tensors. However, off-shell, the two descriptions are a priori different at the one-loop level.

Let us first consider the case of a pseudoscalar axion. The relevant part of the four-
dimensional effective action (in the string frame) is:

1 1 a
S:/d4x [—@Ff—E(da—l—MA)Z—i-MZI:k[Fl/\F[], (2.1)
where F, is the field strength of the anomalol&1)4, g4 is the corresponding gauge
coupling, andk; are the various mixed anomalies. Anomaly cancellation impliesdtlit
shifted unde (1) » gauge transformatiodA =d A, da = —M A, so that the action (2.1)
changes by exactly the amount necessary to cancel the phase of the chiral fermion
determinant. It follows that in the unitary gaugevanishes and one is left over with a
massiveU (1) 4 with massM 4 = g4 M. Note that in the case where the gauge symmetry

is not anomalous in four dimensions but the gauge field becomes massive due to a
six-dimensional anomaly, alt; vanish but stillM # 0 anda transforms under gauge
transformation.

In the type | string context, where the axieancomes from the RR closed string
sector [4], the first and third terms of the above effective action appear at the level of
the disk, while the second term is expanded into contributions corresponding to different
orders of string perturbation theorga)? is a tree-level (sphere) term, the cross-product
Ada appears at the disk level, while the mass-tetfris a one-loop contribution. Indeed,
for this counting, the gauge kinetic terms have a dilaton faa@rsincegi is proportional
to the string coupling;, = ¢?, while a one-loop term is dilaton independent. On the other
hand, every power of the RR fieldabsorbs a dilaton facter ¢ which makes both the last
two terms in (2.1) dilaton independent.
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In a supersymmetric theory (at least), the above effective action is accompanied by a
D-term potential

1
V:/d4x—2D2, D=Mm+Y_ qil®il, (2.2)
gA i

wherem is the twisted NS-NS blowing-up modulus that belongs in the same chiral
multiplet with the RR axiom, while @; denote the various open string charged scalars with
U(1)4 chargesy;. At the orientifold pointyn vanishes and the global(1)4 symmetry
remains unbroken despite the fact that the gauge fiehdcomes massive far # 0O [5].
However, going away from the orientifold point when+ 0, vanishing of the D-term
implies that some charged scalars should acquire non-zero VEVs, breaking the global
U (1) 4 symmetry.

The above phenomenon can also be described in terms of an antisymmetridggnsor
The corresponding effective action can be easily obtained from (2.1) by performing a stan-
dard Poincaré duality which exchanges equations of motion with Bianchi identities [13]:

1 1 ki \?
S= | d*|-——F2— —(dB+—® MdB +k Q) AA|, 2.3
/ x[ 4g§ I 12( +M 1) =+ ( +k1821) A } (2.3)

where$2; are the various gauge Chern—Simons terms. Anomaly cancellation implies that
By, is shifted under gauge transformatiods: =), A;k; F; /M, while the variation of

the last term undel/ (1) » gauge transformation, cancels the anomalous contribution of the
chiral fermion determinant.

The counting of the order of appearance of the various terms in type | string perturbation
theory is similar as in the dual action (2.1). However, notice that in this representation there
is no explicit mass-term for th€ (1) 4 gauge field in the effective action. The reason is that
the mass is now generated by a reducible diagram at the one-loop level. Inspection of (2.3)
shows that a mixing betweeB),,, and A, arises at the level of the disk, corresponding
to the vertex%e“”f"’eweppg, where p is the external momentum ards denote the
polarization tensors. This generates a reducible contribution to the two-point function of
the gauge field, given by the square of this vertex timehepropagator:

2 2
M7[p262 —(p-o¥/p*= MTEZ, (2.4)
where we have used the on-shell gauge-invariance condition= 0. Thus, a masa/
for the anomalous gauge boson is generated by such a reducible one-loop diagram and no
explicit mass-term is present in the effective Lagrangian.

Note that in the axion representation (2.1), the axion-gauge boson mixing at the disk-
level generates a vertex proportionajptee which vanishes on-shell and does not generate
a reducible contribution for the gauge boson mass. Thus, an explicit one-loop mass-term
must be introduced in the effective Lagrangian, consistently with the expression (2.1).
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3. Thecalculation of the massin orientifold models

The two possible diagrams that can contribute to terms quadratic in the gauge boson at
the one-loop level are the annulus and the Mdébius strip. Of those, only the annulus with the
gauge field vertex operators inserted at the two opposite ends has the appropriate structure
to contribute to the mass-term. Indeed, vertex operators inserted at the same boundary
will be proportional to TfyxA%A”], wherey, is the representation of the orientifold group
element in theth orbifold sector acting on the Chan—Paton (CP) matri¢e®©n the other
hand, for gauge fields inserted on opposite boundaries, the amplitude will be proportional
to Tr[yxA%]1 TriyA] and it is this form of traces that determines the anomalogs’s [4].

The potential ultraviolet (UV) divergences that come from vertex operators inserted on the
same boundary (both in cylinder and M6bius strip) cancel by tadpole cancellation [14].

Obviously, we must concentrate on the CP-even part of the amplitude which receives
contributions only from even spin structures. This implies that we need the gauge boson
vertex operators in the zero-ghost picture

V=2, (0X" +i(p - Y)yh)eP X, (3.1)

wherea is the Chan—Paton matrix aré is the polarization vector.

The world-sheet annulus is parameterizedty it/2, wheret = t1 + it2 is the
usual complex modular parameter of the torus, and corresponds to the re¢ande®
[0, 1/2]. The 2-point amplitude is then given by [15]

1 d*p
=_M/[df][dz]/W;(‘/(Gl»Pl»Z)V(GZ»I’Z»ZO))k’ (3.2)

where the sum is over orientifold sectof6&| is the order of the orientifold group, and
we fixed one of the positions of the vertex operatorsgat 1/2 using the translational
symmetry of the annulus. The other vertex operator is located on the opposite boundary:
z=1iv with v € [0, ¢/2]. For notational simplicity, we set the Regge slepe= 1/2 so that
the Virasoro Hamiltonian operatdn = (p? + M?)/2.

Performing the contractions, we obtain

1 d*
A== f ldx]ldz] / e ij[(el ‘) (p1-p2) — (e1- pa)ez- p1)]
x (Trlyi]) 2e Prr2X@X QN [(y ()4 (z0))° — (X ()X (z0))°]- (3.3)

It appears that the amplitude@ p?) and thus provides a correction only to the anomalous
gauge boson coupling. We will see however, that after integration over the pastioh
the annulus modulus a term proportional to Ap1 - p2 appears from the ultraviolet (UV)
region (as a result of the quadratic UV divergence in the presence of anoni&lh)ls)

that will provide the mass-term.

Strictly speaking, the amplitude above is zero on-shell if we enforce the physical state
conditionse - p = p2 = 0 and momentum conservatign + p» = 0. There is however a
consistent off-shell extension, without imposing momentum conservation, that has given
consistent results in other cases (see [16] for a discussion) and we adopt it here. We will
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thus impose momentum conservation only at the end of the calculation. We now define for
convenience the reduced amplitudg by amputating the kinematical factérs

d4
A = f (271'1)74 [(e1-€2)(p1- p2) — (1~ pa)ea- p1)] Y Tr[mr] Tr[ma? ] AL
k
(3.4)
with

AZ”=—% [dT][dz]e X QX [(y () (z0)) — (X (2)0X (z0))°] 224, (3.5)

where Z{? is the annulus partition function in theth orbifold sector, and we have set
8 = p1- p2. The dependence oztz” on the two gauge indices b is mild. It depends only
on the type of brane the gauge fields come from. For instance, in standard supersymmetric
Zy orbifolds, there are three different cases corresponding to 99, 55 and 95 D-brane
combinations.

We will need here the bosonic and fermionic propagators on the annulus. They can be
obtained from those of the torus:

arioy v 2nipyy L [9101—valT) |2 | 7 ImP(v1 — o)
(X (e”1) X (e772)) = 2 Iog‘ 51010 5es , (3.6)
. . i 9(%) (1 — v2|1)01(0]7)
27iv 27iv oy _ 17\ 1
(W (eZ ™M)y (e 2))<ﬂ> 2 9 (%) (0l7)91(v1 — val7) (3.7)

by applying the world-sheet involution— 1 — z (see, for instance, Appendix of [17]).
Thus, for example,

1
(X (20) X (22)| yprutus= E(<X<Z1)X(zz)) + (X)X (1—-22))+ (X (1 -2 X (z2))

+{XA- XA - 2)). (3.8)

In Eq. (3.7),«, B denote the fermionic spin structures afche Jacobi theta-functions.
Settingz1 = ¢~27” andz, = ¢/ we obtairf

P1(iv —1/2|7) 2 12
X)X E—— = A il
( (z1) (Z2)>|annulus 2 ﬁi(oﬁ) 7
1 [90ivin) |2 mv?
The fermionic propagator on the torus satisfies the identity [16]
1 9 (5)(O0l7)
(w(m)lﬂ(zz))2 (a> = —=P(z1—z2) — mid; log ——~ (3.10)
B 4 n(t)

3 We consider in general insertions of different gauge fields on the different boundaries. The gauge fields can
belong to different types of branes.

4 Fixing the second position at a different point does not affect the result. This can be checked explicitly by
shifting the integration measure.
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whereP(z1 — z2) is the Weierstrass function andthe Dedekind eta-function. The

term as well as the scalar correlator term in Eq. (3.5) are spin-structure independent
and their contribution vanishes upon spin structure summation, because of space—time
supersymmetry. The rest is position independent. DroppingPtece, we effectively

have

#(%)(0
= —2mid; |OQM. (3.11)

annulus n(t)

(wmw(zz))Z(Z)

We should mention however that we expect this result to remain valid beyond
supersymmetric vacua. In fact, in closed string threshold calculations for gauge couplings,
there is a similar expression (see, for example, [16]) and the integral over the extra bosonic
term (X3 X)?2 cancels against the integral over the Weierstrass function. We expect that a
similar cancellation happens also here. Extra support for this conjecture is the structure of
the open string partition function in the presence of magnetic fields, which is also used for
the calculation of threshold corrections [14].

At this point we must be more explicit about the moduli integration measure. This is
given by

ico T 00 t/2
/[dr][dz]z/dr/d(iv):—/d—zt/dv. (3.12)
0 0 0 0

The only dependence ancomes from the bosonic propagator

six@x oy _ GO sy, _ sa @rnA(@)°

92(iv[7)? =2 ativ/el -1/ (3.13)

where in the last step we performed a modular transformation ot ttumction. We are
now in position to evaluate the integral. Since eventually we will sét= 0 we are
interested in the leading term. We obtain

(¥ 3 s
£9/2 (2 n(1)) L+072 .
D vt =1 2 @I 3.14
/ e Da(iv/t| —1/1)° 2 [7”7 (7)] + O00). ( )
We can now proceed to parameterize the annulus contribution to the orientifold partition
function as

1 1 9[5]O) o
Zub - - (-1 ot+/3+0t,3/372'ab 3.15
k 47-’:4-[22 o ‘32:% 1 2( ) ’,’3(_[) int,k ﬁ ’ ( )

whereab labels the type of branes at the two endpoints of the annulusZﬁhg is

the internal part of the annulus partition function, containing the contribution of the six
compact (super)coordinates. For the€unctions we use the notation and conventions of
Appendix A in [16]. In particular there are some sign changes from the conventions of [18].
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Putting everything together and assuming a supersymmetric ground state, we obtain

o0
2)? -
ab — ( 7T) de 7:2 l+6/27738(f)

kT ax4G
0

x Y }(_1)a+ﬁ+aﬂwza?k[a]

or,ﬂ:O,l,even2 n3(7) kel B

_ (\/én)‘s v
G

dr 17203 (i1 2  FP (1), (3.16)

where we have defined

1 1
F/?b _ rZZZZ” _ i Z _(_1)a+ﬁ+aﬂ

a,8=0,1,even

inarﬁ[“](0|r)
ns—(ﬂr)zﬁ{;k[g] (3.17)

Note the similarity of this expression with the one appearing in the expression of the
one-loop correction to gauge couplings (see, for instance, [16] and references therein).
It follows that F,f” can be formally written as a supertrace over states from the @pen
k-orbifold sector

a G| 1 _eM?
Fkb = (27.[)2 Str‘icl,bopen[l_z - s2i|e M /2’ (3.18)

wheres is the four-dimensional helicity. As we mentioned above, we expect that this
expression holds in the non-supersymmetric case, as well.

3.1. N =1 sectors

In this case there is no radius dependence of the integrand. The beha\ﬁp’f &dr
larget is

. ab _ ~ab,IR —mt
fim_ £ = G 0fe ) @19
with
G| 1
cabIR _ | Strk[__sz] , (3.20)
k (271')2 12 open

where the supertrace is restricted over massless states in the open @hsacter of the
orbifold. This expression is essentially the same with the one that appears in the evaluation
of the one-loop beta-function and can be expressed in terms of the massless content of the
kth sector as

1 2 3 1
Stl‘k|:1—2—s ]——ENV‘}‘ENC, (3.21)

where Ny ¢ is the number of vector, respectively, chiral multiplets appearing irkthe
sector.
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For small: we have instead

1
lim ¢ = - [ciPWY o), (3.22)
t—
where
G| 1
coov _ | Strk[— - s2:| . 3.23
k (277)2 12 closed ( :

The relevant helicity supertrace is now in the transverse clbssttor mapped from the
openk-sector by a modular transformation. Here also, this can be Writte{gas/ + %Nc
where now the states are from the clo&# string sector (transverse channel). Note that
both in the direct and transverse channel all states contribute. We should stress that this
resultis valid forN = 1 sectors only. Moreover, the trivial sectoe 0, does not contribute
to the supertrace due to its enhandée- 4 supersymmetryNy = 3N¢).

As shown explicitly in Appendix A, the-integral has a logarithmic divergencedrin
the IR and a pole in the UV (reflecting the UV tadpole of the anomalods):

ab,UV

20
ab _ "k O(logs). 3.24
A= sigp T O09d) (3.24)

The on-shell limit can be obtained by settieyg= €2, so that:

[(e1-€2)(p1- p2) — (€1 p2)(e2- p1)]/(p1- p2) —> € - €. (3.25)
It follows that the contribution to the (unormalized) mass matrix fl¥ra: 1 sectors reads:

1 2
S IR S O L
2 N=1 7T|G|N=lsectors
1 1
= Tr[y A Tr[ el Strk[— —s2i| (3.26)
2 N=J§ctors [ ] [ ] 12 closed channel

We should remind to the reader that the multiplicities in the open channel of the annulus
partition function have a direct particle interpretation (the projections happen at the CP
factors of the boundaries). Such an interpretation does not seem possible in the closed
string channel. Thus, our result does not seem expressible in terms of field theory data.

We now describe the explicit form of this contribution f6x; orientifolds. The internal
partition function of thecth sector is [18]

3 (Zsir[nkvj])ﬁ[,gﬁku_f]

Zoi=Zmi=[1 - : (3.27)
=1 [ 1-20,]
& o 3 a+1 »
Zi?-]?’k — _2(2 Sir[f[kvl]) [/3+2kv1] 1_[ [/3+2ka] (328)

[ 1721kv1] j=2 4 [ lfgkvj ] ’

wherek runs over the orientifoldvV = 1 sectors,(v1, vz, v3) is the generating rotation
vector of the orbifold satisfying1 + v2 + v3 = 0 in order to preserve at leasdt = 1
supersymmetry and the 5-branes are stretched along the first torus by convention. To
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compare with other works, one should use the identities:

s 1 =9 1 , s 0 =1 0 . (3.29)
1+2kvj 1—2](1)]' 1+2kvj 1—2kvj

As shown in Appendix B, we can directly compute

3
55UV __

c=ce (3.30)
osuv _ Sin(kvi)
Ci :7'7/“ (3.31)
where
3 3
1 sin[mkv,]
=2 |kuil=3 =3 3.32
" ;[{ ) } 21:[ |sinfrkv; 1|’ (3-32)
Thus, the contribution to the mass fra¥h= 1 sectors ofZy orbifolds is
1, 1,
>Mag.ap s >M55.ab _
= 2 3|G|l_[|5'” v | Tr{yar®] Te[mr’], (3.33)
k
N=1 sectors
1 2 sin(rkvy) ,
oM = S Ty e[y, 3.34
pMosan| Xk: 523G] e (3.34)
N=1 sectors

where we have divided the 59 contribution by two, to avoid overcounting.
3.2. N =2sectors

N = 2 sectors are present when a two-torus remains invariant under the action of the
appropriate orientifold element. Only massless states and their KK descendants survive the
helicity supertrace (3.18). In this case, the funct}qﬁ(t) is given by

FP (1) = PRy, (3.35)

whereC“b R is still given by (3.20)I»(¢) is either the appropriate momentum lattice when

these d|rect|ons are NN (Neumann boundary conditions), or the winding lattice when these
directions are DD (Dirichlet boundary conditions) [18]. No lattice sum can appear along
ND directions.

For normalization purposes, the general closed string lattice sum containing both
windings and momenta can be written as

TT

Z e v2U2|m1+Um2+T(n1+Un2)/w 12— 2ﬂ11(m1n1+m2n2)’ (3.36)

m;,n€Z
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whereT = B + iV andU = (G12 + i V2)/G11 are, respectively, the Kahler and complex
structure moduli of the torus, expressed in terms of the two-index antisymmetric tensor
B;j = Beyy and the 2x 2 metricGyy (Vo2 = \/5). Setting the windings to zero, and

o’ = 1/2, we obtain the open string momentum sum relevant in the NN case

\WH»HU\Z 2V 27TV2 \m+nU\2

—mt 2

(1) = E e v, == e T, (3.37)
m,nez m,nez

while the open string (DD) winding sum is

~ _ \m+nU\ 7L\m+nU\2
o) = Z ¢ V2 Z e 2% U | (3.38)

m,nez m neZ

The normalizations above are in agreement with [19,20]. Note that the open and closed
channel supertraces (3.18) are now the same, since massive string oscillator contributions
cancel and one is left over with the lattice sum (BPS states).

Using the results of Appendix A, we obtain the pole contribution

4V Cab,lR
1YY = 2717(’; + O(logs). (3.39)

Consequently, the contribution to the mass is

1.2 4V2 b1,~ab,IR
M| = T Tl
N=2 N=2 sectors
-2 TH[ynd ] Tr[yea?] St | = — 52 3.40
= Y Tl Trlnal sty T (3.40)
N=2 sectors open channel

In the DD case, relevant for mass matrix elements coming ffiymg branes, the mass is
similar as above WItH/— - & (V2 — 1/(4V») for o’ =1/2).

We now proceed to evaluate the contributions to the mass comingfrea? sectors
of Abelian orientifolds. For such sectors, one of thg is integer. We will choose without
loss of generalitv, = integer. The internal partition function is then

ﬁ[ﬁ+§kv] 3 (Zs'r[”kvl])ﬁ[ﬁ+2kv]

Zoi =N - (3.41)
)7 j=2 ﬁ[l—Zkvj]
and we can straightforwardly compute
3
bR puv _ (=D 1) "1 1 ,

cPPR=cprt = l_[ sinfrkv;] = ~5-2 li[z |sin[kv; ]| (3.42)
and

1 2V

2 _ : . b
SMabNN o Xk: ~23G] ]]:[2 |sin[zkv; 1| Tr[A®] Tr[veA”]. (3.43)

N=2 sectors
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1 3
N=2 sectors
Finally, for the 59 case, the relevan = 2 sector is when the longitudinal torus is
untwisted. In this case, the internal partition function is given by

1 5
EMab,DD

9 o 3 29[ OH_l.]
Ziwx =202 Ly e ”1]]_[ el (3.45)
j=2l?[1—2kvj]
and we obtain
1
95,ab,IR kv
G =D 3.46
k ( ) 471,2 ( )
and
}MszN = Y (—1)"“1—‘/2 Tr[yea®] Tr[pia®]. (3.47)
2 FN N - 213|G|
N=2 sectors

As earlier, we have divided the 59 contribution by an additional factor of two. In the case
where the two-torus corresponds to DD boundary conditions (in a D7-D3 configuration
for instance), one should replabe — 1/4V>.

4. Explicit orientifold examples

N =1, Zy orientifolds are generated by a rotation that acts as
gXi =(32”i”ixi, g)?i Ze—Zﬂivi)_(i’ (41)
where X?, X' are the complex coordinates of the three two-tori. The parameters
determining the fundamentZly rotation satisfyNv; € Z andvy + vz + v3 = 0 in order to
preserve space—time supersymmetry.

The action on the Chan—Paton indices is determined by the matyices (y1)*
representing the action of the orbifold elemeht as

ye = e 2TH (4.2)

whereH;,I =1, ...,16, are the Cartan generators(32) and?’ is a rational vector
specific to any given orbifold. A basis for the Cartan generators is given by diagonal
matrices having the-® Pauli matrix somewhere in the diagonal and zero everywhere else
(so that T[le] = 2). There is a vectalg for D9-branes and different vector;j for every
potential set of D5-branes.

4.1. The Z3 orientifold

Here there are no D5-branes [22]. The orbifold rotation vecto(vis vo, v3) =
(1,1, —2)/3 and the Chan—Paton projection vector is

1
Ug = 5(1, 1,1,1,1,1,1,1,1,1,1,1,0,0,0,0) (4.3)
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with Tr[y1] = Tr[y2] = —4. This breaksSO(32) to U(12) x SO(8). The U (1) factor of
U (12) is anomalous. The normalized generator of the anomdlqds is

1 & 1
r=—"2>"H. tx*]=3. 4.4
az&! =3 (4.4)
Thus, we can compute

Trly1r] = —24/3i sin(2n/3) = —3i,
Tr[y2r] = —2v/3i sin(4r/3) = 3i, (4.5)

1 1 1 1
Tr[y12?] = 5008(21/3) =3, Tr[y222] = 5 C0S(4m/3) = —=. (4.6)
Using (3.33), we can now evaluate the anomalous gauge boson mass:

1,2 1 a3 2 i3 21_ 9V3
EM =—@[sm (7r/3) Trly1A]° + sin(27/3) Tr{y24]7] = g 4.7
Putting backMS2 = 1/a’ from the 2’ = 1 convention and taking into account the
normalization of theF? kinetic terms 2 Tix2]/4¢2, we obtain for the normalized gauge

boson mass

2 9\/§22

Mphys= mgA s (4.8)

Note that this example can be used to realize two out of the four possible configurations
for the Abelian gauge bosons and their corresponding axions, displayed in Eq. (1.1),
namely the cases (brane, brane) and (bulk, brane). Indeed, the RR axions from the twisted
closed string sector are localized in all six internal dimensions, while the anonialdys
can be either in the bulk (on the D9-branes), or on the brane with respect to directions that
are T-dualized, so that one hagfranes withp < 9. Moreover, thé/ (1) gauge coupling
in Eq. (4.8) is given in general ly% = g, V), with V| the internal volume (in string units)
of the p — 3 compactified directions along thepEbrane.

4.2. The Z7 orientifold

The orbifold rotation vector isv1, v2, v3) = (1, 2, —3) /7. Tadpole cancellation implies
the existence of 32 D9-branes. The Chan—Paton vector is

1
Ug = 7(1, 1,112,222 -3, -3,-3,-3,0,0,0,0) (4.9)
which implies

Trivl=4, k=1,2,3,4,56. (4.10)
The gauge group i (4)3 x SO(8) and there are only = 1 sectors.
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The potentially anomalou (1)’s are the Abelian factors of the gauge group and the
relevant CP matrices are

14 18 122
Al=-— Hj, Ap=— Hj, Az=— Hj, 4.11
1 412_; I 2 412_; I 3 412_; 1 (4.11)

which satisfy tfA; A ;] = %51'/'- The four-dimensional mixed non-Abelian anomalies of these
U(1)’s are proportional to the matrix

2 0 -4
-4 2 0
0 -4 2 : (4.12)
4 4 4

where the columns label thié(1)’s while the rows label the non-Abelian factdf# (4)3 x
0O(8). It follows that all three/ (1)'s are anomalous. We also haye=n2 = —n3=n4 =
—n5 = —ne = —1/2 (see Eq. (3.32)). The contributions to the mass matrix are:

P P P 6 PN T cin 2T i 3T
1, sinZ sinZ sinF sinZ sinZF sin¥F
SMij=- -3 kE_lTr[Vk)\i] Triyij] =2 -3 ij

(4.13)
and there is no mixing in this case.

4.3. The Zg orientifold

The orbifold rotation vector igv1, v, v3) = (1, —3, 2)/6. There is an order two twist
(k = 3) and we must have one set of D5-branes. Tadpole cancellation then implies the
existence of 32 D9-branes and 32 D5-branes that we put together at one of the fixed points
of the Z, action (say the origin). The Chan—Paton vectors are

1
Ug = U5 = 1—2(1, 1,1,15555,3,3,3,3,3,3,3,3) (4.14)
which imply

The gauge group has a factoréf4) x U(4) x U(8) coming from the D9-branes and an
isomorphic factor coming from the D5-branes. THe= 1 sectors correspond to=1, 5,
while for k = 2, 3, 4 we haveN = 2 sectors.

The potentially anomalous (1)’s are the Abelian factors of the gauge group and the
relevant CP matrices for the D9-branes are

1 4 1 8 1 16
A=-— Hy, Ay = — Hy, A3= —— Hy, 4.16
s M emar M gt (420

which satisfy tfa; ;1= %(Sij. Similar formulae apply to the other thrég(1) matricesi;
coming from the D5-sector. The four-dimensional anomalies of tligdg’s (and their
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cancellation mechanism) were computed in [4]. The mixed anomalies with the six non-
Abelian groups are given by the mattix

2 2 42 -2 0 -22

-2 -2 -4J2 0 2 /2

0 0 0 2 2 0

2 0 22 2 2 452 | (4.17)
0 2 22 -2 -2 —4)2

2 -2 0 0 0 0

where the columns label tH&(1)'s while the rows label the non-Abelian factdg (4)5 X

VU (B)g x SU(4)§ x U(8)s. The upper X3 part corresponds to the 99 sector and the
lower one to the 55 sector. As can be seen by this matrix, the two linear combinations
V2(A1+ A2) — Az and+/2 (A1 + Ao) — A3 are free of mixed non-Abelian anomalies. It
can also be shown that they are also free of mikédl) anomalies. We can now compute:

k 5mk
Trlyiha]l = —2i sin(%), Triyero] = —2i sin(%),

Triyiral = —2iv/2 sin(”—;), (4.18)

i Tk - _ (5mk
Triyera] = —2i sm(%), Triyiho] = —2i sm(%),

- k
Triycha]l = —2i+/2 sin(%) (4.19)
1 wk 1 S5nk
Tr[ya3] = > cos(?), Tr[ya3] = > COS<T>,
TriyA3] = % cos(n—zk) (4.20)

while Tr{y,A;A;1=0fori # j. We also haveyy =n2 =n4 = —n5 = —1/2.
The contribution to the mass matrix from= 1 sectors is

1 3
> gg,ij Ty (Trlyaril Trlyar;]+ Trlysii 1 Triysh;1) (4.21)

and similarly forMss ;;, while

1 V3 . i
M35 = — 5 (Tryahi Triyad 1+ Trlysia] Triysh |

+ Triy2ril Triyoh ;1 — Triyari1 Triyah ;1) (4.22)

5 Note that here we use a different normalization forth@) generators than in [4].
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On the other hand, the contributions fravn= 2 sectors read

1 Vo
——— = — = (Trly2A 1 Trly2A ;1 + Trlyar; 1 Trlyah;
2M§9U 471_3( [y22: 1 Try2 ]]+ [yari1 Trlya j])
V:
— g THyah] Triyah . (4.23)
T
1 2 ~ ~ ~ ~
§M55,ij = T 16V,ns (Trly2xi1 Trly2a ] + Trlyahi]l Trlyah ;1)
V3
T 3.3 TrlysAi 1 TrlysA ] (4.24)
T
and

SMesij=—153 Trlyshil Triyah; 1. (4.25)

Thus, the unormalized mass matrix has eigenvalues and eigenvectors

m2=6Vy, —A1+ Ay (4.26)
3 - -
2
= > A+ Ax 4.27
53+ 48Vs + /3(25— 128/3 Vs + 768V2)
2 _
m3 4= 12 : (4.28)

with respective eigenvectors
+ai(A1+ Az — A1 — Ap) — Az + As, (4.29)

where

F3+ /25— 128/3Vs + 76812
a =
- 4V2(4/3V5 - 1)

153+ 80V3 + \/ 5(135— 384v/3 V3 + 1280V2)
m5’6 = 12 , (431)

with respective eigenvectors

, (4.30)

+bi(A1+ A2+ A1+ A) + Az + As, (4.32)

where

+9V/3— \/ 5(135— 3843 V3 + 1280V2)

by =

4/2(20V3 — 3/3)

Note that the eigenvalues are always positive. They are also invariant under the T-duality
symmetry of the theory» — 1/4V,. Thus, allU (1)’s become massive, including the two

anomaly free combinations. The reason is that these combinations are anomalous in six
dimensions. Observe however that in the liviit— 0, the two linear combinations that

(4.33)
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are free of four-dimensional anomalies become massless. This is consistent with the fact
that the six-dimensional anomalies responsible for their mass cancel locally in this limit.

To obtain the normalized mass matrix, we must also take into account the kinetic terms
of the U (1) gauge bosons which are

Skinetic = —%[VleV::,(FlZ + FZ + F§) + Va(Ff + FZ + F3)]. (4.34)
S

This impliesM3, — M2y/(V1Va Va), M2, — M2/ V3 and M2, — M3/ (\/V1iV2 Va). The

resulting eigenvalues are too complicated and not illuminating to produce here.

Strictly speaking the formulae we presented should be usesforl. WhenVsz < 1
we can T-dualize and rewrite the theory in terms of D3—D7 branes. Then the unormalized
mass remains as above with — 1/4V3 but the kinetic terms of the gauge bosons are no
longer multiplied byVs.

Using theZj orientifold, one can realize the remaining two possible configurations for
the anomalou#/ (1) gauge fields and their corresponding axions, namely the (bulk, bulk)
and (brane, bulk) cases of Eq. (1.1); the other two were realized for instance in the context
of Z3 orientifold, as we described before. In fact, identifying the second torus with the bulk,
the two configurations correspond to the cases (4.26) and (4.27), respectively, that receive
contributions from the correspondiig = 2 sector only. Furthermore, in the (bulk, bulk)
case there are two possibilities as spelled out in the introduction: Eq. (4.26) as it stands
realizes a normalized mass./V,/V4 = 1/4/V1V3 In this caseV, = V, is a subspace of
Va4 = V1V2 V3. Upon a T-duality inV» it realizes the other possibility, namely a normalized
mass~ 1/4/V, V4 =1//V1V2V3. HereV, = Vo andV, = V1 V.

4.4. The Zg orientifold

The orbifold rotation vector igv1, v2, v3) = (1,1, —2)/6. There is an order two twist
(k = 3) and we must have one set of D5-branes. Tadpole cancellation then implies the
existence of 32 D9-branes and 32 D5-branes, as in the previous example, that we put
together at the origin of the internal space. The Chan—Paton vectors are

1
U9 = U5 = 1—2(1, 1,1,1,1,1,5,5,5,5,5,5,3,3,3,3) (4.35)
implying
Trix]=0 for k=135, Trly2] =4, Trlys] = —4. (4.36)

The gauge group has a factor &f6) x U(6) x U(4) coming from the D9-branes and
an isomorphic factor coming from the D5-branes. TNe= 1 sectors correspond to
k=1,2,4,5, whilek =3 is anN = 2 sector.

The potentially anomalou& (1)’s are the Abelian factors of the gauge group and the
relevant CP matrices for the D9-branes are

1 6 1 12 1 16
AM=—— Hy, A= —— H;, Az=— Hy, (4.37)
X 2o i,
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that satisfy tfa;1;]1 = %81-,-. Similar formulae apply to the other thré&(1) matricesai;
coming from the D5-sector. The four-dimensional mixed non-Abelian anomalies of these
U(1)’s are proportional to the matrix

6 -3 V6 3 0 6
3 6 —v/6 0 -3 -6
-9 9 0O -3 3 0
3 0 V6 6 -3 6 [ (4.38)
0 -3 —v6 3 —6 —6
-3 23 0O -9 9 0
The columns label thé/(1)'s, while the rows label the non-Abelian facto‘ﬂaJ(G)g X
U (4)g x SJ(G)% x SU(4)s. The upper X 3 part corresponds to the 99 sector and the lower
one to the 55 sector. As can be seen by this matrix, there are three linear combinations
AL+ Ay — \/gA3, AL+ Ay — \/gA} and A3 — As that are free of mixed non-Abelian
anomalies. It can be shown that they are also free of mixéld anomalies.
We can now compute

k k
Tyl = —i/6 sin%, Tryeha] = (—1)kiv/6 sin%,

.k
Trlyers] = —2i sm”7 (4.39)
and similarly forii. Also
1 7k (=D 7k 1 7k
Tr[yA2] = = cos—, Tr[yAd] = cos—, Tr[ya2] = = cos—,
[yk 1] 4 6 [Vk 2] 4 6 [Vk 3] 4 2
(4.40)
while Tr{yxA;A;1=0fori # j. Finally n1 =n2 =n3=—na = —ns = —-1/2.
The various contributions to the mass matrix are
1, V3
EMQQ,I‘J' =~ 78.3 [Triyadi] Triyar 1+ Trlyshi] Trlysh ]
V:
+ 3(Trly2xi 1 Trly2A ;1 + Triyai]1 Triyar;1)] — §33 TrlysA: ] Trlysh;]
(4.42)

and similarly forMss ;;, while

1 V3
=- Triyari 1 Trlyar 1+ Trlyshi] Triysh;
2MZ;,. 487,3( [yaril TriyaA ;14 TrlysAi] Trlysh ;]

V-
+ Triyoni] Trlyoh 1+ Triyahi] Trlyah;1) — 1—2;3 Triyshi] Triyah;].

(4.42)
This mass matrix has the following eigenvalues and eigenvectors:

m%:O, A1+A2—A1—A2+\/6(A3—A3), (4.43)
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33 o
m = ‘—Zf AL — Ag— A1+ Ag, (4.44)
m3=3v3,  A1—Ay+A1—Ay, (4.45)
40 3 o ~
m2 = ?VS’ —\/;(Al + A2 — A1— A2) — A3+ A3, (4.46)
,  TV/3+80V3:k,/147— 1040/3 V5 + 6400V
M= 12 ’
as(A1+ A2+ A1+ A2 + A3+ A3 (4.47)
with
40V — /3 /147 1040/3 V3 + 64003
at = . (4.48)

1242 — 40/6 V3

In the limit V3 — 0 two more masses become zem(andm_). It is straightforward
to check that the appropriate linear combinationsUdfl)’'s are anomaly-free in four
dimensions.

4.5. The Z3 x Zg orientifold

The orbifold rotation vectors ar@ = (1,0, —1)/3 andv, = (1, —1,0)/6. There is an
order two twistk2. Tadpole cancellation implies the existence of 32 D9-branes and 32
D5-branes that we put together at the origin of the internal space. The Chan—Paton vectors
are

1
9§ =1§=75(22.00.1100.112200.0.0) (4.49)
and
1
9 =0f=151111555533333333) (4.50)

The gauge group has a factor f(2)® x U(4) coming from the D9-branes and
an isomorphic factor coming from the D5-branes. Sectors are labelled by the group
elements#fn!. The N = 2 sectors in the 99 and 55 configurations akel)
{(1,0),(2,0),(0,1), (0,2),(2,2),(0,3), (0,4, (1,4, (0,5)}. In the 95 configuration we
have fewerV = 2 sectors, namelgk, [) € {(0, 1), (0, 2), (0, 3), (0, 4), (0, 5)}.

The potentially anomaloug (1)’s are the fourteen Abelian factors of the gauge group
and the relevant CP matrices for the D9-branes are

1 1g 1g 1
A1=§IZ_£H1, AZ:EIZ_;HI, )»3=§IX_;)H1, ha=5 Hi,

=7
(4.51)
1 10 1 12 1 16
)\5:§ZH[, )»GZEZH[, )L?ZEZH[ (452)
1=9 1=11 1=13
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Similar formulae apply to the other sevéh(1) matricesi; coming from the D5-sector.
The four-dimensional mixed non-Abelian anomalies of the'gé)’s are proportional to
the matrix

1 -1 0 0 O -1 2 O O O O O O O
1 -1 0 0 1 0 -2 O O O O O o0 O
o 0 -1 1 1 0 -2 0 O O O O o0 O
o 0 -2 1 0 -1 2 O O O O O O0 o0
o -1 -1 0 0 -1 2 0O O O O 0O o0 o
i1 o0 o 1 1 0 -2 O O O O O o o0
-171 1. -1 -1 1 O O O O O O o0 o
o o o o o0 o o 1 -1 0 O 0 -1 2] (4.53)
o o o o o0 o o 1-1 o0 O 1 o0 -2
o o o o o0 o o o o0-1 1 1 o0 -2
o o o o o o o o o0-11 o0 -1 2
o o o o o0 o o o0-1-1 0 0 -1 2
o o o o0 o0 o o 1 0o o 1 1 o0-2
o o o o o0 o Oo0O-11 1 -1 -1 1 O

The columns label thé/(1)’'s while the rows label the non-Abelian facto&J(Z)g X

U4)g x SU(Z)S x U(4)s. The upper %7 part corresponds to the 99 sector and the
lower one to the 55 sector. As can be seen by this matrix, there are six linear combinations

A1 — A3 — As+ Ag, A2 — Ag+ As — Ag, 2(As+ Ag) + A7, (4.54)
A1 — A3+ As — Ag, A — Ag+ As — Ag, 2(As+ Ag) + A7 (4.55)

that are free of mixed non-Abelian anomalies. MiXédl) anomalies also cancel. We can
also compute:

1
N1y =12 =11 =W = ~123 = ~Nes = ~ILs = 125 = 5
N2 = N4 = N,0 =120 =0. (4.56)

The mass matrix is given by

1 5 sk, 1]
§M99,ij == kzl: 18,3 Trlyi Al Trlye Al
N=1 éectors
5
V3 . l
-9 ;SIHZ[E] Trlyo 21 Trlyo,iA ]
Vi .

] . [2n
-3 8 |:§] sm[?] (Trly2,24i 1 Trly2,22 1+ Trly1,ahil Triy1ah ;1)

2

1% . k

~ 2 smz[%]Tr[yk,oki]Tr[yk,o/\j], (4.57)
1
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sin[n(?)} sin:né: sin[ng}’, (4.58)

and similarly forMss;; with V3 — 1/4V1, Vo — 1/4V>, while

where

s[k, 1] =

1 nea . [k
_M!§5,ij = Z sinf — | Trivk A1 Trliyve ;]
k.l

2 3673 i 3 ]
N=1 sectors
V3 > wl
35 l;s'nz[g] Triyori1 Trlyox 1. (4.59)

It follows that there are no massless gauge bosons. The mass-squared matrix has a double
eigenvalue 4/3 and a double eigenvalua/B. It has six eigenvalues that depend \an

and the rest depend on all three internal volumes/#t 0 there are two zero eigenvalues
corresponding to the last linear combinations in (4.54), (4.55), a double eigenvaBie 4

and a double eigenvalua/, double eigenvalugg9./3 + +/5259)/18 and the rest are

4(Vit Vot \JVE+VE-W112) (4.60)

with eigenvectors purely on the D9-branes and their duals with eigenvectors only on the
D5-branes.

5. Conclusions

In this work we did an explicit one-loop string computation of th€l) masses
in four-dimensional orientifolds and studied their localization properties in the internal
compactified space. We have shown that non-vanishing mass-terms appeat/f¢t)al
that are anomalous in four dimensions, but also for apparent anomaly free combinations
if they acquire anomalies in a six-dimensional decompactification limit. In both cases,
the globalU (1) symmetry remains unbroken at the orientifold point, to all orders in
perturbation theory.

For supersymmetric compactifications, we found tNat 1 sectors lead to contribu-
tions toU (1) masses that are localized in all six internal dimensions, while those-e®
sectors are localized only in four internal dimensions. All these mass terms are described
as Green—Schwarz couplings involving axions coming from the RR closed string sector,
that transform under the correspondirigl) gauge transformations. One can thus provide
explicit realizations in brane world models of all possible configurations (1.1) for the gauge
field and the axion, propagating in the bulk of large extra dimensions, or being localized
on a braneN = 1 sectors describe axions localized on a 3-brane, while 2 sectors
describe axions propagating in two extra dimensions.

Our results can in principle easily be generalized to non-supersymmetric orientifolds.
A particularly interesting class of non-supersymmetric constructions is given in the context
of “brane supersymmetry breaking”, where supersymmetry is broken only in the open
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string sector while it remains exact (to lowest order) in the closed string bulk [21]. In
the simplest case, the breaking of supersymmetry arises only from combinations of D-
branes with (anti)orientifold planes which affect only the Mébius amplitude and thus
do not change the expression for the mass. Indeed, the latter appears as a contact term
of the annulus that remains supersymmetric. On the other hand, in the case where the
supersymmetry breaking arises also from configurations of branes with antibranes, there is
an additional contribution to the mass that can be easily computed following our general
method.

Our analysis has direct implications for model building [23]. In particular, special
care is needed to guarantee that #i€l) hypercharge remains massless despite the
fact that it is anomaly free. An additional condition should be satisfied, namely that it
remains anomaly free in any six-dimensional decompactification limit. On the other hand,
anomaloud/(1)’s could be used to reduce the rank of the low-energy gauge group and
guarantee the conservation of global symmetries, such as the baryon and lepton number.
Finally, the associatet (1) gauge bosons could be produced in particle accelerators with
new interesting experimental signals. Their masses are always lighter than the string scale,
varying from a loop factor to a much bigger suppression by the volume of the bulk, giving
rise to possible new (repulsive) forces at sub-millimeter distances, much stronger than
gravity.
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Appendix A. Ultraviolet polesand infrared logarithms

In this appendix we calculate the UV tadpole (polé)nTo this end, we split the integral
of Eg. (3.16) into UV and IR parts:
A = 12RO (A.1)

We will first considerN = 1 sectors, where no lattice sum appears in the internal partition
function. The behavior in the IR is

JabIR _ (V2n)?
k |G|

o
/ dr 1713203 (i1 2) F (1)
1

b,IR
_ W2m’cy
G|

[o,0]
f di 17592~ | finite. (A.2)
1
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Changing variables, we obtain

o0
161 5/2Cab,IR o
Ilgb,IR _ (_) k / duu~19/2,=1 | finite

8 |G|
78/8
==— reé/2,75/8 A.3
(555) Ss-rerzase. (3

where I'(a, x) is the incomplete™-function with asymptotic expansion for small argu-
mentx:

x4 < (_1)nxa+n
r =I'(a)— — — - A.4
(a,x)=T'(a) — ; i (A.4)
We thus obtain
bR C/(:b’IR T
a0 = log — 4+ finite. A.5
k Gl %95 + (A.5)
To study the UV behavior, we usgiz/2) = (/2)~1/2y(2/1) and consider
1
2 §
I;?b’uv= 7(\/|—G7|T) /dtt_1+8/27136(it/2)F1?b(t)
0
()P 4O 1
= 7"/01”‘2‘%‘”3/2’ + finite
|G|
UV g\ ab,UV
= - ) —=Ir'¢+1,78/2) +finite= finite, A.6
G| (3) zol @ Lmo/D+ 251G| (A-6)
leading to the pole, as advertised.
We will now focus on theV = 2 sectors. Here
F ()= "R, (A7)

WhereC,‘:b’IR is given by (3.20). The lattice sum is given by (3.37) in the NN case, and
by (3.38) in the DD case. To obtain the UV contribution, we have to use the second form
of the lattice sums in (3.37) and (3.38). We then find

1
v =(4n)3CZb"R/dtt‘z_se_”S/Z’Fz(t)-|-finite
0

2 §+1
= 2v,C" R4y (g) re+1m78/2)

2U- 1% U|?
+ctRy 72U2F(1, HACUaELSE 2";;" | >+ (A.8)
mmzo0 TIm+nUl 2
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We have set = 0 to all terms with non-zero momentum. This is justified because we will
show that apart from the first term, the rest of the sum (in the second term) is finite. Indeed,
the sum over non-zero momenta is finite because it is cutoff by the inconipiéitaction.

In fact, for large values af

1
'lLx)y=e~ |:1—|— (9(—)] (A.9)
X
and the momentum sum is bounded by
2U _nV \m+nU\2
Z 72[]26 ‘a0 (A.10)
mnz00 ™M+ 1Ul

which is convergent foV» > 1. It has a logarithmic divergeneelog V> whenV, — 0 but
we always keep»> > 1 in our conventions. Thus, the pole is given by the first term only

b,IR
JUV _ 4V2CZ

K= + O(logé). (A.11)

Appendix B. Calculation of the UV tadpolesfor standard orientifolds

In this appendix we compute the asymptotic val@gs’ and CR of Zy orientifolds.
The relevantVv = 1 sector partition functions are

3 (Zsir[nkvj])ﬁ[mgku,»]

Zowe=Zmi =11 . : (B.1)
j=1 29|:172kv.,~:|
9 o 3 a+1 »
Zi?}ik — _2(2 Sir[nkvl]) [/3+2kv1] 1—[ [/3+2kv]] (BZ)

[ 1721kv1] j=2 4 [ lfgkvj ] 7

wherek runs overN = 1 sectors,(v1, v2, v3) IS the generating rotation vector of the
orbifold satisfyingv1 + v2 + v3 = 0 in order to preservé&/ = 1 supersymmetry and the
5-branes are stretching along the first torus.

Using the property that ofi-functionsizd, = 292, and the Riemann identity

=192,
Z ( 1)a+/3+aﬁ0|: ]( )1—[ |:O(+//l :|(0)
a,$=0,1 i=1
1 T1-n
:z?|:1:|(v/2)[1:£z9|:1_gi:|(v/2) (B.3)
in (3.16), we obtain
3 3 /
1 . 20, ] (0)
FR¥=F= = 5(2 sinkv;] ; TR (B.4)
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k= 473

pso_ _ SinGrkvy) [ﬁ’[l_%kvlm L Plan,]® 0’[1&,,3](0)] ©5
M1 20,]O  2[120,]O 91 2,,]O

Using now

[ 12,10 [ 19, 10

— =M = 27 cot(wky;) + Oe™™), =0(e™?™),
1 0
912, 1O 912, 1O
(B.6)
we obtain
13 3 cos(ku)
99,IR 55,IR 95IR _
R =c =—2U sin[kv;] ;cot(nkvl) C =7
(B.7)
For the mass computation, we are interested in the modular transfafm Oking
o 1 ab /3 1
¥ 0,7)=— 7y 0,—=), B.8
[pleo-—mert L ](e=) ©9
we can rewrite (B.4) and (B.5) as
3 3 1T 1—2kv; 1
2[5 ](0,—%)
FO=F»®=— (sin[kv;] LEAY (B.9)
o U ! ;ﬂ - 2"”’](0,—%)

sin(rkvy) [l Zlivl]( -7
e [ JAT0.Y

o270~
0 | #10

T

95 __
Fk =

AR Q=

~ | -

Defining by{kv;} to be the (positive) fractional part éb;, then

PPANO T 1 o
e K R &1y

T

and
A )
o[ 5](0.-2)

T

=2mi |:{kvl} — 3} +0(e™ ™). (B.12)

In the second case, whéhv;} € Z the limit gives zero. We must haqacvi} — %| < %
Using now

3

1 3 sin[kv;]
et L
Mk Z[{kv,}——] EU ECTIon (B.13)

i=1
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we can directly compute (replacing=it/2)
3

1 .
PV =P = - S T |sinlmkv; 1, (B.14)
Tin
sin(kvy)
Cgs,uv _ - (B.15)

T2
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