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Abstract

We perform a systematic string computation of the masses of anomalousU(1) gauge bosons in
four-dimensional orientifold vacua, and we study their localization properties in the internal (com-
pactified) space. We find thatN = 1 supersymmetric sectors yield four-dimensional contributions,
localized in the whole six-dimensional internal space, whileN = 2 sectors give contributions local-
ized in four internal dimensions. As a result, theU(1) gauge fields can be much lighter than the string
scale, so that when the latter is at the TeV, they can mediate new non-universal repulsive forces at sub-
millimeter distances much stronger than gravity. We also point out that evenU(1)’s which are free
of four-dimensional anomalies may acquire non-zero masses as a consequence of six-dimensional
anomalies. 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

AnomalousU(1) gauge symmetries appear generically in string vacua. The massless
charge spectrum is anomalous in the sense that the traditional triangle (or polygon in
dimensions higher than four) diagrams are non-zero. However, the anomaly is cancelled
via a generalization of the Green–Schwarz mechanism [1,2]. In four dimensions, a scalar
axion (zero-form, or its dual two-form) is responsible for the anomaly cancellation. In
six dimensions, both zero-forms (or their duals four-forms) and two-forms can participate
in anomaly cancellation [3]. However, only zero-forms (or their duals) can give mass to
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theU(1) gauge boson and break the gauge symmetry. Thus, a necessary consequence in
four dimensions is that the (quasi)anomalous gauge symmetry is broken. Moreover, in the
presence of supersymmetry (at least), an anomalousU(1) is accompanied by a D-term
potential that involves the charged scalars, shifted by a term proportional to the CP-even
partner of the respective axion [2].

In perturbative heterotic vacua, at most one anomalousU(1) can appear in four-
dimensionalN = 1 compactifications. The relevant axion is the four-dimensional dual of
the Neveu–Schwarz (NS) two-form, which was shown to develop the appropriate couplings
and transformation properties, needed to cancel all relevant anomalies [2]. Moreover, the
scalar modulus appearing in the D-term potential is the dilaton, and for non-trivial vacua,
vanishing of the D-term implies generically that charged scalars get a non-trivial vacuum
expectation value (VEV) breaking the associated globalU(1) symmetry.

The situation is richer and more interesting in perturbative orientifold vacua. Here, there
are in general several anomalousU(1)’s and the cancellation of anomalies is achieved
via the coupling of twisted Ramond–Ramond (RR) axions [4]. The D-term potentials
involve the twisted NS–NS moduli. However, at the orientifold point their expectation
values vanish, and this allows to have a spontaneously broken gauge symmetry with the
globalU(1) unbroken in perturbation theory [5]. The global symmetry may be broken
non-perturbatively due to instanton effects, which however are small at weak coupling.

Orientifold vacua are prime candidates for realizing the Standard Model as a brane-
world, in the context of perturbative string theory with low string scale and large internal
dimensions [6] (for earlier attempts see [7]). As pointed out in [8], any minimal realization
of the Standard Model in this context contains at least 2 anomalousU(1)’s that are expected
to obtain a mass. Abelian gauge symmetries have been also used on the world-brane or in
the bulk, in order to impose approximate global symmetries, such as baryon number or
Peccei–Quinn symmetries [9,10]. It is therefore important to compute their masses and
study their localization properties in the internal compact space.

It turns out that the mass of anomalousU(1)’s in orientifold vacua can be unambigu-
ously calculated by a direct one-loop string computation (although a disk calculation may
also give the mass modulo normalization ambiguities). In this work, we perform such a
computation and we derive a formula for the mass matrix ofU(1) gauge bosons. We also
study some explicit examples ofZN andZN ×ZM orientifold vacua.

We find the following general features.

(1) The gauge boson masses are given by an ultraviolet contact term of the one-loop
annulus diagram with the gauge bosons inserted one at each boundary. There are
no contributions from the annulus with insertions on the same boundary or from the
Möbius strip since such contact terms are absent by tadpole cancellation. By open-
closed string duality, theU(1) mass-terms are also given by some appropriate infrared
(IR) closed string channel tadpoles.

(2) The mass-terms ofU(1) gauge bosons obtain volume independent corrections from
N = 1 supersymmetric sectors, whileN = 2 sectors give contributions dependent on
the moduli of the corresponding fixed torus. Moreover, they are BPS saturated (given
by the supertrace of the square of the four-dimensional helicity). Thus, mass-terms of
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N = 1 sectors are localized in all six internal dimensions, while those ofN = 2 sectors
are six-dimensional, localized in four internal dimensions.

(3) U(1)’s that are free of four-dimensional anomalies can still be massive, if upon
decompactification they suffer from six-dimensional anomalies.2 This is expected
since Kaluza–Klein (KK) states can contribute to (higher-dimensional) anomalies once
there is a corner of moduli space where they become massless (decompactification
limit). Uncancelled anomalies in six dimensions depend both on the localization
of gauge fields (D-branes) and the localization of axions (coming from the bulk).
Potentially anomalous sectors involve a six-dimensional coupling of a gauge field to
an axion that extend in the same six dimensions.

As we already mentioned, the masses ofU(1)’s arise through Green–Schwarz couplings
involving RR axions. Moreover, at the orientifold point, the associated global symmetries
remain unbroken to all orders in perturbation theory. Using the localization properties we
described above, one can provide explicit realizations of all possible arrangements for the
Abelian gauge bosons(A) and their corresponding axions(a):

(1.1)(A,a)= (brane, brane), (bulk, brane), (brane, bulk), (bulk, bulk).

N = 1 sectors realize the first two possibilities, whileN = 2 sectors realize the last two.
Note that the axions can propagate at most in two internal dimensions, whileU(1) gauge
bosons may propagate everywhere. It follows that theU(1) massMA in these four cases is
proportional to:

(1.2)MA ∼ O(1), 1/
√
VA, 1/

√
Va,

√
Va/VA, 1/

√
VaVA

in string units, whereVA and Va stand for the internal volumes corresponding to the
propagation of theU(1) and the axion fields, respectively (Va is two-dimensional). The
last two possibilities correspond both to the (bulk, bulk) case and depend on whetherVa is
part ofVA or orthogonal to it.

As a result,MA can vary from the string scaleMs , up to much lower values that can
attainM2

s /MPlanck, in the two middle cases of (1.1), if the respective volume in Eq. (1.2)
coincides with the total volume of the bulk. The gauge field exchange can then induce new
(repulsive) forces at sub-millimeter distances (of the order of a few microns forMs a few
TeV). The third case, where the gauge field lives on the brane, is however experimentally
excluded, since the corresponding gauge couplinggA is of order unity. In the second
case, the gauge field lives in the bulk and the four-dimensionalU(1) gauge coupling is
infinitesimally small,gA ∼Ms/MPlanck� 10−16. However, this value is still bigger that the
gravitational coupling∼E/MP for typical energiesE of the order of the proton mass, and
the strength of the new force would be 106–108 stronger than gravity. This an interesting
region which will be soon explored in micro-gravity experiments [12]. Notice that the
supernova constraints can exclude only the case where there are less than four large extra
dimensions in the bulk, felt by the gauge field [9]. Finally, in the (bulk, bulk) case when
Va is part ofVA, the masses of all KK modes are shifted by a large amount according to

2 Similar observations were made independently in [11].
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Eq. (1.2) and the resulting force becomes effective at much smaller distances. On the other
hand, whenVa is orthogonal toVA the mass of theU(1)A is tinyO(M2

s /MPlanck) while its
coupling is suppressed only by the volume of the bulk ofA, gA ∼ 1/

√
VA.

Of course, in all cases of (1.1), theU(1) gauge bosons can be produced in particle
accelerators at high energies leading to interesting signatures. Note that their masses are
always lower than the string scale because of the (string) one-loop factor suppression.
Moreover, their effective coupling is of order unity, if one takes into account the number
of KK excitations that are produced at high energies.

The paper is organized as follows. In Section 2, we describe the effective action
involving the anomalousU(1) symmetries. In Section 3, we present the one-loop string
computation and we give the general results for the contributions ofN = 1 andN = 2
supersymmetric orbifold sectors. In Section 4, we study specific orientifold examples based
onZ3,Z7,Z2×Z3 =Z′

6,Z6 andZ3×Z6 orbifolds. Finally, Section 5 contains concluding
remarks and a discussion of non-supersymmetric models.

2. The effective action

In four dimensions, there are two on-shell equivalent (dual) ways of describing the fields
responsible for cancelling anomalies: as pseudoscalars or as two-index antisymmetric
tensors. However, off-shell, the two descriptions are a priori different at the one-loop level.

Let us first consider the case of a pseudoscalar axion. The relevant part of the four-
dimensional effective action (in the string frame) is:

(2.1)S =
∫
d4x

[
− 1

4g2
A

F 2
A − 1

2
(da +MA)2 + a

M

∑
I

kIFI ∧ FI
]
,

whereFA is the field strength of the anomalousU(1)A, gA is the corresponding gauge
coupling, andkI are the various mixed anomalies. Anomaly cancellation implies thata is
shifted underU(1)A gauge transformation:δA= dΛ, δa = −MΛ, so that the action (2.1)
changes by exactly the amount necessary to cancel the phase of the chiral fermion
determinant. It follows that in the unitary gaugea vanishes and one is left over with a
massiveU(1)A with massMA = gAM. Note that in the case where the gauge symmetry
is not anomalous in four dimensions but the gauge field becomes massive due to a
six-dimensional anomaly, allkI vanish but stillM 
= 0 anda transforms under gauge
transformation.

In the type I string context, where the axiona comes from the RR closed string
sector [4], the first and third terms of the above effective action appear at the level of
the disk, while the second term is expanded into contributions corresponding to different
orders of string perturbation theory;(da)2 is a tree-level (sphere) term, the cross-product
Ada appears at the disk level, while the mass-termA2 is a one-loop contribution. Indeed,
for this counting, the gauge kinetic terms have a dilaton factore−φ sinceg2

A is proportional
to the string couplinggs ≡ eφ , while a one-loop term is dilaton independent. On the other
hand, every power of the RR fielda absorbs a dilaton factore−φ which makes both the last
two terms in (2.1) dilaton independent.
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In a supersymmetric theory (at least), the above effective action is accompanied by a
D-term potential

(2.2)V =
∫
d4x

1

g2
A

D2, D =Mm+
∑
i

qi |Φi |2,

wherem is the twisted NS–NS blowing-up modulus that belongs in the same chiral
multiplet with the RR axiona, whileΦi denote the various open string charged scalars with
U(1)A chargesqi . At the orientifold point,m vanishes and the globalU(1)A symmetry
remains unbroken despite the fact that the gauge fieldA becomes massive forM 
= 0 [5].
However, going away from the orientifold point whenm 
= 0, vanishing of the D-term
implies that some charged scalars should acquire non-zero VEVs, breaking the global
U(1)A symmetry.

The above phenomenon can also be described in terms of an antisymmetric tensorBµν .
The corresponding effective action can be easily obtained from (2.1) by performing a stan-
dard Poincaré duality which exchanges equations of motion with Bianchi identities [13]:

(2.3)S =
∫
d4x

[
− 1

4g2
A

F 2
A − 1

12

(
dB + kI

M
ΩI

)2

+ (M dB + kIΩI )∧A
]
,

whereΩI are the various gauge Chern–Simons terms. Anomaly cancellation implies that
Bµν is shifted under gauge transformations:δB = ∑

I ΛI kIFI /M, while the variation of
the last term underU(1)A gauge transformation, cancels the anomalous contribution of the
chiral fermion determinant.

The counting of the order of appearance of the various terms in type I string perturbation
theory is similar as in the dual action (2.1). However, notice that in this representation there
is no explicit mass-term for theU(1)A gauge field in the effective action. The reason is that
the mass is now generated by a reducible diagram at the one-loop level. Inspection of (2.3)
shows that a mixing betweenBµν andAρ arises at the level of the disk, corresponding
to the vertexM2 ε

µνρσ εµνερpσ , wherep is the external momentum andε’s denote the
polarization tensors. This generates a reducible contribution to the two-point function of
the gauge field, given by the square of this vertex times theBµν propagator:

(2.4)
M2

2

[
p2ε2 − (p · ε)2]/p2 = M2

2
ε2,

where we have used the on-shell gauge-invariance conditionp · ε = 0. Thus, a massM
for the anomalous gauge boson is generated by such a reducible one-loop diagram and no
explicit mass-term is present in the effective Lagrangian.

Note that in the axion representation (2.1), the axion-gauge boson mixing at the disk-
level generates a vertex proportional top · ε which vanishes on-shell and does not generate
a reducible contribution for the gauge boson mass. Thus, an explicit one-loop mass-term
must be introduced in the effective Lagrangian, consistently with the expression (2.1).
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3. The calculation of the mass in orientifold models

The two possible diagrams that can contribute to terms quadratic in the gauge boson at
the one-loop level are the annulus and the Möbius strip. Of those, only the annulus with the
gauge field vertex operators inserted at the two opposite ends has the appropriate structure
to contribute to the mass-term. Indeed, vertex operators inserted at the same boundary
will be proportional to Tr[γkλaλb], whereγk is the representation of the orientifold group
element in thekth orbifold sector acting on the Chan–Paton (CP) matricesλa . On the other
hand, for gauge fields inserted on opposite boundaries, the amplitude will be proportional
to Tr[γkλa] Tr[γkλb] and it is this form of traces that determines the anomalousU(1)’s [4].
The potential ultraviolet (UV) divergences that come from vertex operators inserted on the
same boundary (both in cylinder and Möbius strip) cancel by tadpole cancellation [14].

Obviously, we must concentrate on the CP-even part of the amplitude which receives
contributions only from even spin structures. This implies that we need the gauge boson
vertex operators in the zero-ghost picture

(3.1)V a = λaεµ
(
∂Xµ + i(p ·ψ)ψµ)

eip·X,

whereλ is the Chan–Paton matrix andεµ is the polarization vector.
The world-sheet annulus is parameterized byτ = it/2, whereτ = τ1 + iτ2 is the

usual complex modular parameter of the torus, and corresponds to the rectangle[0, t/2] ⊗
[0,1/2]. The 2-point amplitude is then given by [15]

(3.2)A = − 1

4|G|
∫

[dτ ][dz]
∫

d4p

(2π)4
∑
k

〈
V (ε1,p1, z)V (ε2,p2, z0)

〉
k
,

where the sum is over orientifold sectors,|G| is the order of the orientifold group, and
we fixed one of the positions of the vertex operators atz0 = 1/2 using the translational
symmetry of the annulus. The other vertex operator is located on the opposite boundary:
z= iν with ν ∈ [0, t/2]. For notational simplicity, we set the Regge slopeα′ = 1/2 so that
the Virasoro Hamiltonian operatorL0 = (p2 +M2)/2.

Performing the contractions, we obtain

A = − 1

2|G|
∫

[dτ ][dz]
∫

d4p

(2π)4
∑
k

[
(ε1 · ε2)(p1 · p2)− (ε1 · p2)(ε2 · p1)

]
(3.3)× (

Tr[γkλ])2
e−p1·p2〈X(z)X(z0)〉[〈ψ(z)ψ(z0)

〉2 − 〈
X(z)∂X(z0)

〉2]
.

It appears that the amplitude isO(p2) and thus provides a correction only to the anomalous
gauge boson coupling. We will see however, that after integration over the positionz and
the annulus modulust , a term proportional to 1/p1 · p2 appears from the ultraviolet (UV)
region (as a result of the quadratic UV divergence in the presence of anomalousU(1)’s)
that will provide the mass-term.

Strictly speaking, the amplitude above is zero on-shell if we enforce the physical state
conditionsε · p = p2 = 0 and momentum conservationp1 + p2 = 0. There is however a
consistent off-shell extension, without imposing momentum conservation, that has given
consistent results in other cases (see [16] for a discussion) and we adopt it here. We will
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thus impose momentum conservation only at the end of the calculation. We now define for
convenience the reduced amplitudeAk by amputating the kinematical factors3

(3.4)

Aab =
∫

d4p

(2π)4
[
(ε1 · ε2)(p1 · p2)− (ε1 · p2)(ε2 · p1)

]∑
k

Tr
[
γkλ

a
]
Tr

[
γkλ

b
]
Aab
k

with

(3.5)Aab
k = − 1

2|G|
∫

[dτ ][dz]e−δ〈X(z)X(z0)〉[〈ψ(z)ψ(z0)
〉2 − 〈

X(z)∂X(z0)
〉2]
Zabk ,

whereZabk is the annulus partition function in thekth orbifold sector, and we have set
δ ≡ p1 · p2. The dependence ofAab

k on the two gauge indicesa, b is mild. It depends only
on the type of brane the gauge fields come from. For instance, in standard supersymmetric
ZN orbifolds, there are three different cases corresponding to 99, 55 and 95 D-brane
combinations.

We will need here the bosonic and fermionic propagators on the annulus. They can be
obtained from those of the torus:

(3.6)
〈
X

(
e2πiν1

)
X

(
e2πiν2

)〉 = −1

4
log

∣∣∣∣ϑ1(ν1 − ν2|τ )
ϑ ′

1(0|τ )
∣∣∣∣2 + π Im2(ν1 − ν2)

2τ2
,

(3.7)
〈
ψ

(
e2πiν1

)
ψ

(
e2πiν2

)〉(α
β

)
= i

2

ϑ
(
α
β

)
(ν1 − ν2|τ )ϑ ′

1(0|τ )
ϑ

(
α
β

)
(0|τ )ϑ1(ν1 − ν2|τ )

by applying the world-sheet involutionz → 1 − z̄ (see, for instance, Appendix of [17]).
Thus, for example,〈

X(z1)X(z2)
〉∣∣

annulus=
1

2

(〈
X(z1)X(z2)

〉 + 〈
X(z1)X(1 − z̄2)

〉 + 〈
X(1 − z̄1)X(z2)

〉
(3.8)+ 〈

X(1 − z̄1)X(1 − z̄2)
〉)
.

In Eq. (3.7),α,β denote the fermionic spin structures andϑ the Jacobi theta-functions.
Settingz1 = e−2πν andz2 = eiπ we obtain4〈

X(z1)X(z2)
〉∣∣

annulus= −1

2
log

∣∣∣∣ϑ1(iν − 1/2|τ )
ϑ ′

1(0|τ )
∣∣∣∣2 + πν2

τ2

(3.9)= −1

2
log

∣∣∣∣ϑ2(iν|τ )
ϑ ′

1(0|τ )
∣∣∣∣2 + πν2

τ2
.

The fermionic propagator on the torus satisfies the identity [16]

(3.10)
〈
ψ(z1)ψ(z2)

〉2(α
β

)
= −1

4
P(z1 − z2)− πi∂τ log

ϑ
(
α
β

)
(0|τ )

η(τ )
,

3 We consider in general insertions of different gauge fields on the different boundaries. The gauge fields can
belong to different types of branes.

4 Fixing the second position at a different point does not affect the result. This can be checked explicitly by
shifting the integration measure.
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whereP(z1 − z2) is the Weierstrass function andη the Dedekind eta-function. TheP
term as well as the scalar correlator term in Eq. (3.5) are spin-structure independent
and their contribution vanishes upon spin structure summation, because of space–time
supersymmetry. The rest is position independent. Dropping theP-piece, we effectively
have

(3.11)
〈
ψ(z1)ψ(z2)

〉2(α
β

)∣∣∣∣
annulus

= −2πi∂τ log
ϑ

(
α
β

)
(0|τ )

η(τ )
.

We should mention however that we expect this result to remain valid beyond
supersymmetric vacua. In fact, in closed string threshold calculations for gauge couplings,
there is a similar expression (see, for example, [16]) and the integral over the extra bosonic
term 〈X∂X〉2 cancels against the integral over the Weierstrass function. We expect that a
similar cancellation happens also here. Extra support for this conjecture is the structure of
the open string partition function in the presence of magnetic fields, which is also used for
the calculation of threshold corrections [14].

At this point we must be more explicit about the moduli integration measure. This is
given by

(3.12)
∫

[dτ ][dz] =
i∞∫
0

dτ

τ∫
0

d(iν)= −
∞∫

0

dt

2

t/2∫
0

dν.

The only dependence onν comes from the bosonic propagator

(3.13)e−δ〈X(z)X(z0)〉 = (2πη3(τ ))δ

ϑ2(iν|τ )δ e
πν2δ/τ2 = τ

δ/2
2

(2πη3(τ ))δ

ϑ4(iν/τ | − 1/τ)δ
,

where in the last step we performed a modular transformation on theϑ-function. We are
now in position to evaluate theν integral. Since eventually we will setδ = 0 we are
interested in the leading term. We obtain

(3.14)

τ2∫
0

dν τ
δ/2
2

(2πη3(τ ))δ

ϑ4(iν/τ | − 1/τ)δ
= τ

1+δ/2
2

[
2πη3(τ )

]δ + O(δ).

We can now proceed to parameterize the annulus contribution to the orientifold partition
function as

(3.15)Zabk = 1

4π4τ2
2

∑
α,β=0,1

1

2
(−1)α+β+αβ ϑ

[
α
β

]
(0|τ )

η3(τ )
Zabint,k

[
α

β

]
,

whereab labels the type of branes at the two endpoints of the annulus, andZabint,k is
the internal part of the annulus partition function, containing the contribution of the six
compact (super)coordinates. For theϑ-functions we use the notation and conventions of
Appendix A in [16]. In particular there are some sign changes from the conventions of [18].
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Putting everything together and assuming a supersymmetric ground state, we obtain

Aab
k = (2π)δ

4π4|G|
∞∫

0

dτ2 τ
−1+δ/2
2 η3δ(τ )

×
∑

α,β=0,1,even

1

2
(−1)α+β+αβ iπ∂τϑ

[
α
β

]
(0|τ )

η3(τ )
Zabint,k

[
α

β

]

(3.16)= (
√

2π)δ

|G|
∞∫

0

dt t−1+δ/2η3δ(it/2)F abk (t),

where we have defined

(3.17)Fabk = τ2
2Z

ab
k = 1

4π4

∑
α,β=0,1,even

1

2
(−1)α+β+αβ iπ∂τϑ

[
α
β

]
(0|τ )

η3(τ )
Zabint,k

[
α

β

]
.

Note the similarity of this expression with the one appearing in the expression of the
one-loop correction to gauge couplings (see, for instance, [16] and references therein).
It follows thatFabk can be formally written as a supertrace over states from the openab

k-orbifold sector

(3.18)Fabk = |G|
(2π)2

Strabk,open

[
1

12
− s2

]
e−tM2/2,

where s is the four-dimensional helicity. As we mentioned above, we expect that this
expression holds in the non-supersymmetric case, as well.

3.1. N = 1 sectors

In this case there is no radius dependence of the integrand. The behavior ofFabk for
larget is

(3.19)lim
t→∞Fabk (t)= C

ab,IR
k + O

(
e−πt)

with

(3.20)C
ab,IR
k = |G|

(2π)2
Strk

[
1

12
− s2

]
open

,

where the supertrace is restricted over massless states in the open channelk-sector of the
orbifold. This expression is essentially the same with the one that appears in the evaluation
of the one-loop beta-function and can be expressed in terms of the massless content of the
kth sector as

(3.21)Strk

[
1

12
− s2

]
= −3

2
NV + 1

2
NC,

whereNV,C is the number of vector, respectively, chiral multiplets appearing in thekth
sector.
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For smallt we have instead

(3.22)lim
t→0

Fabk (t)= 1

t

[
C
ab,UV
k + O

(
e−π/t)],

where

(3.23)C
ab,UV
k = |G|

(2π)2
Strk

[
1

12
− s2

]
closed

.

The relevant helicity supertrace is now in the transverse closedk-sector mapped from the
openk-sector by a modular transformation. Here also, this can be written as− 3

2NV + 1
2NC

where now the states are from the closedkth string sector (transverse channel). Note that
both in the direct and transverse channel all states contribute. We should stress that this
result is valid forN = 1 sectors only. Moreover, the trivial sectork = 0, does not contribute
to the supertrace due to its enhancedN = 4 supersymmetry (NV = 3NC ).

As shown explicitly in Appendix A, thet-integral has a logarithmic divergence inδ in
the IR and a pole in the UV (reflecting the UV tadpole of the anomalousU(1)):

(3.24)Aab
k = 2Cab,UV

k

πδ|G| + O(logδ).

The on-shell limit can be obtained by settingε1 = ε2, so that:

(3.25)
[
(ε1 · ε2)(p1 · p2)− (ε1 · p2)(ε2 · p1)

]/
(p1 · p2)→ ε · ε.

It follows that the contribution to the (unormalized) mass matrix fromN = 1 sectors reads:

1

2
M2
ab

∣∣∣∣
N=1

= 2

π |G|
∑

N=1 sectors

Tr
[
γkλ

a
]
Tr

[
γkλ

b
]
C
ab,UV
k

(3.26)= 1

2π3

∑
N=1 sectors

Tr
[
γkλ

a
]
Tr

[
γkλ

b
]
Strk

[
1

12
− s2

]
closed channel

.

We should remind to the reader that the multiplicities in the open channel of the annulus
partition function have a direct particle interpretation (the projections happen at the CP
factors of the boundaries). Such an interpretation does not seem possible in the closed
string channel. Thus, our result does not seem expressible in terms of field theory data.

We now describe the explicit form of this contribution forZN orientifolds. The internal
partition function of thekth sector is [18]

(3.27)Z99
int,k =Z55

int,k =
3∏
j=1

(2 sin[πkvj ])ϑ
[

α
β+2kvj

]
ϑ

[ 1
1−2kvj

] ,

(3.28)Z95
int,k = −2

(
2 sin[πkv1])ϑ[

α
β+2kv1

]
ϑ

[ 1
1−2kv1

] 3∏
j=2

ϑ
[

α+1
β+2kvj

]
ϑ

[ 0
1−2kvj

] ,
wherek runs over the orientifoldN = 1 sectors,(v1, v2, v3) is the generating rotation
vector of the orbifold satisfyingv1 + v2 + v3 = 0 in order to preserve at leastN = 1
supersymmetry and the 5-branes are stretched along the first torus by convention. To
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compare with other works, one should use the identities:

(3.29)ϑ

[
1

1+ 2kvj

]
= −ϑ

[
1

1 − 2kvj

]
, ϑ

[
0

1 + 2kvj

]
= ϑ

[
0

1− 2kvj

]
.

As shown in Appendix B, we can directly compute

(3.30)C
99,UV
k = C

55,UV
k = − 1

2π2

3∏
i=1

∣∣sin[πkvj ]
∣∣,

(3.31)C
95,UV
k = sin(πkv1)

2π2
ηk,

where

(3.32)ηk ≡
3∑
i=1

[
{kvi} − 1

2

]
= 1

2

3∏
i=1

sin[πkvj ]
| sin[πkvj ]| .

Thus, the contribution to the mass fromN = 1 sectors ofZN orbifolds is

1

2
M2

99,ab

∣∣∣∣
N=1

= 1

2
M2

55,ab

∣∣∣∣
N=1

(3.33)=
∑
k

N=1 sectors

− 1

π3|G|
3∏
i=1

∣∣sin[πkvj ]
∣∣Tr

[
γkλ

a
]
Tr

[
γkλ

b
]
,

(3.34)
1

2
M2

95,ab

∣∣∣∣
N=1

=
∑
k

N=1 sectors

sin(πkv1)

2π3|G| ηk Tr
[
γkλ

a
]
Tr

[
γkλ

b
]
,

where we have divided the 59 contribution by two, to avoid overcounting.

3.2. N = 2 sectors

N = 2 sectors are present when a two-torus remains invariant under the action of the
appropriate orientifold element. Only massless states and their KK descendants survive the
helicity supertrace (3.18). In this case, the functionFabk (t) is given by

(3.35)Fabk (t)= C
ab,IR
k Γ2(t),

whereCab,IRk is still given by (3.20).Γ2(t) is either the appropriate momentum lattice when
these directions are NN (Neumann boundary conditions), or the winding lattice when these
directions are DD (Dirichlet boundary conditions) [18]. No lattice sum can appear along
ND directions.

For normalization purposes, the general closed string lattice sum containing both
windings and momenta can be written as

(3.36)Z2 =
∑

mi,ni∈Z
e

− πτ2α
′

V2U2
|m1+Um2+T (n1+Un2)/α

′|2−2πτ1(m1n1+m2n2),
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whereT = B + iV2 andU = (G12 + iV2)/G11 are, respectively, the Kähler and complex
structure moduli of the torus, expressed in terms of the two-index antisymmetric tensor
BIJ = BεIJ and the 2× 2 metricGIJ (V2 = √

G ). Setting the windings to zero, and
α′ = 1/2, we obtain the open string momentum sum relevant in the NN case

(3.37)Γ2(t)=
∑
m,n∈Z

e
−πt |m+nU |2

2U2V2 = 2V2

t

∑
m,n∈Z

e
− 2πV2

t
|m+nU |2

U2 ,

while the open string (DD) winding sum is

(3.38)Γ̃2(t)=
∑
m,n∈Z

e
−2πtV2

|m+nU |2
U2 = 1

2V2t

∑
m,n∈Z

e
− π

2tV2
|m+nU |2

U2 .

The normalizations above are in agreement with [19,20]. Note that the open and closed
channel supertraces (3.18) are now the same, since massive string oscillator contributions
cancel and one is left over with the lattice sum (BPS states).

Using the results of Appendix A, we obtain the pole contribution

(3.39)IUV
k = 4V2C

ab,IR
k

πδ
+ O(logδ).

Consequently, the contribution to the mass is

1

2
M2
ab

∣∣∣∣
N=2

= 4V2

π |G|
∑

N=2 sectors

Tr
[
γkλ

a
]
Tr

[
γkλ

b
]
C
ab,IR
k

(3.40)= −V2

π3

∑
N=2 sectors

Tr
[
γkλ

a
]
Tr

[
γkλ

b
]
Strk̃

[
1

12
− s2

]
open channel

.

In the DD case, relevant for mass matrix elements coming fromDp<9 branes, the mass is

similar as above withV2
α′ → α′

V2
(V2 → 1/(4V2) for α′ = 1/2).

We now proceed to evaluate the contributions to the mass coming fromN = 2 sectors
of Abelian orientifolds. For such sectors, one of thekvi is integer. We will choose without
loss of generalitykv1 = integer. The internal partition function is then

(3.41)Z99
int,k = Γ2

ϑ
[

α
β+2kv1

]
η3

3∏
j=2

(2 sin[πkvj ])ϑ
[

α
β+2kvj

]
ϑ

[ 1
1−2kvj

]
and we can straightforwardly compute

(3.42)C
ab,IR
k = C

ab,UV
k = (−1)kv1

2π2

3∏
j=2

sin[πkvj ] = − 1

2π2

3∏
j=2

∣∣sin[πkvj ]
∣∣

and

(3.43)
1

2
M2
ab,NN

∣∣∣∣
N=2

=
∑
k

N=2 sectors

− 2V2

π3|G|
3∏
j=2

∣∣sin[πkvj ]
∣∣Tr

[
γkλ

a
]
Tr

[
γkλ

b
]
,



104 I. Antoniadis et al. / Nuclear Physics B 637 (2002) 92–118

(3.44)
1

2
M2
ab,DD

∣∣∣∣
N=2

=
∑
k

N=2 sectors

− 1

2V2π3|G|
3∏
j=2

∣∣sin[πkvj ]
∣∣Tr

[
γkλ

a
]
Tr

[
γkλ

b
]
.

Finally, for the 59 case, the relevantN = 2 sector is when the longitudinal torus is
untwisted. In this case, the internal partition function is given by

(3.45)Z95
int,k = 2Γ2

ϑ
[

α
β+2kv1

]
η3

3∏
j=2

ϑ
[

α+1
β+2kvj

]
ϑ

[ 0
1−2kvj

]
and we obtain

(3.46)C
95,ab,IR
k = (−1)kv1

1

4π2

and

(3.47)
1

2
M2
ab,DN

∣∣∣∣
N=2

=
∑
k

N=2 sectors

(−1)kv1
V2

2π3|G| Tr
[
γkλ

a
]
Tr

[
γkλ

b
]
.

As earlier, we have divided the 59 contribution by an additional factor of two. In the case
where the two-torus corresponds to DD boundary conditions (in a D7–D3 configuration
for instance), one should replaceV2 → 1/4V2.

4. Explicit orientifold examples

N = 1,ZN orientifolds are generated by a rotation that acts as

(4.1)gXi = e2πiviXi, g�Xi = e−2πivi �Xi,
whereXi, �Xi are the complex coordinates of the three two-tori. The parametersvi
determining the fundamentalZN rotation satisfyNvi ∈ Z andv1 + v2 + v3 = 0 in order to
preserve space–time supersymmetry.

The action on the Chan–Paton indices is determined by the matricesγk = (γ1)
k

representing the action of the orbifold elementgk , as

(4.2)γk = e−2πiv̂·H ,
whereHI, I = 1, . . . ,16, are the Cartan generators ofSO(32) and v̂I is a rational vector
specific to any given orbifold. A basis for the Cartan generators is given by diagonal
matrices having theσ 3 Pauli matrix somewhere in the diagonal and zero everywhere else
(so that Tr[H 2

I ] = 2). There is a vector̂v9 for D9-branes and different vectors (v̂5) for every
potential set of D5-branes.

4.1. The Z3 orientifold

Here there are no D5-branes [22]. The orbifold rotation vector is(v1, v2, v3) =
(1,1,−2)/3 and the Chan–Paton projection vector is

(4.3)v̂9 = 1

3
(1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0)
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with Tr[γ1] = Tr[γ2] = −4. This breaksSO(32) to U(12) × SO(8). TheU(1) factor of
U(12) is anomalous. The normalized generator of the anomalousU(1) is

(4.4)λ= 1

4
√

3

12∑
i=1

HI, tr
[
λ2] = 1

2
.

Thus, we can compute

Tr[γ1λ] = −2
√

3i sin(2π/3)= −3i,

(4.5)Tr[γ2λ] = −2
√

3i sin(4π/3)= 3i,

(4.6)Tr
[
γ1λ

2] = 1

2
cos(2π/3)= −1

2
, Tr

[
γ2λ

2] = 1

2
cos(4π/3)= −1

2
.

Using (3.33), we can now evaluate the anomalous gauge boson mass:

(4.7)
1

2
M2 = − 1

3π3

[
sin3(π/3)Tr[γ1λ]2 + sin3(2π/3)Tr[γ2λ]2] = 9

√
3

4π3 .

Putting backM2
s = 1/α′ from the 2α′ = 1 convention and taking into account the

normalization of theF 2 kinetic terms 2 Tr[λ2]/4g2
A, we obtain for the normalized gauge

boson mass

(4.8)M2
phys= 9

√
3

4π3 g
2
AM

2
s .

Note that this example can be used to realize two out of the four possible configurations
for the Abelian gauge bosons and their corresponding axions, displayed in Eq. (1.1),
namely the cases (brane, brane) and (bulk, brane). Indeed, the RR axions from the twisted
closed string sector are localized in all six internal dimensions, while the anomalousU(1)
can be either in the bulk (on the D9-branes), or on the brane with respect to directions that
are T-dualized, so that one has Dp-branes withp < 9. Moreover, theU(1) gauge coupling
in Eq. (4.8) is given in general byg2

A = gsV‖, with V‖ the internal volume (in string units)
of thep− 3 compactified directions along the Dp-brane.

4.2. The Z7 orientifold

The orbifold rotation vector is(v1, v2, v3)= (1,2,−3)/7. Tadpole cancellation implies
the existence of 32 D9-branes. The Chan–Paton vector is

(4.9)v̂9 = 1

7
(1,1,1,1,2,2,2,2,−3,−3,−3,−3,0,0,0,0)

which implies

(4.10)Tr[γk] = 4, k = 1,2,3,4,5,6.

The gauge group isU(4)3 × SO(8) and there are onlyN = 1 sectors.
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The potentially anomalousU(1)’s are the Abelian factors of the gauge group and the
relevant CP matrices are

(4.11)λ1 = 1

4

4∑
I=1

HI, λ2 = 1

4

8∑
I=5

HI, λ3 = 1

4

12∑
I=9

HI ,

which satisfy tr[λiλj ] = 1
2δij . The four-dimensional mixed non-Abelian anomalies of these

U(1)’s are proportional to the matrix

(4.12)


2 0 −4

−4 2 0
0 −4 2
4 4 4

 ,
where the columns label theU(1)’s while the rows label the non-Abelian factorsSU(4)3 ×
SO(8). It follows that all threeU(1)’s are anomalous. We also haveη1 = η2 = −η3 = η4 =
−η5 = −η6 = −1/2 (see Eq. (3.32)). The contributions to the mass matrix are:

(4.13)

1

2
M2
ij = −sin π7 sin 2π

7 sin 3π
7

7π3

6∑
k=1

Tr[γkλi ] Tr[γkλj ] = 2
sin π7 sin 2π

7 sin 3π
7

7π3
δij

and there is no mixing in this case.

4.3. The Z′
6 orientifold

The orbifold rotation vector is(v1, v2, v3) = (1,−3,2)/6. There is an order two twist
(k = 3) and we must have one set of D5-branes. Tadpole cancellation then implies the
existence of 32 D9-branes and 32 D5-branes that we put together at one of the fixed points
of theZ2 action (say the origin). The Chan–Paton vectors are

(4.14)v̂9 = v̂5 = 1

12
(1,1,1,1,5,5,5,5,3,3,3,3,3,3,3,3)

which imply

(4.15)Tr[γk] = 0, k = 1,3,5, Tr[γ2] = −8, Tr[γ4] = 8.

The gauge group has a factor ofU(4)×U(4)×U(8) coming from the D9-branes and an
isomorphic factor coming from the D5-branes. TheN = 1 sectors correspond tok = 1,5,
while for k = 2,3,4 we haveN = 2 sectors.

The potentially anomalousU(1)’s are the Abelian factors of the gauge group and the
relevant CP matrices for the D9-branes are

(4.16)λ1 = 1

4

4∑
I=1

HI, λ2 = 1

4

8∑
I=5

HI, λ3 = 1

4
√

2

16∑
I=9

HI ,

which satisfy tr[λiλj ] = 1
2δij . Similar formulae apply to the other threeU(1) matricesλ̃i

coming from the D5-sector. The four-dimensional anomalies of theseU(1)’s (and their
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cancellation mechanism) were computed in [4]. The mixed anomalies with the six non-
Abelian groups are given by the matrix5

(4.17)


2 2 4

√
2 −2 0 −2

√
2

−2 −2 −4
√

2 0 2 2
√

2
0 0 0 2 −2 0

−2 0 −2
√

2 2 2 4
√

2
0 2 2

√
2 −2 −2 −4

√
2

2 −2 0 0 0 0

 ,

where the columns label theU(1)’s while the rows label the non-Abelian factorsSU(4)29 ×
SU(8)9 × SU(4)25 × SU(8)5. The upper 3×3 part corresponds to the 99 sector and the
lower one to the 55 sector. As can be seen by this matrix, the two linear combinations√

2(A1 +A2)−A3 and
√

2(Ã1 + Ã2)− Ã3 are free of mixed non-Abelian anomalies. It
can also be shown that they are also free of mixedU(1) anomalies. We can now compute:

Tr[γkλ1] = −2i sin

(
πk

6

)
, Tr[γkλ2] = −2i sin

(
5πk

6

)
,

(4.18)Tr[γkλ3] = −2i
√

2 sin

(
πk

2

)
,

Tr[γkλ̃1] = −2i sin

(
πk

6

)
, Tr[γkλ̃2] = −2i sin

(
5πk

6

)
,

(4.19)Tr[γkλ̃3] = −2i
√

2 sin

(
πk

2

)

Tr
[
γkλ

2
1

] = 1

2
cos

(
πk

6

)
, Tr

[
γkλ

2
2

] = 1

2
cos

(
5πk

6

)
,

(4.20)Tr[γkλ2
3] = 1

2
cos

(
πk

2

)
while Tr[γkλiλj ] = 0 for i 
= j . We also haveη1 = η2 = η4 = −η5 = −1/2.

The contribution to the mass matrix fromN = 1 sectors is

(4.21)
1

2
M2

99,ij = −
√

3

24π3

(
Tr[γ1λi] Tr[γ1λj ] + Tr[γ5λi ] Tr[γ5λj ]

)
and similarly forM55,ij , while

1

2
M2

95,ij = −
√

3

48π3

(
Tr[γ1λi] Tr[γ1λ̃j ] + Tr[γ5λi ] Tr[γ5λ̃j ]

(4.22)+ Tr[γ2λi] Tr[γ2λ̃j ] − Tr[γ4λi ] Tr[γ4λ̃j ]
)
.

5 Note that here we use a different normalization for theU(1) generators than in [4].
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On the other hand, the contributions fromN = 2 sectors read

1

2M2
99,ij

= − V2

4π3

(
Tr[γ2λi ] Tr[γ2λj ] + Tr[γ4λi ] Tr[γ4λj ]

)
(4.23)− V3

3π3 Tr[γ3λi ] Tr[γ3λj ],

1

2
M2

55,ij = − 1

16V2π3

(
Tr[γ2λ̃i] Tr[γ2λ̃j ] + Tr[γ4λ̃i ] Tr[γ4λ̃j ]

)
(4.24)− V3

3π3
Tr[γ3λi ] Tr[γ3λj ]

and

(4.25)
1

2
M2

95,ij = − V3

12π3 Tr[γ3λi ] Tr[γ3λ̃j ].
Thus, the unormalized mass matrix has eigenvalues and eigenvectors

(4.26)m2
1 = 6V2, −A1 +A2;

(4.27)m2
2 = 3

2V2
, −Ã1 + Ã2;

(4.28)m2
3,4 =

5
√

3 + 48V3 ±
√

3(25− 128
√

3V3 + 768V 2
3 )

12
,

with respective eigenvectors

(4.29)±a±(A1 +A2 − Ã1 − Ã2)−A3 + Ã3,

where

(4.30)a± =
∓3 +

√
25− 128

√
3V3 + 768V 2

3

4
√

2(4
√

3V3 − 1)
,

(4.31)m2
5,6 =

15
√

3+ 80V3 ±
√

5(135− 384
√

3V3 + 1280V 2
3 )

12
,

with respective eigenvectors

(4.32)±b±(A1 +A2 + Ã1 + Ã2)+A3 + Ã3,

where

(4.33)b± =
±9

√
3 −

√
5(135− 384

√
3V3 + 1280V 2

3 )

4
√

2(20V3 − 3
√

3)
.

Note that the eigenvalues are always positive. They are also invariant under the T-duality
symmetry of the theoryV2 → 1/4V2. Thus, allU(1)’s become massive, including the two
anomaly free combinations. The reason is that these combinations are anomalous in six
dimensions. Observe however that in the limitV3 → 0, the two linear combinations that
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are free of four-dimensional anomalies become massless. This is consistent with the fact
that the six-dimensional anomalies responsible for their mass cancel locally in this limit.

To obtain the normalized mass matrix, we must also take into account the kinetic terms
of theU(1) gauge bosons which are

(4.34)Skinetic = − 1

4gs

[
V1V2V3

(
F 2

1 + F 2
2 + F 2

3

) + V3
(
F̃ 2

1 + F̃ 2
2 + F̃ 2

3

)]
.

This impliesM2
99 →M2

99/(V1V2V3),M2
55 →M2

55/V3 andM2
95 →M2

95/(
√
V1V2V3). The

resulting eigenvalues are too complicated and not illuminating to produce here.
Strictly speaking the formulae we presented should be used forV3 � 1. WhenV3 < 1

we can T-dualize and rewrite the theory in terms of D3–D7 branes. Then the unormalized
mass remains as above withV3 → 1/4V3 but the kinetic terms of the gauge bosons are no
longer multiplied byV3.

Using theZ′
6 orientifold, one can realize the remaining two possible configurations for

the anomalousU(1) gauge fields and their corresponding axions, namely the (bulk, bulk)
and (brane, bulk) cases of Eq. (1.1); the other two were realized for instance in the context
ofZ3 orientifold, as we described before. In fact, identifying the second torus with the bulk,
the two configurations correspond to the cases (4.26) and (4.27), respectively, that receive
contributions from the correspondingN = 2 sector only. Furthermore, in the (bulk, bulk)
case there are two possibilities as spelled out in the introduction: Eq. (4.26) as it stands
realizes a normalized mass∼ √

Va/VA = 1/
√
V1V3 In this caseVa = V2 is a subspace of

VA = V1V2V3. Upon a T-duality inV2 it realizes the other possibility, namely a normalized
mass∼ 1/

√
VaVA = 1/

√
V1V2V3. HereVa = V2 andVA = V1V3.

4.4. The Z6 orientifold

The orbifold rotation vector is(v1, v2, v3) = (1,1,−2)/6. There is an order two twist
(k = 3) and we must have one set of D5-branes. Tadpole cancellation then implies the
existence of 32 D9-branes and 32 D5-branes, as in the previous example, that we put
together at the origin of the internal space. The Chan–Paton vectors are

(4.35)v̂9 = v̂5 = 1

12
(1,1,1,1,1,1,5,5,5,5,5,5,3,3,3,3)

implying

(4.36)Tr[γk] = 0 for k = 1,3,5, Tr[γ2] = 4, Tr[γ4] = −4.

The gauge group has a factor ofU(6) × U(6) × U(4) coming from the D9-branes and
an isomorphic factor coming from the D5-branes. TheN = 1 sectors correspond to
k = 1,2,4,5, whilek = 3 is anN = 2 sector.

The potentially anomalousU(1)’s are the Abelian factors of the gauge group and the
relevant CP matrices for the D9-branes are

(4.37)λ1 = 1

2
√

6

6∑
I=1

HI , λ2 = 1

2
√

6

12∑
I=7

HI, λ3 = 1

4

16∑
I=13

HI,
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that satisfy tr[λiλj ] = 1
2δij . Similar formulae apply to the other threeU(1) matricesλ̃i

coming from the D5-sector. The four-dimensional mixed non-Abelian anomalies of these
U(1)’s are proportional to the matrix

(4.38)


6 −3

√
6 3 0

√
6

3 −6 −√
6 0 −3 −√

6
−9 9 0 −3 3 0
3 0

√
6 6 −3

√
6

0 −3 −√
6 3 −6 −√

6
−3 23 0 −9 9 0

 .

The columns label theU(1)’s, while the rows label the non-Abelian factorsSU(6)29 ×
SU(4)9×SU(6)25 ×SU(4)5. The upper 3×3 part corresponds to the 99 sector and the lower
one to the 55 sector. As can be seen by this matrix, there are three linear combinations

A1 + A2 −
√

3
2A3, Ã1 + Ã2 −

√
3
2 Ã3 andA3 − Ã3 that are free of mixed non-Abelian

anomalies. It can be shown that they are also free of mixedU(1) anomalies.
We can now compute

Tr[γkλ1] = −i√6 sin
πk

6
, Tr[γkλ2] = (−1)ki

√
6 sin

πk

6
,

(4.39)Tr[γkλ3] = −2i sin
πk

2

and similarly forλ̃i. Also

(4.40)

Tr
[
γkλ

2
1

] = 1

4
cos

πk

6
, Tr

[
γkλ

2
2

] = (−1)k

4
cos

πk

6
, Tr

[
γkλ

2
3

] = 1

4
cos

πk

2
,

while Tr[γkλiλj ] = 0 for i 
= j . Finally η1 = η2 = η3 = −η4 = −η5 = −1/2.
The various contributions to the mass matrix are

1

2
M2

99,ij = −
√

3

48π3

[
Tr[γ1λi] Tr[γ1λj ] + Tr[γ5λi ] Tr[γ5λj ]

(4.41)

+ 3
(
Tr[γ2λi ] Tr[γ2λj ] + Tr[γ4λi] Tr[γ4λj ]

)] − V3

3π3 Tr[γ3λi ] Tr[γ3λj ]

and similarly forM55,ij , while

1

2M2
95,ij

= −
√

3

48π3

(
Tr[γ1λi ] Tr[γ1λj ] + Tr[γ5λi] Tr[γ5λj ]

(4.42)

+ Tr[γ2λi ] Tr[γ2λj ] + Tr[γ4λi] Tr[γ4λj ]
) − V3

12π3
Tr[γ3λi] Tr[γ3λj ].

This mass matrix has the following eigenvalues and eigenvectors:

(4.43)m2
1 = 0, A1 +A2 − Ã1 − Ã2 + √

6(A3 − Ã3),
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(4.44)m2
2 = 3

√
3

2
, A1 −A2 − Ã1 + Ã2,

(4.45)m2
3 = 3

√
3, A1 −A2 + Ã1 − Ã2,

(4.46)m2
4 = 40

3
V3, −

√
3

2
(A1 +A2 − Ã1 − Ã2)−A3 + Ã3,

m2± =
7
√

3 + 80V3 ±
√

147− 1040
√

3V3 + 6400V 2
3

12
,

(4.47)a±(A1 +A2 + Ã1 + Ã2)+A3 + Ã3

with

(4.48)a± =
40V3 − √

3 ±
√

147− 1040
√

3V3 + 6400V 2
3

12
√

2 − 40
√

6V3
.

In the limit V3 → 0 two more masses become zero (m4 andm−). It is straightforward
to check that the appropriate linear combinations ofU(1)’s are anomaly-free in four
dimensions.

4.5. The Z3 ×Z6 orientifold

The orbifold rotation vectors arevθ = (1,0,−1)/3 andvh = (1,−1,0)/6. There is an
order two twisth3. Tadpole cancellation implies the existence of 32 D9-branes and 32
D5-branes that we put together at the origin of the internal space. The Chan–Paton vectors
are

(4.49)v̂θ9 = v̂θ5 = 1

3
(2,2,0,0,1,1,0,0,1,1,2,2,0,0,0,0)

and

(4.50)v̂h9 = v̂h5 = 1

12
(1,1,1,1,5,5,5,5,3,3,3,3,3,3,3,3).

The gauge group has a factor ofU(2)6 × U(4) coming from the D9-branes and
an isomorphic factor coming from the D5-branes. Sectors are labelled by the group
elementsθkhl . The N = 2 sectors in the 99 and 55 configurations are(k, l) ∈
{(1,0), (2,0), (0,1), (0,2), (2,2), (0,3), (0,4), (1,4), (0,5)}. In the 95 configuration we
have fewerN = 2 sectors, namely(k, l) ∈ {(0,1), (0,2), (0,3), (0,4), (0,5)}.

The potentially anomalousU(1)’s are the fourteen Abelian factors of the gauge group
and the relevant CP matrices for the D9-branes are

(4.51)

λ1 = 1

2

2∑
I=1

HI, λ2 = 1

2

4∑
I=3

HI, λ3 = 1

2

6∑
I=5

HI , λ4 = 1

2

8∑
I=7

HI ,

(4.52)λ5 = 1

2

10∑
I=9

HI, λ6 = 1

2

12∑
I=11

HI , λ7 = 1

2

16∑
I=13

HI .
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Similar formulae apply to the other sevenU(1) matricesλ̃i coming from the D5-sector.
The four-dimensional mixed non-Abelian anomalies of theseU(1)’s are proportional to
the matrix

(4.53)



1 −1 0 0 0 −1 2 0 0 0 0 0 0 0
1 −1 0 0 1 0 −2 0 0 0 0 0 0 0
0 0 −1 1 1 0 −2 0 0 0 0 0 0 0
0 0 −1 1 0 −1 2 0 0 0 0 0 0 0
0 −1 −1 0 0 −1 2 0 0 0 0 0 0 0
1 0 0 1 1 0 −2 0 0 0 0 0 0 0

−1 1 1 −1 −1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 −1 0 0 0 −1 2
0 0 0 0 0 0 0 1 −1 0 0 1 0 −2
0 0 0 0 0 0 0 0 0 −1 1 1 0 −2
0 0 0 0 0 0 0 0 0 −1 1 0 −1 2
0 0 0 0 0 0 0 0 −1 −1 0 0 −1 2
0 0 0 0 0 0 0 1 0 0 1 1 0 −2
0 0 0 0 0 0 0 −1 1 1 −1 −1 1 0



.

The columns label theU(1)’s while the rows label the non-Abelian factorsSU(2)69 ×
SU(4)9 × SU(2)65 × SU(4)5. The upper 7×7 part corresponds to the 99 sector and the
lower one to the 55 sector. As can be seen by this matrix, there are six linear combinations

(4.54)A1 −A3 −A5 +A6, A2 −A4 +A5 −A6, 2(A5 +A6)+A7,

(4.55)Ã1 − Ã3 + Ã5 − Ã6, Ã2 − Ã4 + Ã5 − Ã6, 2(Ã5 + Ã6)+ Ã7

that are free of mixed non-Abelian anomalies. MixedU(1) anomalies also cancel. We can
also compute:

η(1,1) = η(2,1) = η(1,2) = η(1,3) = −η(2,3) = −η(2,4) = −η(1,5) = −η(2,5) = 1

2
,

(4.56)η(2,2) = η(1,4) = η(1,0) = η(2,0) = 0.

The mass matrix is given by

1

2
M2

99,ij = −
∑
k,l

N=1 sectors

s[k, l]
18π3 Tr[γk,lλi] Tr[γk,lλj ]

− V3

9

5∑
l=1

sin2
[
πl

6

]
Tr[γ0,lλi] Tr[γ0,lλj ]

− V1

9
sin

[
π

3

]
sin

[
2π

3

](
Tr[γ2,2λi ] Tr[γ2,2λj ] + Tr[γ1,4λi ] Tr[γ1,4λj ]

)
(4.57)− V2

9

2∑
k=1

sin2
[
πk

3

]
Tr[γk,0λi ] Tr[γk,0λj ],
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where

(4.58)s[k, l] ≡
∣∣∣∣sin

[
π

(
2k + l

6

)]
sin

[
π
l

6

]
sin

[
π
k

3

]∣∣∣∣,
and similarly forM55,ij with V1 → 1/4V1, V2 → 1/4V2, while

1

2
M2

95,ij =
∑
k,l

N=1 sectors

ηk,l

36π3
sin

[
πk

3

]
Tr[γk,lλi ] Tr[γk,lλj ]

(4.59)+ V3

36

5∑
l=1

sin2
[
πl

6

]
Tr[γ0,lλi] Tr[γ0,lλj ].

It follows that there are no massless gauge bosons. The mass-squared matrix has a double
eigenvalue 4

√
3 and a double eigenvalue 6

√
3. It has six eigenvalues that depend onV3

and the rest depend on all three internal volumes. AtV3 = 0 there are two zero eigenvalues
corresponding to the last linear combinations in (4.54), (4.55), a double eigenvalue 4

√
3

and a double eigenvalue 6
√

3, double eigenvalues(49
√

3 ± √
5259)/18 and the rest are

(4.60)4
(
V1 + V2 ±

√
V 2

1 + V 2
2 − V1V2

)
with eigenvectors purely on the D9-branes and their duals with eigenvectors only on the
D5-branes.

5. Conclusions

In this work we did an explicit one-loop string computation of theU(1) masses
in four-dimensional orientifolds and studied their localization properties in the internal
compactified space. We have shown that non-vanishing mass-terms appear for allU(1)’s
that are anomalous in four dimensions, but also for apparent anomaly free combinations
if they acquire anomalies in a six-dimensional decompactification limit. In both cases,
the globalU(1) symmetry remains unbroken at the orientifold point, to all orders in
perturbation theory.

For supersymmetric compactifications, we found thatN = 1 sectors lead to contribu-
tions toU(1)masses that are localized in all six internal dimensions, while those ofN = 2
sectors are localized only in four internal dimensions. All these mass terms are described
as Green–Schwarz couplings involving axions coming from the RR closed string sector,
that transform under the correspondingU(1) gauge transformations. One can thus provide
explicit realizations in brane world models of all possible configurations (1.1) for the gauge
field and the axion, propagating in the bulk of large extra dimensions, or being localized
on a brane.N = 1 sectors describe axions localized on a 3-brane, whileN = 2 sectors
describe axions propagating in two extra dimensions.

Our results can in principle easily be generalized to non-supersymmetric orientifolds.
A particularly interesting class of non-supersymmetric constructions is given in the context
of “brane supersymmetry breaking”, where supersymmetry is broken only in the open
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string sector while it remains exact (to lowest order) in the closed string bulk [21]. In
the simplest case, the breaking of supersymmetry arises only from combinations of D-
branes with (anti)orientifold planes which affect only the Möbius amplitude and thus
do not change the expression for the mass. Indeed, the latter appears as a contact term
of the annulus that remains supersymmetric. On the other hand, in the case where the
supersymmetry breaking arises also from configurations of branes with antibranes, there is
an additional contribution to the mass that can be easily computed following our general
method.

Our analysis has direct implications for model building [23]. In particular, special
care is needed to guarantee that theU(1) hypercharge remains massless despite the
fact that it is anomaly free. An additional condition should be satisfied, namely that it
remains anomaly free in any six-dimensional decompactification limit. On the other hand,
anomalousU(1)’s could be used to reduce the rank of the low-energy gauge group and
guarantee the conservation of global symmetries, such as the baryon and lepton number.
Finally, the associatedU(1) gauge bosons could be produced in particle accelerators with
new interesting experimental signals. Their masses are always lighter than the string scale,
varying from a loop factor to a much bigger suppression by the volume of the bulk, giving
rise to possible new (repulsive) forces at sub-millimeter distances, much stronger than
gravity.
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Appendix A. Ultraviolet poles and infrared logarithms

In this appendix we calculate the UV tadpole (pole inδ). To this end, we split the integral
of Eq. (3.16) into UV and IR parts:

(A.1)Aab
k = I

ab,IR
k + I

ab,UV
k .

We will first considerN = 1 sectors, where no lattice sum appears in the internal partition
function. The behavior in the IR is

I
ab,IR
k = (

√
2π)δ

|G|
∞∫

1

dt t−1+δ/2η3δ(it/2)F abk (t)

(A.2)= (
√

2π)δCab,IRk

|G|
∞∫

1

dt t−1+δ/2e− πtδ
8 + finite.
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Changing variables, we obtain

I
ab,IR
k =

(
16π

δ

)δ/2Cab,IRk

|G|
∞∫

πδ/8

duu−1+δ/2e−u + finite

(A.3)=
(

16π

δ

)δ/2Cab,IRk

|G| Γ (δ/2,πδ/8),

whereΓ (a, x) is the incompleteΓ -function with asymptotic expansion for small argu-
mentx:

(A.4)Γ (a, x)= Γ (a)− xa

a
−

∞∑
n=1

(−1)nxa+n

n!(n+ a)
.

We thus obtain

(A.5)I
ab,IR
k = −C

ab,IR
k

|G| log
πδ

8
+ finite.

To study the UV behavior, we useη(it/2)= (t/2)−1/2η(2/t) and consider

I
ab,UV
k = (

√
2π)δ

|G|
1∫

0

dt t−1+δ/2η3δ(it/2)F abk (t)

= (4π)δCab,UV
k

|G|
1∫

0

dt t−2−δe−πδ/2t + finite

(A.6)= C
ab,UV
k

|G|
(

8

δ

)δ 2

πδ
Γ (δ+ 1,πδ/2)+ finite = 2Cab,UV

k

πδ|G| + finite,

leading to the pole, as advertised.
We will now focus on theN = 2 sectors. Here

(A.7)Fabk (t)= C
ab,IR
k Γ2(t),

whereCab,IRk is given by (3.20). The lattice sum is given by (3.37) in the NN case, and
by (3.38) in the DD case. To obtain the UV contribution, we have to use the second form
of the lattice sums in (3.37) and (3.38). We then find

IUV
k = (4π)δCab,IRk

1∫
0

dt t−2−δe−πδ/2tΓ2(t)+ finite

= 2V2C
ab,IR
k (4π)δ

(
2

πδ

)δ+1

Γ (δ+ 1,πδ/2)

(A.8)+C
ab,IR
k

∑
(m,n) 
=(0,0)

2U2

π |m+ nU |2Γ
(

1,
πV2|m+ nU |2

2U2

)
+ · · · .
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We have setδ = 0 to all terms with non-zero momentum. This is justified because we will
show that apart from the first term, the rest of the sum (in the second term) is finite. Indeed,
the sum over non-zero momenta is finite because it is cutoff by the incompleteΓ -function.
In fact, for large values ofx

(A.9)Γ (1, x)= e−x
[
1 + O

(
1

x

)]
and the momentum sum is bounded by

(A.10)
∑

(m,n) 
=(0,0)

2U2

π |m+ nU |2e
− πV2|m+nU |2

2U2

which is convergent forV2> 1. It has a logarithmic divergence∼ logV2 whenV2 → 0 but
we always keepV2 � 1 in our conventions. Thus, the pole is given by the first term only

(A.11)IUV
k = 4V2C

ab,IR
k

πδ
+ O(logδ).

Appendix B. Calculation of the UV tadpoles for standard orientifolds

In this appendix we compute the asymptotic valuesCUV
k andCIR

k of ZN orientifolds.
The relevantN = 1 sector partition functions are

(B.1)Z99
int,k =Z55

int,k =
3∏
j=1

(2 sin[πkvj ])ϑ
[

α
β+2kvj

]
ϑ

[ 1
1−2kvj

] ,

(B.2)Z95
int,k = −2

(
2 sin[πkv1])ϑ[

α
β+2kv1

]
ϑ

[ 1
1−2kv1

] 3∏
j=2

ϑ
[

α+1
β+2kvj

]
ϑ

[ 0
1−2kvj

] ,
where k runs overN = 1 sectors,(v1, v2, v3) is the generating rotation vector of the
orbifold satisfyingv1 + v2 + v3 = 0 in order to preserveN = 1 supersymmetry and the
5-branes are stretching along the first torus.

Using the property that onϑ-functionsiπ∂τ = 1
4∂

2
v , and the Riemann identity

1

2

∑
α,β=0,1

(−1)α+β+αβϑ
[
α

β

]
(v)

3∏
i=1

ϑ

[
α + hi

β + gi

]
(0)

(B.3)= ϑ

[
1

1

]
(v/2)

3∏
i=1

ϑ

[
1 − hi

1 − gi

]
(v/2)

in (3.16), we obtain

(B.4)F 99
k = F 55

k = 1

16π3

3∏
i=1

(
2 sin[πkvj ]

) 3∑
i=1

ϑ ′[ 1
1−2kvi

]
(0)

ϑ
[ 1

1−2kvi

]
(0)

,
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(B.5)F 59
k = −sin(πkv1)

4π3

[
ϑ ′[ 1

1−2kv1

]
(0)

ϑ
[ 1

1−2kv1

]
(0)

+ ϑ ′[ 0
1−2kv2

]
(0)

ϑ
[ 0

1−2kv2

]
(0)

+ ϑ ′[ 0
1−2kv3

]
(0)

ϑ
[ 0

1−2kv3

]
(0)

]
.

Using now

(B.6)

ϑ ′[ 1
1−2kvi

]
(0)

ϑ
[ 1

1−2kvi

]
(0)

= 2π cot(πkvi)+ O
(
e−πt ), ϑ ′[ 0

1−2kvi

]
(0)

ϑ
[ 0

1−2kvi

]
(0)

= O
(
e−2πt),

we obtain

(B.7)

C
99,IR
k = C

55,IR
k = 1

π2

3∏
i=1

(
sin[πkvj ]

) 3∑
i=1

cot(πkvi), C95,IR = −cos(πkv1)

2π2
.

For the mass computation, we are interested in the modular transform ofFk . Using

(B.8)ϑ ′
[
α

β

]
(0, τ )= − 1

τ
√−iτ e

iπ ab
2 ϑ ′

[
β

−α
](

0,− 1

τ

)
,

we can rewrite (B.4) and (B.5) as

(B.9)F 99
k = F 55

k = − 1

2π3τ

3∏
i=1

(
sin[πkvj ]

) 3∑
i=1

ϑ ′[1−2kvi−1

](
0,− 1

τ

)
ϑ

[1−2kvi−1

](
0,− 1

τ

) ,
F 95
k = sin(πkv1)

4π3τ

[
ϑ ′[1−2kv1−1

](
0,− 1

τ

)
ϑ

[1−2kv1−1

](
0,− 1

τ

) + ϑ ′[1−2kv1
0

]
(0,− 1

τ
)

ϑ
[ 1−2kv1

0

](
0,− 1

τ

)
(B.10)+ ϑ ′[1−2kv3

0

](
0,− 1

τ

)
ϑ

[1−2kv3
0

](
0,− 1

τ

) ]
.

Defining by{kvi} to be the (positive) fractional part ofkvi , then

(B.11)
ϑ ′[1−2kvi−1

](
0,− 1

τ

)
ϑ

[1−2kvi−1

](
0,− 1

τ

) = 2πi

[
{kvi} − 1

2

]
+ O

(
e−π/t)

and

(B.12)
ϑ ′[1−2kvi

0

](
0,− 1

τ

)
ϑ

[1−2kvi
0

](
0,− 1

τ

) = 2πi

[
{kvi} − 1

2

]
+ O

(
e−π/t).

In the second case, when{kvi} ∈ Z the limit gives zero. We must have
∣∣{kvi} − 1

2

∣∣ < 1
2.

Using now

(B.13)ηk ≡
3∑
i=1

[
{kvi} − 1

2

]
= 1

2

3∏
i=1

sin[πkvj ]
| sin[πkvj ]| ,
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we can directly compute (replacingτ = it/2)

(B.14)C
99,UV
k = C

55,UV
k = − 1

π2

3∏
i=1

∣∣sin[πkvj ]
∣∣,

(B.15)C
95,UV
k = sin(πkv1)

π2 ηk.
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